Marco Almeida

Equivalence of regular languages: an
algorithmic approach and complexity
analysis

[MPORTO

'F FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO

Departamento de Ciéncia de Computadores

Faculdade de Ciéncias da Universidade do Porto
2010

i

Marco Almeida

Equivalence of regular languages: an
algorithmic approach and complexity

analysis
PORTO
F FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO

Tese submetida a Faculdade de Ciéncias da Universidade do Porto

para obtencdo do grau de Doutor em Ciéncia de Computadores

Departamento de Ciéncia de Computadores

Faculdade de Ciéncias da Universidade do Porto

2010

v

Abstract

Over the last few decades, several alternative algorithms addressing the problems of min-
imisation and equivalence for finite automata and regular expressions have been proposed.
Authors typically present the worst-case time complexity analysis of their algorithms, but
that does not provide enough information on the practical behaviour. The lack of existing
implementations of several algorithms in one single framework, especially of some of the

older algorithms, makes it difficult to determine the running time characteristics.

Using the C and Python programming languages, we implemented random generators of
finite automata and regular expressions, several automata minimisation algorithms (includ-
ing an original, incremental one), some functional variants of a rewrite system to test the
equivalence of two regular expressions without explicitly converting them to equivalent
automata, and a set of algorithms to test the equivalence of two finite automata without

resorting to a minimisation process.

After integrating these tools in the FAdo toolkit, and using more that 300 GB of random
samples, we experimentally compare the relative performance of these algorithms. The size
of the data sets is sufficient to ensure confidence intervals of 95.7% — 99.5%, within a 1%

error margin.

vi

Resumo

Ao longo das ultimas décadas, foram propostos varios algoritmos relativos aos problemas de
minimizacao e equivaléncia de autématos finitos e expressdes regulares. Os autores apresen-
tam tipicamente os seus resultados considerando anélise de complexidade para o pior caso,
mas esse estudo ndo € suficiente para tirar conclusdes acerca do comportamento pratico do
algoritmo. Mais ainda, a falta de uma biblioteca tinica que retina vérios destes algoritmos

numa implementacdo comum, dificulta bastante a realizacio de testes experimentais.

Utilizando as linguagens de programacao C e Python, implementamos geradores aleatdrios
de autématos finitos e expressdes regulares, varios algoritmos de minimizacao de autématos,
algumas variantes funcionais de um sistema de re-escrita para testar a equivaléncia de duas
expressoes regulares sem obter explicitamente os autdmatos equivalentes € um conjunto de
algoritmos (que ndo envolvem processos de minimizacgio) para verificar a equivaléncia de

dois autématos finitos.

Depois de integrar estes algoritmos no projecto FAdo, e recorrendo aos cerca de 300 GB
de amostras aleatdrias que geramos, comparamos experimentalmente o seu desempenho. O
tamanho das amostras € suficiente para garantir intervalos de confianga de 95.7% — 99.5%,

com uma margem de erro de 1%.

vii

viii

Résumeé

Au cours des dernieres décennies, plusieurs algorithmes ont été proposés sur les problemes
de minimisation et d’équivalence des automates finis et des expressions régulieres. Générale-
ment, les auteurs présentent les résultats considérant la complexité dans le pire des cas, mais
cette étude n’est pas suffisante pour tirer des conclusions sur le comportement pratique
des algorithmes. Par ailleurs, 1’absence d’un seule bibliotheque qui combine plusieurs de
ces algorithmes dans une mise en oeuvre commune, rend tres difficile d’effectuer des tests

expérimentaux.

En utilisant les langages de programmation C et Python, nous avons implémenter générateurs
aléatoires d’automates finis et d’expressions régulieres, plusieurs algorithmes de minimi-
sation de automates, certaines variantes fonctionnelles d’un systeme de réécriture pour
tester I’équivalence de deux expressions régulieres sans explicitement générer les automates
équivalents, et un ensemble d’algorithmes (qui n’impliquent pas de minimisation) pour

vérifier I’équivalence de deux automates finis.

Apres I’'intégration de ces algorithmes dans le projet FAdo, et en utilisant environ 300 GB
d’échantillons aléatoires, nous avons expérimentalement comparer ses performances. La
taille des échantillons est suffisamment grand pour assurer intervalles de confiance a 95.7%—

99.5%, avec une marge d’erreur de 1% .

iX

Para os meu pais, que sempre acreditaram.

Acknowledgements

First and foremost, I have to thank my advisers, Nelma Moreira and Rogério Reis, for their
support and suggestions over the last four years, their help and contributions writing the
papers that form the core of my PhD and are central to this dissertation, which they also

thoroughly commented and proofread.

I would also like to thank Sheng Yu for receiving me in Western Ontario. Although only
for a short period of time, it was an important part of my academic education that made a

difference in the way I see a number of things.

A special note to Mara, that double-checked the proper English grammar on every single

sentence of every single chapter.

I must also thank all my friends and family for their permanent support, specially during
those (unfortunately frequent) periods of not-so-good humour. I will not mention any
names, because, quoting someone who also holds my gratitude: “You know who you are”.
Needless to say that I am forever grateful for all our nice dinners, late night coffees, long

talks over the most varied subjects, quick escapades to watch a movie, music concerts, etc.

Regarding financial support, I thank Fundacdo para a Ciéncia e a Tecnologia for the PhD
grant, and all other sources that contributed to fund conference participations, summer
schools, and research visits namely: LIACC, Fundagdo Luso-Americana, and projects ASA,

RESCUE, and CANTE.

xi

xii

Contents

Abstract A
Resumo vii
Résumé ix
Acknowledgements xi
List of Tables xxi
List of Figures XXiv
1 Introduction 1
1.1 Main contributions e 3

1.2 Structure of this dissertation 5

2 Preliminaries 7
2.1 Notation, conventions, and basic definitions 8

2.2 Sets, Lists,and Tuples 9
221 Sets . ..o 9

222 Multisets e e, 11

223 LiStS. . . e 12
224 Tuples. 12
2.3 Asymptoticnotation. e 12
23.1 O-notation 13
232 £2-notation e 13
233 O-notation e e 14
24 Pseudocode 15
2.5 Disjoint-set data structures and operations 17
2.5.1 Complexity analysis 19
2.6 Symbols, Words, and Languages 20
Finite automata 25
3.1 Deterministic finite automata 26
3.1.1 String representation for ICDFAs 34
3.1.2 Random generation 37
3.2 Non-deterministic finite automata 39

3.2.1 Equivalence of non-deterministic and deterministic finite automata . 41

3.2.2 Random generation 42
Regular expressions 45
4.1 Basicdefinition L 45
42 AXIOmatic SyStem e e e e 47

X1V

4.3 Succinct regular eXpressions e e e 49

4.4 Conversion to finite automata 50
44.1 Thompson’smethod 51

442 Glushkovautomata 52

4.5 Extended regular expressions 55
46 Linearforms. L 57
477 Derivativeso e e e e e 58
477.1 Partial derivatives Lo 59

4.8 Representation and implementation 60
4.8.1 Disjunctions 60

4.8.2 Concatenationot e e 61

483 Kleenestar 62

S [Experimental tests 63
5.1 Relatedwork 64
5.2 Sampling 64
5.3 Randominput 65
5.4 Theenvironment 66
5.4.1 Hardware and Software 66

542 Samplesizes 66

5.4.3 Statisticscollectiono 68

6 Random objects database 69

XV

6.1 Database of random ICDFAs 69

6.2 Database of random NFAs 71
6.3 Database of random regular expressions 73
6.4 Usingthedatabases 74
Equivalence of regular expressions 77
7.1 Classicalmethod 78
7.2 Avoiding finite automata L. L. 79
7.2.1 Antimirov and Mosses’ rewrite system 79
7.2.2 Functional approach 80
7.3 An alternative using partial derivatives 97
7.4 Efficient implementation with disjoint-sets 99
7.5 Experimentalresults 101
Finite automata minimisation 105
8.1 Relatedwork 106
82 Algorithms 107
8.2.1 Moore’s Algorithm 108
8.2.2 Hopcroft’salgorithm 110
8.2.3 Brzozowski’salgorithm 113
8.2.4 Watson’s incremental algorithm 114
8.3 Anewincrementalmethod L Lo, 118
8.3.1 Efficient set implementation 124

Xvi

10

832 Anexample 126

8.4 Experimentalresults 128
84.1 ICDFAs o . e 128
842 NFAs e 129
Finite automata equivalence 135
9.1 Classicalapproach 135
9.2 Analmost linear algorithm 137
9.2.1 Historicalnote 137
9.2.2 Theoriginal algorithm 138
9.2.3 Complexity analysis, 139
9.3 Improved best-case running time 141
9.4 GeneralisationtoNFAso 143
9.5 Relationship with Antimirov and Mosses’ method 145
9.5.1 Anaive DFA-EQUIVALENT-HK-P 145
9.5.2 Equivalence of the twomethods 149
9.5.3 Worst-case complexity 151
9.6 Experimentalresults 152
9.6.1 ICDFAsequivalence 153
9.6.2 NFAsequivalence 155
Conclusions 159
10.1 Future work 161

A Number of non-isomorphic ICDFAs

B Equivalence of regular expressions

C Finite automata minimisation

C.1 ICDFAs e e
C2 NFAs . . . e
C.2.1 Transitiondensity 0.1 oL
C.2.2 Transitiondensity 0.5o

C.2.3 Transitiondensity 0.8 Lo

D Finite automata equivalence-testing

D.1 ICDFAS e e
D2 NFAs . . . e
D.2.1 Transitiondensity 0.1,
D.2.2 Transitiondensity 0.5

D.2.3 Transitiondensity 0.8

E Minimal ICDFA density

F Subset construction

Bibliography

Table of Notation

Xviii

163

167

177

178

185

185

189

193

199

200

206

206

210

213

219

221

225

233

Author Index 235

Algorithm Index 237

Subject Index 238

XiX

XX

List of Tables

6.1 Summary of the random objects databases. 70
6.2 Connection details for the databases of random objects. 75
8.1 Running time complexity of DFA minimisation algorithms. 106
A.1 Number of non-isomorphic ICDFAs 163
E.1 Exact percentages of minimal ICDFAs. 219
E.2 Probability of randomly generating a minimal ICDFA. 219
E.3 Probability of randomly generating a minimal ICDFA (cont.). 220

xxi

xXxii

List of Figures

2.1

22

2.3

3.1

32

3.3

34

3.5

6.1

6.2

6.3

7.1

8.1

8.2

Intuition behind the O-notation: f(n) = O(g(n)). 13
Intuition behind the §2-notation: f(n) = 2(g(n)). 14
Intuition behind the ®-notation: f(n) = @(g(n)). 14
Transition diagram of an incomplete DFA. 27
Transition diagram of a complete DFA. 28
Anexampleof aDFAg. o 35
Bitstream representation of the NFA on Figure 3.5. 43
The NFA built from the bitstream on Figure 3.4. 43
Entity-relationship diagram of the database of random ICDFAs. 70
Entity-relationship diagram of the random NFAs’ database. 72
Entity-relationship diagram of the database of random regular expressions. . 74
Benchmarks of regular expressions equivalence-testing algorithms. 102
An ICDFA that Watson & Daciuk’s algorithm fails to minimise. 115
Incremental minimisation example: input DFA. 127

xXxiii

8.3

8.4

8.5

8.6

8.7

8.8

9.1

9.2

9.3

9.4

9.5

9.6

9.7

F.1

F2

Incremental minimisation example: partially minimised DFA. 127
Incremental minimisation example: minimal DFA. 128
Performance graphics: minimisation of ICDFAs. 130
Performance graphics: minimisation of NFAs with transition density d = 0.1.131
Performance graphics: minimisation of NFAs with transition density d = 0.5.132

Performance graphics: minimisation of NFAs with transition density d = 0.8.133

Two DFAs not distinguishable with a word of length smaller thann. 140
NFA that has no equivalent DFA with less than 2" states. 152
Brzozowski NFA obtained with RE-EQUIVALENT-PARTIAL-P. 152
Performance graphics: ICDFAs’ equivalence-testing algorithms. 154

Performance graphics: NFAs’ equivalence, with transition density d = 0.1. 156
Performance graphics: NFAs’ equivalence, with transition density d = 0.5. 156

Performance graphics: NFAs’ equivalence, with transition density d = 0.8. 157

Subset construction: space used to obtain an equivalent DFA. 222

Sub set construction: average size of the equivalent DFAs. 223

XXiv

Chapter 1

Introduction

Quoting Rozenberg and Salomaa [62],

The theory of formal languages constitutes the stem or backbone of the field of

science now generally known as theoretical computer science.

In fact, the application of language theory tools, such as finite automata, regular expressions
and context-free grammars to the design of fundamental software such as compilers, pattern
match tools, text processors, and XML processing to name a few, cannot be neglected and
has been of paramount importance over the last decades. Just considering the World Wide
Web, technologies such as CSS, HTML, and XHTML, and the importance of a browser
nowadays should be enough to understand the fundamental role that this field of research

currently plays.

The advantages and benefits of using computers and software to aid research is another
aspect that can no longer be overlooked on formal languages’ theory. Random generators,
symbolic manipulation tools, and graphical editors simplify the study of finite automata and
regular expressions. They facilitate the interchange of ideas among researchers, and may
provide important insights on its characterisation. There are already a number of software
systems that manipulate automata, regular expressions, grammars, and related structures,

and more will certainly be developed. Examples of such systems are AGL, AMoRE, ASTL,

1

2 CHAPTER 1. INTRODUCTION

Automate, FADELA, FAdo, FinITE, FIRE Station, FSM, Grail+, INR, JFLAP, MERLIin,
MONA, Nooj, TESTAS, Turing’s World, Unitex, Vaucanson, WFSC, and Whale Calf.

Over the last few decades, several alternative (and increasingly efficient) algorithms ad-
dressing the problems of minimisation, equivalence, containment, etc. for automata and
regular expressions have been proposed. Authors typically present the worst-case time
complexity analysis of their algorithms, but that does not provide enough information on
the practical behaviour. The lack of existing implementations of several algorithms in one
single framework, especially of some of the older algorithms, makes it difficult to determine

the running time characteristics.

Using the C and Python programming languages, we implemented:

e random generators for deterministic finite automata, non-deterministic finite automata,

and regular expressions;

e several well-known automata minimisation algorithms, as well as a new incremental

quadratic algorithm;

e some functional variants of a rewrite system to test the equivalence of two regular

expressions without explicitly converting them to equivalent automata;

e several algorithms to test the equivalence of two finite automata without resorting to

any minimisation process.

After integrating these tools in the FAdo toolkit, and using the random samples of finite
automata and regular expressions, we experimentally compared those algorithms relative

performance when:

e minimising both deterministic and non-deterministic finite automata, comparing the

performance of the new incremental algorithm with the older ones;

e testing the equivalence of samples of random regular expressions, comparing the
new direct method with the more usual approach that explicitly converts the regular

expressions into finite automata;

1.1. MAIN CONTRIBUTIONS 3

e testing the equivalence of both deterministic and non-deterministic finite automata,
comparing the new direct method with the more usual approach that explicitly min-

imises the input finite automata;

This required almost 21 000 hours (875 days) of CPU usage, testing several algorithms on
more than 300 GB of data. The initial setup of the system consumed nearly 800 GB of hard

disk space.

1.1 Main contributions

The following are the main contributions of this work.

e Implementation of a uniform random generator of deterministic finite automata.

e Development and implementation of a parametrised generator of random non-deterministic

finite automata.

e Design and implementation of three relational databases, publicly available, to store
data sets of random regular objects: deterministic finite automata, non-deterministic
finite automata, and regular expressions. These contain over 300 GB of easily acces-

sible random samples, generated over the course of several months.

e Implementation, experimental study, and comparison of the performance of several
finite automata minimisation algorithms. This study was conducted using samples
obtained from the uniform random generator (and stored in the database) so that we

could draw statistically significant conclusions.

e Development and implementation of a functional variant of a rewrite system to test the
equivalence of two regular expressions using the notion of derivative. This method
was also experimentally compared with the classical approach, which typically uses

the equivalent minimal automata.

4 CHAPTER 1. INTRODUCTION

e Generalisation of the algebraic method described in the previous item to partial deriva-

tives.

e Best-case improvement and generalisation to the non-deterministic case of an algo-
rithm to test the equivalence of two deterministic finite automata, without minimising
them. These algorithms were also experimentally compared with the classical ap-

proach, which typically uses the equivalent minimal automata.

e Relationship between the methods described in the previous three items by means of

the notion of derivative of a regular expression and the associated automaton.

e Proof, exemplified by a regular expression, that the exponential worst-case complexity

of the equivalence-testing algorithm is actually tight.

e Development and implementation of an original, quadratic, incremental finite au-

tomata minimisation algorithm.

e All the source code was integrated on the FAdo project, and is freely available from

http://www.ncc.up.pt/FAdo/.

Publications list

e “On the representation of finite automata”. Rogério Reis, Nelma Moreira, and Marco
Almeida. In G. Pighizzini, C. Mereghetti, B. Palano, and D. Wotschkes, editors,
Proceedings of the 7" Workshop on Descriptional Complexity of Formal Systems,
pages 269-276, Como, Italy, June 30 — July 2, 2005.

e “Aspects of enumeration and generation with a string automata representation”. Marco
Almeida, Nelma Moreira, and Rogério Reis. In H. Leung and G.Pighizzini, editors,
Proceedings of the 8" Workshop on Descriptional Complexity of Formal Systems,
pages 5869, Las Cruces, New Mexico, June 2006.

e “Enumeration and generation with a string automata representation”’. Marco Almeida,

Nelma Moreira, and Rogério Reis. Theoretical Computer Science, 387(2):93-102,

1.2. STRUCTURE OF THIS DISSERTATION 5

2007.

e “On the performance of automata minimization algorithms”. Marco Almeida, Nelma
Moreira, and Rogério Reis. In Arnold Beckmann, Costas Dimitracopoulos, and Benedikt
Lowe, editors, Local Proceedings of the 4" Conference on Computability in Europe,

Athens, Greece, July 2008.

e “Exact generation of minimal acyclic deterministic finite automata”. Marco Almeida,
Nelma Moreira, and Rogério Reis. International Journal of Foundations of Computer

Science, 19(4):751-765, August 2008.

e “Antimirov and Mosses’s rewrite system revisited”. Marco Almeida, Nelma Moreira,
and Rogério Reis. In O. Ibarra and B. Ravikumar, editors, Implementation and
Application of Automata, volume 5448 of Lecture Notes on Computer Science, pages

46-56. Springer-Verlag, 2008.

o “Testing the Equivalence of Regular Languages”. Marco Almeida, Nelma Moreira,

and Rogério Reis. In Journal of Automata, Languages and Combinatorics, to appear.

e “FAdo and GUlItar: tools for automata manipulation and visualization”. André Almeida,
Marco Almeida, José Alves, Nelma Moreira, and Rogério Reis. In S. Maneth, edi-
tor, Implementation and Application of Automata, volume 5642 of Lecture Notes on

Computer Science, pages 65-74. Springer-Verlag, 2009.

e “Incremental DFA minimisation”. Marco Almeida, Nelma Moreira, and Rogério
Reis. In Proceedings of the 15" International Conference on Implementation and

Application of Automata, to appear.

1.2 Structure of this dissertation

The following three chapters contain the mathematical preliminaries. Chapter 2 presents

some basic mathematical notions and definitions, including notation, topics from discrete

6 CHAPTER 1. INTRODUCTION

mathematics, language theory, algorithms and data structures, and complexity analysis. In
Chapter 3 we introduce finite automata (both deterministic and non-deterministic), and in
Chapter 4 we define and expose the notion of regular expression, while relating it to finite

automata.

Whenever possible, we present experimental comparative results on the performance of the
considered algorithms. Thus being, in Chapter 5, we expose and justify the conditions
on which the experimental data was collected, used, and the results analysed. We also

thoroughly describe the scenario on which all tests took place.

In Chapter 6 we describe the relational databases of samples of randomly generated deter-

ministic finite automata, non-deterministic finite automata, and regular expressions.

Chapter 7 contains an improved functional approach to a terminating rewrite system for
deciding the equivalence of two regular expressions. We prove its correctness, present some
experimental comparative results, and also propose an alternative method based on partial

derivatives.

Chapters 8 and 9 deal with finite automata minimisation and equivalence, respectively. In
Chapter 8 we present our results on implementing and experimentally comparing the relative
performance of several finite automata minimisation algorithms. We also present a new
incremental minimisation algorithm. In Chapter 9 we consider the problem of deciding the
equivalence of two finite automata (deterministic or non-deterministic) without minimising

them, presenting and experimentally comparing the implementations.

We finally conclude with some final remarks and possible future work on Chapter 10.

Chapter 2

Preliminaries

In this chapter, we present some basic mathematical notions and definitions which will be re-
peatedly used throughout this dissertation. These include topics from discrete mathematics
(sets, lists, relations), language theory (symbols, words, languages), and computer science
(algorithms, data structures, complexity analysis). We will also introduce the notation used

in the next chapters, namely, the pseudocode used to describe algorithms.

While we have omitted some proofs and examples of well-known results, we refer to the
work of the following authors for further details. Grimaldi [30] was our main reference
on topics of discrete mathematics. For disjoint-set algorithms and complexity analysis, we
heavily used the work of Cormen et al. [20]. Knuth’s “The Art of Computer Programming”
[40, 42, 41] is an omnipresent work. We have resorted to one or more of its volumes while
searching for information on topics that span from random number generation and statistical
tests, to algorithm design and implementation and complexity analysis. Concerning regular
languages, automata theory, and regular expressions, we have based several of the results,
definitions, and notation presented in this chapter on the works of Hopcroft et al. [35],

Kozen [45], Salomaa [63], Shallit [66], Wood [75], and Yu [76].

8 CHAPTER 2. PRELIMINARIES
2.1 Notation, conventions, and basic definitions
Although completely uniform naming conventions are impossible to adopt, we have tried
to name variables, functions, and algorithms in a way that corresponds to their usual des-
ignation in the literature. We have also adopted the commonly used notation for standard
concepts, such as the “big-O” notation. The following conventions will be used throughout
the rest of the chapters:

e capital letters (A, B, C,...) for arbitrary sets;

e i, j,k,l, m, and n are usually integer variables;

e Y for alphabets; when more than one is required, we add indexes such as X'; and X5;

e lower case letters from the beginning of the Latin alphabet (a, b, c, . ..) for alphabet

symbols;
e lower case letters from the end of the Latin alphabet (u, v, w, .. .) for words;

e [for languages; if more than one is required, we include indexes: Ly, L, ...; when
referring to the language of a specific object, such as a regular expression « for

example, we may use L.

e D for deterministic finite automata and N for non-deterministic finite automata; when

more than one is required, we use indexes (D1, D, ...,or N1, N,,...);

e usually, n and k for the number of states and size of the alphabet of a finite automata,

respectively; 7 is also usually used for the length of a regular expression;
e p and ¢ (possibly indexed by integers) for states of finite automata;
e lower case Greek letters, such as «, 8, and y, for regular expressions;

e the symbols for logical conjunction, disjunction, implication, equivalence, and exclu-

sive disjunction are, respectively, A, V, —, <, and V .

2.2. SETS, LISTS, AND TUPLES 9

Algorithms and functions are presented with names longer than one letter, chosen to be
suggestive of their use. They are typeset with small caps, using hyphens to separate words,
for example QUICK-SORT. Algorithms’ variables, although being a single letter, sometimes

use subscripts, superscripts, hats, overbars, or prime symbols.

Unless otherwise stated, the implicit base for any logarithm is 2, so log(1024) = 10 for

example.

2.2 Sets, Lists, and Tuples

Throughout this dissertation, sets are heavily referred to and used on proofs, definitions,
algorithms, etc. More often than not, they are sets of words (see Section 2.6). We will
also use multisets, lists, and tuples quite extensively. On this Section, we will define these

objects, the operations upon them, and describe the notation used.

2.2.1 Sets

A set is a collection of elements chosen from some predefined universe U. A set is said to

be finite if it contains a finite number of elements; otherwise, it is said to be infinite.

We use capital letters, such as A, B, C, ..., to represent sets and lowercase letters to
represent elements. For some set A, we write x € A if x is an element of A, and x ¢ A if it

is not.

An empty set, i.e., a set with no elements, is denoted by @. If S is a finite set, | S| denotes

the number of elements or cardinality of the set.

A finite set can be designated by listing its elements within braces. For example, A =
{1,3,5,7,9} is the set of the first five odd positive integers. The set B = { } has no
elements thus, { } = 0. The order in which the members are listed is not important, so

{5,3,9, 1,7} specifies the same set as {1, 3,5,7,9}. Moreover, the number of times that

10 CHAPTER 2. PRELIMINARIES

an element is listed is irrelevant, and we usually remove repeated elements for the sake
of simplicity. For example, {1,3,1,1,5,7,3, 9} also specifies the set of the first five odd

positive integers.

Not all sets can be described by simple enumeration of its members (infinite sets, for
example). Such sets may be specified by stating the properties that its members must satisfy.
In such cases, we use another standard notation: A" = {x | 1 <x < 9and x isodd}. The
vertical bar | within the set braces is read “such that”, and the properties following | help us
determine which elements belong to the set. In this case, A’ defines the set of all x, such
that

e X is greater than or equal to 1, and

e Xx is lesser than or equal to 9, and

e X is an odd positive integer.

The sets A and A’ contain the same elements, although described in different ways.
The general format of this specification is
{x | Pi(x), P2(x),..., Pu(x)}
meaning the set of all x, from the given universe, satisfying all properties P;, 1 <i < n.

If A and B are sets, we say that A is a subset of (or is contained in) B and write A C B
—or B O A — if every element of A4 is an element of B. Moreover, if B contains some
element that is not in A, then A is called a proper subset of B and this is denoted by A C B

or B D A. If A is not contained in B we write A € B.
Two sets, A and B, are said to be equal if A C B and B C A. We denote thisby A = B.

Given two sets A and B, we define the following operations:

o the unionof Aand B: AUB ={x|xe€ Aorx € B},

o the intersectionof Aand B: AN B ={x|xe€ Aandx € B},

2.2. SETS, LISTS, AND TUPLES 11

o the differenceof Aand B: A— B ={x|x€Aandx ¢ B}.

We say that A and B are disjoint when A N B = 0.

For a given set A C U, we denote the complement of A by A and define it by

A=U-A={x|xeUx¢gA}.

Sometimes we need to refer to the union or intersection of an arbitrary number of sets. We
extend the previous notation as follows. Let Ay, ..., A, be sets (n > 1). The union of the

sets is denoted by
n
UA,- ={x|xe A forsomel <i <n}.

i=1

Similarly, their intersection is denoted by

n
(A ={x|xedforalll <i <n}.

i=1

The subset of a set A, denoted by 24 is the collection (or set) of all subsets of A. For the
set A = {1,3,5}, for example, 24 = {@, {1}, {3}, {5}, {1,3},{1,5},{3,5},{1,3,5}}. In

general, for any finite set A such that |[A| = n > 0, A has 2" subsets, and thus |24| = 2".

2.2.2 Multisets

A multiset, just like a set, is a collection of elements from some universe U. Unlike a set,
however, repeated elements are not ignored. The number of times each element appears is
called its multiplicity. A set can be considered a multiset in which all multiplicities are equal
to one. Given a multiset M = {1,1,3,5,7,7,9} we can refer to its underlying set; in this

case, the underlying set of M isthe set { 1, 3,5,7,9}.

The operations on sets can be trivially extended to multisets in a natural way.

12 CHAPTER 2. PRELIMINARIES

2.2.3 Lists

A list is an ordered multiset. Because it is ordered by position, we can refer to the first,

second, and i elements. Finite lists are enclosed in square brackets, for example,
L =1[000,010,011, 101, 111].

We always use zero-based indexing, selecting elements by an index which starts at 0. Thus,

the first element of the list L, with index 0, is 000. The third element, 011, is indexed by 2.

An empty list is represented by [|. The length or size of a list L is the number of elements

it contains and we denote it by |L|. Naturally, |[]| = 0.

2.2.4 Tuples

Let n > 0 be an integer. An n-tuple over some universe U is a list of fixed length n over
that universe. It is represented by enclosing the elements of the list in parentheses. For
example, (010,011,101, 111) is a 4-tuple containing the first four prime numbers in binary.

A O-tuple is written as ().

2.3 Asymptotic notation

The order of growth of the running time of an algorithm gives a simple characterisation of
it’s efficiency and allows us to compare the relative performance of alternative algorithms.
For large enough inputs, the multiplicative constants and lower-order terms of the exact
running-time (or space) are dominated by the effects of the input size itself. Thus, we
consider input sizes large enough to assure that only the order of growth of the running-time

(or space) is relevant.

2.3. ASYMPTOTIC NOTATION 13

2.3.1 O-notation

This is the notation we use when we have only an asymptotic upper bound. It allows us
to say that a function of #n is less than or equal to another function, up to a constant factor,
and in the asymptotic sense as n grows toward infinity. For a given function f(n), we write
f(n) = O(g(n)) to give an upper bound to f(n), within a constant factor. For all values
of n greater than a certain point ng, the value of f(n) is smaller or equal to cg(n), where
c is a positive constant. Although O(g(n)) is in fact a set, it is more convenient to abuse
the notation and write f(n) = O(g(n)) to indicate that f(n) a member of the set O(g(n)).
This simplifies its usage in equations and inequalities. Figure 2.1, where f(n) = O(g(n)),

shows the intuition behind the O-notation.

cg(n)

Figure 2.1: Intuition behind the O-notation: f(n) = O(g(n)).

Note that when we write f(n) = O(g(n)) we are merely stating that some constant multiple
of g(n) is an asymptotic upper bound of f(n), with no claim on how tight that upper bound
might be. In this context, any linear function is O(n?), for example. This is why we use
O-notation to bound the worst-case running-time (or space) of an algorithm. As it only

describes an upper bound, we get a (possibly pessimistic) limit on every input.

2.3.2 $2-notation

Just like O-notation provides an asymptotic upper bound on a function, £2-notation provides

an asymptotic lower bound. For a given function f(n), we write f(n) = £2(g(n)) to give

14 CHAPTER 2. PRELIMINARIES

a lower bound to f(n), within a constant factor. For all values of n greater than a certain

point ng, the value of f(n) is greater than or equal to cg(n), where c is a positive constant.

f(n)

Figure 2.2: Intuition behind the §2-notation: f(n) = §2(g(n)).

An example of the §2-notation is shown in Figure 2.2: for all values of n to the right of no,

the value of f(n) is above cg(n).

2.3.3 @-notation

Sometimes we are able to impose both an upper and a lower asymptotic bound on some
function f(n). We call this an asymptotic tight bound and we use the ®-notation to denote
it. We say that f(n) is ®(g(n)), and write f(n) = ©@(g(n)), if there exist two positive
constants, ¢y and c,, such that f(n) can be “sandwiched” between ¢, g(n) and c,g(n), for

a sufficiently large value of n.

Figure 2.3: Intuition behind the ®-notation: f(n) = O(g(n)).

An example is shown in Figure 2.3. For all values of 7 to the right of n, the value of f(n)

1

AN L A W

2.4. PSEUDOCODE 15

lies above c;g(n) and bellow c,g(n). In other words, the two functions are asymptotically

equal up to a constant factor.

2.4 Pseudocode

The syntax of our pseudocode is based on elements of the Python [26] programming lan-
guage combined with standard mathematical notation (as described on Section 2.1). The
functions MERGE and QUICK-SORT, presented bellow, are used as examples to illustrate

the following conventions.

e Functions are defined with the keyword def. Function’s arguments follow its name
and are placed inside parentheses, separated by a comma. The function MERGE, for

example, is defined at line 1 and takes two arguments: S; and S,.

e Indentation indicates a block structure. The body of the for loop on MERGE, for
example, begins on line 2 and contains lines 3-5 (line 6 is outside the loop). Using
indentation instead of the conventional indicators of block structure, such as brackets

or begin and end statements, reduces clutter and enhances readability.

e The looping keywords while, for, continue, and break have the same meaning as the
ones in Python. Unlike Python, however, we use the usual math symbol € instead of
the in keyword when iterating through the elements of a list or set. The for loop on

MERGE illustrates this syntax.

def MERGE(S1, S2):
for xe S,:
if xeS;:
continue
S1:=81U{x}

return S

16 CHAPTER 2. PRELIMINARIES

e Variables (such as x, L1, and L, on QUICK-SORT) are local to the given procedure.

We do not use global variables without explicit indication.

e We use, rather extensively, four Python built-in data types: dictionaries (associative
arrays), lists, tuples, and sets. Dictionaries, lists, and tuples have a syntax similar to
that of Python. Given a dictionary d, we use d [k] to access or assign the value of the
key k. In the same way, given a list L, L[0] represents the first element, L[—1] the last,
and L[i : j]is a slice containing the elements L[i], L[i +1],..., L[j —1]. Justlike in
Python, tuples are immutable sequences that consist of a number of values, separated
by commas, enclosed in parentheses. When considering sets, however, we stay away
from Python and use standard mathematical notation: € for membership (lines 2 and
3 of MERGE), |S| for the size of set S (line 2 of QUICK-SORT), set comprehensions

(lines 5 and 6 of QUICK-SORT), etc.

e A variable that has not yet been defined has the special value NIL (equivalent to the

None keyword in Python).

e The Boolean operators A , V , < ,and V use minimal evaluation semantics.
Given an expression such as “if x A y” we start by evaluating x, and the expression
y is evaluated if and only if x evaluates to TRUE. Similarly, in the expression “if x
Vv y”, we evaluate the expression y if and only if x evaluates to FALSE. This semantic
allows us to write expressions such as “x # NIL A d[x] = y” without worrying

about what happens when we try to access d [x] and x is not defined.

e The assignment and comparison operators are, respectively, := and =. On line 5 of
the MERGE procedure, for example, a new value is assigned to the S; variable, and

on line 2 of QUICK-SORT there is a comparison involving the size of the list L.

1 def QUICK-SORT(L):

2 if |[L|=1:

3 return L

4 x := L[0]

5 Li:={y|lyelL,y<x}

~

2.5. DISJOINT-SET DATA STRUCTURES AND OPERATIONS 17

Ly:={z|zelL,z>x}

return QUICK-SORT(L) U {x } U QUICK-SORT(L,)

e Parameters are passed to a procedure by value. The called procedure receives its own
copy of the variable, and, should it assign a value to it, the change is not reflected on
the calling procedure. This means that after an instruction such as MERGE(A4, B), for
example, the set A will not have been changed, although the procedure MERGE itself

updates the argument S; several times.

2.5 Disjoint-set data structures and operations

The problem of creating and updating equivalence classes — common to several algo-
rithms presented throughout this dissertation — may be solved in a simple and elegant
manner by using a disjoint-set data structure. Such a data structure maintains a collection
C =1{851,9,,..., Sk} of disjoint dynamic sets and allows to efficiently perform two basic
operations on it: finding which set a given element belongs to, and uniting two sets. These

operations are implemented by what is often called a UNTON-FIND algorithm.

Each set is identified by some member chosen to be its representative. Testing if two
elements are on the same equivalence class corresponds to checking if their representatives
are the same. Making two elements equivalent, whilst keeping the transitive closure, is

achieved by merging the corresponding sets.

Let x, y, and z denote elements of a set. Following Cormen et al. [20, page 508], the
implementation of the UNION-FIND method, used by several algorithms presented in the

next chapters, is based on the following disjoint-set operations:

e MAKE(x): creates a new set (singleton) for one element x (the identifier); since the

sets are disjoint, x may not already be in another set;

e FIND(x): returns the identifier S, of the set which contains the element x;

O 00 N AN N B~ W N =

[\ I NS T O R e e e e e e e
N = O 0 0 N N R W N = O

18 CHAPTER 2. PRELIMINARIES

e UNION(x, y): combines the sets identified by x and y into a new set formed by the

union of those two sets; S, and S, are destroyed and removed from the collection.

def MAKE(x):

plx] :=x
rank[x] :=0

def UNION(x,y):
x" := FIND(x)
y" := FIND(y)

if rank[x'] > rank[y’]:

py =X
else:
plx'T:=)
if rank[x'] = rank[y’]:

rankl[y'] := rank[y'] + 1

def FIND(x):
if xep:
if x # p[x]:
x':= plx]
plx] := FIND(x")
else:
MAKE(x)

return p[x]

Variables p and rank are global associative arrays (dictionaries). The parent of a node x is
stored at p[x]. Since this implementation includes the union by rank heuristic, for each node
x we maintain the integer value rank[x] which is an upper bound on the height of x (the
number of edges in the longest path between x and a descendant leaf). When a singleton is

created, the initial rank of the single node is 0.

The UNION operation must consider two cases. If the roots of the two trees have equal rank,

we may arbitrarily choose one of the roots as the parent and increment its rank. If, on the

2.5. DISJOINT-SET DATA STRUCTURES AND OPERATIONS 19

other hand, the ranks are different, the root with the higher rank becomes the parent but the

ranks themselves remain unchanged.

The FIND procedure is a two-pass method which implements the path compression heuris-
tic, making each node on the find path point directly to the root. At each call to FIND(x), if
x is not already the root, lines 19-20 are executed and it is updated to point directly to the

root. The FIND operation does not alter the ranks.

Notice that the FIND procedure presented here is modified so that the set being looked for
is created if it does not exist. Whenever FIND(x) fails, MAKE(x) is called and the set
Sx = {x} is created. This variant will be useful on some applications of the UNION-FIND

procedure as described on later chapters.

2.5.1 Complexity analysis

A UNION-FIND algorithm is useful in many contexts and several approaches have been
proposed. Supposing a sequence of m > n FIND instructions intermixed with n — 1 UNION
operations, Hopcroft and Ullman [33] developed an algorithm whose worst-case running
time is bounded by the iterated logarithm: O(mlog*(n)). The iterated logarithm of n is

defined as follows:

log*(n) = min{; | log' (n) < 1}.

The following worst-case running time analysis is due to Tarjan [70] who proved a tighter
upper bound using the inverse Ackermann function, which grows even slower than the

iterated logarithm.

Let A(x, y) denote a faster growing variant of Ackermann’s function and «(x, y) its func-

20 CHAPTER 2. PRELIMINARIES

tional inverse. These functions are defined by:

2x ifi =0,

0 for x = 0,
A, x) =

2 forx =1,

A@ —1,A(G{,x—1)) fori >1,x>2;

a(m,n) =min{z > 1| A(z,4[m/n]) > log,(n)}.

The function A(x, y) grows so fast that

65536 two’s

—
2

A@4,3) = 2%

Conversely, o (m, n) is so slow-growing that, for all values of n such that log(n) < A(4, 3),
a(m,n) < 3 — notice that the function «(m, n) is maximised when m = n. Thus, for all

practical purposes, a(m,n) < 3.

Theorem 1. An arbitrary sequence of m > n FIND instructions intermixed with n — 1

UNION instructions can be performed in O(ma(m, n)).

Proof. Tarjan [70] proves this result considering two extensions to the implementation: the

collapsing rule and the weighted union rule.

Cormen et al. [20, pages 512-517] prove an equivalent result using the potential method
of amortised analysis. Two functions are defined, one similar to Ackermann’s function and
another one similar to its inverse, in order to achieve the same slow growing effect. Two

additional heuristics are also considered: union by rank and path compression. U

2.6 Symbols, Words, and Languages

An alphabet is a finite, non empty, set of elements. The elements of an alphabet are called

symbols or letters. Two examples are A = {0, 1} and B = {a, b, ¢ }. When referring to an

2.6. SYMBOLS, WORDS, AND LANGUAGES 21

arbitrary finite alphabet abstractly, we usually denote it by the Greek letter X .

Words A word (or string) over some alphabet X is a finite sequence of symbols from X.
Using the previous examples, 00, 010, and 1101 are words over A, while aba, aabb, and a
are words over B. The length of a word w, denoted by |w|, is the number of symbols in w.

The word 010, for example, has length 3.

We write a” to denote a word of a’s with length n. For example, a®> = aaa, a' = a, and

a® = €. Formally, it is defined inductively:

The empty word (or null string) is an empty sequence of symbols, denoted by €. Naturally,
le| = 0. The set of all words over an alphabet X, is denoted by X*. This is an infinite

(enumerable) set of finite-length words. For example,

{a,b} ={e€,a,b,aa,ab,ba,bb,aaa,...},
{a}* ={e€,a,aa,aaa,aaaa,...)

={ad" |n >0}

We can define X'* recursively as follows.

e cc ™,

e ifwe XY* thenaw € X*, foralla € X.

Given two words w and v over an alphabet X', the concatenation of w with v, denoted by
w - v or simply wv, is the word obtained by appending v to w. If, for example w = abc
and v = aba, wv = abcaba and vw = abaabc. The concatenation is an associative
operation, so we have that (xy)z = x(yz). Note that ee = ¢, since appending an empty
sequence to another empty sequence results in an empty sequence. Moreover, we = ew =

w for any word w. This is so because € is not a symbol of the alphabet: it simply denotes

22 CHAPTER 2. PRELIMINARIES

a word with no symbols. By these definitions, the set X'*, with word concatenation as the

associative binary operation and € as the identity, is a monoid.

We write w” for the word obtained by concatenating n copies of w. For example, (ab)? =

abab and (ab)® = €. Formally, it is defined inductively:

We say that two words w and v are equal, and write w = v, if they have the same length

and the same symbols in the same order.

A prefix of a word w is an initial sub-word of w, i.e., u is a prefix of w if there is a word v
such that w = uv. The word ab, for example, is a prefix of abcba. The empty word is a
prefix of every word and every word is a prefix of itself. A prefix v of a word w is called

properif v # € and v # w. We define suffix and proper suffix in an analogous manner.

The reversal of a word w = agaj . .. a,, denoted wx, is the word a,a,_ . . . ao. Itis defined

inductively by

forw =av,a e X,andv € X*.

Languages A language L over an alphabet X' is a set of words over X, i.e.,aset L € X*.
We denote its cardinality by |L|. The empty language, denoted by @ or {}, is a language
with no words. The set of all words over X', denoted by X', is the universal language. Note
that @ and { € } are languages over every alphabet. We say that two languages L, and L, are

equal, and write L1 = L,, if they contain the same words.

Apart from the usual Boolean operations on sets — union, intersection, and complement

— there are some operations specific to languages. Given two languages L; € X and

2.6. SYMBOLS, WORDS, AND LANGUAGES 23

L, € X7 their concatenation (or product), denoted by L - L, — or simply L;L, as we

usually omit the - operator — is defined by
L1L2 = {w1w2 | wp € Ll,wz € Lz}

The concatenation is an associative operation, i.e., for all languages A, B, and C we have
that A(BC) = (AB)C. It also has an identity and a zero since {€ }A = A{€} = A and
@A = A® = @. This implies that the set of all languages over some alphabet X, 2%", is a

monoid with respect to concatenation.
Set concatenation distributes over union. Thus, for any languages A4, B, and C:
AUMBNC)=(AUB)N(AUC)

and

AN(BUC)=(ANB)U(ANC).

De Morgan’s laws also hold:

o
C
o
[l
N
»)
‘DUI

N
»)
&
I
o |
-
oo}

The powers L™ of alanguage L € X* are defined inductively as follows:

L% ={e},

L't =LL"
where 7 is a non-negative integer.

The star (or Kleene closure) of a language L, denoted by L*, is the set of all finite powers

of L:
L*=1L°uL'uLiuU-..

o0
= UL".
i=0

24 CHAPTER 2. PRELIMINARIES

Similarly, we define L™ to be the union of all nonzero powers of L:

o0
LT =LL* = ULi.
i=1

Given an arbitrary language L, the star operation satisfies the following properties which

are often quite useful:

L*L* = L*:
(L) =L

L* ={e}ULL*

={e}UL*L;

g* = {€}.

The reversal of a language L, denoted by L, is the language consisting of the reversals of

all its words. It is defined as

LR={wR|welL}

Chapter 3

Finite automata

In this chapter we will introduce one of the major mechanisms for defining regular lan-
guages: the finite automaton. It is one of the simplest and most fundamental computing
models with applications in pattern matching, lexical analysis, communication protocols,

hardware circuit minimisation, and XML processing, just to name a few examples.

We will define two types of finite automata: deterministic finite automata and non-determi-
nistic finite automata. Both types accept the exact same family of (regular) languages. We
will also describe the basic operations — union, intersection, concatenation, and comple-
mentation — closure properties, an efficient computational representation, and a uniform

random generation model.

Fundamental to finite automata is the concept of state. Intuitively, a state is an instantaneous
description of some system. It “contains” all the information necessary to determine how
the system can evolve from that point onward. Changes of state are called transitions, which

can happen either spontaneously or in response to an external input.

25

26 CHAPTER 3. FINITE AUTOMATA

3.1 Deterministic finite automata

Formally, a deterministic finite automaton (DFA) is a quintuple D = (Q, X, 8, qo, F),

where

e (is a finite set of states;

X is a non-empty finite set of input symbols (alphabet);

6 : Q x X — Q is the transition function, not necessarily total;

qo € Q is the initial state (or start state);

e F C (Q is the set of final states.

The structure (or skeleton) of a deterministic finite automaton, denoted by DFAgy, is a tuple
A = (0, X,5,q0). It defines a DFA without its final state information. Each structure is

shared by 2/2] DFAs — corresponding to the possible configurations of the final states.

The size of a DFA D = (Q, X, 6, qo, F), denoted by |D|, is its number of states. Hence
|D| =0

We say that two DFAs Dy = (Q1, X, 61,91, F1) and D, = (Q», X, 62, g2, F>) are isomor-
phic, denoted by Dy ~ D,, if there exists a bijection f : Q1 — Q, such that

f(q1) = g2,
f(8(q.a)) = 8:(f(q).a),
qge kb & f(q) € F,,

forallg € Q1,a € X.

A DFA can also be represented by a transition diagram'. A transition diagram is a directed

graph where:

e cach node corresponds to a state;

'All transition diagrams in this dissertation were drawn with the VAUCANSON-G [49] package.

3.1. DETERMINISTIC FINITE AUTOMATA 27

e a transition such as §(p,a) = ¢ is represented by an arc from node p to node ¢,

labelled by a;

e the initial state is signalled by the unlabelled input arrow;

e final states are represented by a double circle.

As an example, let D = ({90.491.92},{a,b},8,q0,{90-92}) be a DFA such that the

transition function is defined as follows:

8(qo.a) = q1,
6(qo.b) = q2,
8(q1.a) = q2,
(g2, a) = ¢>.

Figure 3.1 shows the transition diagram for the DFA D.

Figure 3.1: Transition diagram of an incomplete DFA.

When the transition function is total, we say that the DFA is complete. Note, however, that
any incomplete DFA can easily be transformed into a complete one that accepts the same
language. On DFA D, for example, states ¢; and g, are missing transitions by b. In order
to make it complete, we simply add a new state — which we call a sink state — and redirect
all the missing transitions there. The DFA on Figure 3.2 is complete and equivalent to the

finite automaton D.

However, this transition function accepts only single symbols as input. In order to describe

what happens when we process a word, i.e., follow a sequence of symbols, we need to define

28 CHAPTER 3. FINITE AUTOMATA

Figure 3.2: Transition diagram of a complete DFA.

an extended transition function. This function, denoted by §, returns the state an automaton

reaches after processing some sequence of symbols. It is defined inductively as follows:

8(q.€) =q,
8(q, w) = 8(8(q. a), u),

where w = au, fora € X, u € ¥*. We say that the words w such that 3(q0, w) € F are

accepted by the DFA.
Lemma 2. Let D = (Q, X, 6, qo, F) be a DFA. Given two words u,v € X*, we have that
8(8(q,u),v) = 8(q,uv),

forany q € Q.

Proof. We wil proceed by induction on the length of u.
Base: |u| = 0.

3(3((], €),v) = S(q, V) by definition of §,

= S(q, €V) concatenation with the empty word.

Induction: suppose that 5 (8 (q,u),v) = § (¢, uv) for a word u such that |u| = n, and let
a € X. We will show that 3(3(q,au), V) = S(q, auv).
3(3((], au),v) = 3(3(8(q, ayu),v) by definition of 5
=34 (6(g,a),uv) by induction hypothesis,

= 8A(q, auv) by definition of 5.

3.1. DETERMINISTIC FINITE AUTOMATA 29

O

On any DFA, a state is called accessible if it is reachable from the initial state by some
sequence of transitions. Similarly, all states that reach a final state are called useful. If all
states of a DFA are accessible, we say it is initially connected (ICDFA). When all states of
an initially connected DFA are useful we say it is trim. We denote the skeleton of an ICDFA

by ICDFAy.
The language accepted by a DFA D = (0, X, 8, qo, F), denoted by L(D), is defined by
L(D)={we X*|8(q,w) € F}.

i.e., the set of words w that result in a sequence of transitions from the start state to any
accepting state. Two DFAs D, and D, are equivalent, and we write D; ~ D,, if they

accept the same language, i.e., L(D;) = L(D,).
A DFA is minimal if there is no equivalent DFA with fewer states.

Let D = (Q, X, 4, qo, F) be a DFA. Purely for notation simplification reasons, we define

the following operator on every state g € Q:

1 ifgekF,
£q) =
0 ifg¢F.

For two distinct states ¢; and g, in Q, we say that g, is distinguishable from ¢, and write
q1 % g2, if there exists a word w € X™* such that é(S(ql, w)) # @(S(qz, w))- When no
such word exists, the states g, and g, and equivalent (or indistinguishable) and we write

g1 ~ q». Formally, we define the equivalence relation ~ on the set of states Q by

01~ ¢ & Yw € 7 é(§(g1,w) = é((g, w))-
It is easy to see that the relation ~ is indeed an equivalence relation since it is

e reflexive: g ~ q;

e symmetric: if ¢; ~ g5, then clearly g, ~ ¢1;

30 CHAPTER 3. FINITE AUTOMATA

e transitive: ¢; ~ ¢, and g, ~ ¢3 naturally implies that g; ~ ¢3.

As with all equivalence relations, ~ partitions the set on which it is defined into disjoint
equivalence classes: [4] = {p | p ~ q}. Every state ¢ € Q is contained in exactly one

equivalenceclass [¢]and p ~qg & [P] = [9].

An equivalence relation ~ over Q is called a right-invariant equivalence relation if, for all

qi1.q9> € Q,and alla € ¥, g, ~ ¢, implies 6(q1,a) ~ §(q2,a).

Lemma 3. The relation ~ is right-invariant.

Proof. Let D = (Q, X,6,q0, F) beaDFA, ¢q1,q2 € Q,a € ¥,andu € X*.

a1 ~ 42 © €(8(qy., au)) = €(8(¢a. au)) by definition of ~,
& ¢(5(8(q1,a),u)) = €(8(8(¢a,a),u)) by definition of &,

& 8(q1,a) ~ 8(qa,a) by definition of ~.
O
In any DFA D = (Q, X, 6, qo, F), equivalent states are redundant and can be safely
collapsed without changing the language accepted. In the resulting DFA, called the quotient

automaton and denoted by D/~, each state corresponds to an equivalence class of ~. The

formal definition is as follows. Let
D/~ = (0", X,8, q4 F'),

where

0'={lql1q €0},
§'(lgl.a) = [8(q.a)],
41(/) = [qo].

F'={[q]llqeF}

Lemma 4. Forallg € Q andw € X*, §'([q], w) = [S(q w) |-

3.1. DETERMINISTIC FINITE AUTOMATA 31
Proof. The proof follows by induction on the length of w.
Basis: |{w| = 0.

§(49].€) =[4] by definition of &,

= [8 (q.¢€)] by definition of s.

Induction: let @ € ¥ and |w| = n. Supposing that 3’([q], w) = [S(q, w)], we have to

show that §'([¢], aw) = [8(q,aw)]

g/([q], aw) = 3/(8/([q], a),w) by definition of 5
"[8(g,a)] . w) by definition of §',

§
[§ (6(g,a), w)] by induction hypothesis,

8(q,aw) | by definition of §.

O

Theorem 5. A quotient automaton recognises the same language as the DFA from which it

is constructed, i.e., givena DFA D = (Q, X, 8,qo, F), L(D/~) = L(D).

Proof. Forany w € X*,
we L(D/~) < 8(q w) € F' by definition,
< §'([g0], w) € F’ by definition,
& [S(qo,w)] e F’ by Lemma 4,
& 8(qo.w) € F because ¢ € F < [q] € F',

& w e L(D) by definition.

O

Lemma 6. Let D, = (Qg, X, 84,54, Fy) and Dy = (Qp, X, 8p, Sp, Fp) be two DFAs such
that D, ~ Dy. We have that

Vaa € Qu 3qp € Op Yw € % 1 €(5,(ga, w)) = €(85(qs, w))-

32 CHAPTER 3. FINITE AUTOMATA

Proof. Foreachq, € Q,, leto(q,) denote the smallest word v € X'* such that 8a (Sq,0) =

qa, and let g, = Sb (sp,0(qq)). We will show that

€(8a(qar w)) = €(8s(gp. w))-
forw € X*.

By definition, §,(¢a, w) = 84(8(sa, 0(ga)), w) and 8 (qp, w) = 85(8(sp, 0(¢a)), w). From
Lemma 2, 8,(8(s4,0(qa)), w) = 8(5a» 0(ga)w) and 85(8(sp, 0(ga)), w) = 8(sp, 0 (qga)w).
Since Dy ~ Dy, clearly €(§(s,, 0 (qa)w)) = €(8(sp. 0 (ga)w))- O

Theorem 7. The number of states of a quotient automaton cannot be reduced.

Proof. Let D/~ = (Q’, X,§', qy, F') be a quotient DFA as described above. We will show,
by contradiction, that a DFA D,, = (Qm, X, ém.qo,,, Fm) such that L(D,,) = L(D/~)

and | D,,| < |D/~| does not exist.

Assume that L(D,,) = L(D/~). We know, from Lemma 6, that for each state ¢’ € Q’
there is at least one state, say ¢, € Qm, such that é(§'(¢’, w)) = é(m(gm. w)), for every
w € X*. Since |D,,| < |D/~|, there must be at least two distinct states, g7 and g5, such

that

€(8 (g1, w)) = €@nlgm. w))
and

€(8'(g5, w)) = (8 (qm. w))-

But this would mean that é(g’(q’l, w)) = é(g’(q;, w)), which is impossible because, by

construction, a quotient automaton has no equivalent states. U

Corollary 8. A quotient DFA is minimal.

Proof. The proof follows directly from the definition of minimal DFA, Theorem 5, and
Theorem 7. U

Theorem 9. A minimal DFA is unique up to isomorphism.

3.1. DETERMINISTIC FINITE AUTOMATA 33

Proof. Given an arbitrary DFA D, we know, from Theorem 7, that any minimal DFA equiv-
alent to D will have the same number of states as the quotient automaton D/~. We need to
show that for any two DFAs Dy = (Q1, X, 81,91, F1) and D, = (Q», X, 85, q», F>) such

that

L(Dy) = L(D;) = L(D)

and

|D1| = |D2| = |D/~|
there exists a bijection f : Q1 — Q5 such that
(@) = qa,
f(8(g.a)) = 82(f(q). a),

geF & f(q) € F,

forallg € Q;,a € X.

Let 0 (g) denote the smallest word w € X'* such that Sl(ql, w) = ¢, forsome g € Q. We

will show that D, and D, are isomorphic under the map

f:02— 0>
£(q) = 82(q2, 5 ().

Since both D; and D, are deterministic, the map f is one-to-one. Because D, has no

inaccessible states, f is also onto.

The three previous conditions that show that f is an isomorphism of automata (i.e., pre-

serves the initial state, the transition function, and the final states) are argued as follows.

F(q1) = 82(¢2.0(q1)) by definition of f,
= 5,(q2, €) 81(g1,w) =q1 = w =,

. by definition of ;.

Let 0(8:(¢,a)) = wa, and consequently o(¢q) = w, for some ¢ € Q;, w € X*, and

34 CHAPTER 3. FINITE AUTOMATA

aclk.
f(1(q.@)) = 82(¢2.0(81(g.@))) by definition of f,
= Sz(qz, wa) by definition of 0 (81(q, a)),
= 8(32 (g2, w),a) by definition of 55,
= 8,(f(q),a) by definition of f.
Clearly g € F; & f(q) € F, forallg € Qy, because L(D;) = L(D>). 0J

Corollary 10. A regular language can be univocally identified by the minimal DFA that

accepts it.

Proof. 1t is a direct consequence of Theorem 9. O

3.1.1 String representation for ICDFAs

The computational representation of a DFA has a significant impact on the amount of
resources needed to manipulate that information. A compact representation may help to
maintain the data on memory (possibly even in the local caches), avoiding the need of
constant page swapping and dramatically improving random I/O access times, which con-

sequently improves the overall performance of an algorithm.

Let us consider only skeletons of DFAs. Following Reis et al. [60, 61], a simple represen-
tation of a DFAy can be obtained by the enumeration of its states, keeping, for each state, a
set of its transitions for every symbol. Using such a representation for the DFAy of Figure

3.3, for example, we have:

{{q0.{(a,q0).(b.q1) } }.
{a1.{(a.q90).(b.q4) } }.
{q2.{(a.q1).(b.q4) } }.
{q3.{(a.93).(b.q2) } }.
{q4.{(a.90).(b.q4) }} }.

3.1. DETERMINISTIC FINITE AUTOMATA 35

Figure 3.3: An example of a DFAy.

If we assume that the DFAy is complete and consider a total order over the alphabet, this
representation can be simplified by omitting the alphabetic symbols. For our example, we

would have:

{{qo0.[90- 911},
{q1.[90.94]},
{42, [91.94]},
{q3.[93- 921},
{qa.[90-94]} }.

If we also consider some order over the the labels used for naming the states, we can simplify
the representation even further by using it to identify each state. In the example above, it is

the natural order over the indexes of the states’ names:

[[90-91],[q0.94],[91-94],[93-92],[40-94]].

If we consider only complete DFAgs, there is exactly one transition for each symbol from a
given state and each inner block has a fixed length: the size of the alphabet. This allows us

to use a flat list instead of the previous list-of-lists structure:

[qu qla qu q4v qlv q4v q3v q23 qu Q4] .

It is possible to define a canonical order over the set of the states by exploring the automaton

in a breadth-first search, and choosing, at each node, the outgoing edges in alphabetical

—_—

O o0 N N N R~ W

36 CHAPTER 3. FINITE AUTOMATA

order. The procedure is as follows. Using integers to represent the states, let the first state,
0, be the initial state go; the second state, 1, is the first state to be accessible from 0 (except
for 0 itself); the third state, 2, is the next state to be accessible from 0 (except for 0 and 1),

and so on.

This ordered representation is unique and allows to unequivocally identify a complete ICDFAy
up to isomorphism. It can not, however, be extended to general DFAys as the example in
Figure 3.3 shows. If we consider only the ICDFAy4 obtained from the first three states
(g0, g1, and ¢q4), this method induces in fact an unique order, and the corresponding string

representation is

[0,1,0,2,0,2].

Considering the remaining inaccessible states g, and g3, however, the representation is no

longer unique and we can arbitrate an order:

[0,1,0,2,0,2,3,4,1,2] or [0,1,0,2,0,2,1,2,4,3].

For each canonical string representing an ICDFAy, we can obtain a canonical form for

ICDFAs simply by adding a sequence of final states.

Given an arbitrary ICDFA D as input, the function ICDFA-TO-STRING — publicly avail-
able from the FAdo [22] project — returns a tuple (S, Fs) where S is the unique string
representation of D, and Fg the corresponding list of final states. We denote the i*” state in

the string S by ;.

def ICDFA-TO-STRING(D := (Q, X, 8,490, F)):
Ty :={}

T, =1}

Trlgo] :=0

T:[0] := qo

S =]

i:=0

ji=0

while i < j:

3.1. DETERMINISTIC FINITE AUTOMATA 37

10 L:=1]

11 for ae X:

12 s 1= 8(Tr[i]. a)
13 if s¢Tr:

14 Jji=j+1
15 Tyrls]:i=j
16 Ty [j] = s
17 L := L U|[Ty[s]]
18 S:=SUJ[L]

19 =141

20 Fy:=1]

21 for seF:

22 Fy = Fy U [Tr[s]]

23 return (S, Fy)

This canonical representation can be extended to non-complete ICDFAgs by naming all
missing transitions with an unused value, such as —1. We can assume that those are

transitions to an unspecified sink state.

3.1.2 Random generation

Given a canonical string representation of an ICDFAy with n states over an alphabet of k
symbols, let f; denote the index of the first occurrence of the state j, for j € [1,n —1]. We

call these indexes flags. It is easy to see that, in a well formed string,

(Vj €l2.n = 1D)(fj—1 < Jj), (G

and

(Vm e [1,n —1))(fn < km), (G2)

which means that f; € [0,k — 1] and f;_; < f; <kj,forj € [2,n —1].

Exact enumeration We can take advantage of this representation to sequentially enumer-

ate all ICDFAgs with a given number of states n and alphabet size k. Let S be the string

38 CHAPTER 3. FINITE AUTOMATA

representation of some ICDFAy being enumerated. We start by fixating the sequence of
flags. The remaining states S;, such thati ¢ { f; | j € [1,n — 1]}, can be inserted in the

string according to the following rules:

i<fi = S =0; (G3)
(Vjell.n=2D(f; <i < fix1 = Si €[0.j]): (G4
i> fuo1 = S;el0,n—1]. (G5)

Uniform random generation The canonical string representation and the previous set
of rules can also be used to develop a strategy to generate uniform random ICDFAgs (and

consequently ICDFAs). The method is as follows:

1. randomly generate a valid sequence of flags, according to G1 and G2;
2. randomly generate the remaining elements of the string, following the rules G3-G5;

3. randomly generate a set of final states.

Step 1 is actually the only one that requires a careful implementation. Consider a random
string S representing an ICDFAy4 with 5 states over an alphabet of 2 symbols. According to
rule G1, the flag f; can be either O or 1. There are, however, 14 0450 ICDFAys such that
/1 = 0and only 20225 with f; = 1. Hence, in order to be uniform, the random generation
of flags must consider this and make the first case more probable than the second. Step 2
can be implemented by repeatedly using a uniform random number generator for values in
the range [0,] for 0 < i < n, according to rules G3—G5. Step 3 is also easily implemented
with a uniform random integer generator: it suffices to randomly generate a value i € [0, 2"],
which can be used to identify a block of the subset of the set of states, whose members are

set to be the final states.

This uniform random generation process is implemented in a library written in the C pro-
gramming language. The library, as well as some auxiliary tools, is freely available as part

of the FAdo project, from the project’s website: http://www.ncc.up.pt/FAdo/. There

3.2. NON-DETERMINISTIC FINITE AUTOMATA 39

is also an online demonstration web page? that uses the library to generate random ICDFAs,

outputting the result in several formats: XML, DOT [67], ISIEX, etc.

3.2 Non-deterministic finite automata

A non-deterministic finite automaton (NFA) is one for which the next state is not necessarily
uniquely determined by the current state and input symbol. While in a DFA there is at most
one transition out of each state for each symbol of the alphabet, in a non-deterministic
automaton there may be as many as the number of states for each symbol. This means
that an NFA has the power to be in several states at once. It does not add, however, any
expressive power to the formalism. In fact, any language that can be described by some

NFA can also be described by a DFA.

Formally, an NFA is a quintuple N = (Q, X, 8, qo, F') where Q, ¥, ¢, and F are defined
exactly the same way as for a DFA. The transition function, however, is defined as § :

0 x ¥ — 22, and returns a set of states instead of a single state.

Just like in the deterministic case, we need to extend the transition function § to a function
§ that describes the processing of a word. Given an NFA N = (Q, X, 6, qo, F), we define
5 by:

§:0x 3" — 29

§(p.e)={r}
Sipowy=|J 8.
p'€d(p.a)

where w = av suchthatv € ¥* anda € X.

Sometimes it is useful to extend the transition function even further so that it will take a set

of states P € Q and a symbol a € X, and returns the set of all states accessible from each

http://www.dcc.fc.up.pt/~mfa/automata/

40 CHAPTER 3. FINITE AUTOMATA

p’ € P when reading a. We define this new transition function in the following way:

A:22 xy 529

A(P.a) = (] 8(p.a).

p'eP

An NFA accepts a word w € X* if, while reading the symbols of w, there is at least a
sequence of choices which reaches a final state. Formally, we define the language accepted

byan NFA N = (0, X, 6, qo, F), by:

L(N)Z{w|<§(q,w)ﬂF7éQ)}

Again, similarly to the deterministic case, we say that two NFAs N; and N, are equivalent,

and write N; ~ N,, if they accept the same language.

A common extension to NFAs is the use of transitions labelled by €, the empty word.
Formally, this special kind of automata (e-NFA) is defined by the same quintuple N, =
(Q, X,8,qo, F) as the previous NFAs but the domain of the transition function, defined as
§:0x(XU{e}) — 22, is equipped with the extra symbol. This “feature” allows an NFA
to make a transition spontaneously, without reading any input. Although it does not add any
expressive power (a language is accepted by an NFA if and only if it is accepted by some

€-NFA), it does sometimes simplify the construction of an automaton.

Another generalisation we may consider is a non-deterministic initial state. An NFA with
such an initial state is defined with the same quintuple as a standard NFA, except that there
is a set of initial states rather than exactly one. Thus, the computation of the acceptance of a
given word starts from a non-deterministically chosen initial state. We can trivially convert
such an NFA to an €-NFA by adding a new initial state i, creating an e-transition from i
to each of the other initial states, and then defining i as the only initial state. Clearly, the
generalisation does not add any power to the formalism, and this kind of NFA accepts the

same family of languages as a standard NFA (or an e-NFA, or a DFA).

3.2. NON-DETERMINISTIC FINITE AUTOMATA 41

3.2.1 Equivalence of non-deterministic and deterministic finite automata

Although, for some languages, an NFA is easier to construct than a DFA, the expressive
power of both formalisms is equivalent and any language that can be described by some
NFA can also be described by a DFA. Moreover, there is an algorithm for making any
NFA N deterministic, i.e., computing an equivalent DFA. This is achieved with the subset
construction which, in the worst case, constructs all the subsets of the set of states of N.
The notion of NFA, its equivalence to DFAs, and the subset construction are results due to

Rabin and Scott [59].

Given an NFA N = (Q, X, 6, qo, F) such that |Q| = n, we can construct a DFA D =
(Q', 2,8, q4. F') in the following way:

Q' =22

8 (p,a) = A(p,a), forpe Q,aeX;
4o = {90}
F'={peQ'|pNF #0}

Notice that this construction implies that |Q’| = 2" even when the transition function is not
total. Consequently, the size of the DFA D will be exponentially large even when some (or
most) of the states in Q’ are not actually used/necessary. This results in a huge, possibly
disconnected DFA. There is a more constructive approach, as demonstrated by the procedure
FA-DETERMINISTIC. The blowup in the number of states may sometimes be avoided by
assuring that only reachable states are added to the set Q. Such an implementation of the
algorithm follows the transition function § and incrementally builds the set of states Q.
This assures that a state g will be one of the states of the resulting DFA D if and only if it is

used by the transition function §'.

1 def FA-DETERMINISTIC(N = (Q, X,6,q0, F)):
2 Q' =0
3 § = NIL

© o 9 O Wn o~

10
11
12
13
14
15
16
17
18
19

42 CHAPTER 3. FINITE AUTOMATA

V=0
V .= PusH(V, qo)
while V #£0:
p = Por(V)
for ae X:
T := A(p,a)
8'(p,a):=T
if T¢Q":
V :=PusH(V,T)
Q':=Q'U{T}
F'=0
for pe Q'
if pNF #0:
F'=F U{p}
D:= (0" 2.8 {q0}.F)
return D

3.2.2 Random generation

Lacking a uniform random generator for NFAs, we implemented one which combines the
van Zijl bit-stream method, as presented by Champarnaud et al. [14], with one of Leslie’s
approaches [47]. This allows us to both generate initially connected NFAs and control its
transition density. Although Leslie presents a “generate-and-test” method which may never
stop, our implementation adds some minor changes that assure the desired properties by

construction. A brief explanation of the random NFA generator follows.

Suppose we want to generate a random NFA with 7 states over an alphabet of k symbols and
a transition density d. Let the states (respectively the symbols) be named by the integers
0,...,n — 1 (respectively 0, ...,k — 1). A sequence of n?k bits describes the transition
function in the following way: the occurrence of a non-zero bit at the positionink + jk +a

denotes the existence of a transition from state i to state j labelled by the symbol a.

Starting with a sequence of all-0 bits, the first step of the algorithm is to create a connected

3.2. NON-DETERMINISTIC FINITE AUTOMATA 43

structure and thus ensure that all the states of the final NFA will be accessible. In order
to do so, we define the first state as 0, mark it as visited, generate a transition from 0 to
any not-visited state i, and mark i as visited. Next, until all states are marked as visited,
randomly choose an already visited state g, randomly choose a not-visited state ¢,, add
a transition from ¢; to g, (by a random symbol), and mark g, as visited. At this point
we have an initially connected NFA and proceed by adding random transitions. Until the
desired density is achieved, we simply select one of the bitstream’s O bits and set it to 1.
By maintaining a list of visited states on the first step and keeping record of the 0 bits on
the second step, we avoid generating either a disconnected NFA or a repeated transition,
and assure that the algorithm will always halt. The set of final states can be easily obtained
by generating an equiprobable bitstream of size n and considering final all the states that

correspond to a non-zero position in the bitstream.

As an example, consider the bitstream on Figure 3.4 which represents the NFA of Figure
3.5.
q0 q1 q2 q0 q1 q2 q0 q1 q2

e N e N N I N

001110 00[00[00]01]10]01

40 q1 q2

Figure 3.4: Bitstream representation of the NFA on Figure 3.5.

@)
»O

Figure 3.5: The NFA built from the bitstream on Figure 3.4.

44

CHAPTER 3. FINITE AUTOMATA

Chapter 4

Regular expressions

Just like finite automata, regular expressions are used to recognise regular languages. The
formalism was introduced by Kleene [39], who also proved its equivalence in expressive
power to finite automata. While finite automata tend to be used in computational imple-
mentations — mainly for efficiency reasons — regular expressions provide a good human-
readable representation. When defining a token or specifying a string to be matched, for

example, finite automata quickly become too cumbersome.

4.1 Basic definition

A regular expression over an alphabet X' is defined inductively in the following way:

the constants @ and € are regular expressions;

any symbol @ € X is a regular expression;

if o and B are regular expressions, then the disjunction (or union) « + f is a regular

expression;

if « and B are regular expressions, then the concatenation o - 8 is a regular expression;

45

46 CHAPTER 4. REGULAR EXPRESSIONS

e if v is a regular expression, then o™ is also a regular expression, denoting the Kleene

closure or star of «.

We usually omit unnecessary parentheses and the concatenation operator -, adopting the

following conventions:

1. the star operator is of highest precedence (it applies only to the leftmost well-formed

regular expression);
2. the concatenation operator comes next in precedence and is left-associative;

3. with the lowest precedence, the disjunction operator, is also left-associative.

Thus, a regular expression such as

a1l + y1 + v282

should be read as

(a1 - BY) - a2) +y1) + (2 B2)).

The language recognised by a regular expression «, denoted by L(«), is defined in the

following way. Let B8 and y be arbitrary regular expressions.

o L(¥) =@ and L(¢) = {e};

L(a) = {a}, fora € ¥;

L(B+y)=L(B) U L(y);

L(By) = L(B)L(y):

L(B*) = L(B)".

We say that two regular expressions o and B are equivalent, and write @ ~ J, if they

recognise the same language, i.e., L() = L(B).

4.2. AXIOMATIC SYSTEM 47

We use the ordinary length, denoted by |« |, as the measure of size for a regular expression «.
This measure counts the total number of symbols in «, including parentheses and operators.
The regular expression (a + b)*(a + €), for example, has size 12. There are other possible
measures, like the alphabetic size, denoted by ||y, which counts only the number of
alphabetic symbols in «. Since we will only be considering irreducible regular expressions
as defined in Section 4.3, however, there will be no syntactic redundancy and the ordinary

length should be enough.

A regular expression « possesses the empty word property (e.w.p.) [63] if and only if € €

L(w), i.e., any of the following conditions holds:

o = B* (where B is an arbitrary regular expression);

e « is a disjunction of regular expressions, where at least one possesses the e.w.p.;

e (is a concatenation of regular expressions, all of which possess the e.w.p.

The constant part of a regular expression «, denoted by €(«), is € if « has the e.w.p., and @

otherwise.

4.2 Axiomatic system

Let Rg denote the set of all regular expressions. The algebraic structure (Rg, +, -, @, €),
constitutes an idempotent semiring, and, with the unary operator x, a Kleene algebra.
There are several well-known complete (non purely equational) axiomatisations of Kleene

algebras [64, 44], but we will essentially consider Salomaa’s axiom system F; [64, 63],

48 CHAPTER 4. REGULAR EXPRESSIONS

which is defined as follows:

o+ 0 ~a, (A1)
o+a~a, (A,)
a+p~B+a, (A3)
at+B+y)~@+p) +y, (Aa)
€ ~a, (As)

Pa ~ @, (A6)
a(By) ~ (aB)y, (A7)
a(f +y) ~ap +ay, (As)
(@ + By ~ay + By, (Ao)
o ~ e+ aa”, (A10)

ot ~ (e +a). (A1)

The system also includes the following two rules of inference:

o Substitution

"~yla/Bl, o~ B, ~ 34
Y ~ vl ,//3] //3 y~9 (R))
y ~8, y ~vy

e Solution of equations

a~af+y, €PB)=10
o~ pry '

(R2)

We say that two regular expressions are similar [11] if one can be transformed into the other

using only the Axioms A;, A,, Az, and A4, and the following identities:

o 0l ~ Da ~ @,

® (e ~ e ~ (.

When not similar, regular expressions are called dissimilar.

4.3. SUCCINCT REGULAR EXPRESSIONS 49

Unlike Salomaa, we use € instead of #*, but #* ~ € may actually be derived with the

following sequence of equations:

@* ~ € + 00* by Axiom Aj;
~e+0 by Axiom Ag;

~ € by Axiom A;.

The disjunction of regular expressions is associative, commutative and idempotent (Axioms
Ay, Az and A,, respectively). The concatenation is associative (Axiom A7), and the star is
idempotent. We denote by AC the set of axioms that includes the associativity, commuta-
tivity and idempotence of disjunction, and by ACI A the set ACI plus the associativity of
concatenation. Throughout this thesis, when referring to an arbitrary regular expression —
unless otherwise stated — we consider all regular operations modulo these properties. This

means, for example, that we do not distinguish between the following regular expressions:

(@+ (B +y@p) +a,
a+ (B* + (ya)p' +),

a+ p*+yd'p.

4.3 Succinct regular expressions

We say that a regular expression « is uncollapsible [21] if none of the following conditions

holds:

e « contains the proper sub-expression @, and || > 1;
e o contains a sub-expression of the form By or yf where L(B) = {€};

e (contains a sub-expression of the form f + y or y + where L(8) = {€} and
E(Y) =e.

50 CHAPTER 4. REGULAR EXPRESSIONS

A regular expression « is irreducible [21] if it is uncollapsible and the following conditions

are true:

e « does not contain superfluous parentheses (we adopt the usual operator precedence

conventions and omit outer parentheses);

e « does not contain a sub-expression of the form (8*)*.

These reductions allow us to avoid considering that two trivially equivalent regular expres-

sions, such as @ = @ + eeaee + @ and f = a, have sizes |o| = 9and |B| = 1.

Notice that these transformations rely solely on taking regular expressions modulo ACI A
and the idempotence of the star operator. Although simple, they allow for a more succinct

representation of regular expressions.

4.4 Conversion to finite automata

There are several possible approaches to the problem of transforming a regular expression
into a finite automaton which accepts the same language. One of the simplest and possibly
more intuitive methods, due to Thompson, transforms a regular expression into an e-NFA. It
may, however, generate a considerable number of e-transitions, resulting in an unnecessarily

large automaton.

Other methods transform a regular expression into an NFA without e-transitions or even
directly into a DFA. The direct conversion to a DFA can be both time and space consuming,

but the same result is easily achieved by splitting the process in two separate steps:

1. obtain an NFA from the regular expression;

2. convert it into an equivalent DFA using the subset construction.

In the following, we give a brief description of Thompson’s method and of an approach due

to Glushkov, based on marked regular expressions.

4.4. CONVERSION TO FINITE AUTOMATA 51

4.4.1 Thompson’s method

The following construction, due to Thompson [71], can be found in several introductory
books on automata theory and formal languages, such as Hopcroft et al. [35] or Wood [75],
and is implemented on some pattern match tools such as GNU grep [23]. Our definition

follows the presentation by Hopcroft et al. [35, pages 101-104].

Let o and 8 be regular expressions. A €-NFA N,, such that L(N,) = L(), is recursively

defined as follows.

Ng = ({90-91}, X,8,q0,{91}), where §(qg,a) = @ foralla € X.

Ne = ({490.91}, X,68,q0,{41}), where 8(qo,€) = {41} and 8(q9,a) = @ for all
aeclk.

N, = ({90-91}, X,8,q0,{91}), where §(qo,a) = {41} is the only transition.

Let Ny = (Qq, Y. 8. qa, Fy) and Ng = (Qg. X, 8g.qp, Fg) such that O, N Qp =
@.

- Ny+p = (0, X,68,q0,{491}), where q¢ and g, are new states, and

0 =0,UQ0pU{q0.91};
8(qo, €) = {de-4p };

3(q.€) = {41}, forallg € Fy U Fpg;

du(q,a) ifq e Qg,
§(q,a) =

$p(q.a) ifg e Og:

fora € X.

52 CHAPTER 4. REGULAR EXPRESSIONS
- Nog = (0, X,6,qq, Fp), where
Q = 04U Qp:
8(q,€) =1{48}, forall g € Fy;

bu(q.a) ifq € Qa,

$p(q.a) ifg e Qg;

8(q.a) =

fora € X.

- No» = (0, %,6,q0,{491}), where gy and g, are new states, and

0 =0qU{q0.91};
8(qo, €) = {9 q1};
0(q,€) ={4a-91}, forall g € Fy;
8(q,a) = 64(q,a), forallq € O, anda € X.

The e-NFA obtained from this construction presents the following properties:

e there is exactly one accepting state;
e there are no arcs going into the initial state;

e there are no arcs coming out of the accepting state.

For a regular expression « such that || = n, Thompson’s method takes 6 () time and space
to construct an e-NFA N, with 6(n) states and 6(n) transitions [16, 17]. More specifically,

N, will have between n and 2n states, and between n and 4n transitions.

4.4.2 Glushkov automata

A different approach transforms a regular expression « into a particular NFA without e-

transitions. Paraphrasing a description by Briiggemann-Klein and Wood [13], if a word is

4.4. CONVERSION TO FINITE AUTOMATA 53

defined by some regular expression «, then it must be possible to spell out that word by
tracing the appropriate “path” through . As an example, consider the word w = abba and
the regular expression « = (a + b)*a + €. Using subscripts to mark each symbol in o, we
can rewrite « as (a; + by)*as + €, and determine that w € L () because it corresponds to
the path that starts at a;, visits b, twice, and finally arrives at a3. Naturally, the structure
of the regular expression restricts the marked subscripts that can be used to match adjacent
symbols of a word. Taking the previous example, for instance, if some symbol in a word is
matched by a3, no further symbol of that word can be matched in . These restrictions were
first formalised by Glushkov [28], and independently, by McNaughton and Yamada [51].
The NFAs obtained through this construction are usually called Glushkov automata. It
has been claimed [10] that this NFA is the canonical representation because of its natural

connection with the derivatives of the original regular expression.

Following Yu’s [76] construction, which in turn is based on the presentation by Briiggemann-

Klein and Wood [13], we will describe this regular-expression-to-NFA conversion method.

Let o be a regular expression. The Glushkov NFA N,, such that L(Ny) = L(«), is

recursively defined as follows.

Ng = ({40}, 2,6, q0,0), where §(q9,a) = @ foralla € X.

Ne = ({90}, X,68,q0,{90}), where 6(qo,a) = @ foralla € X.

e N, = ({9091}, %,6,q0,{91}), where §(qo,a) = {41} is the only transition for
somea € X.
o Let Ny = (Qu. 2, 04.9a, Fo) and Ng = (Qp. X, 88, qp. Fpg), such that O, N Qg =

@.
- Notpg = (0, 2.8, 494, F), where

0 = Q4 U (Qp —{48}) (after merging g and gp into g4);

FaUFﬂ ifq,g ¢F,3,
F =

Fo U(Fg—1{48}) U{4da} otherwise;

54 CHAPTER 4. REGULAR EXPRESSIONS

Sa(qa.a) Udp(qp.a) ifq = qa,
8(g.a) = { 84(q,a) if g € Q.
8p(q.a) ifg € Qg;

fora € X.

- af = (Qv 2, 83 da, F), where
0 = 04, U (Qp —1{48}) (merging each g € F, with a copy of gp);

Fp if gg ¢ Fg,

Fo U (Fp—{48}) ifqp € Fp;

F =

da(q,a) ifg e Qy — Fy,

8(4.4) = { b4(q.a) Ubs(gp.a) ifq € Fo,

Sp(q.a) ifqge Qp—1{48};

fora € X.

- No» = (0, %,0,4q, F), where

0 =0u
F =F,U{4a};
80{ s f a_F(xa
5(.a) = (q,a) ifgeQ

8a(g.a) Udy(qa.a) ifqg € Fy;

fora € X.

Glushkov automata present the following known properties:

e the starting state has no incoming transitions;
e for a given state, all incoming transitions are labelled by the same symbol;

e given a regular expression ¢, the number of states of the resulting NFA is always

lo| 5 + 1.

4.5. EXTENDED REGULAR EXPRESSIONS 55

4.5 Extended regular expressions

As defined on Section 4.1, regular expressions allow only three operations: union, concate-
nation, and iteration. Complement, intersection, and difference, however, are often quite
useful. Because regular languages are closed for complement, intersection, and difference,
introducing these operators does not affect the expressive power of regular expressions. A
regular expression containing any of these operators is called an extended regular expres-

sion.

Let @ and B be regular expressions. We define extended regular expressions by taking the

recursive specification of a regular expression (page 45) and adding the following:

e « is an extended regular expression denoting the complement;
e the intersection, o N B, is an extended regular expression;

e the difference, denoted by « — B, is also an extended regular expression.

Just like with non-extended regular expressions, we omit unnecessary parentheses and the

concatenation operator, adopting the same conventions.

The language recognised by an extended regular expression o, denoted L(«), is defined in

the following way. Let 8 and y be arbitrary extended regular expressions.

L(@) =@ and L(e) = {e};

L(a) = {a},fora € X;

L(B+vy)=L(B)U L(y);

L(By) = L(B)L(y);

L(B*) = L(B)";

o L(B)=X*—L(B);

56 CHAPTER 4. REGULAR EXPRESSIONS

e L(BNy)=L(B)NL(>y);

o L(B—y)=L(B)— L(y).

To illustrate the descriptive power of extended regular expressions, consider the problem of
specifying a regular expression to recognise C-style comments. Recall that a C comment is
a sequence of the form /*...x/, where . . . represents any string of characters except */. Let
X be the alphabet of all valid characters in C and y represent the disjunction of all symbols
a € (¥ —{/,*}). Moreover, let« = /* and f = */. A possible regular expression to

recognise this language is

/%((/ +y) + xxTy)*x" /.

Using extended regular expressions, however, we can use the complement operator and

obtain a solution which is both shorter and easier to read:

aX*BX*B.

Because of this ability to be reduced, however, some problems require even more time to
be solved (assuming that time is measured as a function of the length of the regular expres-
sion). The emptiness-of-complement problem, for example, which consists on determining

whether the complement of a given regular expression denotes the empty set,

e is in P-SPACE for ordinary regular expressions [1, 395-399];

e at least of exponential space (and therefore time, since NP-TIME is contained in P-
SPACE) complexity' ¢’c v/ 1°¢™ for regular expressions extended with intersection

but not with complement [1, 411-418];

e not decidable by any elementary space-bounded Turing machine for the full class of

extended regular expressions [1, 419-423].

'For a regular expression of size n, and constants ¢’ > 0, ¢ > 1.

4.6. LINEAR FORMS 57

4.6 Linear forms

A regular expression « is said to be linear if it is generated by the following context free

grammar:

L—S|S-R|L+L
R—S|R+R|R-R|R* (G1)

S —>ael,

where L is the initial symbol. Hence, a linear regular expression « is of the form

a0y + -+ anpoy

where «; is an arbitrary regular expression and a; € X.

We say that an expression a;«; has head a; and tail o; and use HEAD (o) and TAIL ()
to denote, respectively, the multiset of all heads and the multiset of all tails in «. If
each element in HEAD (o) occurs exactly once, the linear regular expression « is called

deterministic.

A regular expression is called pre-linear if it is generated by following context free gram-

mar:

P—-0]|0
Q—>L|Q-R[QO+0
L—-S|S-R|L+L (G»2)

R—>S|R+R|R-R|R*

S —>ael,

where P is the initial symbol. Less formally, a pre-linear regular expression is either
@, an already linear regular expression or a disjunction of concatenations where the first
argument of each concatenation is a pre-linear regular expression. Just like with linear

regular expressions, we say that a;«; has head a; and tail o;.

58 CHAPTER 4. REGULAR EXPRESSIONS

4.7 Derivatives

The derivative [12] of a regular expression « with respect to a symbol a € X, written

a~ (), is a regular expression B such that:

L(B) ={w|aw € L(a)}.

The formal recursive definition is the following:

a~'(0) = 9;
a”'(e) = 0:

€ ifa =a,
a () =

Y ifa #a;

aNa+B)=a o) +a ' (B);
a Nap) = a Y(a)B + é(@)at(B);

al(a*) =al(a)a*.

where «, 8 are arbitrary, not necessarily irreducible, regular expressions.

Notice that in the particular case of a deterministic linear regular expression, the computa-

tion of the derivative of a regular expression o with respect to a symbol a can be simplified

as follows:
B if aB is an operand of «,
al(a) = < € ifa =a,
Y otherwise.

The notion of derivative can easily be extended to words in a natural way. Let w™!(a)

denote the derivative of the regular expression o with respect to a word w € X', such that

4.7. DERIVATIVES 59

w = ua fora € X. It is recursively computed in the structure of w as follows:

e Ha) =a;

w (@) = a)" (@) = a7 (™ (@)).

4.7.1 Partial derivatives

Partial derivatives [5] are a generalisation to the non-deterministic case of the notion of
derivative. Let « be a regular expression and o’ = a~ (). The set of partial derivatives of
aregular expression o with respect to a symbol a € X', denoted by d,(«), can be seen as the
set of the operands of the disjunction «’. The following recursive definition computes the

set of partial derivatives of an arbitrary regular expression with respect to a symbol a € X

3a(9) = {}:
aa(e) = {}’

{€}, ifa =a;

da(0r) =
{}, otherwise;

da(e + B) = da(e) U 94(B):
da(af) = da(@)p U é(a)da(B);
0a(a*) = 0g4(a)a™.

Let A = {01,...,0,} be a set of regular expressions and » A denote the disjunction

constructed with the elements of A4, i.e.,

ZA:oc1+---+oen.

The notion of partial derivatives of a regular expression « can trivially be extended to words

60 CHAPTER 4. REGULAR EXPRESSIONS

as follows. Let w € X* such that w = uag anda € X.

de(a) = {a};

Bua(@) = 0(Y 0u(@)).

Clearly,
La (@) = L(Z 8a(a)) and L(3y (@) = L(Z w—l(a)).

The set of all partial derivatives of a regular expression « with regard to all words w € X'*,

denoted by Pj(«), is finite and bounded by the number of alphabetic symbols in .

4.8 Representation and implementation

We always consider irreducible regular expressions modulo associativity of the concatena-
tion and disjunction, commutativity of the disjunction, and idempotence of both disjunction
and star operations. For each operator, we use a data structure that enforces these properties

and simplifies the processes which assure that the regular expressions are kept irreducible.

Disjunctions are represented as a set of regular expressions. Concatenated regular expres-
sions are kept in an ordered list. The idempotence of the Kleene star is assured by not
allowing double stared regular expressions. The implementation is object-oriented, using a

different class for each operator.

4.8.1 Disjunctions

A disjunction is represented as a set of regular expressions. This presents us with a natural

way to enforce the ACI properties:

e associativity: there is no pairwise association of any two arguments, so

(x+B)+y=a+ B +y);

4.8. REPRESENTATION AND IMPLEMENTATION 61

e commutativity: by definition, the order of the elements in a set is irrelevant, thus

a+ B =8+

e idempotence: also by definition, a set contains no repeated elements, hence

a+o=«n.

As for making a disjunction irreducible, only two conditions must hold:

e the sub-expression ¥ may not occur;

e if é(a) = €, € is not allowed as a sub-expression.

An algorithm to maintain a disjunction irreducible is linear in the number of operands. As

an example, consider the regular expression

a+ 0+ By +a+e,

represented by the set

{e.a, By}

4.8.2 Concatenation

Concatenations of regular expressions are kept in an ordered list. This allows us to take ad-
vantage of the associative property and easily apply transformations to any pair of adjacent

regular expressions. This representation also simplifies the following transformations:

oEe — o,
X — «,
o — 0,

Ja — 0.

62 CHAPTER 4. REGULAR EXPRESSIONS

These are necessary to make the regular expressions irreducible, as we can simply iterate
through the list and remove each occurrence of €. If @ is found, we may safely return it as

the equivalent irreducible regular expression. Consider the following examples:
aef — [a, B,
aldp — 0,

af*y — [o, B”, v].

4.8.3 Kleene star

In order to keep starred regular expressions irreducible, the constructor of the class does
not create regular expressions of the form «**. This is done by checking if the regular
expression passed as an argument is already of the same type. When this is the case, only

the argument is kept, thus avoiding the double star.

We also add the following two simplifications to the star operator representation:
P* —>¢€ and €* — €.

Although these are not necessary to make the regular expressions irreducible, they allow
for significant simplifications which greatly increasing the overall efficiency of some algo-

rithms.

Chapter 5

Experimental tests

Apart from the theoretical worst-case run-time analysis, which authors typically present, not
much is known about the practical performance of finite automata and regular expression
manipulation algorithms. Such information is essential, however, when for example, one
has to choose an appropriate algorithm for a given application. Throughout this dissertation,
whenever possible, we present experimental comparative results on the performance of the

considered algorithms.

Collecting and presenting experimental data in a fair way is never an easy task. The quality
of the input data, hardware choice, running operating system, file system used, general
configuration of the machine, etc., may impact on an algorithm’s performance, skewing
the results. In this Chapter we carefully describe and justify the scenario on which all the

experimental tests were performed.

Since we are primarily interested in the relative performance of the algorithms, all tests
were executed on the same machine, under the exact same conditions. Depending on the
test-case, we collected a number of statistics in order to classify each algorithm’s behaviour:

running time, memory usage, and recursion depth.

63

64 CHAPTER 5. EXPERIMENTAL TESTS

5.1 Related work

Concerning finite automata minimisation algorithms, Bruce Watson [74] presented some
experimental results, but based on rather small and biased data sets. Using an ad-hoc
random automata generator, Tabakov and Vardi [69] experimentally compared Hopcroft’s
and Brzozowski’s algorithms. Baclet and Pagetti [7] analysed different implementations of
the equivalence class refinement process in Hopcroft’s algorithm. More recently, Bassino et
al. [9, 8] presented some experimental comparative results of Moore and Hopcroft’s DFA
minimisation algorithms (using samples obtained from a uniform random generator) and

studied the average complexity of Moore’s minimisation algorithm

5.2 Sampling

Even considering only non-isomorphic ICDFAs, the total number of automata with n states
over an alphabet of k symbols grows so fast (cf. Appendix A) that trying to apply an
algorithm to every single ICDFA is simply not feasible — even for rather small values

of n and k. The same applies to NFAs and regular expressions.

In order to evaluate the performance of a given algorithm, we must therefore take some
random samples of these huge universes and use them as the input data. It is important,
however, that these samples are of a reasonable size. Too large a sample implies a waste of
the resources which we were trying to save in the first place; a sample too small diminishes
the utility of the results. By fixing a confidence interval and a confidence level (margin of
error), we can calculate the correct sample size and thus assure that the results are suitable
for drawing statistically significant conclusions. According to Cochran [18, page 75], given
a margin of error € and an estimated proportion p, we may use the formula

22p(1 —p)

N = e

5.1

to determine the appropriate sample size N. By application of the central limit theorem, we

can assume that the data is normally distributed and take z from the abscissa of the normal

5.3. RANDOM INPUT 65

curve that cuts off an area of the confidence level y at the tails, i.e.,

P(—z<Z <z)=1y.

As we know that the population is large (cf. Appendix A) but do not have a proper estimate
for the proportion p, we assume p = % for maximum variability. We may then simplify

Equation 5.1 in the following way:

N=2_~= (z)2. (5.2)

5.3 Random input

When gathering random samples, it is important to know the model followed by the random
data, i.e., the probability distribution used by the generator. Statistically supported conclu-
sions may only be drawn from tests on “good” randomly generated objects. Biased samples
will either produce wrongful results or make the estimation of population parameters im-
possible. A uniform random generator produces unbiased outputs by assuring that any finite

number of values are equally likely to be generated.

All our tests on ICDFAs were performed on samples obtained from the uniform random
generator described on Subsection 3.1.2. Thus, the results are conclusive, statistically

significant, and reflect the trends of the population.

The samples of regular expressions were also obtained from a uniform random generator.
We implemented the method described by Mairson [50] for the generation of context-
free languages using a grammar of almost irreducible regular expressions proposed by

Shallit [65].

The random generator of NFAs, however, does not follow a uniform probability distribution.
In fact, it is rather a kind of ad-hoc random generator that enforces some properties on
the output (cf. Subsection 3.2.2). Hence, the results of the experimental tests on the NFA

samples may, or may not, describe the actual behaviour of the population.

66 CHAPTER 5. EXPERIMENTAL TESTS

5.4 The environment

Each process was allowed to run during a maximum period of 24 hours and use up to 2 GB
of RAM. This time limit was enforced by the psmon tool [4] which was setup to issue a
SIGTERM signal to any process that exceeded it. All code controlling the benchmarks was
instrumented in order to catch kill signals. This allowed us to save the statistics on the
amount of work that was completed at the time of a forced halt — elapsed time, number of

tests performed, memory usage, recursive calls count, etc.

5.4.1 Hardware and Software

All algorithms were implemented in the Python [26] programming language using similar
data structures whenever possible. Efforts were made to implement the algorithms as

efficiently as possible, while preserving readability.

The tests were performed with version 2.6 of the Python interpreter [25] on the same
computer: two Intel Xeon 5140 2.33 GHz dual-core processors with 4 GB of fully buffered
RAM, running a minimal 64 bit Debian GNU/Linux [58] system'. The amount of physical
memory was sufficient to avoid page swapping effects and only essential operating system

processes were allowed to run concurrently with the benchmarks.

5.4.2 Sample sizes

Using the random generators described on Subsections 3.2.2 and 3.1.2, we produced sam-

ples of random NFAs and ICDFAs, respectively, with the following characteristics.

'Debian squeeze with a stock kernel (version 2.6.32)

5.4. THE ENVIRONMENT 67

ICDFAs
States {5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
Symbols {k|2<k<16}U{18,20,25,30,35,40,45,50}
States {1000}
Symbols {2,3,5}

NFAs

States {5,10,20,40, 60, 80,100}
Symbols {k|2<k<16}U{18,20,25,30,35,40,45,50}
Transition {0.1,0.5,0.8}
density

The samples of regular expressions were also obtained with a uniform random generator

according to the following criteria.

Regular expressions

Length {10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 250, 300}
Alphabet size {k|2<k<16}U{18,20,25,30,35,40, 45,50}

Each sample contains 20 000 elements. By direct application of Equation 5.2, we can
easily see that this more than suffices to ensure results statistically significant with a 99.5%

confidence level and a 1% error margin:
) 2
N=(5) = (ﬁ) = 16590.
2e 0.02
Some of the tests were applied to pairs of automata or regular expressions. On such cases

we can only consider data sets with 10000 objects, but these are still quite enough for a

95.7% confidence interval with a 1% error margin:

N = (22—6)2 - (%)2 — 9604,

68 CHAPTER 5. EXPERIMENTAL TESTS

5.4.3 Statistics collection

During all tests, only typical Linux processes ran in the background. Running times were
obtained using the GNU time utility [24]. Since this tool relies on the getrusage system
call to read the resource usage from the /proc filesystem (at least on Linux systems), we
have access to the individual time measures: total elapsed time, actual CPU assigned time,
and the time devoted to the operating system during the execution of the program. By
considering only the CPU time, we assure that no other process (including the background

ones) skew the algorithms’ performance data.

Memory usage was measured with a Python module included in the FAdo [22] toolkit.
It reads the memory usage information directly from /proc/<pid>/status, providing in-
stant information about any running process. This allows us to get the memory usage details
at several execution points of a benchmark and account only for the memory consumed
by the actual algorithms, subtracting the space used by auxiliary code such as database

connection modules.

We did not use any methods to disable the cache memory. Any frequently accessed data
structures that were not too large to fit in a first level cache (usually from the less complex

algorithms) certainly benefited from it.

Chapter 6

Random objects database

Both the quality and ease of availability of the input data have a significant impact on
the elaboration of experimental tests. Having some consistent, reasonable sized, random
samples readily available greatly simplifies the tasks of preparing or even repeating some

experimental test.

Using the random generators described on the previous chapters, and the PostgreSQL rela-
tional database system [57], we have designed and implemented three relational databases
to store datasets of random ICDFAs, NFAs, and regular expressions. In order to assure that
we could draw statistically significant conclusions when using the datasets, all databases
were developed according to the requirements described in Chapter 5, using the random
generators described in Section 5.3. The number of objects stored in each database, as well

as the respective space they consume on disk, are presented on Table 6.1.

6.1 Database of random ICDFAs

The random ICDFAs’ database stores random samples of 20 000 automata with the follow-

ing characteristics:

e n € {5,10,20,30,40,50,60,70,80,90, 100} states, each over an alphabet of k €

69

70 CHAPTER 6. RANDOM OBJECTS DATABASE

Object type Number Size
ICDFAs 4600000 22GB
NFAs 9660000 279GB

Regular Expressions 5980000 31 GB

Total 20240000 332GB

Table 6.1: Summary of the random objects databases.

{x]2<x<16}U{18,20,25,30,35,40,45,50} symbols;

e n € {1000} states, each over an alphabet of k € {2,3,5}.

Besides the structure of each ICDFA, the database also stores some relevant complementary
information such as minimality, being trimmed, acyclic, etc. This allows to obtain, with a
simple SQL query, some random automata with specific properties. The entity-relationship
model of this database is presented on Figure 6.1. Although, at the moment, it is composed
by a single table, future plans include a relation for equivalent ICDFAs, so that one can

easily relate non-minimal equivalent DFAs with different sizes.

Figure 6.1: Entity-relationship diagram of the database of random ICDFAs.

6.2. DATABASE OF RANDOM NFAS 71

For efficiency reasons, besides its unique string representation [60], the database stores the
pre-parsed internal representation of the FAdo toolkit for each ICDFA. This avoids the need
to parse an automaton’s description every time we need to manipulate it. For similar reasons,
each automaton’s final states set is stored in two different ways: as a comma separated list
of integers, and as a bitmap. It is important to note that this replication of data does not
contradict any of the five normal forms of the relational database modelling. Indeed, it is

simply a trade-off between time and space.

Since, by its own nature, this database will be primarily used with read-only requests
(SELECT queries), we used the table partitioning features of PostgreSQL to split the large
automata table into smaller physical pieces. We implemented “range partitioning”, using
the number of states of the DFAs as the delimiter. This resulted in a database with 11 sub-
tables: the (empty) single parent table which exists just to represent the entire data set, and
a child table that contains all ICDFA with a given number of states. This division of the

search space dramatically improves the performance, sometimes by a factor of 10.

Still considering fast SELECT queries, we explicitly created an index in the n_states col-
umn, another in the n_symbols column, and a compound one on both these columns. The
main purpose is to speed-up the typical queries, which tend to involve both these parameters,
as the following example — which requests a sample of 100 ICDFAs, each with 10 states

over an alphabet of 2 symbols — shows:

SELECT fado_repr FROM random_icdfa WHERE
n_states=10 AND
n_symbols=2
LIMIT 100;

6.2 Database of random NFAs

The database of random NFAs follows a structure quite similar to the one of random ICD-

FAs, described on the previous section.

72 CHAPTER 6. RANDOM OBJECTS DATABASE

It stores samples of 20 000 random NFAs with
n € {5,10,20, 40, 60, 80, 100}
states, each over an alphabet of
ke{2,3,4,...,16,18,20,25,30, 35, 40, 45,50}
symbols, and with a transition density,

d €{0.1,0.5,0.8}.

The entity-relationship model is presented on Figure 6.2.

transition_density

Cn_states random_nfa @

final_states_bitmap

Figure 6.2: Entity-relationship diagram of the random NFAs’ database.

In this database, we do not store any additional information besides the number of states,
size of the alphabet, set of final states, and the internal representation of each NFA within
the FAdo toolkit. We do favour performance, and maintain the trade-off between time and
space by storing the set of final states in two different ways: the comma separated list of

integers, and the bitmap.

Just like in the ICDFA case, we used table partitioning to split the large automata table into
smaller physical pieces, using the number of states of the NFAs as the delimiter. We also

explicitly created four additional indexes:

6.3. DATABASE OF RANDOM REGULAR EXPRESSIONS 73
e one in the n_states column;
e one in the n_symbols column;
e one in the transition_density column;

e one compound index on the three previous columns.

6.3 Database of random regular expressions

The database of random regular expressions follows a structure rather similar to that of finite

automata, containing samples generated according to the context-free grammar G g [46, 65].

S—RS|CC|EE|I|c|0

CC — CCR | RR

R— (RS) | EE|I

EE — (RS)* [(CC)* | I*

RS —»e+X|Y+Z (GRr)
X>T|T+X

T—>cCC|I

Y >Z|Y+Z

Z—>CC|EE|I
It stores random samples of 20 000 regular expressions of length
n € {10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 250, 300 }
each over an alphabet of
ke{23,4,...,16,18,20,25,30,35,40,45,50}

symbols. The entity-relationship model is presented on Figure 6.3.

74 CHAPTER 6. RANDOM OBJECTS DATABASE

@ random_re @
re_aci_repr

Figure 6.3: Entity-relationship diagram of the database of random regular expressions.

Besides the usual human-readable string, two pre-parsed representations of each regular
expression are kept in the database: one in modulo AC/, and another one using the internal
representation of the FAdo toolkit (re_aci_repr and fado_repr, respectively). Again, we
do so to avoid the overhead of parsing a regular expression every time some algorithm needs

to use it.

For efficiency reasons, the large table random_re is also split, by the size of the regular
expressions, into smaller physical pieces. There are explicit indexes on columns size and

n_symbols, as well as a compound index on both these columns.

6.4 Using the databases

The three databases are publicly available and may be freely used. The information required

to access each of the databases may be found on Table 6.2.

Some usage examples

e Get 5 minimal ICDFAs with 10 states over an alphabet of 2 symbols:

marco@apollo:~$ psql --host khixote.ncc.up.pt --user guest --dbname icdfa_dataset

6.4. USING THE DATABASES 75

Database PostgreSQL name Host User Password
ICDFAs icdfa_dataset khixote.ncc.up.pt guest guest
NFAs nfa_dataset khixote.ncc.up.pt guest guest
RE re_dataset khixote.ncc.up.pt guest guest

Table 6.2: Connection details for the databases of random objects.

Password for user guest:
psql (8.4.3, server 8.4.2)

Type "help" for help.

icdfa_dataset=> SELECT string, final_states FROM random_icdfa WHERE
n_states=10 AND
n_symbols=2 AND
is_minimal=true
LIMIT 5;

string | final_states

1,2,3,4,3,5,0,6,2,3,4,1,7,8,9,9,9,4,9,0 | 0,1,7
1,2,3,0,3,3,4,2,5,6,3,2,6,7,8,8,1,9,0,4 | 2,3,6
1,2,3,0,4,0,2,5,1,1,6,7,4,8,6,9,9,1,0,9 | 4,6,9
1,0,2,1,1,3,4,5,6,7,8,9,7,7,4,3,0,6,9,0 | 0,1,2,4,5,6,7,8
1,0,2,3,0,4,5,0,4,6,3,7,3,8,7,1,1,9,2,7 | 2,3,6,9

(5 rows)

e Get the unique identifier of 5 random NFAs with 10 states, over an alphabet of 2

symbols, and transition density d = 0.8:

marco@apollo:~$ psql --host khixote.ncc.up.pt --user guest --dbname nfa_dataset
Password for user guest:
psql (8.4.3, server 8.4.2)

Type "help" for help.

nfa_dataset=> SELECT id FROM random_nfa WHERE

76 CHAPTER 6. RANDOM OBJECTS DATABASE

n_states=10 AND
n_symbols=2 AND
transition_density=’0.8’

LIMIT 5;

1239401
1239399
1239398
1239395
1239392

(5 rows)

e Get 5 random regular expressions of size 50, over an alphabet of 7 symbols:

marco@apollo: “$psql —-host khixote.ncc.up.pt —--user guest --dbname re_dataset
Password for user guest:
psql (8.4.3, server 8.4.2)

Type "help" for help.

re_dataset=> SELECT re FROM random_re WHERE
size=50 AND
n_symbols=7
LIMIT 5;

cecfd*bcd+(ate (ff (gct+bgfed*et+gbdckc) c+f*)axb) f+g+b
d+(bbc(dcgeccdaecdb+fgdagt) ffbb*aabecdbecafegga) *fd
gaeb (ef*b+(@epsilon+tac*ad*bd) cf+ag) (bgcgeexdagg*+g)dafafc
aecbfbxffefed*+(db+g) fcfefb(f+adb*ecb*e)edbcbd*fbc
bdaxb*gcff*bdd+cdfc*d*bdc+eega*bcak*edcet+bbdeecfee*

(5 rows)

Chapter 7

Equivalence of regular expressions

Although, mainly for efficiency reasons, finite automata are normally used to manipulate

regular languages, regular expressions provide a particularly good notation for its represen-

tation. Deciding whether two regular expressions are equivalent, however, is a PSPACE-

complete problem [68]. If we consider regular expressions extended with intersection, the
n/logn

problem becomes even harder [1, page 419], requiring ¢’c Vv space and time for a

regular expression of size n and some constants ¢/ > 0 and ¢ > 1.

The usual approach to this decision problem starts by transforming each regular expression
into an equivalent NFA, making each of the NFAs deterministic, and either minimising
both DFAs and testing if the minimal automata are isomorphic, or applying one of the
equivalence-testing algorithms described in Chapter 9. In the worst case, because the NFA-
to-DFA conversion process may result in an exponential number of states (cf. Subsection

3.2.1), this process has an exponential worst-case running-time.

Ginzburg [27] has described a procedure that checks the equality of regular expressions
using derivatives — as introduced by Brzozowski [12] — and transition graphs. For each
regular expression «, a corresponding transition graph is used to generate a finite set of left-
linear equations that characterise «. Two regular expressions, @ and 8 are equivalent if and

only if the pairwise constant terms in the set of left-linear equations are equal.

77

78 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

Also based on the algebraic properties of regular expressions and the notion of derivative
Antimirov and Mosses [6] proposed a complete, terminating rewrite system for deciding
their equivalence. This rewrite system is a refutation method that normalises regular ex-
pressions in a way such that testing their equivalence corresponds to an iterated process
of testing the equivalence of their derivatives. In this chapter we present an improved
functional approach to that method, prove its correctness, and present some experimental
comparative results. Besides this variant of Antimirov and Mosses’ algorithm, we also

present an alternative based on partial derivatives.

Antimirov and Mosses suggested that their approach could obtain better average-case al-
gorithm than those based on the comparison of minimal DFAs. Our results lead to the
conclusion that indeed these algebraic methods are feasible and, quite often, more efficient

than the usual approach.

Throughout this chapter there is some abuse of the Python-like pseudocode syntax described
in Section 2.4, namely on the if-then-else chains used to indicate a pattern match. We
believe, however, that this is not only more consistent with the style of the algorithms
presented in other Chapters, but that it also reduces clutter and enhances readability by

not being too “strict”.

7.1 Classical method

The classical approach to the problem of testing the equivalence of two regular expressions

o and B, i.e., deciding if L(«) = L(B), typically consists of:

1. obtain an equivalent pair of NFAs, N, and Ng;

2. convert the NFAs to equivalent DFAs, D, ~ Ny and Dg ~ Ng;

7.2. AVOIDING FINITE AUTOMATA 79

minimise' both DFAs, D, and Dg, and test if they are isomorphic,
3.8 or

apply a direct equivalence-testing algorithm?® to D, and Dj.

The canonical string described in Subsection 3.1.1 provides a computationally efficient

representation that may be used to simplify the isomorphism test.

7.2 Avoiding finite automata

In 1994, Antimirov and Mosses [6] presented a rewrite system for deciding the equivalence
of two extended (with intersection) regular expressions based on a new Horn-equational
axiomatisation of the extended algebra of regular sets. Based on the same algebraic calculus
for proving/disproving equations of extended regular expressions, we propose a functional
variant of that rewrite system. We argue that this functional approach allows us to simplify
the original rewrite system (discarding most of the rules), is computationally efficient, and

still avoids the construction of the minimal finite automata.

7.2.1 Antimirov and Mosses’ rewrite system

The term-rewriting techniques proposed by Antimirov and Mosses provide an algebraic cal-
culus for testing the equality of extended regular expressions while avoiding the construction

of finite automata.

The axiomatisation of the algebra of the extended regular expressions is based on Salomaa’s
system [64], replacing the inference rule that depends on the negation of the empty word

property by an equational implication. For finite alphabets, this axiomatisation is finite.

The rewrite system, L F', applies the set of extended axioms — modulo associativity of the

! Automata minimisation is thoroughly discussed on Chapter 8.
Direct DFA equivalence-testing algorithms are described on Chapter 9.

1
2
3

80 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

concatenation and associativity and commutativity of the disjunction — reducing the regular
expressions to a specific form. At the same time, it obtains the derivatives of each regular
expression. This system includes an auxiliary function £, used to calculate the non-constant

part of a regular expression.

The main component of the inference system is the set of transformation rules 7R, which
also involves the rewrite system L F' for computing linear forms. The four rules are referred
to as DIS, SIM, IND, and SPL. The rule SIM itself is a more or less arbitrary
rewrite system which simplifies regular expressions. It needs only to be sufficiently strong
in order to make the set of derivatives finite, i.e., assure disjunctions modulo ACI. The
non-equivalence of two regular expressions is proved when D1 S is reached. The rule I ND
removes an equation from the set of equalities to be proved, whilst SP L adds a new equation

to the set of “inductive hypotheses”.

7.2.2 Functional approach

Unlike Antimirov and Mosses, we do not consider extended regular expressions. We do,
however, assume (without any loss of generality) that all regular expressions are irreducible
and represented modulo AC/. This allows us to avoid the simplification step of Antimirov

and Mosses’ system (S 1 M) with little overhead.

We start by defining and proving the correctness of some auxiliary functions. These are used
by RE-EQUIVALENT-P, the procedure that decides if two regular expressions recognise the

same language.

Given two arbitrary regular expressions « and f, the first step of the equivalence-testing
procedure is to compute two pre-linear regular expressions o’ and B’ such that o’ ~ « and

B’ ~ B. This is implemented by RE-PRE-LINEAR.

def RE-PRE-LINEAR(x):
if a=0:

return ¢

© o 9 O Wn o~

10
11
12
13
14
15
16
17

AN U AW

AN N A W

7.2. AVOIDING FINITE AUTOMATA 81

if

if

if

if

if

if

if

O = €.
return ¢
o0 =a:
return «a
a=(B+y):
return RE-PRE-LINEAR(S) + RE-PRE-LINEAR(y)
a=(p"):
return RE-PRE-LINEAR(S)S*
a = (af):
return af
a=("y):
return RE-PRE-LINEAR(SB)S*y + RE-PRE-LINEAR(Y)
a=((B+yV):
return RE-PRE-LINEAR(SY) + RE-PRE-LINEAR(y V)

Since the equivalence-testing procedure needs deterministic linear regular expressions, the

next step is to linearise the pre-linear regular expressions &’ and B’. A call such as RE-LINEAR (¢, ')

returns two linear regular expressions, «” and 8", such that o” ~ «’ and " ~ f’.

def RE-LINEAR():

if

if

a=(B+y):

return RE-LINEAR(S) + RE-LINEAR(y)
a=(B+V):

return RE-LINEAR(BY) + RE-LINEAR(yY)

return o

Given a linear regular expression «”, the function RE-DETERMINISTIC computes and re-

turns a new deterministic linear regular expression «y such that oy ~ a”.

def RE-DETERMINISTIC(¢):

if

if

if

a=(@p+a):
return a(f +¢)
a=(ap +ay):

return a(f + y)
a=(@p+ay+y):

82 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

return RE-DETERMINISTIC(a(B + v) +)

return o

These functions implement a variant of Antimirov and Mosses’ L F rewrite system. The
procedure RE-PRE-LINEAR corresponds to L F’s system function f which, contrary to
what is claimed by Antimirov and Mosses, returns a pre-linear regular expression, not a

linear one.

Theorem 11. The function RE-PRE-LINEAR is well defined.

Proof. Let X be an alphabet, a € X and «, 8, y, and ¥ be arbitrary regular expressions.

It is clear that for

RE-PRE-LINEAR () is well defined. We need only to show that RE-PRE-LINEAR (&) is

well defined when « is a concatenation. These are all the possible cases:

B,
B9,

B+,
B*y.

7.2. AVOIDING FINITE AUTOMATA 83

Because we are only considering irreducible regular expressions modulo AC/,

0B ~ BO ~ @

and
€ ~ Be ~ B.

Thus, @B and B@ are explicitly handled by RE-PRE-LINEAR, and concatenations with the
empty word (e and Be) do not need to be considered. The three remaining cases are

explicitly handled by RE-PRE-LINEAR. U

Theorem 12. The function RE-PRE-LINEAR returns a pre-linear regular expression.

Proof. Recall that a regular expression is pre-linear if it is generated by the context free

grammar G, (cf. Chapter 4). We will show that for an arbitrary regular expression «,

RE-PRE-LINEAR («) € L(G»).

The proof follows by induction on the structure of «. Leta € X' and f, y, and ¥ be regular

expressions.

Base:

RE-PRE-LINEAR (0) = 0,
RE-PRE-LINEAR (¢) = 0,

RE-PRE-LINEAR (@) = a,

Every one of these regular expressions is clearly generated by the grammar G».

Induction:

e RE-PRE-LINEAR(S + y) = RE-PRE-LINEAR(f) + RE-PRE-LINEAR(y)

By induction hypothesis,

RE-PRE-LINEAR(B) € L(G>,)

84

CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS
and
RE-PRE-LINEAR(Y) € L(G>).

The disjunction of two pre-linear regular expressions is derived by the production
Q—>0+0

and therefore, RE-PRE-LINEAR (B + y) € L(G»);

RE-PRE-LINEAR(B*) = RE-PRE-LINEAR(B)S*

By induction hypothesis, RE-PRE-LINEAR () € L(G>). Using the production

0—0-R
we can derive RE-PRE-LINEAR(B)B*, thus RE-PRE-LINEAR (B8*) € L(G»);
RE-PRE-LINEAR (af8) = af

Clearly af is generated by the grammar G»;

RE-PRE-LINEAR(B*y) = RE-PRE-LINEAR(B)B"*y + RE-PRE-LINEAR(y)

By induction hypothesis, both RE-PRE-LINEAR () and RE-PRE-LINEAR ()) are gen-
erated by G,. The concatenation RE-PRE-LINEAR()B*y is clearly pre-linear and

may be generated by the rule
00— 0-R.
Just like with the previous cases, the disjunction of two pre-linear regular expressions

is also a pre-linear regular expression and therefore RE-PRE-LINEAR(B8*y) € L(G»);
RE-PRE-LINEAR((B + y)¥) = RE-PRE-LINEAR(BV) + RE-PRE-LINEAR (Y V)
By induction hypothesis,

RE-PRE-LINEAR(BY) € L(G>)

and

RE-PRE-LINEAR (YY) € L(G»).

Again, the disjunction of two pre-linear regular expressions is also a pre-linear regular

expression. U

7.2. AVOIDING FINITE AUTOMATA 85

Theorem 13. Given a pre-linear regular expression o € L(Gj) or @, RE-LINEAR (&)

returns either a linear regular expression or @.

Proof. Recall that a pre-linear regular expression is either @, an already linear regular
expression or a disjunction of concatenations where the first argument of each concatenation

is a pre-linear regular expression (cf. Chapter 4).

Notice that RE-LINEAR recursively breaks disjunctions at line 2. Each element of a dis-
junction is either already linear, or of the form o = (8 + y)v, where B + y is pre-linear. In
this case, the distributive property is applied, « is expanded into 81 + y 1, and RE-LINEAR
is recursively called on both Sy and Yy at line 5. The next recursive calls will repeat the
procedure until the expressions are not disjunctions or of the form o = (8 + y)¥. Since we

are expanding pre-linear regular expressions, this will result on a linear regular expression

o € L(Gl)

Regular expressions of any other form (9, already linear regular expressions such as simple
concatenations with symbols, etc.), are clearly generated by the grammar G, and returned

without any modification at line 6. U

Lemma 14. Let o be an arbitrary regular expression. We have that

L(RE-PRE-LINEAR (1)) = L(x) — {€}.
Proof. The proof follows by induction on the structure of @. Leta € X and B, y, and ¢ be

regular expressions.

Base:

RE-PRE-LINEAR (0) = 0;
RE-PRE-LINEAR (¢) = @;

RE-PRE-LINEAR (a) = a.

Induction:

86 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

e o = RE-PRE-LINEAR(B + y)

L(o) = L(RE-PRE-LINEAR(f) + RE-PRE-LINEAR(y))
= L(RE-PRE-LINEAR(f)) U L(RE-PRE-LINEAR(y))
= (L(B) —{ep) U (L(y) —{€})
= (L(B) U L(y)) — i€}
=L +y)— e

e o = RE-PRE-LINEAR (%)

L(a) = L(RE-PRE-LINEAR(B)")
= L(RE-PRE-LINEAR(B))L(B%)
= (L(B) —{eHL(B")
= (L(B) N {eHL(B")
= L(BB*) N{e}L(B")
= L(BB") N e}
= (L(BB*) N{eD) U ({e} N {e))
= (L(BB™) U {e}) N {e}
= L(BB") — {€}
= L(B") —{e}:

e o = RE-PRE-LINEAR (af)

L(a) = L(ap)
= L(ap) —{e}:

7.2. AVOIDING FINITE AUTOMATA

e o = RE-PRE-LINEAR(*Y)

L(x) = L(RE-PRE-LINEAR(B)B”y + RE-PRE-LINEAR(Y))
= L(RE-PRE-LINEAR(B)B”*y) U L(RE-PRE-LINEAR(Y))
= L(RE-PRE-LINEAR(B))L(B8*y) U L(RE-PRE-LINEAR(Y))
= (L(B) —{eDL(B"y) U (L(y) —{€})
= (L(B) N{eHL(B"y) U (L(y) N {e})
= (L(BL(B*y) N{e}L(B*¥)) U (L(y) N {e})
= (L(B)L(B*y) N{e}) U (L(y) N {e})
= (L(B)L(B)L(y) N {e}) U (L(y) N {e})
= (L(BLB*)L(y) U L(y) N {e}
= (L(BL(B*) U {eDL(y) N{e}
= L(BB* + €)L(y) N {e}
= L(B*)L(y) N {e}
= L(B*y) Nie}
= L(B"y) —{e}.

e o = RE-PRE-LINEAR((8 + y)¥)

L(o) = L(RE-PRE-LINEAR(BVY) + RE-PRE-LINEAR(YV))
= L(RE-PRE-LINEAR(BVY)) U L(RE-PRE-LINEAR(YV))
= (L(BY) —{e) U (L(yy) —{€})
= (L(BY) U L(y¥)) — 1€}
= L(BY +y¥) — e}
= L((B +y)¥) — e}

88 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

Lemma 15. Given an arbitrary regular expression a we have that

RE-LINEAR (&) ~ «.

Proof. The proof follows by induction on the structure of @. Let a € X and B, y, and ¢ be

regular expressions.

Base:
RE-LINEAR(Q) = 0 ~ 0;
RE-LINEAR(€) = € ~ ¢;
RE-LINEAR (a@) = a ~ a;
Induction:

e RE-LINEAR(B + y) = RE-LINEAR(fS) + RE-LINEAR(y)

By induction hypothesis,
RE-LINEAR(B) ~ f8

and

RE-LINEAR(Y) ~ ¥,

hence, RE-LINEAR(B + y) ~ B + y.

RE-LINEAR(B*) = f* ~ B*.

RE-LINEAR (af}) = af ~ aP.

RE-LINEAR(B*y) = B*y ~ B*y.

RE-LINEAR((B 4 y)¥) = RE-LINEAR(BVY) + RE-LINEAR(Y V)

By induction hypothesis,
RE-LINEAR(BY) ~ By

and

RE-LINEAR (YY) ~ y V¥,

7.2. AVOIDING FINITE AUTOMATA 89

therefore, RE-LINEAR (8 + y)¥) ~ B + y .
By Axiom Ao,

By + vy ~ B+)V,
thus

RE-LINEAR((B + y)¥) ~ (B + v)¥.

Theorem 16. Let o be an arbitrary regular expression. We have that
L(RE-LINEAR(RE-PRE-LINEAR (@))) = L(x) —{€}

That is to say, RE-LINEAR (RE-PRE-LINEAR («)) returns a regular expression that recog-

nises the same language as o, except for the empty word.

Proof. It follows directly from the definition of RE-LINEAR and Lemmas 14 and 15. [

Theorem 17. Given a linear regular expression as argument, the function RE-DETERMIN-

ISTIC returns a deterministic linear regular expression.

Proof. Let o be a linear regular expression and ¢y = RE-DETERMINISTIC(«x). We have
to show that HEAD () does not have repeated elements. Without loss of generality, let us
consider only one alphabet symbol a € X' — we can repeat the process for each remaining

symbol.

When there is only one sub-expression of the form aa’ in @, we have that oy = « and,
considering only the symbol a, HEAD(y) is a singleton. With two sub-expressions of the
same form, we have that either ¢y = a(f + y) or oy = a(pf + €) and again, HEAD (y)

contains no repeated elements.

Suppose now that there are n sub-expressions with the prefix a. By definition, RE-DE-
TERMINISTIC will apply the distributive property, reduce the number of sub-expressions of

the form aa’ to n — 1, and recursively call itself. After n — 1 applications, the resulting

90 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

regular expression oy has only one element of the form aa’, and HEAD(«y) is a multiset

with multiplicity 1, therefore it contains no repeated elements. U
Theorem 18. Given a linear regular expression o, we have that

RE-DETERMINISTIC (&) ~ .
Proof. Except for the following two cases, RE-DETERMINISTIC returns its argument, so

clearly

RE-DETERMINISTIC (&) ~ .

eux=af +aora=aP +ay

if the argument is of the form & = af + a or @« = af + ay the distributive property

is applied and a(o + €) or a(p + y) are returned (respectively). Trivially
RE-DETERMINISTIC (&) ~ «
in both cases.

su=af+ay+y

if the argument has the form ¢« = aff + ay + ¥, again, the distributive property
is applied, and the next recursive call is invoked with the trivially equivalent regular
expression a(f + y) + . Notice that at some point further ahead, RE-DETERMIN-

ISTIC will return its argument (or an equivalent variant) and thus,

RE-DETERMINISTIC (&) ~ .

Theorem 19. For any regular expression «,
a ~ €(o) + RE-LINEAR (RE-PRE-LINEAR («)) (7.1)
and

@ ~ €(a) + RE-DETERMINISTIC (RE-LINEAR (RE-PRE-LINEAR (@¢))). (7.2)

7.2. AVOIDING FINITE AUTOMATA 91

Proof. By Theorem 18, « ~ RE-DETERMINISTIC (&) for every regular expression «, there-

fore, we need to prove only Equation 7.1. There are two cases to consider.

o Ife € L(x),

L(é(x) + RE-LINEAR («)) = L(é(«)) U L(RE-LINEAR(x)) by definition,
= L(¢) U L(RE-LINEAR («)) € € L(),
= {e} U (L(x) — {e}) by Theorem 16,

= L(x) € € L().

o Ife ¢ L(), then é(o) = @ and, by Theorem 16, the equivalence is obvious.

Lemma 20. Let a be an arbitrary regular expression and a € X. We have that

a '(a) = a”'(RE-PRE-LINEAR (@)).
Proof. The proof follows by induction on the structure of «. Let 8, y, and ¥ be regular
expressions.

Base:

a'(¥) =0 = a ' (¥) = a~ " (RE-PRE-LINEAR (9))
a '(e) =0 = a'(¥) = a~ ' (RE-PRE-LINEAR (¢€))
e ifa=5>b

a'(b) = 5 et = a~'(b) = a ' (RE-PRE-LINEAR (b))
11T a

Induction: Suppose now, by induction hypothesis, that for every regular expression «,
a () = a”'(RE-PRE-LINEAR (@)).

We have the following three cases.

92

e Disjunction:

a '(B+v)

e Star closure:

CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

=a"'(B) +a"'(y)
= a~'(RE-PRE-LINEAR(B)) + a~ ! (RE-PRE-LINEAR(y))
= a~!(RE-PRE-LINEAR () + RE-PRE-LINEAR(y))

= a~!(RE-PRE-LINEAR (8 + y)).

a'(B*) =a"'(B)B*
= a~!(RE-PRE-LINEAR(B))8*

= a~!(RE-PRE-LINEAR(B))B* + 0B*

a~'(RE-PRE-LINEAR(B))B* + é(RE-PRE-LINEAR(B))B*

a~'(RE-PRE-LINEAR(B)B*)

= a~!(RE-PRE-LINEAR (*)).

e As for the concatenation, there are three cases to consider:

a™'(ap)
a ((B+y)¥)

a '(B*y)

= a" ' (RE-PRE-LINEAR (af));

=a ' (BY +yY)

=a '(By) +a ' (yy)

= a”"(RE-PRE-LINEAR(BV)) + a~' (RE-PRE-LINEAR (y ¥/))
= a”'(RE-PRE-LINEAR (BY) + RE-PRE-LINEAR (y¥))

= a ' (RE-PRE-LINEAR (BY + yV))

= a ! (RE-PRE-LINEAR (B + y)V¥);

=a ' By +é(BNa ()

=a ' (B)B*y +ea'(y)

=a ' BBy +a ' (y)

7.2. AVOIDING FINITE AUTOMATA 93

= a~'(RE-PRE-LINEAR(B))*y + a~' (RE-PRE-LINEAR(y))
= a~'(RE-PRE-LINEAR (B))B*y + 0B*a" ' (y)+

+ a~'(RE-PRE-LINEAR(y))
= a~'(RE-PRE-LINEAR(f))B*y+

+ ¢(RE-PRE-LINEAR (B))B*a~ ' (y)+

+ a ' (RE-PRE-LINEAR(}))
= a”'(RE-PRE-LINEAR(B)B*y) 4+ a~' (RE-PRE-LINEAR(y))
= a ' (RE-PRE-LINEAR (B)B*y + RE-PRE-LINEAR(}))

= a” ' (RE-PRE-LINEAR (8*y)).

O
Lemma 21. Let o and 8 be two arbitrary regular expressions and a € X. We have that
a~p=al(@~alp).
Proof. Suppose that o ~ B, then L(a) = L(B). We need to show that L(a"'(a)) =
L(a~'(B)) foranya € X.
L@ Y (a)) ={w|aw € L(a)} by definition,
={w|awe LP)} because L(x) = L(p),
= L@ '(B)) by definition.
O

Theorem 22. Let a € X' and o be an arbitrary regular expression. The following holds:
a~ () ~ a~ (),

where ooy = RE-DETERMINISTIC (RE-LINEAR (RE-PRE-LINEAR (@0))).

94 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

Proof.

a (o) = a ! (RE-PRE-LINEAR () by Lemma 20,
~ a~'(RE-LINEAR (RE-PRE-LINEAR (1))) by Lemmas 15 and 21,

~a Yag) by Theorem 18.

O

The two main functions of the equivalence-testing process are RE-DERIVATIVES and RE-
EQUIVALENT-P. The first one, RE-DERIVATIVES, computes the set of the derivatives of a
pair of deterministic linear regular expressions, (c,), with respect to every symbol of the
alphabet. It is enough to consider only the symbols in HEAD(«) U HEAD(f), and we do so

for efficiency reasons.

1 def RE-DERIVATIVES(¢, f):

2 return {(a"'(@).a'(B)) | a € (HEAD(«) U HEAD(B)) }

When applied to two arbitrary regular expressions o and 8, RE-EQUIVALENT-P returns

TRUE or FALSE according to whether & ~ 8 or not.

1 def RE-EQUIVALENT-P(c, B):

2 S = {(a. B)}

3 H: =0

4 while S #0:

5 (o, B) := PoP(S)

6 if é(o) £€eB):

11 return FALSE

12 H := PUSH(H, («, B))

13 o' := RE-DETERMINISTIC(RE-LINEAR(RE-PRE-LINEAR()))
14 B’ := RE-DETERMINISTIC(RE-LINEAR(RE-PRE-LINEAR(f)))
15 S’ :={d | d € RE-DERIVATIVES(¢/, '), d ¢ H }

16 S=5us

17 return TRUE

7.2. AVOIDING FINITE AUTOMATA 95

At each step of the main loop (lines 4-16), RE-EQUIVALENT-P proceeds by replacing a
pair of regular expressions by a set S’ of pairs of derivatives. When either a pair of regular
expressions such that their constant parts are different or the set S is empty, RE-EQUIVA-
LENT-P returns. If @ ~ f8 the call RE-EQUIVALENT-P(«, B) returns TRUE, otherwise it
returns FALSE. Comparing with Antimirov and Mosses’ rewrite system 7R, we note that
in each call to RE-EQUIVALENT-P, the set S contains only pairs of regular expressions
which are not already in H'; this renders the rule / ND of TR unnecessary. Additionally,
our data structures avoid the usage of the SIM rule by assuring that the regular expressions

are always irreducible and represented modulo AC/.

Theorem 23. The function RE-EQUIVALENT-P is terminating.

Proof. 1t is clear that the function terminates when the set S is empty. The only new
elements added to this set (at line 16) are the derivatives (computed at line 15) of the current

pair of regular expressions — which was previously removed from § at line 5.

Because all regular expressions are considered modulo AC/, there is only a finite number
of derivatives [12], and, from a given point on, S U S’ = §. Since that at each iteration of
the main loop one element is removed from S (line 5), after a finite number of iterations,

S = @ and RE-EQUIVALENT-P terminates.

In order to assure that the same pair of regular expressions is not considered more than
once, and thus prevent a possible infinite loop, the history of all pairs of regular expressions
already processed is kept on the set H. The condition on line 15 assures that no repeated

regular expressions are ever added to the set S U
Lemma 24. Let a and 8 be two deterministic linear regular expressions. We have that

V(a', B') € RE-DERIVATIVES (0,) o~ f =o' ~ f'.

Proof. Itis adirect consequence of Lemma 21 and the definition of RE-DERIVATIVES. [J

Lemma 25. Given two regular expressions o and B such that @ ~ f3,

RE-EQUIVALENT-P(«, B) = TRUE.

96 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

Proof. If @ and B are deterministic linear regular expressions and @ ~ f we know, by

Lemma 24, that
V(a', B') € RE-DERIVATIVES (¢, B) €(a) = €(B).

Thus being, the condition on line 6 will always be false, and no iteration of the main loop

of RE-EQUIVALENT-P will return FALSE. [
Lemma 26. Given two regular expressions, o« and B, such that o ~ f3,

RE-EQUIVALENT-P(«, B) = FALSE.

Proof. Letw € X*. If o ~ B, either
we La)Aw ¢ L(B)

or

w ¢ L(a) Aw € L(B).

Without loss of generality, let us consider only the first case. At some point of the main
loop, the pair (w™! (), w1(B)) will be popped (line 5) out of the set S. It is a well-known
result by Brzozowski [12] that if w € L(w), then é(w™!(«))) = €. Since, by hypothesis,
w € L(x) and w ¢ L(B), we have that é(w™!()) = € and é(w™1(B)) = @. Therefore, the
condition on line 6 of RE-EQUIVALENT-P will be true and RE-EQUIVALENT-P will return

FALSE at line 7. U
Theorem 27. Let o and B be arbitrary regular expressions. The call
RE-EQUIVALENT-P(«, B)

returns TRUE if and only if o ~ .

Proof. By direct application of Lemmas 25 and 26. U

O o0 N N N kA W =

e e N
N O L AW = O

7.3. AN ALTERNATIVE USING PARTIAL DERIVATIVES 97

7.3 An alternative using partial derivatives

Given an arbitrary regular expression, the set of its partial derivatives can be directly ob-
tained from an alternative linearization process. Since we already represent disjunctions as
sets (cf. Section 4.8), this alternative linearization can be easily implemented as a variant of

RE-LINEAR.

A linear regular expression « = aja; + --- + a,o, can be represented by a finite set of
monomials S, = {(ay,y),...,(a,,a,)}, called a linear set. The concatenation of such a

set with an arbitrary regular expression f is defined in a natural way:

Se- B ={(ar,a1B), ..., (an anp)}.

Let o be a regular expression. The call RE-LINEAR-SET («) returns the corresponding

linear set.

def RE-LINEAR-SET(x):
if a=0:
return {}
if a=e€:
return {}
if a=a:

return {(a,¢)}

if a=B+y):
return RE-LINEAR-SET(f) U RE-LINEAR-SET(y)
if a=(p:
return RE-LINEAR-SET(8)B*
if o={(@p)}:
return af
if o= ("y):

return RE-LINEAR-SET(S)B*y U RE-LINEAR-SET(y)

if a=((B+yV):
return RE-LINEAR-SET(8v) U RE-LINEAR-SET(y)

The two linearization methods, as implements by RE-LINEAR and RE-LINEAR-SET, are

AN N R~ W

1
2

98 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS
related in the following way. Let

¢ = RE-LINEAR (0) = a1 + -+ + anay,
and

Se¢ = RE-LINEAR-SET (@) = { (a1, 1), ..., (an, o) }.

It is clear that

oy ~ E a;o; = a1y + -+ apty.

(a;,0;)€Sy

Notice that due to the associativity of the disjunction and the unordered nature of sets, it is
only possible to assure the equivalence of the languages, not syntactic equality of the regular

expressions.

Let us now consider a process to make linear sets deterministic. We say that a linear set S,
is deterministic if, for each symbol a € X, there is at most one element of the form (a, o) €
S«o. The procedure RE-LINEAR-SET-DETERMINISTIC takes a linear set as argument and

makes it deterministic by merging all elements (a;, «;) and (a;, o), such that a; = a;.

def RE-LINEAR-SET-DETERMINISTIC () :
So := RE-LINEAR-SET(x)
S, =0
for acX:
S, =S, U (a, Z(a’a[)esa Oti)

return S

Given an arbitrary regular expression o, we can use this linearization process to compute
the set of its partial derivatives with regard to to all symbols a € Y. The sets of partial
derivatives of two regular expressions can be used to test their equivalence in a way similar
to the one described on Section 7.2. In fact, only two slight modifications to RE-EQUIVA-

LENT-P— which are implemented by RE-EQUIVALENT-PARTIAL-P— are necessary.

def RE-PARTIAL-DERIVATIVES(Sg, Sg):

return {(o/,,B’) | (a,0) € Sq.(a,pB') € Sp,a € Z‘}

AN L B~ W

11
12
13
14
15
16
17

7.4. EFFICIENT IMPLEMENTATION WITH DISJOINT-SETS 99

The function RE-PARTIAL-DERIVATIVES computes the sets of partial derivatives of a pair
of regular expressions (o, f) — with respect to every symbol of the alphabet — using the

respective deterministic linear sets, S, and Sg.

def RE-EQUIVALENT-PARTIAL-P(«, f):

S = {(a. B)}
H:=0
while S #0:

(o, B) := PoOP(S)
if é(a) #€(p):
return FALSE
H := PUSH(H, («, B))
S := RE-LINEAR-SET-DETERMINISTIC(&)
Sg := RE-LINEAR-SET-DETERMINISTIC(f)
S’ :={d | d € RE-PARTIAL-DERIVATIVES(Sw, Sg).d ¢ H }
S=5us

return TRUE

7.4 Efficient implementation with disjoint-sets

Instead of a simple stack keeping a list of pairs of regular expressions which have al-
ready been tested for equivalence — such as the one implemented by variable H in RE-
EQUIVALENT-P and RE-EQUIVALENT-PARTIAL-P— we can use a collection of disjoint
sets to avoid infinite loops. Although this modification does not lower the overall worst-
case running-time of the algorithm!, it does reduce the complexity of a frequent internal
operation — membership testing — and thus allows for a more efficient computational

implementation.

At line 15 of both RE-EQUIVALENT-P and RE-EQUIVALENT-PARTIAL-P each derivative

is tested for membership on H. By using a collection of disjoint sets where the regular

!Subsection 9.5.3 contains a proof that the exponential upper bound is tight.

—_—

A L B W

11
12
13
14
15
16
17
18
19
20

100 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

expressions already tested for equivalence are merged on the same set, we can use UNION-

FIND and reduce the search time on a set with n elements from O(logn) to O(1).

def RE-EQUIVALENT-UNION-FIND-P(«, f8):
S = {(a.p)}
UNION (A (), h(B))
while S #0:
(o, B) := PoP(S)
if é(o) #€(B):
return FALSE
S := RE-LINEAR-SET-DETERMINISTIC (&)
Sg := RE-LINEAR-SET-DETERMINISTIC(f)
for a € (HEAD(x) UHEAD(B)):
o = ({d | (a.d) € Sa}. 1)
B':=({d | (a.d) € Sp}.2)
if FIND(h(a)) # FIND(R(B)):
UNION(h (), h(B"))
S:=Su{d, B}

return TRUE

When implementing this variation, however, some caution must be taken. Let o and 8 be

the regular expressions tested for equivalence.

e We must ensure that w™! () # u~!(B) forall w, u € X*. We do so by keeping tuples
instead of simple derivatives where the second element is used to identify the regular
expression from which the first element was obtained from. Thus, the derivative o’ =
w™!(a) is represented by (o, 1), whilst a derivative B/ = u~!(f) is represented by

(B'.2).

e The FIND operation needs an equality test on the elements of the set. Testing the
equality of two regular expressions — even syntactic equality — is a computationally
expensive operation, and tuple comparison is even more costly. Since we know that
each element of the set is unique, we may consider some hash function which assures

that the probability of collision for these elements is extremely low. This allows us to

7.5. EXPERIMENTAL RESULTS 101

safely use the hash values (integers) as the elements of the set, and thus, arguments to

the FIND operation, instead of the regular expressions themselves.

The predicate RE-EQUIVALENT-UNION-FIND-P tests the equivalence of two regular ex-
pressions o and B using these optimisations. The hash function, although not explicitly
defined, is named /. Our Python implementation relies on the default hashing used for sets

and dictionaries.

7.5 Experimental results

This section contains some experimental comparative results of the previously described
algorithms for testing the equivalence of regular expressions: RE-EQUIVALENT-P, RE-
EQUIVALENT-PARTIAL-P, and RE-EQUIVALENT-UNION-FIND-P. Since the main goal of
these benchmarks is to compare the performance of the direct equivalence-testing methods
with the more usual approach, based on DFA minimisation, they also include some results
using Hopcroft’s and Brzozowski’s algorithms — recall that while Hopcroft’s algorithm
has the lowest known worst-case running time complexity, Brzozowski’s presented a better
practical performance when minimising NFAs, cf. Section 8.4. In order to obtain the NFAs
from the regular expressions we used Glushkov’s algorithm, as described by Yu [76, pages

72-74].

The conditions on which the experimental tests were conducted are described in detail on

Chapter 5.

Here we include only a set of three-dimensional graphs. These are intended to be a bird’s-
eye view on the overall performance of the algorithms previously discussed on this Chapter.
Recall that we define performance as the number of finite automata tested for equivalence
per second. Appendix B includes complete tables with the exact values of the running
time, memory usage, average number of recursive calls, etc. for each algorithm. The rule
of thumb while reading the graphs is as follows: a darker area means lower values, and

therefore, poorer performance.

102 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

450 500
- 400 _ 450
? 2 o
8 3000 3008 3000 300
3 250 3
Z 2500 200 3 2500 250
= 150 & 200
€ 2000 0o = 2000 150
8 3 100
£ 1500 oo g 150 30
E 1000 E 1000
g g
5 500 5 500

0 0

100 100
150 150
States States
(a) DFA-MINIMISE-HOPCROFT (b) DFA-MINIMISE-BRZOZOWSKI
1600 2500

= 1400
-g 1200 -g 2000
g 3000 11; 880 g 3000 1500
g zsoo P zsoo 1000
E’/ 000 400 E’/ 000 500
g 1500 (2]00 g 1500 0
E 1000 E 1000
g g
5 500 £ 500

150 150

States States

(c) RE-EQUIVALENT-P

2000
= 1500
; b
1=}

g s i
€

g 20 400
2 1500 200
E 1000

€

5 s00

150
States

(e) RE-EQUIVALENT-UNION-FIND-P

Figure 7.1: Benchmarks of regular expressions equivalence-testing algorithms.

Clearly, any of the direct comparison methods — RE-EQUIVALENT-P, RE-EQUIVALENT-

PARTIAL-P, or RE-EQUIVALENT-UNION-FIND-P— outperforms the classical approach,

7.5. EXPERIMENTAL RESULTS 103

based on DFA minimisation. As conjectured, Brzozowski’s algorithm performs faster than

Hopcroft’s on several cases, which, without exception, presents the worst results.

Considering the direct comparison methods, which are frequently ten times faster than
Hopcroft’s algorithm, RE-EQUIVALENT-P is always the slowest of the implementations.
Although RE-EQUIVALENT-PARTIAL-P and RE-EQUIVALENT-UNION-FIND-P present
very similar results, RE-EQUIVALENT-PARTIAL-P is slightly faster with small alphabets.
When the number of symbols increases, however, RE-EQUIVALENT-UNION-FIND-P be-
comes faster — actually, the fastest of the algorithms. The number of symbols required for
RE-EQUIVALENT-UNION-FIND-P to outperform RE-EQUIVALENT-PARTIAL-P depends
on the length of the regular expressions: while for regular expressions of length 5 RE-
EQUIVALENT-UNION-FIND-P is faster than RE-EQUIVALENT-PARTIAL-P when the al-
phabet contains 10 or more symbols, considering regular expressions of length 150, the
same performance results are only seen for regular expressions with 20 or more alphabetic

symbols.

104 CHAPTER 7. EQUIVALENCE OF REGULAR EXPRESSIONS

Chapter 8

Finite automata minimisation

The problem of finding the minimal DFA equivalent to a given automaton can be traced
back to the 1950’s with the works of Huffman [37, 38] and Moore [52]. Having applica-
tions on compiler construction, pattern matching, hardware circuit minimisation, and XML
processing to name a few, over the years several alternative (and increasingly efficient)
algorithms have been proposed. Authors typically present the worst-case time complex-
ity analysis of their algorithms, but that does not provide enough information on the the
practical behaviour. Moreover, little is known about the average-case time complexity.
Two exceptions may be found in the works of Nicaud [56], where it is proved that the
average-case complexity of Brzozowski’s algorithm is exponential for group automata, and
Bassino et al. [8], where it is shown that Moore’s state minimisation algorithm is log-linear

on average.

Using the Python programming language, we implemented the automata minimisation al-
gorithms due to Hopcroft [34], Brzozowski [11], Watson [74, 72], and the new incremental
method described on Section 8.3. Using this implementation, we experimentally compared

the algorithms’ relative performance when minimising random samples of ICDFAs.

The choice of the algorithms is justified by the disparate worst-case complexities (presented
on Table 8.1) and doubts about the practical behaviour of each algorithm. Moreover, since

sometimes one is only interested in knowing if a given finite automaton is already minimal

105

106 CHAPTER 8. FINITE AUTOMATA MINIMISATION

Algorithm Worst-case Average-case Experience
Moore O(kn?) O(knlog(n)) Good
Hopcroft O(knlog(n)) - Good
Brzozowski o2") o2") Bad
Watson O (kmx©0.n=2)) - Bad
Watson & Daciuk O (kn?a(n?)) - -~
Incremental O (kn?a(n?)) - Good

Table 8.1: Running time complexity of DFA minimisation algorithms.

(and not actually minimise it), the incremental algorithms are of particular interest since

they may be halted as soon as the first pair of equivalent states is found.

Because DFA-MINIMISE-BRZOZOWSKI can be directly applied to NFAs, our experimental
tests include benchmarks with non-deterministic finite automata. However, we do not
consider NFA minimisation in its literal meaning and the output of our tests is always the

equivalent minimal DFA.

We do not include any experimental results of the fully memoized and more efficient version
of Watson’s algorithm, proposed by Watson and Daciuk [73], because during the initial

performance tests a bug was found and one of the authors is currently trying to fix it.

8.1 Related work

Lhotdk [48] proposed a general data structure for DFA minimisation algorithms to run in
O(knlogn), where n is the number of states of the DFA and k is the size of the alphabet.
In his taxonomy, Watson [74] presented some experimental results on the performance of
DFA minimisation algorithms, but the samples were rather small and biased. Tabakov and
Vardi [69] experimentally compared Hopcroft and Brzozowski’s algorithms. Baclet and

Pagetti [7] analysed different implementations of Hopcroft’s algorithm refinement process,

8.2. ALGORITHMS 107

and Bassino et al. [9] experimentally compared Moore and Hopcroft’s algorithms.

8.2 Algorithms

Over the years, several different finite algorithms automata minimisation algorithms have
been developed and published. Although they all depend upon computing an equivalence
relation on the set of states, several approaches are possible: explicitly computing the
equivalence relation, computing the partition (of states) that it induces, or computing the

complement of the equivalence relation (finding all pairs of distinguishable states).

Aho et al. [1, pages 157-162], for example, present the minimisation of finite automata
as an application of a partitioning algorithm. The problem of minimising states in a finite
automaton D = (Q, X, §, qo, F) is equivalent to the problem of finding the coarsest (having

fewest blocks) partition P of Q such that:

e P is consistent with the the initial partition { F, Q — F' }, i.e., each block in P is a
subset either ' or Q — F;

e if the states p and ¢ are in the same block, then the states 6(p, a) and 6(¢, a) are also

in the same block, for eacha € X.

The algorithm which authors typically present as “Moore’s algorithm”, based on the works
of Huffman and Moore, finds the pairs of distinguishable states and uses this information to

create the equivalence classes.

Hopcroft’s algorithm presents a more efficient approach to the set partitioning problem,
resulting in the fastest (in terms of worst-case running time complexity) known DFA min-

imisation algorithm.

Brzozowski’s simple and elegant algorithm computes the equivalence classes in a somewhat
mysterious manner. A result due to Champarnaud et al. [15] shows that given a DFA D =

(9, X,6, q0, F), two states p and g are equivalent if and only if after the two first operations

O 0 9 A U Bk WD =

—_—
- O

108 CHAPTER 8. FINITE AUTOMATA MINIMISATION

(reversal and subset construction) they both belong to the same set § € 22.

8.2.1 Moore’s Algorithm

One way to minimise a DFA, usually credited to Huffman [37, 38] and Moore [52], is to
determine all distinguishable states. Having been found, a minimal equivalent automaton
can be constructed by collapsing any maximal set of mutually indistinguishable (equivalent)

states into a single state.

Although neither Huffman nor Moore explicitly present an algorithm for minimising finite
automata, they do define state equivalence, the distinguishability relation (and associated set
partition), prove that a minimal finite automata has no equivalent states and that a minimal

DFA is in fact unique.

Let D = (Q, X, 4, qo, F) be a DFA. Our version of the algorithm, DFA-MINIMISE-MOORE,
runs in O (| X|l0o |2) time. It is based on the algorithms given by Hopcroft and Ullman [36,
page 70] — attributed to Huffman [37] and Moore [52] — and Shallit [66, page 87].

In their presentation, Hopcroft and Ullman use the variable L to map each pair of states to

a list of related pairs of states. We implement it as an associative array (dictionary).

Given a DFA D, DFA-MINIMISE-MOORE returns the minimal DFA D’ such that D ~ D’.

def DFA-MINIMISE-MOORE(Q, X, 6, qo, F):
for peQ:
for ge O:
Ll(p.q)] =9
if (peF)Vv(geF):
M](p.q)] := TRUE
else:
M|[(p,q)] := FALSE
for peQ:
for ge O:
if (peF) & (gqeF):

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

8.2. ALGORITHMS 109

m := FALSE
for aec X:
if M[(8(p,a),8(q,a))]:
m := TRUE
break
if m:

M|[(p,q)] := TRUE
MARK-SET(p, q)
else:
for acX:
if 8(p.a)#8(q.a):
x 1= (8(p,a).8(q.a))
Llx] == LIx]U{(p.q9) }
D":=(0,%,8,qo0, F)
for peQ:
for ge Q:
if M[(p,q)] = FALSE
JOIN-STATES(D’, {{p,q}})

return D’

The algorithm DFA-MINIMISE-MOORE proceeds by finding the smallest word which dis-
tinguishes a pair of states. Every pair of states (p, ¢g) is assumed to be equivalent until some

word which distinguishes p from ¢ is found.

The two global variables, L and M, are used to keep a set associated to each pair of states,
and mark a pair of states as either equivalent or distinguishable, respectively. They are
global only to simplify the description of DFA-MINIMISE-MOORE and its integration with
the auxiliary procedure MARK-SET. Given two states p and ¢, L[(p, g)] contains a set of
pairs of states which are distinguishable if and only if p is distinguishable from g. The

states p and g are marked as distinguishable by making M [(p, g)] = TRUE.

The loop in lines 2—8 separates the trivially distinguishable pairs of states (those such that
one state is final and the other is not) from the remaining pairs, assumed to be equivalent

until proven otherwise.

wm A~ W

110 CHAPTER 8. FINITE AUTOMATA MINIMISATION

The loop in lines 9—24 iterates through all possible pairs of states. For each pair of states
(p,q) not yet marked as distinguishable (line 11), if an already marked pair of states
reachable from p and ¢ is found (line 17), (p, ¢) and all pairs on its set are also marked
as distinguishable (line 19). If, on the other hand, no two states directly accessible from the
pair (p, q) are marked, it is added to the set of each pair directly accessible from it (lines 21—

24).

In lines 25-29 a copy of the original DFA is created, and each pair of equivalent states is

merged by the call to JOIN-STATES. The minimal DFA D’ is returned at line 30.

def MARK-SET(p,q):
for (p'.q') € LI(p.9)]:
if M[(p',q")] = FALSE:
MI[(p’.q")] := TRUE
MARK-SET(p’, q’)

The procedure MARK-SET recursively marks all unmarked pairs (p’,¢’) on the list of

(p,q), and all pairs on the list of (p’, ¢’), etc.

8.2.2 Hopcroft’s algorithm

In terms of worst-case complexity analysis, Hopcroft [34] presented, in 1971, the best
known algorithm for deterministic finite automata minimisation. It runs on O(knlogn)
time when applied to a DFA with n states over an alphabet of k symbols. It is presented as

DFA-MINIMISE-HOPCROFT.

Although widely known and cited, the original algorithm’s proofs of correctness and run-
ning time are quite difficult to understand. Gries [29] and Knuutila [43] present detailed and
easy to follow tutorial reconstructions of the original algorithm, including time complexity

analysis and correctness proofs.

Let D = (Q, X, 4, qo, F) be a DFA. Unlike Moore’s algorithm (and several of its varia-

tions [35, pages 154—-157]), DFA-MINIMISE-HOPCROFT does not identify pairs of distin-

O 0 N N N kAW =

e e e e
N O L AW~ O

8.2. ALGORITHMS 111

guishable states. Instead, it proceeds by refining the coarsest partition until reaching a stable
partition. The initial partitionis P = { F, Q — F }. At each step of the algorithm, a block
B € P and a symbol a € X are selected to refine the partition. This refinement process
splits every other block B’ € P according to whether a state of B’, when consuming a
symbol a € X', reaches a state which is in B or not. Formally, we call this procedure SPLIT

and define it in the following way.

Definition 28.

SPLIT(B', B,a) = (B’ NS(B,a), B’ NS(B, a))

where
50)= (] §'q.a). 0 <O
qeQ’
DFA-MINIMISE-HOPCROFT terminates when there are no more blocks to refine. In the end,

each block of the partition is a set of equivalent states and represents a single state of the

minimal DFA.

def DFA-MINIMISE-HOPCROFT(D := (Q, X¥,8,q, F)):
L:=0
if |F|<|Q—F|:
P:={Q—FF}
L :=PUSH(L, F)
else:
P:={F,Q—-F}
L :=PusH(L,Q — F)

while L #0:
C :=Por(L)
for acX:
for Be P:

(B1, B2) = SpLIT(B, C,a)
P:=P—{B}
P:=PU{B B}
if [Bi| <|Bal:

L := PUSH(L, By)

18
19
20
21
22

AN L AW

112 CHAPTER 8. FINITE AUTOMATA MINIMISATION

else:
L := PUsH(L, By)
D' :=D
JOIN-STATES(D’, P)

return D’

The data structure L, implemented as a stack, contains the blocks of P which are yet to
be visited. At each iteration of the main loop (lines 9-19), one element (the splitter) is
removed (line 10) from L and used in the splitting process (line 13). Although the choice
of the element does not influence the correctness of the algorithm, Baclet and Pagetti [7]
presented some experimental results stating that a last-in-first-out (stacked) policy yields

better practical results.

Next, having selected a splitter set C, all elements of P (lines 12-19) are refined and used
to update P and L. At this point, the original algorithm by Hopcroft applies the splitting
process to and refines only blocks B € P such that there existst € B with §(¢,a) € 5 (C,a)
for some a € X'. We omit this selection and iterate through all blocks in P because, for a
given B € P, if 8(t,a) ¢ 5(C,a) forall 1 € B, the call SPLIT(B, C, a) will return (9, B).

This will change neither P nor L because:

e B isremoved from P at line 14, but B, = B is added at line 15;

e atline 16, By = @; thus |By| < | B,| and @ is added to L at line 17.

def SprLIT(B,C,a):

X =0

for geC:
X:=XU{8’1(q,a)}

Y =0-X

return (BNX,BNY)

A call such as SPLIT(B, C, a) refines the set B into two smaller sets according to the splitter

C and the transitions labelled by the symbol a (cf. Definition 28). The sets 5 (C,a) and its

AW oD

8.2. ALGORITHMS 113

complement are computed at lines 2—4 and 5 (respectively) and the refined classes, obtained

from the intersection with B, are returned at line 6.

8.2.3 Brzozowski’s algorithm

Given a (possibly non-deterministic) finite automaton A without e-transitions Brzozowski’s
algorithm builds the minimal DFA A4,,, such that A,, is equivalent to A, simply by ap-
plying two successive reverse and subset construction operations. This is a deep result
which relates two basic automata constructions (reversal and subset) with finite automata

minimisation.

We present our implementation of Brzozowski’s minimisation algorithm [11] as DFA-MIN-
IMISE-BRZOZOWSKI. Although it assumes a DFA as input, it can very easily be generalised

to handle NFAs, simply by using NFA-REVERSE instead of DFA-REVERSE in line 2.

def DFA-MINIMISE-BRZOZOWSKI(D):
DR := FA-DETERMINISTIC(DFA-REVERSE(D))
D, := FA-DETERMINISTIC(DFA-REVERSE(DR))

return D,

Let N be a non-deterministic finite automaton. The procedure NFA-REVERSE returns an
NFA N, such that the language recognized by N is the reversal of the one recognized
by N,, ie., L(N,) = LR(N). DFA-REVERSE performs the equivalent transformation to
DFAs. The procedure FA-DETERMINISTIC, already presented in Subsection 3.2.1, takes an

arbitrary NFA N as argument and returns an equivalent DFA D such that L(N) = L(D).

def DFA-REVERSE(Q, X,38,qo, F):
return NFA-REVERSE(Q, X, §,{qo}, F)

def NFA-REVERSE(Q,X,8,1,F):
I, .= F
F, =1

© o 9 O Wn o~

10
11
12

114 CHAPTER 8. FINITE AUTOMATA MINIMISATION

for g€ Q:
for ae X:
or(q.a) =0
for g€ Q:
for ae X:
for t €4(q,a):
8(t.a) :=8,(t.a) U{q}
Ny :=(0Q,%.8:. 1. F)

return N,

Because of the peculiar way by which Brzozowski’s algorithm computes the minimal DFA,
Watson, in his taxonomy [74, page 193], assumed it to be unique and placed it apart all
other algorithms. Later however, after having analysed how the sequential determiniza-
tions perform the minimisation, Champarnaud et al. [15] showed that DFA-MINIMISE-

BRZ0OZOWSKI does compute state equivalences.

Since it invokes the subset construction algorithm FA-DETERMINISTIC twice — in order to
make the two reversed automata deterministic — DFA-MINIMISE-BRZOZOWSKI is expo-
nential in the worst case (cf. Subsection 3.2.1). Moreover, Nicaud [56] has proved that, for
the specific case of group automata, the algorithm is also exponential on the average case.
Nonetheless, some authors (e.g. Watson [74, page 333]) have stated that it does present very

good practical results, sometimes even outperforming Hopcroft’s O (kn logn) algorithm.

8.2.4 Watson’s incremental algorithm

In 2001, Watson presented an incremental DFA minimisation algorithm [72]. Unlike other
known finite automata minimisation algorithms (e.g. Moore or Hopcroft), this one may be
halted at any time yielding a partially minimised DFA that recognises the same language as
the input DFA. This is the first (known) algorithm with usable intermediate results. Later,
Watson and Daciuk proposed an improved version of the same algorithm [73], this time

making use of full memoization in order to obtain a lower worst-case running time.

1

eI e Y R N V)

8.2. ALGORITHMS 115

Given a DFA D = (Q, X, 4, qo, F), the original algorithm, DFA-MINIMISE-WATSON,
presents a worst-case exponential running time: O (| £'|"(®/21=2)). The memoized version,
on the other hand, yields an almost quadratic algorithm, O(|ZJ ||Q|2a(|Q|2)), where o
denotes an inverse of the Ackermann function. Since a(x) < 4 for any x < 16°!2 (cf.
Subsection 2.5.1), it can be considered a constant for all “practical” values of x. During our
initial tests, however, a rather serious problem was found and one of the authors is currently

trying to fix it. Therefore, we were not able to include this algorithm in the benchmarks.

Exemplifying the problem The DFA on Figure 8.1 illustrates the bug on Watson and
Daciuk’s minimisation algorithm. Although the ICDFA on the left is already minimal, the
algorithm fails to compute the correct equivalence classes and returns the DFA on the right,

with only 3 states. Clearly, the DFAs do not recognise the same language.

OC@ 1 q3 1

Figure 8.1: An ICDFA that Watson & Daciuk’s algorithm fails to minimise.

def DFA-MINIMISE-WATSON(Q, X,6,qo, F):
E:={(q.9)0qeQ}
E:=(Q-F)xF)U(Fx(Q-F))

k := max(0, |Q|—2)

S:=90
for peQ:
for ge O:

if WATSON-EQUIV-P(p,q,k) :

10
11
12
13
14
15

—_—

O o0 N N N kA~ W

116 CHAPTER 8. FINITE AUTOMATA MINIMISATION

E:=EU{(p.9).(q.p)}
else:
E:=EU{(p.9).(q. D)}
D' :=(0,%.8,q.F)
for (p.q) € E:
JOIN-STATES(D’, (p.q))

return D’

DFA-MINIMISE-WATSON is a straightforward implementation of Watson’s original algo-
rithm, but specialised for ICDFAs. At each point of the main loop (lines 6-11), variables
E and E maintain the sets of pairs of states already known to be equivalent and not-
equivalent, respectively. This loop can be interrupted at any time, and the partially computed
set of equivalent pairs of states £ can be used to merge states. Variable k is used to
limit the recursion depth of the auxiliary procedure WATSON-EQUIV-P, only for matters
of efficiency. The proof that a word of size | Q| — 2 suffices to distinguish any pair of states
may be found in the works of Conway [19, page 11] or Wood [75, page 129]. Also for
matters of efficiency, a variable S, containing a set of presumably equivalent pairs of states,
is made global. Lines 12-15 are not part of the original algorithm, but we include them in

order to make the construction of the minimal DFA explicit.

DFA-MINIMISE-WATSON makes use of an auxiliary function, WATSON-EQUIV-P, which
tests the equivalence of any two states, p and g. The third argument, k, is the afore

mentioned parameter used to impose a limit on the recursion depth.

def WATSON-EQUIV-P(p, qo.k):
if k=0:
return (peF & geF)
elif (p,q)eS:
return TRUE
else:
eq:=(peF & qgeF)
S=85U{(p.9)}

for aeX:

10
11
12
13
14

0 N9 N Lt B W

8.2. ALGORITHMS 117

if eq = FALSE:
return FALSE
eq :=eq N WATSON-EQUIV-P(8(p,a),d8(q,a),k — 1)
S=85-{(r.9}

return eq

WATSON-EQUIV-P follows the transition function and recursively calls itself with increas-

ingly longer words (line 12) until one of the following two conditions occurs:

e the recursion limit was reached (line 2), which means that the two states used in the
first call to WATSON-EQUIV-P (line 8 of DFA-MINIMISE-WATSON) are equivalent if
and only if they are either both final or both not final, since the longest word necessary

to distinguish them has been computed;

e a loop was found (line 4), and clearly the states are equivalent since no word that

distinguishes the states has been, or will be, found.

The ability to interrupt the algorithm presents an excellent opportunity to save compu-
tational resources when, given a DFA, the goal is not to obtain the equivalent minimal
automaton, but solely to check if it is already minimal. The procedure DFA-MINIMAL-
WATSON-P implements a simplified version of Watson’s algorithm which halts, returning
FALSE, when the first pair of equivalent states is found. Naturally, if no pair of states is
found to be equivalent, the algorithm returns TRUE, indicating that the input DFA is in fact

already minimal.

def DFA-MINIMAL-WATSON-P(Q, X, 6, qo, F):
k := max(0, |Q|—2)

S:=40
for peQ:
for ge Q:

if WATSON-EQUIV-P(p,q,k) :
return FALSE

return TRUE

wm B~ W

118 CHAPTER 8. FINITE AUTOMATA MINIMISATION

8.3 A new incremental method

We will now present a new quadratic incremental DFA minimisation algorithm. Given an
arbitrary DFA D as input, this algorithm may be halted at any time returning a partially
minimised DFA that has no more states than D and recognises the same language. When-
ever the minimisation process is interrupted, calling the incremental minimisation algorithm
with the output of the halted process resumes the minimisation process. Being incremental
also allows for the algorithm to be applied to an automaton D at the same time as D is being

used to process a word for acceptance.

The algorithm uses a disjoint-set data structure to represent the DFA’s states. UNION-FIND
is used to mark pairs of equivalent states and to keep and update the equivalence classes.
This approach maintains the transitive closure in a very concise and elegant manner. The
pairs of states marked as distinguishable are stored in an auxiliary data structure in order to

avoid repeated computations.

Unlike the usual technique, which computes the equivalence classes of the set of states, this
algorithm proceeds by testing the equivalence of pairs of states. The intermediate results
are stored for the speedup of future computations in order to assure quadratic running time

and memory usage.

Let D = (Q, X, 48,qo, F) be a DFA such that n = |Q| and k = |X'|. We assume that the
states are represented by integers, and thus it is possible to order them. This ordering is used

to normalise pairs of states.

def NORMALISE-PAIR(p,q):
if p<gq:
return (p,q)
else:

return (q,p)

The normalisation step allows us to improve the behaviour of the minimisation algorithm

. 2y . .
by ensuring that only = pairs of states are considered.

O o0 N N N kAW =

RN NN NN — —m ok e e e e e
R W N~ S 0V 0N A WD = O

8.3. A NEW INCREMENTAL METHOD 119

The quadratic time bound of the minimisation procedure DFA-MINIMISE-INCREMENTAL
is achieved by testing each pair of states for equivalence exactly once. We assure this by
storing the intermediate results of all calls to the pairwise equivalence-testing function IN-
CREMENTAL-EQUIV-P. Some auxiliary data structures, designed specifically to improve

the worst-case running time, are presented on Subsection 8.3.1.

def DFA-MINIMISE-INCREMENTAL((Q, X,§,q0, F)):
for g Q:
MAKE(q)
E := {NORMALISE-PAIR(p.q) | pe F.q € Q — F}
for pe Q:
for ge{x|xeQ,x>p}:
if (p.q)€E:
continue
if FIND(p) = FIND(q):
continue
E := SET-MAKE(|Q?)
H := SET-MAKE(|Q|?)
if INCREMENTAL-EQUIV-P(p,q):
for (p’,q’) € SET-ELEMENTS(E):
UNION(p', q’)
else:
for (p’,q’) € SET-ELEMENTS(H):
E:=EU{(p.q4)}

C:=4
for pe Q:
r := FIND(p)
Clrl:=C[r]u{p}
D' :=D

JOIN-STATES(D’, C)

return D’

The algorithm DFA-MINIMISE-INCREMENTAL starts by creating the initial equivalence

classes (lines 2-3); these are singletons as no states are yet marked as equivalent. The

120 CHAPTER 8. FINITE AUTOMATA MINIMISATION

global variable E, used to store the distinguishable pairs of states, is also initialised (line 4)
with the trivial identifications. Variables H and E, also global and reset before each call to
INCREMENTAL-EQUIV-P, maintain the history of calls to the transition function and the set

of potentially equivalent pairs of states, respectively.

The main loop of DFA-MINIMISE-INCREMENTAL (lines 5-18) iterates through all the nor-
malised pairs of states and, for those not yet known to be either distinguishable or equivalent,
calls the pairwise equivalence test INCREMENTAL-EQUIV-P. Every call to INCREMEN-
TAL-EQUIV-P is conclusive and the result is stored either by merging the corresponding
equivalence classes (lines 13—15), or updating E (lines 16-18). Thus, each recursive call
to INCREMENTAL-EQUIV-P will avoid one iteration on the main loop of DFA-MINIMISE-

INCREMENTAL by skipping (lines 7-10) that pair of states.

Finally, at lines 19-22, the set partition of the corresponding equivalence classes is created.
Next, the DFA D is copied to D’ (line 23) and the equivalent states are merged by the call
to JOIN-STATES. The last instruction, at line 25, returns the minimal DFA D’ equivalent to

D.

def INCREMENTAL-EQUIV-P(p,q):
if (p.q)€E:
return FALSE
if SET-SEARCH((p,q), H) # NIL:
return TRUE
H := SET-INSERT((p,q), H)
for ac X:
(p',q") := NORMALISE-PAIR(FIND(S(p, a)), FIND(§(q, a)))
if p'#¢q and SET-SEARCH((p',q'),E) = NIL:
E := SET-INSERT((p’.q’), E)
if not INCREMENTAL-EQUIV-P(p’,q’):
return FALSE
else:
H := SET-REMOVE((p’,q’), H)
E := SET-INSERT((p,q), E)

return TRUE

8.3. A NEW INCREMENTAL METHOD 121

Algorithm INCREMENTAL-EQUIV-P is used to test the equivalence of the two states, p and

q, passed as arguments.

The global variables £ and H are updated with the pair (p, ¢) during each nested recursive
call. As there is no recursion limit, INCREMENTAL-EQUIV-P will only return when p is
distinguishable from ¢ (line 3) or when a cycle is found (line 5). If a call to INCREMENTAL-
EQUIV-P returns FALSE, then all pairs of states recursively tested are distinguishable and
variable H — used to store the sequence of calls to the transition function — will contain
a set of distinguishable pairs of states. If it returns TRUE, no pair of distinguishable states
was found within the cycle and variable £ will contain a set of equivalent states. This is the
strategy which assures that each pair of states is tested for equivalence exactly once: every
call to INCREMENTAL-EQUIV-P is conclusive and the result stored for future use. It does,

however, lead to an increased usage of memory.

Theorem 29. The algorithm DFA-MINIMISE-INCREMENTAL is terminating.

Proof. It should suffice to notice the following facts:

e all the loops in DFA-MINIMISE-INCREMENTAL are finite;

e the variable H on INCREMENTAL-EQUIV-P assures that the number of recursive calls

1s finite.

Lemma 30. The algorithm INCREMENTAL-EQUIV-P runs in O(kn?) time.

Proof. The number of recursive calls to INCREMENTAL-EQUIV-P is controlled by the local

variable H. This variable keeps the history of calls to the transition function (line 8). In the

n2—n

worst case, all possible pairs of states are used: *—

, due to the normalisation step. Since
each call may reach line 7, we need to consider k additional recursive calls for each pair of

states, hence O (kn?). O

122 CHAPTER 8. FINITE AUTOMATA MINIMISATION

Lemma 31. The algorithm INCREMENTAL-EQUIV-P returns TRUE if and only if the two

states passed as arguments are equivalent.

Proof. INCREMENTAL-EQUIV-P returns FALSE if the two states, p and ¢, used as argu-
ments are such that (p,g) € E (lines 2-3). This is correct because the global variable E
contains all the pairs of states already proven to be distinguishable. Conversely, INCRE-
MENTAL-EQUIV-P returns TRUE only if (p, g) € H (lines 4-5) or a recursive call returned
TRUE (line 16). In both cases this means that a cycle with no distinguishable elements was

detected, which implies that all the recursively visited pairs of states are equivalent. U

Theorem 32. Given a DFA D = (Q, X, 6, qo, F), DFA-MINIMISE-INCREMENTAL com-

putes the minimal DFA D' such that D ~ D’.

Proof. The procedure DFA-MINIMISE-INCREMENTAL finds pairs of equivalent states by
exhaustive enumeration. The loop in lines 5-18 enumerates all possible pairs of states,
and, for those not yet proven to be either distinguishable or equivalent, INCREMENTAL-
EQUIV-P is called. When line 19 is reached, all pairs of states have been enumerated and
the equivalent ones have been found (cf. Lemma 31). The loop in lines 20-22 creates
the equivalence classes and the procedure JOIN-STATES, at line 24, merges the equivalent
states, updating the corresponding transitions. Since the new DFA D’ does not have any

equivalent states, it is minimal. O

Lemma 33. At line 13 of DFA-MINIMISE-INCREMENTAL, when INCREMENTAL-EQUIV-

P returns TRUE, all the pairs of states stored in the global variable E are equivalent.

Proof. By Lemma 31, if INCREMENTAL-EQUIV-P returns TRUE then the two states, p and
q, used as arguments are equivalent. Since there is no depth recursion control, INCREMEN-
TAL-EQUIV-P only returns TRUE when a cycle is detected. Thus being, all the pairs of
states used as arguments in the recursive calls must also be equivalent. These pairs of states

are stored in the global variable E at line 10 of INCREMENTAL-EQUIV-P. U

Lemma 34. At line 13 of DFA-MINIMISE-INCREMENTAL, if INCREMENTAL-EQUIV-P

returns FALSE, all the pairs of states stored in the global variable H are distinguishable.

8.3. A NEW INCREMENTAL METHOD 123

Proof. Given a pair of distinguishable states (p, q), clearly all pairs of states (p’, g’) such
that g(p’, w) = p and g(q’, w) = q are also distinguishable, for w € ¥'*. By Lemma 31,
INCREMENTAL-EQUIV-P returns FALSE only when the two states, p and ¢, used as ar-
guments are distinguishable. Throughout the successive recursive calls to INCREMENTAL-
EQUIV-P, the global variable H is used to store the history of calls to the transition function
(line 6) and thus contains only pairs of states with a path to (p, g). All of these pairs of

states are therefore distinguishable. U

Lemma 35. Each time that INCREMENTAL-EQUIV-P calls itself recursively, the two states
used as arguments will not be considered in the main loop of DFA-MINIMISE-INCREMEN-

TAL.

Proof. The arguments of every call of INCREMENTAL-EQUIV-P are kept in two global

variables: £ and H.

By Lemma 33, whenever INCREMENTAL-EQUIV-P returns TRUE, all the pairs of states
stored in E are equivalent. Immediately after being called from DFA-MINIMISE-INCRE-
MENTAL (line 13), if INCREMENTAL-EQUIV-P returns TRUE, the equivalence classes of all
the pairs of states in £ are merged (lines 14-15). Future references to any of these pairs

will be skipped at lines 9-10.

In the same way, by Lemma 34, if INCREMENTAL-EQUIV-P returns FALSE, all the pairs
of states stored in H are distinguishable. Lines 17-18 of DFA-MINIMISE-INCREMENTAL
update the global variable E with this new information and future references to any of these

pairs of states will be skipped at lines 7-8 of DFA-MINIMISE-INCREMENTAL. U

Theorem 36. Algorithm DFA-MINIMISE-INCREMENTAL is incremental.

Proof. Halting the main loop of DFA-MINIMISE-INCREMENTAL at any point within the
lines 5-18 only prevents the finding of all the equivalent pairs of states. Merging the known
equivalent states on D’, a copy of the input DFA D, assures that the size of D’ is not greater

than that of D and thus, is closer to the minimal equivalent DFA. Calling DFA-MINIMISE-

1
2
3

124 CHAPTER 8. FINITE AUTOMATA MINIMISATION

INCREMENTAL with D’ as the argument would resume the minimisation process, finding

the remaining equivalent states. U

Theorem 37. Algorithm DFA-MINIMISE-INCREMENTAL runs in O(kn?a(n)) time.

Proof. The number of iterations of the main loop in lines 5-18 of DFA-MINIMISE-INCRE-

MENTAL is bounded by "22_ . Each iteration may call INCREMENTAL-EQUIV-P, which,

by Lemma 30, is O(kn?). By Lemma 35 every recursive call to INCREMENTAL-EQUIV-P
avoids one iteration on the main loop. Therefore, disregarding the UNION-FIND calls, and
because all operations on variables E, E, and H are O(1), the O(kn?) bound holds. Since
there are O(kn?) FIND and UNION intermixed calls, and exactly n MAKE calls, the time
spent on all the UNION-FIND operations is bounded by O(kn?a(n)) — cf. Section 2.5.
All things considered, DFA-MINIMISE-INCREMENTAL runs in O(kn? + kna(n)) =

O(kn?a(n)). O

Corollary 38. Algorithm DFA-MINIMISE-INCREMENTAL runs in O (kn?) time for all prac-

tical values of n.

Proof. Function « is related to an inverse of Ackermann’s function. It grows so slowly (cf.

Subsection 2.5.1) that we may consider it a constant. U

8.3.1 Efficient set implementation

The variables £ and H are heavily used in INCREMENTAL-EQUIV-P as several insert,
remove, and membership-test operations are executed throughout the algorithm. In order
to achieve the desired quadratic upper bound, all these operations must be performed in
O(1). Therefore, in the following paragraphs, we describe some efficient set representation

and manipulation procedures.

def SET-MAKE(n) :
T := HASH-TABLE(n)

L := LINKED-LIST()

© o 9 O Wn o~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

8.3. A NEW INCREMENTAL METHOD 125

return (7,L)

def SET-INSERT(v, (T, L)) :
p = LIST-INSERT(v, L)
T]:=p
return (7,L)

def SET-REMOVE(v, (T, L)) :
p=T[]
LIST-REMOVE(p, L)
T[v] := NIL
return (7,L)

def SET-SEARCH(v,(T,L)) :
if T[v] # NIL:
p = T[v]
return LIST-ELEMENT(p, L)
else:

return NIL

def SET-ELEMENTS((7,L)) :

return L

These set-manipulation procedures combine a hash-table with a doubly-linked list. This is
another space-time trade-off that allows us to assure the desired complexity on all opera-
tions. The hash-table maps a given value (state of the DFA) to the address on which it is
stored in the linked list. Since we know the size of the hash-table in advance — n? elements
for a DFA with n states — searching, inserting, and removing elements is O(1). The linked
list assures that, at lines 14—15 and 17-18 of DFA-MINIMISE-INCREMENTAL, the loop is
repeated only on the elements that were actually used in the calls to INCREMENTAL-EQUIV-

P, instead of iterating through the entire hash-table.

The procedure SET-MAKE creates a new set represented by a tuple (7, L) where T is a

hash-table and L a linked list. Its only argument is an integer defining the maximum size

126 CHAPTER 8. FINITE AUTOMATA MINIMISATION

of the set. This information is necessary when the set is represented by a direct-address
table [20, pages 222-223]. If the number of states becomes too large for a single table,
another option, somewhat more complicated, is perfect hashing [20, pages 245-249]. Both

representations assure O(1) search, insert, and remove operations.

SET-INSERT adds a new element to the set. The call to LIST-INSERT (line 7) adds the
element v to the linked list L, returning a pointer p to the memory address where v was
stored. Next, at line 8, p is used as the value to the key v on the hash-table 7'. All these
operations are performed in constant time. The updated set, represented by the tuple (7', L),

is returned at the end of the procedure (line 9).

Removing an element v from a set is implemented by the procedure SET-REMOVE. Since
the hash-table stores memory addresses, SET-REMOVE starts by obtaining, at line 12, the
value p (memory address) of the key v. After using p to remove v from the linked list (line
13), p is replaced by the special value NIL as the pointer to the value v, meaning that v is

no longer on the set. The updated set, without the element v, is returned at line 15.

The procedure SET-SEARCH tries to locate an element v on a set (7, L). If the memory
address of the element v (stored in the hash-table 7') is valid, the pointer p is retrieved from
T (line 19) and the corresponding value stored in the linked list is returned (line 20). If, on
the other hand, there is no valid memory address for v (line 21), it is not an element of the

set, and NIL is returned (line 22).

8.3.2 An example

Let us walk through the minimisation process of the DFA presented on Figure 8.2, exempli-
fying the incremental minimisation algorithm in action. It is a simple ICDFA with 5 states,
named sequentially from O to 4, over an alphabet of two symbols, a and b. The only final

state (and also the initial state) is 0.

After creating the UNION-FIND data structures with lines 2-3, DFA-MINIMISE-INCRE-

MENTAL will initialise the set of distinguishable pairs of states (variable E at line 4) with

8.3. A NEW INCREMENTAL METHOD 127

Figure 8.2: Incremental minimisation example: input DFA.

the trivial identifications: { (0, 1), (0, 3), (0, 2), (0,4)}.

Following the order induced by the states’ names, the first pair to be tested for equivalence is
(0, 1). These states are already known to be distinguishable and will be ignored at lines 7-8.

The same is true for the pairs (0, 2), (0, 3), and (0, 4).

The next pair to be tested for equivalence is (1,2). Nothing is known about this pair so
INCREMENTAL-EQUIV-P is called. Following the transitions by a, the pair (3, 4) is reached.
From (3, 4), regardless of the symbol used, a loop is reached: (4,4) by a, and (1, 1) by b.
Another loop is found when trying to follow the transitions of the states (1, 2) by the symbol
b. This results on INCREMENTAL-EQUIV-P returning TRUE with £ = {(1,2), (3,4)}, and
DFA-MINIMISE-INCREMENTAL making state 1 equivalent to state 2, and state 3 equivalent
to state 4 by merging the corresponding UNTION-FIND sets at lines 13—15. The partially

minimised DFA obtained at this point is presented in Figure 8.3.

a
a,b a.b
\Z/

Figure 8.3: Incremental minimisation example: partially minimised DFA.

Continuing with the minimisation process, again, nothing is yet known about the equiva-
lence of the states 1 and 3. The call to INCREMENTAL-EQUIV-P returns TRUE and sets the
global variable E = {(1,3),(2,4)}. After merging the equivalence classes of the states
(1,3) and (2, 4), the remaining pairs of states — (1,4), (2,3), (2,4), and (3,4) — are

128 CHAPTER 8. FINITE AUTOMATA MINIMISATION

known to be equivalent and are ignored at lines 9-10 of DFA-MINIMISE-INCREMENTAL.

Since there are no more states to test, line 19 of DFA-MINIMISE-INCREMENTAL is reached.
The set partition corresponding to the equivalence classes is created (lines 20-22), and
the equivalent states are merged (line 24). The resulting minimal DFA is presented on

Figure 8.4.

=
o

1’273,4

Figure 8.4: Incremental minimisation example: minimal DFA.

8.4 Experimental results

In the following subsections, we present some comparative experimental results. Here
we include only a few three-dimensional graphs which represent the performance of a
minimisation algorithm: the number of minimised finite automata per second. These are
intended to be a bird’s-eye view of the overall performance of the algorithms discussed
previously on this Chapter. Appendix C includes complete tables with the exact values of

the running time, memory usage, etc. for each algorithm.

The rule of thumb for reading the graphics is as follows: a darker area means lower values,

and therefore, poorer performance.

8.4.1 ICDFAs

Looking at the results of the two classical polynomial algorithms, DFA-MINIMISE-MOORE
and DFA-MINIMISE-HOPCROFT, we can see that, although the difference is not huge, DFA-

MINIMISE-MOORE performs slightly better.

As for the two exponential algorithms, DFA-MINIMISE-BRZOZOWSKI and DFA-MINI-

8.4. EXPERIMENTAL RESULTS 129

MISE-WATSON, while both present very similar results, DFA-MINIMISE-WATSON displays
a slightly superior performance especially when dealing with small alphabets (25 sym-
bols or less). For larger alphabets (30 or more symbols, in our tests), DFA-MINIMISE-

BRz0ZOWSKI outperforms DFA-MINIMISE- WATSON.

The clear winner is, without any doubt, the new incremental algorithm DFA-MINIMISE-
INCREMENTAL. While presenting a quadratic worst-case running-time, it outperforms even
Hopcroft’s O(kn log(n)) approach — at least in the average case, for a uniform distribution

— on all the tested ICDFAs.

8.4.2 NFAs

Considering the benchmarks on the samples of NFAs with transition density d = 0.1,
apart from the performance peak (common to all algorithms) when the number of states
equals 5, Brzozowski’s algorithm is usually the fastest. Sporadically, it is outmatched
only by the quadratic incremental algorithm. Considering the combinatorial explosion in
the NFA-to-DFA conversion (cf. Appendix F), it is not very surprising that the algorithms
which explicitly invoke the subset method present rather poor results. Probably contrary to
what one would expect, however, Brzozowski’s algorithm is relatively moderate in terms of
memory usage. In fact, the two quadratic algorithms (Moore’s and the new incremental one)

clearly present the more considerable expenditure of memory (cf. Appendix C, Section C.2).

When the transition density increases to d = 0.5 or d = 0.8, except for some very
rare cases, Brzozowski’s algorithm is clearly the fastest approach to NFA minimisation.
Regardless of the number of states or size of the alphabet, no other algorithm minimises a

greater number of NFAs per second.

130 CHAPTER 8. FINITE AUTOMATA MINIMISATION

3000 3500
_ 5000 2500 _ 5000 3000
H H 2500
H N H 2
g 4000 2000 g 4000
3 3 2000

1500
5 & 1500
g a0 g 000
H 1000 $ 1000
H 500 H
E 200 E 200 500
H o3 0
& &
1000 1000
[y %
g
States Symbols States Symbols
3500 3500
5000 3000 5000 3000

) 5
g 2500 g 2500
3 4000 3 4000

3 2000 3 2000

£ £

8 1500 a8 1500

g 3000 g 3000

3 1000 3 1000
E 200 500 E 200 500

H o3 0

& &

1000 1000

%

States Symbols States Symbols

(c) DFA-MINIMISE-BRZOZOWSKI (d) DFA-MINIMISE-WATSON

4500
5000 4000

B 3500

H 5

g 4000 3000

2500

£

& 2000

g 300 1500

H 1000

£ !

£ 2000 500

5 0

&

1000

%

States Symbols

(e) DFA-MINIMISE-INCREMENTAL

Figure 8.5: Performance graphics: minimisation of ICDFAs.

8.4. EXPERIMENTAL RESULTS

Performance (NFAs/second)

Performance (NFAs/second)

120
300
100
250 80
200 60
40
150
20
100 0
50
o
30
States 7 Symbols
(a) DFA-MINIMISE-MOORE
50
300
200
250
150
200 100
150 50
100 0

50

o

30

States

(c) DFA-MINIMISE-BRZOZOWSKI

Performance (NFAs/second)

Performance (NFAs/second)

300
250

200

100
50

o

Symbols

(b) DFA-MINIMISE-HOPCROFT

300
250

200

100
50

o

30

States

(d) DFA-MINIMISE-INCREMENTAL

131

200
180
160
140

100
80
60
40
2

Figure 8.6: Performance graphics: minimisation of NFAs with transition density d = 0.1.

132 CHAPTER 8. FINITE AUTOMATA MINIMISATION

700 1000
= - 800
‘g' 1200 500 ‘g' 1200 700
3 400 3 600
2 1000 2 1000 500
; 300 ; 400
Td’ 800 200 Td’ 800 300
& 400 0 & 400 0
200 200
o o
30 30
4075 40
States States 6 ‘ Symbols
(a) DFA-MINIMISE-MOORE (b) DFA-MINIMISE-HOPCROFT
1400 1400
2 o 1000 2w 1000
g g
2 800 2 800
2 1000 2 1000
; 600 ; 600
g 80 400 g 80 400
E 600 200 E 600 200
£ 400 0 & 400 0
200 200
o o
30 30
4075 40
States States
(c) DFA-MINIMISE-BRZOZOWSKI (d) DFA-MINIMISE-INCREMENTAL

Figure 8.7: Performance graphics: minimisation of NFAs with transition density d = 0.5.

8.4. EXPERIMENTAL RESULTS 133

700 1200
1400 1400
600 1000
5 5
2w 500 ERE 500
§ 400 E
Rty Rty 600
i i
z § 0 e y 400
g s 200 g s
H H 200
5 600 100 5 600
g 0 g 0
S a0 = a0
200 200
fo fo
30 30
States States 3 Symbols
1000 1200
1400 900 1400
R 500 R 1000
2 2
2w 700 2w 500
g 600 g
k] 1000 500 2 1000 600
£ 400 Z
5 s 300 5 s 400
g 200 g
£ g 200
£ 100 5
H 0 H 0

400 400

200 200

o o

30 30

States States

(c) DFA-MINIMISE-BRZOZOWSKI (d) DFA-MINIMISE-INCREMENTAL

Figure 8.8: Performance graphics: minimisation of NFAs with transition density d = 0.8.

134 CHAPTER 8. FINITE AUTOMATA MINIMISATION

Chapter 9

Finite automata equivalence

When trying to determine the equivalence of two regular languages, whether these are
represented by finite automata or regular expressions, we tend to use the corresponding
minimal DFAs. We know, from Corollary 10 (page 34), that for each regular language there
is a unique (up to renaming of states) minimal DFA that recognises it, and use this canon-
ical representation as the means to identify regular languages in a straightforward manner.
Several minimisation algorithms, with different approaches and worst-case running-time

complexity results, were already presented in Chapter 8.

There are, however, alternative approaches to the decidability of regular objects’ equiva-

lence which do not resort to minimisation. Some of them date already to the early 1970’s.

In this Chapter, we will discuss different approaches to this problem, presenting some
algorithms which are able to decide the equivalence of finite automata (deterministic and

non-deterministic) without resorting to the minimal DFA.

9.1 Classical approach

When comparing the language recognised by two finite automata, F; and F,, the usual

approach relies on the uniqueness of the minimal equivalent DFAs. Since only two known

135

O o0 9 N kA W =

e e = Sy S
N N R WD = O

136 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

minimisation algorithms may be directly applied to non-deterministic finite automata —
Brzozowski’s [11], and the generalisation we present on Section 9.4 — if either F; or F, are
non-deterministic, it may be necessary to obtain equivalent deterministic ones before using
the minimisation procedure. This may be achieved with the subset construction method (cf.

Subsection 3.2.1).

The predicate DFA-EQUIVALENT-P implements the simple minimisation-based equivalence
test returning TRUE if and only if the finite automata F; and F, recognise the same lan-
guage. It assumes that the minimisation algorithm can only handle DFAs and calls the

MAKE-DETERMINISTIC procedure on the input automata.

def DFA-EQUIVALENT-P(Fy, F>):

D1 := MAKE-DETERMINISTIC(F})

D5 := MAKE-DETERMINISTIC(F3)

D} := MINIMISE(D;)

D), := MINIMISE(D>)

if DFA-ISOMORPHIC-P(D7, D)):
return TRUE

else

return FALSE

def DFA-ISOMORPHIC-P(Dq, D3):
S1 := ICDFA-TO-STRING(D)
S> := ICDFA-TO-STRING(D>)
if §;=25:
return TRUE
else

return FALSE

Because the minimal DFA is unique only up to renaming of states, it is necessary to check
if the resulting minimal DFAs are isomorphic after completing the minimisation processes.
This check, as implemented in DFA-ISOMORPHIC-P, can be performed in linear time when
using the canonical string representation proposed by Reis et al. [60], already described on

Subsection 3.1.1. This string is obtained with the call to ICDFA-TO-STRING.

9.2. AN ALMOST LINEAR ALGORITHM 137

In terms of worst-case complexity analysis, the best known DFA minimisation algorithm,
by Hopcroft [34], is log—linear as presented in Chapter 8. The running time of this algorithm
is O(knlog(n)) when applied to a DFA with n states over an alphabet of k symbols.
Because the isomorphism check is linear, the minimisation time dominates the equivalence
test algorithm. Thus, when resorting to DFA minimisation to check the equivalence of
two DFAs, Dy = (Q4, X, 81,41, F1) and D, = (Q», X, 85,92, F>), we can not expect a
running time better than O(kn log(n)), where k = |X| and n = max(|Q|, | Q2]).

As for NFAs, and since that at one point or another they use the subset construction, both
Brzozowski’s algorithm and the one we propose on Section 9.4 present an exponential

running time.

9.2 An almost linear algorithm

Aho, Hopcroft, and Ullman presented [1, pages 143—145], in 1974, an algorithm for testing
the equivalence of DFAs without resorting to any minimisation process. This algorithm
makes use of a disjoint-set data structure to represent the states of the automata and the
UNION-FIND algorithm [1, pages 124-129] to create and locate the equivalence classes.

Our implementation follows the one described on Section 2.5.

9.2.1 Historical note

The first reference to this work is a 1971 technical report Hopcroft and Karp [31]. It
cites another technical report, by Hopcroft and Ullman [32], describing the set-merging
algorithm on which the equivalence testing algorithm is based. Hopcroft and Ullman [33]
later improved the complexity analysis of the set-merging algorithm by showing it was
bounded by a very slowly growing function: the iterated logarithm. As already stated on
Subsection 2.5.1, Tarjan [70] took a step further and used the inverse Ackermann function

— which grows even slower than the iterated logarithm — to prove a tighter upper bound

O o0 N N R WND =

—_— = =
No= O

138 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

and a restricted version of the lower bound. This is the upper bound we will be considering
throughout this Chapter. Although not directly related to the original algorithm on finite
automata equivalence, the result affects all work relying on disjoint-set forest data structures,

such as the case of this equivalence-testing method.

9.2.2 The original algorithm

Let Dy = (Q1, ¥,01,491, F1) and Dy, = (Q,, X, 85, q2, F>) be two DFAs, with |Q| = ny,
|Q2| = n,, such that Q; and Q, are disjoint, i.e., @1 N O, = @. In order to simplify
notation, we assume Q = QU Q,, F = F; U F,, and §(p,a) = §;(p,a) for p € Q;,
ae X, ie{l?2}

The predicate DFA-EQUIVALENT-HK-P implements the method proposed by Aho et al. [1,
pages 143-145] to determine if two finite automata are equivalent without using minimi-
sation algorithms. It is based on the following observations. Suppose D; and D, are

equivalent, then:

e ¢; and g, must be equivalent;

e if p,q € Q are equivalent, then §(p, a) must be equivalent to 5(¢q, a), foralla € X.

def DFA-EQUIVALENT-HK-P(D1, D>):

for g Q:
MAKE(q)
S:=40

UNION(q1, q2)
S := PUSH(S, (91, 42))
while (p,q) := Popr(S):
for aec X:

p' := FIND(8(p, a))

q' := FIND(8(g, a))

if p'#q":

S := PusH(S, (p'.q)))

13
14
15
16
21
22

9.2. AN ALMOST LINEAR ALGORITHM 139

UNION(p', q')
for pe Q:
p’ = FIND(p)
if &p) #e(p):
return FALSE

return TRUE

Assuming that O and Q, are disjoint, DFA-EQUIVALENT-HK-P starts by creating a set
for each state ¢ € Q (lines 2-3). Two equivalence classes [p] and [¢g] are merged (lines 5
and 13) whenever it is discovered that, if Dy is to be equivalent to D, the states p and ¢
must also be equivalent. Every time two states are merged, the identifiers of the respective
equivalence classes are selected (line 12), and for each a € X', the sets containing the pair
of successor states are also merged (line 13). When the point is reached where every pair
of states in the same set has its successors pair in a single set (for all a € X'), the process
terminates. The automata D, and D, are equivalent if and only if, at this point, no set

contains both a final and a non-final state (lines 14—18).

If D, and D, are equivalent DFAs, DFA-EQUIVALENT-HK-P computes the finest right-

invariant equivalence relation over Q that identifies the initial states, g, and ¢5.

The associated set partition is built using the UNION-FIND algorithm for disjoint-set forests

as described on Section 2.5.

9.2.3 Complexity analysis

Lemma 39. Disregarding set operations, the worst-case running time of the procedure

DFA-EQUIVALENT-HK-P is O(kn), where k = |X| andn = |Q1| + |Q,]|.

Proof. Lines 2-3 are executed exactly ny + n, times. The number of times that the while
loop in the lines 8—14 is executed is limited by the total number of elements pushed to the
stack S. Each time a pair of states is pushed into the stack, two sets are merged (lines 12—14)

and thus the total number of sets is decreased by one. As initially there are ny + n, sets,

140 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

only ny +n, — 1 calls to the UNION instruction are possible and at most ny +n, — 1 pairs of
states are placed in the stack. Since the main while loop is executed once for each symbol
in the alphabet, disregarding the set operations, the total running time of the algorithm is

Theorem 40. Let n = ny + n, and k = |X|. The worst-case time complexity of DFA-

EQUIVALENT-HK-P is O(kna(kn,n)).

Proof. By Lemma 39 and Theorem 1, DFA-EQUIVALENT-HK-P presents a worst-case time
complexity of O(kn + mo(m,n)), where m is the number of FIND instructions. Since the
number of FIND calls is bounded by 2nk + 1 (one isolated call at line 7, and 2 calls in
the while loop at lines 10 and 11) the running-time as a function of k and n is O(kn +

knoa(kn,n)) = O(kna(kn,n)).

Moreover, considering «(kn, n) constant for any conceivable application, we can view the

running time as linear in k n. U
Theorem 41. The upper bound from Theorem 40 is tight.
Proof. We present on Table 9.1 an example of two DFAs, one with a single state and another

with n + 1 states, such that the length of the shortest word which distinguishes the initial

states is exactly n.

This shows that the upper bound proved on Theorem 40 may actually be achieved and, thus,

cannot be reduced in the general case.

It also proves that the result by Conway [19, page 11] — on the length of the largest word

required to distinguish two states of different DFAs— is tight. U

a,b
' a a a

Figure 9.1: Two DFAs not distinguishable with a word of length smaller than 7.

[c IR e Y B T\

9.3. IMPROVED BEST-CASE RUNNING TIME 141

9.3 Improved best-case running time

By altering FIND so that the set being looked for is created if it does not exist, i.e., whenever
FIND(x) fails MAKE(x) is called and the set S, = {x} is created', we may add a refutation
procedure earlier in the algorithm. This allows the algorithm to return as soon as it finds a

pair of distinguishable states, i.e., such that one is final and the other is not.

This alteration to the FIND procedure avoids the initialisation of |Q| + |Q»| sets which
may actually never be used. Although it does not change the worst-case complexity, the
overall best-case running-time is considerably improved, going from $2(kna(kn,n)) to
£2(1) — where k is the size of the alphabet and 7 is the sum of the number of states in both
automata. This is because with the refutation condition, not only it is possible to distinguish
the automata by the first pair of states, but it is also possible to avoid the linear check in the

lines 14-18.

The increasingly high number of minimal ICDFAs observed by Almeida et al. [2] (cf.
Appendix E), also suggests that, when dealing with random ICDFAs, the probability of
having two equivalent automata is very low, and a refutation method will be very useful (for

some experimental results, see Section 9.6).

We will now prove the correctness of DFA-EQUIVALENT-HKI-P. It is a variant of DFA-
EQUIVALENT-HK-P, altered to accommodate the refutation method which improves the

best-case running-time complexity of the algorithm.

def DFA-EQUIVALENT-HKI-P(D1, D3):
MAKE(po)
MAKE(qo)
S:=40
UNION(po. o)
S := PUSH(S, (po. q0))
while (p,q) := Por(S):
if é(p) #€é@):

Icf. the implementation details in Section 2.5

13
14
15
16
17
18
19
20

142 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

return FALSE
for ac X:
p' :=FIND(8(p,a))
q' := FIND(8(q, a))
if p#4q:
UNION(p', ¢")
S :=PusH(S, (p'.q"))

return TRUE

Definition 42 (Homogeneous set). A set of states A is homogeneous if and only if all its

elements are either final or not-final, i.e., €(P) = €(q) or é(P) # €(q) forall p,q € A.

Lemma 43. At line 8 of DFA-EQUIVALENT-HK-P, the sets S; of the UNION-FIND struc-
ture are homogeneous if and only if all the pairs of states (p, q) already pushed into the

stack S are such that €(P) = €(q).

Proof. Let us proceed by induction on the number of times / that line 8 is executed. For
[= 1,itis trivial. Suppose now that all the sets are homogeneous up to the /" time that line
8 is executed. If for all ¢ € X' the condition of line 11 is false, the homogeneous character
of the sets will remain unaltered in the (I + 1)*” run of the loop. Otherwise, it is clear that

in lines 12-13, S,y U S, is homogeneous if and only if €(?) = €(q). O

Theorem 44. The procedures DFA-EQUIVALENT-HK-P and DFA-EQUIVALENT-HKI-P

are equivalent.

Proof. By Lemma 43, if there is a pair of states (p, q) pushed into the stack such that
€(P) # €(9), then the algorithm may terminate and return FALSE. That is exactly what

DFA-EQUIVALENT-HKI-P implements at lines 8-9. U
Theorem 45. The predicate DFA-EQUIVALENT-HKI-P returns TRUE if and only if D, and

D, are equivalent.

Proof. Directly from the proof of correctness of DFA-EQUIVALENT-HK-P (by Aho et
al. [1, pages 143—145]) and Theorem 44. O

o N N W RN

13
14
15
16

9.4. GENERALISATION TO NFAS 143

9.4 Generalisation to NFAs

We can embed the subset construction directly into DFA-EQUIVALENT-HKI-P, generalising
the procedure so that it can be used to test the equivalence of non-deterministic finite

automata.

NFA-EQUIVALENT-HKE-P does this by treating the set returned by each call to the transi-
tion function as a single state. It allows for an incremental construction of the equivalent
deterministic automata, so that we may test the equivalence of the NFAs without actually

computing the equivalent minimal automata.

This must be done with some caution, however, if we wish to avoid unnecessary combi-
natorial blowups in the number of states. Here, it is essential to use the idea described in
Section 9.3 and implement the FIND procedure in a way such that a call to FIND(i) creates
the set S; if it does not exist. This way we avoid calling MAKE for each of the 2!€! sets —
worst case of the subset construction — as some of those states may not be accessible in the

equivalent DFA and thus, are not necessary.

Let Ny = (Q1, X, 01,491, F1) and N, = (Q», X, 85, g2, F>) be two NFAs. We assume that
Q1 and Q, disjoint, and we make Q = Q1 U Q,, F = F; U F,,and A(P,a) = A;(P,a)
for P C Q;,ac X,i €{1,2}.

def NFA-EQUIVALENT-HKE-P(Ny, N,):
MAKE({q1})
MAKE({g2})
S:=40
UNION({g1}. {¢2})
S := PUSH(S, ({91}, {¢2}))
while (P1, P;) := Popr(S):
it e(P1) #€(P2):
return FALSE
for acX:
P| := FIND(A(P1,a))
P, := FIND(A(P>,a))

17
18
19
20

144 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

if P #Pj}:
UNION(P/, P})
S := PUSH(S, (P{, P}))

return TRUE

Lemma 46. NFA-EQUIVALENT-HKE-P is a generalisation of DFA-EQUIVALENT-HKI-P

which embeds the subset construction and thus, may be applied to NFAs.

Proof. As DFA-EQUIVALENT-HKI-P has already been proven correct, it suffices to show
that the elements P; and P, (popped from the stack S at line 7 of NFA-EQUIVALENT-HKE-
P) are subsets of 2¢ which correspond to a single state in the associated DFA, just like in the
subset construction method. The proof follows by induction on the number of operations on

the stack S.

Base: The sets {41} and {42 } are pushed onto the stack. These are the initial states of the

DFAs equivalent to Ny and N, respectively.

Induction: By induction hypothesis, we have that at the n*” call to POP(S), both P; and
P, are subsets of Q which correspond to a single state in the deterministic automaton
equivalent to N; or N, (denoted by D; and D,, respectively). Without loss of generality,
let us consider only P;. Notice that, by definition, A corresponds to the transition function
for the deterministic automaton in the subset construction method. Thus the call A(Py, a)
returns the subset of 22 reachable from P; by consuming the symbol a. This corresponds
to the next “deterministic” state of either D; or D5, and so NFA-EQUIVALENT-HKE-P is a

variant of DFA-EQUIVALENT-HKI-P which embeds the subset construction. O

Theorem 47. NFA-EQUIVALENT-HKE-P returns TRUE if and only if Ny and N, are equiv-

alent NFAs.

Proof. 1t is a direct consequence of Theorem 44, which proves the correctness of DFA-

EQUIVALENT-HKI-P, and Lemma 46. O

O 0 9 A U Bk WD =

—_—
- O

9.5. RELATIONSHIP WITH ANTIMIROV AND MOSSES’ METHOD 145

9.5 Relationship with Antimirov and Mosses’ method

We presented, on Section 7.2, a method for testing the equivalence of two regular expres-

sions based on a rewrite system due to Antimirov and Mosses.

Throughout this Section, we will establish a relationship between that approach to the
regular expression equivalence problem and the previously described methods to test the

equivalence of finite automata.

9.5.1 A naive DFA-EQUIVALENT-HK-P

The procedure DFA-EQUIVALENT-HKN-P is a simplified, naive version of DFA-EQUIV-
ALENT-HK-P. It will be useful to establish a relationship with Antimirov and Mosses’
approach to test regular expressions’ equivalence. We will proceed by showing some im-

portant properties and proving its correctness.

Let D1 = (Ql, 2, q1, 81, Fl) and Dz = (Qz, E,QZ, 82, F2) be DFAS, such that Q1 and Q2

are disjoint.

Definition 48. We define the relation R as follows.

R={(p.q) € 01 x 0> |Ix e X* :81(q1.x) = p Abs(g2.x) = ¢}

def DFA-EQUIVALENT-HKN-P(D1, D5):
S = 1{(q1.92)}
H:=90
while (p,q) := Popr(S):
H := PUSH(H, (p.q))
for ac X:
p =681(p,a)
q' :=62(q.a)
if (p'.q)¢H:
S := PUSH(S, (p".q"))
for (p.q)e H:

12
17
18

146 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

if &(p) #£é@):
return FALSE

return TRUE

Lemma 49. In DFA-EQUIVALENT-HKN-P no pair of states is ever removed from H.

Proof. Obvious, as only PUSH operations are performed on H throughout the algorithm.
O

Lemma 50. /n DFA-EQUIVALENT-HKN-P, the sets S and H are disjoint.

Proof. Clearly, during the variables’ initialisation at lines 2-3, the sets are disjoint as S

contains one pair of states and H is the empty set.

Pairs of states are only pushed into H at line 5, but these are popped from S immediately

before, at line 4.

Only on line 10 are any elements, say (p’,q’), pushed into S, but this happens only if
(r'.q") ¢ H. O

Lemma 51. Let k = |¥|, n; = |Q1|, and n, = |Q,|. DFA-EQUIVALENT-HKN-P is

terminating in O(knn,) time.

Proof. The elements of S are pairs of states (p, q), such that p € Q1 and ¢ € Q,. This
results in, at most, n1n, elements being pushed into S. The only PUSH operation on H —
line 5 — is performed with elements popped from S and thus, H will also have at most

nin, elements. This assures termination.

For each element in S, lines 6-10 are executed once for each element of X'. As the loop
at lines 11-13 is executed at most n 1, times, this results in a running time complexity of

O(kl’l 11’12). |
Lemma 52. In DFA-EQUIVALENT-HKN-P, forall (p,q) € Q1 x Q», we have that

(p.q) € S at some stepk >0 < (p,q) € H at some step k' > k.

9.5. RELATIONSHIP WITH ANTIMIROV AND MOSSES’ METHOD 147

Proof. By Lemma 50, we have that S and H are disjoint. It is obvious that if (p,g) € S in
a step k of DFA-EQUIVALENT-HKN-P, then (p,q) € H for any k' > k. Simply observe
that elements are only pushed into H after being popped from S — lines 4-5. For the same

reason, if some element (p, g) € H at step k’, it had to be in S at some step k < k. O

Lemma 53. For all (p,q) € Q1 X Qa, (p,q) € S at some step of DFA-EQUIVALENT-
HKN-P, if and only if (p,q) € R.

Proof. Let (p,q) € R, ie., Jw : Sl(ql, w) =pA Sz(qz, w) = ¢q. The proof follows by

induction on the length of the word w.
Base: 31((]1, €) =41, gz(qz, €) = ¢2, and (¢1, q>) € S already at line 2.

Induction: Let w = ua such thata € X, 31(q1, u) = p, and gz(qz, u) = ¢q. By induction
hypothesis, we know that (p,q) € S. On lines 7-8, p’ = §;(p,a) and ¢’ = 8§,(q,a) will
be computed and added to S if (p’,q") ¢ H. When (p’,q’) € H, however, we know by

Lemma 52 that (p’, ¢") was already placed in S at some previous step of the algorithm.

Conversely, and because new elements are only added to S on line 10, (p,q) € S only if

there is some word w such that gl(ql, w)=pA Sz(qz, w) =q. 0J
Lemma 54. At line 11 of DFA-EQUIVALENT-HKN-P, forall (p,q) € Q1xQ»,, (p,q) € H
if and only if (p,q) € R.

Proof.

=: If, at line 11 of DFA-EQUIVALENT-HKN-P, (p,¢q) € H, by Lemma 52 and Lemma 53
we know that (p, q) € R.

<: Suppose (p,q) € R. We know by Lemma 53 that (p,q) € S at some step k of DFA-
EQUIVALENT-HKN-P. By Lemma 52 there exists a step k' > k such that (p,q) € H.

Because S is empty at line 11, this step has surely been matched. U

Theorem 55. D, ~ D, if and only if

V(p.q) € R, é(P) = €(Q).

148 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE
Proof.

=>: Suppose, by absurd, that D; +£ D, and that the condition holds. If D; + D,, there
exists w € X* such that Sl(ql,w) = p/, gz(qz,w) = ¢, and €(P) # €(4). As clearly

(p',q') € R, this is a contradiction.

& IfV(p,gq) € R,p € Fi & q € F,, clearly there is no word w € X™ such that
6(81(%, w)) # @(Sz(qz, w)), therefore D; ~ D,. 0

Theorem 56. DFA-EQUIVALENT-HKN-P returns TRUE if and only if Dy is equivalent to
D,.
Proof. Follows directly from Lemma 54 and Theorem 55. U

Corollary 57. DFA-EQUIVALENT-HKN-P and DFA-EQUIVALENT-HK-P are equivalent.

The relation R can be seen as a reflexive and symmetric relation on Q1 U Q,. Its transitive

closure, R*, is an equivalence relation.

Theorem 58. Forall (p,q) € R

€(@) =€) & ¥(p'.q) e R*. &(p)) = é(q).

Proof. Let (p,q),(q,r) € R. Since R* is the transitive closure of R, (p,r) € R* and if
€(P) = €(9), then é(P) = €(r). On the other hand, as R C R*,if €(P) = €(q) Y(p,q) €
R*, the same will be true for every (p, q) € R. U

Corollary 59. D ~ D, ifand only if ¥Y(p.q) € R*, €(P) = €(9).

Proof. It is a direct consequence of Theorem 58. U

DFA-EQUIVALENT-HK-P computes R* by starting with the finest partition in Q; U Q,

the identity). Moreover, if D; ~ D,, R* is a right-invariant relation.
y g

9.5. RELATIONSHIP WITH ANTIMIROV AND MOSSES’ METHOD 149

9.5.2 Equivalence of the two methods

The function RE-EQUIVALENT-S-P implements a simplified version of the regular ex-
pressions’ equivalence-testing method described on Section 7.2 — where further details
about the notation, implementation, and comparison with the original rewrite system may

be found.

def RE-EQUIVALENT-S-P(a, B):
S = {(a.p)}
H: =0
while (a,B) := PopP(S):
if &) # Ep):
return FALSE
H := PUSH(H, (o, B))
for ae X:
o =a ()
B :=a"'(B)
if (o/.p)¢H:
S := PUsH(S, (¢, 8))

return TRUE

It is possible to use RE-EQUIVALENT-S-P to obtain a DFA from each of the regular expres-
sions, o and B. Let Dy = (Qu., X, 84.qa. Fo) and Dg = (Qg, X, 88, qp, Fp) be the DFAs

equivalent to « e B, respectively. They are constructed in the following way:

initialise Q, = {a}, Qg = {B};
® gy =U,(4p = ,3;

for each instruction o’ = a~'(c), add the transition 8, («, @) = &’ and make Q, =

Q4 U {a’} (same for § and B');

within the loop on lines 4—12, whenever é() = €, make F, = F, U {«} (same for

B).

wm B~ W

11
12
13
14
15
16
17

150 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

The Brzozowski’s automata of the regular expressions « and B are O, and Q g, respectively.

We will now show that the regular expressions equivalence test RE-EQUIVALENT-S-P
actually embeds Hopcroft and Karp’s method while constructing the equivalent DFAs. In
order to do so, we will first apply Theorem 44 to DFA-EQUIVALENT-HKN-P, transforming

it into the refutation procedure DFA-EQUIVALENT-HKR-P.

def DFA-EQUIVALENT-HKR-P(D; := (Q1, ¥, 81,491, F1), D2 := (Q2, X, 82,92, F2)):
S = 1{(41,92)}
H: =0
while (p,q) := Pop(S):
if &) #é@):
return FALSE
H := PUSH(H, (p.q))
for ae X:
p'=681(p.a)
q' = 82(q,a)
if (p'.q") ¢ H:
S := PUSH(S, (', q))

return TRUE

Lemma 60. RE-EQUIVALENT-S-P embeds DFA-EQUIVALENT-HKN-P while construct-

ing the Brzozowski’s DFAs.

Proof. By Theorem 44, DFA-EQUIVALENT-HKR-P is equivalent to DFA-EQUIVALENT-
HXN-P, but includes a refutation step. To verify that RE-EQUIVALENT-S-P actually em-
beds DFA-EQUIVALENT-HKR-P while constructing the Brzozowski’s DFAs, the following

observations should be enough. The instructions
o =a Y (a)and B’ = a1 (B)
from RE-EQUIVALENT-S-P are trivially equivalent to

p' =381(p,a)and ¢’ = 8,(q,a)

9.5. RELATIONSHIP WITH ANTIMIROV AND MOSSES’ METHOD 151

in DFA-EQUIVALENT-HKR-P, by the very definitions of regular expression derivative and

the method which constructs the equivalent DFAs.

The halting conditions are also equivalent. Since p € F, if and only if €(«¢) = €, we know
that €(¢') # €(B’) if and only if €(p’) # €(¢’) when we consider the DFAs associated to

each of the regular expressions, where p’ € O, ¢’ € Op. U

Theorem 61. RE-EQUIVALENT-S-P corresponds to DFA-EQUIVALENT-HK-P applied to

the Brzozowski’s automata of the two regular expressions.

Proof. By Corollary 57, DFA-EQUIVALENT-HKN-P and DFA-EQUIVALENT-HK-P are
equivalent. By Lemma 60 we have that RE-EQUIVALENT-S-P embeds DFA-EQUIVA-
LENT-HKN-P while constructing the Brzozowski’s DFAs. Thus, applying RE-EQUIVA-
LENT-S-P to two regular expressions « and f is equivalent to applying DFA-EQUIVALENT-

HK-P to the Brzozowski’s automata of « and f3. U

9.5.3 Worst-case complexity

We can use the equivalence between RE-EQUIVALENT-S-P and DFA-EQUIVALENT-HK-
P— as established on Subsection 9.5.2, and, in particular, by Theorem 61 — to prove an
upper bound on the running-time of RE-EQUIVALENT-PARTIAL-P. Recall that RE-EQUIV-
ALENT-PARTIAL-P is a non-deterministic version of RE-EQUIVALENT-S-P which uses
partial derivatives and that NFAs are related to partial derivatives in the same natural way as

DFAs are related to derivatives.

We proceed by showing that the Brzozowski NFA N, , obtained while applying RE-EQUIV-
ALENT-PARTIAL-P to a regular expression « as described on Section 7.3, is such that | N, | €

O(|a|x) and the number of states of the smallest equivalent DFA is O (2!Vel),

Figure 9.2 presents a classical example of a bad behaved case (with n + 1 states) of the
subset construction, by Hopcroft et al. [35, pages 154—157]. Although this example does

not reach the 2”1 states bound, the smallest equivalent DFA has exactly 2" states.

152 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

a,b

*g @@ @D

Figure 9.2: NFA that has no equivalent DFA with less than 2" states.

Consider the regular expression family oy = (a + b)*(a(a + b)*), where |ay|s = 3 + 2L.
It is easy to see that the NFA in Figure 9.2 is obtained directly from the application of RE-
EQUIVALENT-PARTIAL-P to ay. The corresponding partial derivatives are presented on

Figure 9.3.
a,b

@ @D A@ED O

Figure 9.3: Brzozowski NFA obtained with RE-EQUIVALENT-PARTIAL-P.

The set of the partial derivatives PD(ay) = {Ole, (a + b)e, ..., (a+Db), e} has £ + 2 =
n + 1 elements, which corresponds to the size of the obtained NFA. The equivalent minimal

DFA has 2" = 2¢+1 gtates.

9.6 Experimental results

This section contains some experimental comparative results of the previously described
algorithms: DFA-EQUIVALENT-HK-P and NFA-EQUIVALENT-HKE-P. We also include re-
sults for the algorithm DFA-EQUIVALENT-HKS-P, a variant of NFA-EQUIVALENT-HKE-P
which makes use of the string representation described on Subsection 3.1.1. The simplicity
of the representation seems to be quite suitable for this type of algorithm, and actually
exhibits quite good practical results turning out to be the fastest implementation. This is a
good example of the impact that a good data structure may have on the overall performance

of an algorithm.

Since the main goal of these benchmarks is to compare the performance of the the di-

9.6. EXPERIMENTAL RESULTS 153

rect equivalence tests DFA-EQUIVALENT-HK-P and NFA-EQUIVALENT-HKE-P with the
classical approach, they include results for minimisation-based equivalence tests using algo-
rithms by Moore, Brzozowski, and Hopcroft. The incremental DFA minimisation algorithm
DFA-MINIMISE-INCREMENTAL, introduced on Subsection 8.3, is also considered mainly

because it presents the best practical performance (cf. Section 8.4).

The conditions on which the experimental tests were conducted are described in detail on

Chapter 5.

Here we include only a set of three-dimensional graphs. There are intended to be a bird’s-
eye view on the overall performance of the algorithms discussed previously on this chapter.
We define performance as the number of finite automata tested for equivalence per second.
Appendix D includes complete tables with the exact values of the running time, memory

usage, average number of recursive calls, etc. for each algorithm.

The rule of thumb for reading the graphics is as follows: a darker area means lower values,

and therefore, poorer performance.

9.6.1 ICDFAs equivalence

Clearly, the methods which do not rely in minimisation processes are significantly faster.

Considering the minimisation-based equivalence testing algorithms, DFA-MINIMISE-IN-
CREMENTAL presents the best results (Figure 9.4c). It is closely followed by DFA-MIN-
IMISE-MOORE, which still performs noticeably better than DFA-MINIMISE-HOPCROFT
(Figure 9.4a and Figure 9.4b, respectively). This should come as no surprise, given the

results from Section 8.4.

As for the methods that do not resort to the minimal DFA, DFA-EQUIVALENT-HKS-P (Fig-
ure 9.4f) is notoriously the fastest. Naturally, a consequence of the simple data structures
involved. It is followed by NFA-EQUIVALENT-HKE-P (Figure 9.4e), our generalisation of

DFA-EQUIVALENT-HK-P to NFAs which includes the refutation procedure.

154

5
1000

(e) NFA-EQUIVALENT-HKE-P

90

5
1000

(f) DFA-EQUIVALENT-HKS-P

CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

_ 3500 _ 3500
K 3000 E 3000
g g
g 16000 2500 846000 2500
3 2000 % 2000
£ 14000 1500 & 14000 1500
& 12000 & 12000
2 10000 10009 10000 1000
3 8000 50003 8000 500
g 6000 0 g 6000 0
£ 4000 £ 4000
§ 2000 § 2000
& o & o
1000 1000
(a) DFA-MINIMISE-MOORE (b) DFA-MINIMISE-HOPCROFT
. oo 2
El 3500 2
1=} 1=}
g 3000 § 4300
2 16000 2500 2 16000 3500
2 14000 2000 < 14000 3000
1% 1% r
& 12000 1500 & 12000 2000
£ 10000 1000 S 10000 1%
g 8000 500 g 8000 50
g 6000 0 g 6000
£ 4000 £ 4000
§ 2000 § 2000
& o & o
5 5
1000 1000
(c) DFA-MINIMISE-INCREMENTAL (d) DFA-EQUIVALENT-HK-P
_ 9000 _ 16000
2 8000 2 14000
8 7000 8 12000
2 16000 6000 2 16000 10000
214000 o002 14000 8000
B 12000 3000 B 12000 6000
£ 10000 2000 £ 10000 4000
8 8000 1000 @ 8000 2000
g 6000 g 6000 0
£ 4000 £ 4000
§ 2000 § 2000
& o & o

Figure 9.4: Performance graphics: ICDFAs’ equivalence-testing algorithms.

As one can easily tell from the performance difference between DFA-EQUIVALENT-HK-

P (Figure 9.4d) and its non-deterministic generalisation NFA-EQUIVALENT-HKE-P (Fig-

9.6. EXPERIMENTAL RESULTS 155

ure 9.4e), the refutation process is certainly an enhancement. This is somewhat natural
since we have already observed [2] that, when dealing with uniformly generated random
ICDFAs, the asymptotic probability of an automaton being minimal is nearly 1. Hence, the
probability of finding two uniformly randomly generated equivalent ICDFAs is extremely

low.

Some exact numbers on the amount of minimal ICDFAs with 7 states over an alphabet of k

symbols, as well as some statistically significant probabilities are presented on Appendix E.

9.6.2 NFAs equivalence

Since we already know, from the experimental results presented on Chapter 8, that when
minimising NFAs Brzozowski’s algorithm is the fastest we have available, here we present
only experimental tests relating it to the new method NFA-EQUIVALENT-HKE-P, which

does not resort to any minimisation process.

Clearly, NFA-EQUIVALENT-HKE-P performs faster than Brzozowski’s algorithm, regard-
less of the transition density. Considering the experimental resuls on Section 8.4, Br-
zozowski’s algorithm should perform better than the usual minimisation-based methods,
which implies that this new direct comparison method is the fastest approach to test NFAs’

equivalence.

156 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

120 2500
2500 2500
100 2000
B 80 B
2000 2000 1500
60
1500

1500 1000

Performance (NFAs/second)
Performance (NFAs/second)

o o
(a) DFA-MINIMISE-BRZOZOWSKI (b) NFA-EQUIVALENT-HKE-P

Figure 9.5: Performance graphics: NFAs’ equivalence, with transition density d = 0.1.

600 2000
2500 2500 1800
_ 500 _ 1600
3 3
g 2000 400 g 2000 :23::
E’ 300 E’ 1000
z z 800
s 1500 200 s 1500 00
£ 100 H 400
g 1000 & 1000 200
& 0 & 0
500 500
o o
30 30
40 40
States States
(a) DFA-MINIMISE-BRZOZOWSKI (b) NFA-EQUIVALENT-HKE-P

Figure 9.6: Performance graphics: NFAs’ equivalence, with transition density d = 0.5.

9.6. EXPERIMENTAL RESULTS 157

400 2000

2500 350 2500 1800
H 300 g 1600
§ 2000 50 § 2000 ::g::
2z 200 2z 1000
i i
Z 1500 150 Z 1500 800
g 100 g 600
5 g 400
£ 1000 50 g 1000 200
4 0 4 0

500 500

fo fo
(a) DFA-MINIMISE-BRZOZOWSKI (b) NFA-EQUIVALENT-HKE-P

Figure 9.7: Performance graphics: NFAs’ equivalence, with transition density d = 0.8.

158 CHAPTER 9. FINITE AUTOMATA EQUIVALENCE

Chapter 10

Conclusions

Using data sets of randomly generated automata (ICDFAs and NFAs), we have experimen-
tally compared several automata minimisation algorithms, namely: Moore’s, Hopcroft’s,
Watson’s, an optimised version by Daciuk, Brzozowski’s, and a new incremental quadratic
algorithm. The ICDFAs’ data set was obtained with a uniform random generator and is
large enough to ensure a 99.5% confidence level and a 1% error margin. Not being uniform,
the random generator of NFAs does not present the same statistical accuracy, but the results
in this case are still interesting. With samples whose size spans from 10 to 1000 states,
we showed that Moore and Hopcroft’s algorithms, although having different worst-case
running-times, present similar results in the average case and both are outperformed by the
new quadratic incremental algorithm. The algorithms due to Brzozowski and Watson, do
reveal their exponential character and also present very similar results. Considering NFAs’
minimisation, and using the ad-hoc random generator, we have showed that Brzozowski’s
algorithm is usually the fastest of the considered algorithms. Probably contrary to what one

would expect, it is also relatively moderate in terms of memory usage.

We have presented several variants of a method by Aho et al. (from an original technical
report by Hopcroft and Karp) to compare the language recognised by two DFAs without
resorting to any minimisation processes. We extended this approach to NFAs and concluded

that it does provide much more time-efficient methods for checking the equivalence of finite

159

160 CHAPTER 10. CONCLUSIONS

automata. One of our modifications consists on placing a refutation condition earlier in the
algorithm, which allows for better running times to be achieved in the average case. This
is sustained by the experimental results presented in Appendix D. Using Brzozowski’s au-
tomata, we also showed that a modified version of Antimirov and Mosses method translates

directly to Hopcroft and Karp’s algorithm.

Concerning the problem of testing the equivalence of regular expressions, we have presented
a functional approach, based on a rewrite system by Antimirov and Mosses, that attempts
to refute the equivalence by finding a pair of derivatives such that their constant parts
are different. The experimental results, which are statistically significant up to a 95.7%
confidence interval with a 1% error margin, point to a good average-case performance,
not only for non-equivalent regular expressions — which would be expected, since it is a
refutation procedure — but also when considering syntactically equal (and thus equivalent)
regular expressions [3]. Extending this refutation procedure to partial derivatives, we took
advantage of the simpler computational representation and added a memoization mecha-
nism, which allowed for further performance gains. Our final improvement, in terms of
implementation, consisted on replacing the naive stack representation of the equivalence
classes by a UNION-FIND data structure. This allowed to reduce the worst-case time

complexity of searching a set with n elements from O(logn) to O(1).

Given the spread of multi-core processors and grid computer systems, a parallel execution
of the classic method and these direct comparison approaches can lead to an optimised

framework for testing the equivalence of regular languages.

Finally, we presented a new incremental minimisation algorithm. Unlike other non-incre-
mental minimisation algorithms, the intermediate results are usable and reduce the size of
the input DFA. This property can be used to minimise a DFA when it is simultaneously
processing a string or, for example, to reduce the size of a DFA when the running-time of
the minimisation process must be restricted for some reason. This new approach, while
presenting a quadratic worst-case running-time, is quite simple and easy to understand
and to implement. According to the experimental results, this minimisation algorithm

outperforms Hopcroft’s O(kn log(n)) approach and other incremental algorithms, at least

10.1. FUTURE WORK 161

in the average case, for automata with 1 000 states or less.

10.1 Future work

Concerning the representation of regular expressions, future research work may be directed
to the problem of eliminating redundant information. We have used the notion of “succinct
regular expression”, but, except for some approximate context-free grammars by Lee and
Shallit [46, 65], there is no known formal study. Such a characterisation could be useful both
in the implementation of the algorithms we have presented, and in symbolic manipulation
frameworks in a general way. It could also lead to some regular expressions’ simplification

process, based, for example, on a rewrite system.

Future work may also consider the generalisation of the equivalence algorithms we have
proposed to extended regular expressions — with intersection or complement, for example

— or maybe even a specialisation of the algorithms, to test inclusion instead of equivalence.

We also believe that it is possible to improve of the finite automata equivalence-testing
algorithms by using some ideas from Navarro’s bit-parallel implementations [53, 55, 54],
taking advantage of the L1 cache and the extremely fast bit-wise operations at the CPU

registers’ level.

All of these tasks could be integrated into the FAdo toolkit, further expanding this symbolic

manipulation framework.

162 CHAPTER 10. CONCLUSIONS

Appendix A

Number of non-isomorphic ICDFAs

The following tables present the number of ICDFAs (in scientific notation, due to the considerable size of the

values) for a given number of states n over an alphabet of k symbols.

Table A.1: Number of ICDFAs with {2, ..., 8} states.

k n
2 3 4 5 6 7 8

2 4.80 x 10! 1.73 x 103 8.40 x 104 5.14 x 10° 3.80 x 108 3.28 x 1010 3.24 x 1012
3 2.24 x 102 6.37 x 10% 3.40 x 107 2.93x 1010 3.69x10!3 6.41x10!° 1.47 x 1020
4 9.60 x 102 1.94 x 10° 1.03x 109 1.12x10% 2.19x10'® 6.97x 1022 3.37 x 1027
5 3.97 x 103 552x107 2.81x10'2 3.78x10'7 1.12x10%3 6.34x10%8 6.31 x 1034
6 1.61 x 104 1.52 x 10° 7.37x 1014 1.22x10%2! 538x10%27 5.42x1034 1.10 x 1042
7 6.50x10% 4.15x10!10 1.91x10!7 3.85x102*% 2.54x1032 4.53x1040 1.88 x 1049
8 2.61 x 10° 1.13x 1012 490x10' 1.21x10%28 1.19x1037 3.75x 1046 3.18 x 1056

1.05 x 10 3.05x10'3 1.26x10%2 3.78x103! 558x104! 3.09x1052 5.34x 1093
10 4.19 x 10° 8.23x 1014 3.22x102% 1.18x1035 2.61x10% 2.55x 1058 8.97 x 1070
11 1.68x 107 222x101¢ 825x%x102¢ 3.70x103% 1.22x10%! 2.10x10% 1.51x 1078
12 6.71 x 107 6.00x 1017 2.11x10%° 1.16x10%? 5.67x105° 1.73x107° 2.53x 108>
13 2.68x108 1.62x 1019 541x103! 3.61x10% 2.65%x10°0 1.42x 1076 4.24 x 1092
14 1.07x10° 4.38x1020 1.38x10%* 1.13x10%° 1.24x10°° 1.17x10%2 7.11x10%°
15 4.29x10° 1.18 x 1022 3.54x 1030 3.53x10°2 5.76x10%° 9.66 x 1087 1.19 x 10197
16 1.72x109 3.19x1023 9.07x1038 1.10x10°° 2.69x107* 7.96x 1093 2.00 x 10114
17 6.87x1019 8.61x102* 2.32x10% 3.45x10°° 1.25x107° 6.55x10%° 3.36 x 10121
18 2.75x10'1 2.33x10%° 595x10*3 1.08x10%% 585x10%% 5.40x10'9° 5.63x10!28
19 1.10x10'2 6.28x10%27 1.52x10% 3.37x10° 2.73x108% 4.45x 10!l 9.45x10!35
20 4.40x10'2 1.70x10%° 390x10* 1.05x1079 1.27x109 3.66x10!'17 1.59x10!43

o

continued on next page

163

164

APPENDIX A. NUMBER OF NON-ISOMORPHIC ICDFAS

continued from previous page

k n
2 3 4 5 6 7 8

21 1.76x10'3 4.58x1030 9.98x 10 3.29 x 1073 5.94 x 10°7 3.02x 10123 2.66 x 10139

22 7.04x1013 1.24x1032 2.55x10°3 1.03x 1077 2.77x10192 2,48 x 10129 4.46x 10!57

23 2.81x10% 3.34x1033 6.54x10%° 3.21 x 1080 1.29 x 10197 2.04x 10135 7.49 x 10164

24 1.13x10!° 9.01 x103* 1.67x10°8 1.00x 1084 6.04x 10111 1.68x10'4!1 1.26x 10172

25 4.50x1015 2.43x103® 429x%x10%0 3.13x10%7 2.82x10'1® 1.39x10!47 2.11x1017°

26 1.80x10° 6.57x1037 1.10 x 1093 9.80 x 100 1.31 x 10121 1.14x 10153 3.54 x 10186

27 7.21x10'% 1.77x103° 2.81 x 10°° 3.06 x 1094 6.13x 10125 9.41x 1058 593 x 10193

28 2.88x1017 4.79x10%° 7.19 x 107 9.57 x 1097 2.86x 10130 775 x 10164 9.95 x 10200

29 1.15x10!® 1.29x10%? 1.84 x 1070 2.99x 10101 1.33x10!3° 6.38x10!70 1.67 x 10208

30 4.61x10!8 3.49x10% 4.71x1072 9.34x1019% 623x1013° 525x10170 2.80x 10215

31 1.84x10'° 9.43x10* 1.21x107° 2.92x 10198 290x10!14* 4.33x10182 4,70 x 10222

32 7.38x10'9 2.55x10% 3.09 x 1077 9.12x 101 1.36 x1014° 3.56x10!8% 7.89x1022°

33 2.95x1020 6.87x10%7 7.90 x 107° 2.85x 10115 6.32x10153 2.93x1019% 1.32x10237

34 1.18x 102! 1.86x10%° 2.02x10%2 891x10'1% 2.95x10!58 2.42x10290 2.22x 10244

35 4.72x1021 5.01x10°° 5.18x10%4 2.78x 10122 1.38x10!03 1.99 x 10296 3,72 x 10231

36 1.89x10%2 1.35x10°2 1.33 x10%7 8.70 x 10125 6.42 x 10197 1.64 x 10212 6.25 x 10238

37 7.56x10%22 3.65x10°3 3.40 x 10%° 2.72x 10129 3,00x10'72 1.35x 10218 1.05 x 1026

38 3.02x1023 9.86 x 10°* 8.69 x 10°! 8.50 x 10132 1.40x10'77 1.11x10%2* 1.76 x 10273

39 1.21x10%* 2.66x10°° 2.22x109 2.66x10!13¢ 6.52x10181 9.15%x1022% 2.95x 10280

40 4.84x10%* 7.19x1057 5.70 x 1096 8.30x 10139 3.04x10186 7.54x10235 4.95x 10287

41 1.93x10%5 1.94x10°° 1.46x10%° 2.59x1043 1.42x10191 6.21x10%41 8.30 x 10294

42 7.74x10%° 524x10% 3.73x10'91 8.10x10'4¢ 6.62x1019° 5.11x10%47 1.39 x 10392

43 3.09x10%2° 1.41x10°2 9.56x10193 2.53x10150 3,09x10290 4.21x102°3 2.34x10399

44 1.24x10%7 3.82x10%° 2.45%x10100 791 x10!93 1.44x10295 347x10%°° 3.92x1031°

45 4.95x10%27 1.03x10% 6.26x10198 2.47x10!57 6.73x10%29° 2.86x10%%° 6.58 x 10323

46 1.98x1028 2.78x10° 1.60x 10!l 7.73x10'00 3.14x1021% 2.35x1027! 1.10 x 1033!

47 7.92x10%8 7.52x10°7 4.10x10'13 2.41x101%% 1.46x10%21° 1.94x10%277 1.85x 10338

48 3.17x102° 2.03x10% 1.05x10!10 755x%x10!97 6.83x10223 1.60x 10283 3.11x 10345

49 1.27x1030 548x1079 2.69x10!18 236x10171 3.19x10%228 1.31x10%2% 5.21x10352

50 5.07x103% 1.48x1072 6.89x10120 737x1017% 1.49%x10233 1.08x1029° 8.74 x 1035

Table A.2: Number of ICDFAs with {9, ..., 15} states.
k n
9 10 11 12 13 14 15

2 3.61 x10'4 4.47x10'¢ 6.08x10!8 9.04 x 1020 1.45x 1023 2.52x10%° 4.68 x 1027
3 4.28 x 1023 1.55 x 1027 6.80 x 1030 3.57x10%* 2.21x1038 1.59 x 1042 1.31 x 1046

4 2.35x 1032 2.27x1037 2.96 x 1042 5.03 x 1047 1.10 x 1033 3.00 x 10°8 1.01 x 10%4
5 1.03 x 1041 2.60 x 1047 9.77 x 10°3 5.26 x 1000 3.94 x 1067 4.00 x 107* 5.40 x 108!

6 4.17x10%° 2.74 x10°7 2.94 x 1095 4.97 x 1073 1.27 x 1082 4.76 x 10°°0 2,54 x 10°°
7 1.65x10°% 2.79x10%7 8.57x 107 4.53x 108 3.94x10° 5.42x1019 1.14x 10117
8 6.42x10% 2.81x1077 2.47x10%8 4.08 x 10%° 1.20x 10! 6.08x 10122 5.05x 10134
9 2.49x 1075 2.82x10%7 7.06 x 1090 3.65x 10112 3,66 x 10125 6.78 x 10138 2,22 x 10152
10 9.67x1083 2.82x10°7 2.02x10M1 326x10!25 1.11x1040 7.55x10!5% 9.74x101%°
11 3.75x10°92 2.82x10197 575x10122 290x10!13% 336x10!°% 8.39x10!70 4.26x10'87
12 1.45x10101 282x10!17 1.64x1013% 259%x10!°1 1.02x1019° 9.32x10!80 1.87x10205

continued on next page

165

continued from previous page

k n
9 10 11 12 13 14 15
13 5.62x10199 282x10'27 4.68x104 2.31x101%* 3.09x10!%3 1.04x10%293 8.18 x10%22
14 2.18x10118 2.82x10137 1.34x10'57 2.06x10'77 9.35x10'97 1.15x10%219 3.58 x 10240
15 8.44x10!126 282x10147 3.81x10!98 1.84x10!90 2.83x10212 1.28x10%235 1.57x 10258
16 3.27x10!135 2.82x10157 1.09x10!80 1.64x10293 8.57x10%226 1.42x10%5! 6.87 x 10275
17 1.27x10%* 282x10167 3.10x10!°1 1.46x10%216 2.60x 10241 1.58x 10207 3.01 x 10293
18 4.91x10'92 2.82x10'77 8.86x10292 1.30x1022° 7.87x10%°5 1.76x10283 1.32x103!!
19 1.90x101°1 2.82x10187 2.53%x10%21% 1.16x10%242 2.38x10%279 1.95%x10%2%° 5.77x10328
20 7.37x1019% 2.82x10!97 7.21x10225 1.03x10%2°° 7.22x10%84 2.17x1031> 2.53x 10346
21 2.85x10178 2.82x10297 2.06x10237 9.22x10267 2.19%x10%2%° 2.41x10331 1.11x 10364
22 1.11x10187 2.82x10217 587x10%248 8.22x10280 6.62x10313 2.68x10347 4.84x1038!
23 4.28x1019° 2.82x10%27 1.67x10%60 733x10293 2.01x1032% 2.97x103%3 2.12x103%°
24 1.66x10294 2.82x10237 4.78x10%71 6.54x1039¢ 6.07x10342 3.30x 10379 9.29 x 10416
25 6.43x10%12 2.82x10%47 1.36x10%83 583x1031° 1.84x1037 3.67x1039° 4.07 x 10434
26 2.49x10%21 2.82x10%57 3.89x10%29% 520x10332 557x1037! 4.08x 104! 1.78 x 10452
27 9.65x10%29 2.82x10%°7 1.11x1039 4.63x103*° 1.69x1038%¢ 4.53x10%27 7.80 x 104°°
28 3.74x10238 2.82x10%277 3.17x103'7 4.13x1038 5.11x10%90 504 x10%3 3.41 x 10487
29 1.45x10%%7 2.82x10%87 9.03x10328 3.68x10371 1.55x10%1° 5.60x10%° 1.50x10°9>
30 5.61x10%%° 2.82x10%2%7 2.58x10340 328x1038* 4.69x10%%° 6.22x10%7° 6.55x10°22
31 2.17x10%%% 2.82x10397 735x10351 293x10397 1.42x10%* 6.91x10%°1 2.87 x 1040
32 8.43x10%272 2.82x10317 2.10x103%3 2.61x10410 4.30x10%8 7.68x10°97 1.25x10558
33 3.26x10281 2.82x10327 599x1037% 2.33x10%?3 1.30x10%73 8.54x10°23 5.50x10°7°
34 1.26x10%°0 2.82x10337 1.71x1038® 2.08x10%3¢ 3.94x10%7 9.49x10%3° 2.41x10593
35 4.90x1029% 2.82x10347 4.87x10%7 1.85x10*° 1.19x10°°2 1.05x10%°¢ 1.05 x 10°!!
36 1.90x 10397 2.82x10357 1.39x10%09 1.65x10%°%2 3.62x10°!1® 1.17x10°72 4.62 x 10928
37 7.35x10315 2.82x103%7 397x10%29 1.47x1047° 1.10x10°31 1.30x10°38 2.02 x 10046
38 2.85x103%2% 282x10377 1.13x10%32 1.31x10%%8 3.32x10°4° 1.45x 10904 8.85x 10003
39 1.10x10333 2.82x1038%7 323x10%*3 1.17x10°°1 1.00x10°%0 1.61x 10920 3.88 x 10681
40 4.28x10%*1 2.82x10397 9.21x10%% 1.04x 10514 3.05x10°74 1.79x10%3¢ 1.70 x 10%9°
41 1.66x10350 2.82x10%07 2.63x10%° 9.30x10526 9.22x10°88 1.98x10%52 7.43x 10716
42 6.42x10358 2.82x10%7 750x%x10%77 8.29x10%3% 2.79x10°03 2.21x1098 3.25x10734
43 2.49x10%7 2.82x10%?7 2.14x10%° 7.39%x10552 8.46x10°17 2.45x10°%* 1.43x10752
44 9.63x 10375 2.82x10%7 6.10x10°90 6.59%x10°%° 2.56x10°32 2.72x10790 6.24 x 10769
45 3.73x 10384 2.82x10*7 1.74x10°12 588x10°78 7.76x10%4¢ 3.03x 10716 2.73x 10787
46 1.45x10393 2.82x10%7 4.97x10°23 524x10°°1 2.35%x10°1 3.36x10732 1.20 x 10805
47 5.60 x 10401 2.82x 1047 1.42x10°3° 4.67x10°% 7.12x10°75 3.74x1074% 5.24 x 10822
48 2.17x 10410 2.82x10%77 4.04x10°%% 4.16x10°'7 2.16x10°90 4.15x107%% 2.29 x 10840
49 8.41x10418 282x10%7 1.15x10%°8 3.71x10%30 6.53x1079% 4.61x10780 1.00 x 10858
50 3.26x10%27 2.82x10%97 329x10%%° 3.31x10%43 1.98x1071° 5.13x%x107°¢ 4.40 x 10875
Table A.3: Number of ICDFAs with {18, 20, 25, 50, 75, 100, 1000} states.
k n
18 20 25 50 75 100 1000

2 4.34x10% 2.52x10%° 4.64 x 10! 1.81 x 10118 2,91 x10'90 2,16 x 10266 3,70 x 103658
3 1.58x10°8 3.13x10% 9.03 x 1087 7.66 x 10205 1.29x 10335 4,92 x 10471 1.45x 106712
5 6.07x10103 941x10!18 2.49x10!58 7.17x1037¢ 9.48x10°17 6.75%x 10873 2.71x 1012733

166 APPENDIX A. NUMBER OF NON-ISOMORPHIC ICDFAS

Appendix B

Equivalence of regular expressions

The following tables present experimental comparative results of several regular expression equivalence-
testing algorithms (cf. Chapter 7). The sampling and experimental study were conducted as described in

Chapter 5, using datasets with 20 000 pairs of regular expressions of size n over an alphabet of k symbols.

The full names of the algorithms are not used for matters of space economy. Instead, the following mapping

applies.

Algorithm Name Column Id.
DFA-MINIMISE-HOPCROFT H
RE-EQUIVALENT-P E
RE-EQUIVALENT-PARTIAL-P E,

RE-EQUIVALENT-UNION-FIND-P Eyr

Column Perf. refers to the performance of the considered algorithm, i.e., the number of pairs of regular
expressions tested for equivalence per second. The memory usage, in kilobytes, is shown on column Sp., and
column Iter. presents the average number of recursive calls (meaningful only on some algorithms) necessary

to decide the equivalence of two regular expressions.

167

168 APPENDIX B. EQUIVALENCE OF REGULAR EXPRESSIONS

Table B.1: Benchmarks of regular expressions equivalence-testing algorithms (size 10).

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Tter. Perf. Sp. Tter.

2 4158 4 1506.0 4 27493 2262.4 4 27497 1941.7 4 28527
3 3392 4 1298.7 136 36604 1968.5 136 37043 1709.4 4 37206
4 256.7 136 1189.0 136 46191 17152 136 46795 1538.4 4 45557
5 2205 4 11135 4 53267 1605.1 4 54576 1497.0 4 51603
6 203.0 136 1061.5 4 58813 1569.8 4 60270 1412.4 4 56391
7 183.7 4 1030.9 136 65584 1479.2 4 67036 1385.0 4 61195
8 170.0 136 1008.0 136 71667 1424.5 4 73188 13947 136 64740
9 168.7 136 10172 4 71764 1424.5 4 73346 1369.8 4 65060
10 1587 136 998.0 136 77162 1364.2 136 78974 1392.7 4 67277
11 1509 136 944.2 4 83340 1317.5 4 85512 1322.7 4 71122
12 1472 136 946.9 136 86743 1298.7 136 88893 13245 136 72826
13 1369 136 946.9 136 89727 1265.8 136 91720 1290.3 136 74561
14 1343 136 919.1 136 93170 1256.2 136 94996 12722 136 77337
15 1265 136 923.3 136 96885 1216.5 4 99050 1257.8 136 79093
16 1264 136 881.0 136 100809 1193.3 4 103032 1256.2 136 80374
18 1256 136 893.6 136 103297 1186.2 136 105128 12484 136 81481
20 109.7 4 723.0 136 158634 932.8 4 160049 11428 136 105742
25 105.0 136 755.2 136 153052 968.0 136 154316 1146.7 136 103892
30 101.7 136 742.9 136 157430 954.1 136 158499 11534 136 105141
35 987 4 736.9 136 160976 950.5 4 161774 11363 136 106638
40 993 136 703.7 4 163084 945.1 4 163964 1136.3 136 107396
45 95.1 136 707.2 4 164752 938.9 4 165329 1133.7 4 107634
50 932 4 701.7 136 166674 905.7 4 167288 1133.7 4 108818

Table B.2: Benchmarks of regular expressions equivalence-testing algorithms (size 20).

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Tter. Perf. Sp. Tter.

2 187.7 136 9233 136 30260 1303.7 136 30530 1131.2 136 33053
3 1332 4 780.6 136 43164 11441 136 43696 1021.4 136 44968
4 113.8 136 7385 136 54049 1096.4 136 54934 988.1 136 56010
5 86.2 4 7137 136 62132 1028.8 136 63493 951.4 136 64510
6 71.7 136 699.3 136 70530 992.0 136 72383 909.0 136 73248
7 63.0 268 671.5 136 77658 964.3 136 79379 859.1 136 79622
8 55.8 136 673.8 4 84839 931.0 136 86811 866.5 136 85404
9 55.8 268 661.3 136 84870 939.8 4 87331 859.1 136 85070
10 50.5 268 669.7 4 90216 908.2 4 92689 851.7 4 91223
11 454 268 6329 4 99026 871.8 4 101550 813.6 4 96373
12 42.1 136 609.3 136 105342 862.8 136 107984 804.5 136 100756
13 395 136 618.0 136 112036 822.3 136 115000 788.6 136 103416
14 389 136 606.4 4 116829 800.0 4 120168 775.7 136 108044
15 372 136 598.8 4 121828 786.1 4 124932 773.3 4 110656
16 349 136 5743 4 129221 761.0 4 132623 761.6 4 114640
18 33.8 268 5624 136 133536 739.6 136 136978 758.1 136 117470
20 255 268 3412 4 306478 416.1 4 310050 568.8 4 192400
25 236 268 3632 4 284431 449.6 4 287057 599.5 4 184471

continued on next page

continued from previous page

k H E E, Eur

Perf. Sp. Perf. Sp. Iter. Perf. Sp. Tter. Perf. Sp. TIter.
30 224 268 3473 136 297664 4434 136 300066 586.5 136 189764
35 203 268 346.1 4 307636 435.5 4 309935 578.7 4 193046
40 190 136 3362 4 314053 429.1 4 316003 578.3 4 195174
45 182 136 3412 4 320598 413.3 4 322276 575.7 4 198266
50 17.8 136 333.1 136 325227 4239 136 326866 571.1 136 199476

Table B.3: Benchmarks

of regular expressions equivalence-testing algorithms (size 30).

k H E E, Eur

Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.
2 105.8 136 646.8 136 32392 939.8 268 32752 728.8 276 36789
3 71.5 136 5747 136 48475 838.2 136 49206 736.3 136 52092
4 60.7 144 545.2 136 62080 802.5 136 63215 7147 136 65090
5 47.9 136 5449 136 71203 779.4 4 73519 703.2 4 74950
6 39.1 136 525.2 136 79546 765.1 140 82398 682.1 4 84644
7 333 268 5125 4 88801 7374 140 91674 663.1 136 93912
8 28.0 136 5115 136 97662 713.7 136 100669 632.1 136 102670
9 28.8 268 5246 4 95379 721.5 4 98325 642.6 4 101879
10 249 268 5107 4 103796 701.2 4 107266 627.3 4 108204
11 220 268 490.6 136 112216 670.6 136 115671 627.7 136 113313
12 198 268 489.7 136 116399 668.8 136 119635 606.0 136 119809
13 184 268 4975 4 121866 652.7 136 125359 606.0 136 121586
14 16.7 268 486.1 136 129922 639.3 136 133561 588.2 136 129712
15 157 268 4775 136 138363 619.1 136 141857 576.7 136 134555
16 14.6 268 4677 4 143172 595.2 4 146655 580.3 136 137617
18 140 268 271 4 153169 5757 4 157161 5643 4 144147
20 10.6 136 2119 4 440890 260.0 4 447077 370.0 144 275080
25 98 276 2356 4 392870 299.8 4 396928 3926 136 257845
30 8.6 400 2285 4 417110 286.2 136 420633 385.0 136 266415
35 79 532 2233 4 436907 269.4 4 440108 3779 136 273854
40 7.2 532 212.7 136 452818 265.4 136 455764 3724 136 279299
45 69 532 2152 136 465789 262.8 4 468490 367.1 136 282890
50 6.5 532 2063 4 474868 258.5 4 477032 364.6 136 287040

Table B.4: Benchmarks of regular expressions equivalence-testing algorithms (size 40).

k H E E, Eur

Perf. Sp. Perf. Sp. Iter. Perf. Sp. TIter. Perf. Sp. Tter.
2 563 272 510.2 268 33122 7369 136 33620 514.1 400 40112
3 485 136 450.0 268 51533 679.8 268 52112 57277 272 56909
4 383 136 4472 140 65456 641.4 144 67465 564.9 144 74268
5 306 136 4264 136 79241 610.5 136 81627 54377 136 87332
6 249 268 4336 4 88728 605.6 140 91325 527.9 272 99669
7 206 268 4286 4 98035 5963 140 100976 533.6 144 107131
8 17.8 400 424.6 136 106156 582.7 144 109831 5243 140 114584
9 18.0 408 4212 4 105402 583.4 4 109183 5224 140 115571

continued on next page

169

170 APPENDIX B. EQUIVALENCE OF REGULAR EXPRESSIONS

continued from previous page

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Tter. Perf. Sp. TIter.

10 153 268 411.6 140 113995 569.4 140 117927 513.8 140 123869
11 135 268 405.3 136 124790 5555 136 129211 5157 136 128701
12 119 404 3984 136 132139 5414 136 136313 503.5 136 135826
13 109 400 398.8 136 137076 530.5 136 141105 488.7 136 141750
14 10.1 268 3943 140 144379 519.7 136 148436 469.0 144 147552
15 9.1 268 387.7 136 149824 5047 144 154824 471.0 136 153031
16 85 268 3829 4 157967 502.5 136 162246 4732 140 157735
18 8.0 400 370.2 136 164778 476.6 4 169147 4653 136 161567
20 5.8 408 155.1 136 557763 190.7 136 565253 269.1 136 350799
25 52 400 178.4 144 485241 2143 136 490537 285.6 136 324658
30 45 804 162.7 136 521705 201.0 136 527449 288.6 136 338162
35 39 664 1644 4 545654 198.8 144 549925 2744 144 347213
40 35 664 151.1 136 577612 184.0 140 581640 267.0 136 356443
45 33 664 1539 4 595833 185.8 136 599450 273.6 136 363596
50 32 796 150.9 136 605413 184.8 136 608612 270.5 136 369192

Table B.5: Benchmarks of regular expressions equivalence-testing algorithms (size 50).

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.

2 348 404 4219 272 34653 611.2 536 34886 369.5 932 45880
3 325 276 383.5 408 54274 560.8 412 55061 455.1 352 63217
4 27.1 136 358.0 400 71157 537.6 276 73233 466.4 408 80914
5 21.7 268 3709 144 84247 5364 136 86692 480.0 136 94957
6 174 268 373.6 136 93186 5246 272 96896 469.7 136 108296
7 141 268 360.1 136 104423 5094 136 109190 454.1 144 121106
8 12.0 408 351.0 136 116286 498.0 136 120274 440.1 144 132018
9 12.1 404 3644 136 114407 501.7 136 118369 447.6 136 129568
10 105 268 3505 136 123145 489.9 144 127608 439.9 140 138706
11 9.0 400 3527 136 131942 478.4 136 135733 4359 140 144509
12 8.0 400 3326 136 142616 461.6 140 148498 427.8 144 152740
13 7.1 400 3355 136 150314 450.8 268 156005 420.1 272 158903
14 65 400 3472 136 157049 4395 136 161886 4144 268 163768
15 6.0 268 3356 136 163795 4325 136 169088 413.0 136 168019
16 54 400 321.3 136 175190 419.1 136 180793 404.6 136 175305
18 5.1 408 3112 136 179117 4113 136 185641 408.8 136 178479
20 3.6 400 119.1 140 664459 1444 268 672527 210.0 272 420973
25 32 400 1442 140 557700 175.1 136 564308 230.2 136 382022
30 27 596 132.0 136 604416 165.6 280 610398 2253 268 398977
35 23 884 127.4 136 641647 153.0 140 646662 2239 276 416138
40 2.1 904 1212 136 676299 146.8 136 681388 212.6 136 428080
45 19 940 121.8 144 707076 1457 136 711484 205.1 136 441194

50 1.8 864 119.1 136 722950 140.7 136 727517 208.3 136 444108

Table B.6: Benchmarks of regular expressions equivalence-testing algorithms (size 75).

171

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.
2 9.3 1432 283.6 1192 36063 410.0 1720 37086 153.3 3524 61644
3 13.9 400 266.5 484 59559 416.3 804 61380 302.2 1196 74411
4 13.2 276 272.0 272 80638 395.4 408 82708 337.8 676 95956
5 10.6 268 266.9 272 95530 391.8 408 100374 343.4 276 115800
6 8.5 532 273.7 268 107157 398.2 276 111108 341.4 268 131119
7 6.9 400 278.6 272 122893 380.0 268 128586 333.6 136 148278
8 5.7 400 277.7 140 131493 388.9 268 136093 326.6 268 161075
9 5.8 536 267.0 136 133965 377.5 268 139824 328.9 268 159229
10 4.8 400 263.5 136 146084 367.3 276 150963 326.2 276 168565
11 4.2 532 267.6 140 153628 372.1 272 158385 327.3 268 175533
12 36 536 2545 268 163684 362.8 280 169455 315.6 140 187537
13 32 532 258.1 136 170562 352.4 136 176285 315.1 272 192396
14 28 532 260.0 268 179788 351.9 268 186690 310.8 280 200219
15 26 532 253.1 268 191042 329.5 272 196896 307.5 272 208580
16 24 532 2414 136 200343 324.5 272 206708 310.2 268 211842
18 23 532 243.1 136 207576 324.3 268 214129 294.7 136 223518
20 1.5 532 79.5 136 870056 93.2 268 881631 132.9 276 575524
25 1.3 532 96.8 136 689223 118.9 268 696377 147.1 136 509297
30 1.0 1384 88.8 136 762116 106.3 268 768618 143.7 140 537931
35 0.8 1384 84.9 276 848089 96.9 268 854698 134.2 136 569495
40 0.8 1376 79.8 136 907536 92.3 268 914885 132.5 136 592157
45 0.7 1336 75.2 136 955183 87.3 268 961794 127.7 268 614150
50 0.6 1344 71.8 136 1006344 84.2 268 1012035 126.0 268 631549
Table B.7: Benchmarks of regular expressions equivalence-testing algorithms (size 100).
k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.
2 2.2 2800 209.9 2388 38550 309.5 4280 39214 71.4 15884 84770
3 6.5 568 224.5 800 63806 336.5 536 65479 217.4 2292 85415
4 7.4 408 219.5 664 86498 332.1 404 89267 256.6 2164 110977
5 6.2 404 219.6 796 108573 328.0 536 110968 268.4 268 136044
6 4.9 556 238.7 400 119679 322.3 404 123954 264.6 540 157673
7 4.0 664 231.5 272 134613 322.2 272 139378 259.0 272 174327
8 3.2 544 2354 276 145154 320.4 268 151342 261.2 268 188487
9 3.2 536 2354 276 145386 316.4 268 150470 263.9 268 183894
10 2.7 804 233.6 276 157916 304.8 268 163663 261.5 268 193594
11 2.3 672 240.0 268 167414 312.0 268 173490 252.4 268 210254
12 1.9 672 231.5 268 179416 292.4 276 185913 259.4 268 215162
13 1.6 700 220.8 140 189870 288.9 272 195911 250.1 268 229126
14 1.4 772 219.1 136 203402 279.4 272 208432 255.6 272 230490
15 1.2 664 221.5 136 206895 283.5 272 214074 253.4 268 237923
16 1.1 588 217.0 136 221282 275.1 400 228103 245.7 276 249826
18 1.0 684 202.9 268 229560 266.6 268 237276 235.7 268 259386
20 0.6 940 58.1 272 1018768 69.0 404 1033832 95.6 276 711213
25 05 976 79.3 144 767322 91.0 268 776254 111.7 400 599025

continued on next page

172 APPENDIX B. EQUIVALENCE OF REGULAR EXPRESSIONS

continued from previous page

k H E E, Eur

Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter Perf. Sp. Iter.
30 04 1856 722 276 875694 81.0 404 884382 108.0 268 643636
35 03 1068 637 268 987560 72.1 404 996289 97.4 268 696808
40 03 2040 57.4 268 1081206 66.4 268 1088191 93.0 400 734267
45 02 2144 56.2 272 1159856 62.7 400 1166568 88.4 408 769868
50 0.2 2160 542 268 1211789 58.8 268 1218459 90.1 416 782974

Table B.8: Benchmarks of regular expressions equivalence-testing algorithms (size 125).

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.

2 0.5 5384 100.3 9504 42496 207.7 13992 45665 41.3 25892 112773
3 34 1336 1833 664 68383 278.6 804 70014 147.3 3412 101248
4 4.4 532 183.3 476 93711 284.3 928 96023 207.5 1348 126676
5 35 432 191.6 392 111134 288.4 796 115880 226.0 532 151127
6 2.7 680 198.0 408 126714 257.8 400 131243 225.1 532 172786
7 2.1 724 199.4 276 141135 263.9 404 148230 224.8 400 193946
8 1.7 772 200.7 268 154325 265.8 400 160686 218.5 268 209234
9 1.7 792 201.6 412 153130 259.3 404 159142 225.7 408 206481
10 14 732 194.8 272 170536 2522 280 175804 2214 412 228157
11 12 816 1919 272 183560 2453 268 189818 214.3 400 232710
12 1.0 744 189.8 272 198136 2425 400 206238 207.9 408 249463
13 09 808 190.4 268 202083 236.9 276 210364 216.4 400 254350
14 038 792 1854 276 211380 236.7 400 218677 219.0 400 260095
15 07 928 183.7 268 223636 233.0 400 231731 207.5 268 270647
16 06 940 180.9 272 231277 2323 400 238654 204.7 400 278949
18 06 884 175.2 268 244239 220.7 268 253977 201.4 400 283888
20 04 948 48.3 404 1142839 52.2 532 1158279 733 704 824089
25 03 1044 67.9 400 817440 74.8 400 827499 92.4 560 673053
30 02 2636 579 400 936558 66.0 532 946277 86.7 556 740150
35 02 2520 53.1 268 1074694 57.9 536 1084748 78.0 576 802048
40 0.1 2140 45.3 408 1193285 51.8 540 1201834 75.9 400 848259
45 0.1 2720 43.3 268 1289318 48.5 404 1297328 72.6 548 891808
50 0.1 2872 41.2 268 1386283 455 532 1395621 69.8 720 927760

Table B.9: Benchmarks of regular expressions equivalence-testing algorithms (size 150).

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.

2 0.1 18140 110.1 10672 42649 178.8 17796 45389 18.5 90880 176581
317 2704 156.6 2124 71768 220.1 3492 73620 119.7 3916 111922
4 27 696 165.7 840 97367 2347 984 100575 180.0 1864 137453
5 22 664 177.6 580 115961 239.4 564 120928 185.1 788 169526
6 1.8 1004 1752 532 130548 243.2 572 134674 191.9 548 194343
7 14 824 1777 556 149459 237.5 436 154828 193.5 436 215126
8 12 940 179.8 448 165596 233.6 484 171861 188.1 432 233495
9 1.1 984 173.8 476 164114 2343 592 169814 189.7 440 230857

continued on next page

173

continued from previous page

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Tter. Perf. Sp. Tter.

10 1.0 996 176.9 408 180392 226.0 452 187584 189.5 400 242611

11 0.8 888 179.4 440 186518 230.2 448 193354 186.9 416 258971

12 0.7 960 175.4 412 200466 2232 404 207536 183.7 448 272522

13 0.6 988 168.8 448 216149 217.7 420 223967 185.3 208 281551

14 05 848 166.5 276 223317 214.1 436 230065 184.6 576 283034

15 05 1012 162.7 400 239892 206.5 400 250987 184.6 596 301016

16 04 944 159.9 268 253370 201.4 400 263335 175.1 540 312864

18 04 996 1549 404 255690 195.8 416 264277 172.7 560 314611

20 0.2 1472 38.0 400 1247809 42.6 664 1265720 60.7 708 933809

25 02 1408 58.1 400 847247 64.2 532 857742 82.7 688 728230

30 0.1 2852 48.8 400 1002738 56.1 540 1012038 74.0 696 810543

35 0.1 3172 42.5 408 1162337 48.8 668 1172209 64.1 708 892154

40 0.1 3236 38.5 532 1297939 42.1 532 1307021 60.2 692 952220

45 0.1 3448 35.1 400 1410737 40.4 668 1419482 59.3 708 1008542

50 O 3544 33.1 532 1499886 37.5 672 1508680 56.6 840 1040679

Table B.10: Benchmarks of regular expressions equivalence-testing algorithms (size 175).
k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.

2 0 20360 36.3 43464 49213 93.9 59016 51810 10.7 93956 224312
3 0.9 2316 134.0 2440 75421 195.4 2532 78295 86.1 16488 124301
4 1.9 696 144.5 1136 102270 206.1 1652 106461 153.9 1208 149708
5 1.7 804 153.3 972 122265 215.0 1152 125030 163.5 1072 181255
6 1.3 1012 162.0 932 136267 220.7 616 140914 160.3 556 216998
7 1.0 1048 166.8 652 155894 215.3 1092 161818 162.1 604 240164
8 0.8 896 162.1 460 166758 216.3 588 172239 165.9 588 257578
9 0.8 984 159.2 584 169826 211.6 464 175339 169.2 600 255944
10 0.7 1044 166.0 608 191649 204.6 588 197890 164.3 608 271062
11 0.6 1104 166.0 568 195871 204.5 428 204745 157.5 608 293876
12 05 1080 157.0 568 208877 205.0 580 214210 163.4 652 300855
13 04 704 152.8 440 220109 200.6 496 227637 161.4 728 313476
14 04 1180 151.8 580 234162 196.0 480 242429 163.2 616 319313
15 03 1136 159.6 400 247980 189.4 460 258135 159.3 600 330202
16 0.3 1548 143.2 548 263616 183.8 592 273944 154.2 756 343480
18 0.3 1440 139.1 432 269405 178.4 708 279400 157.9 588 338987
20 0.1 1748 33.5 556 1294152 36.8 868 1314558 52.6 740 1016705
25 0.1 1580 53.9 536 863518 60.6 852 873614 67.6 852 801106
30 0.1 3612 44.8 532 1047866 48.5 712 1058668 63.2 840 877462
35 0.1 3172 39.5 600 1189415 43.8 844 1199185 559 732 962231
40 0 3964 34.8 588 1340826 37.8 816 1346892 53.0 784 1036137
45 0 3604 30.2 692 1495367 33.5 836 1505255 46.4 876 1106379
50 0 4296 27.8 616 1617031 30.8 828 1625854 46.3 760 1159709

174 APPENDIX B. EQUIVALENCE OF REGULAR EXPRESSIONS

Table B.11: Benchmarks of regular expressions equivalence-testing algorithms (size 200).

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.

2 0 15124 82.8 28212 42703 147.6 45376 43055 5.8 147444 340449
3 0.5 3240 120.7 7248 78047 181.9 2380 78772 75.3 12736 134746
4 1.4 888 1352 1448 104775 189.0 1656 109103 125.6 2308 164426
5 1.3 676 138.1 844 129101 195.7 872 135019 1433 1888 198829
6 1.0 960 1472 560 143377 203.5 608 146674 150.4 700 228369
7 0.8 1076 157.1 444 159429 199.4 548 165187 150.4 724 257117
8 0.6 1212 1457 564 173049 195.9 724 182148 149.4 728 278413
9 0.6 1184 1427 584 179280 194.5 548 185550 146.0 708 277206
10 05 1260 159.7 560 190318 191.7 576 200540 147.4 688 296465
11 04 1276 156.1 404 202446 191.6 536 209971 149.0 732 308262
12 03 1284 1442 412 210664 188.3 556 218561 144.5 712 325513
13 03 1564 140.8 544 229821 182.4 692 240311 143.9 676 334345
14 03 1684 139.0 552 240568 179.5 692 249624 150.1 748 336444
15 02 1632 142.8 552 259941 172.8 548 271513 147.1 716 347805
16 02 1712 1339 472 267847 170.9 696 278484 146.5 696 355410
18 0.2 1692 136.5 572 283459 166.7 712 295451 138.8 820 371750
20 0.1 2156 30.9 720 1314052 35.2 876 1332485 449 840 1071435
25 0.1 2144 48.3 772 880051 54.5 848 892230 64.0 848 829027
30 0 3924 414 676 1056679 46.3 872 1066406 53.5 488 933755
35 0 4320 34.4 716 1258270 38.6 880 1267779 48.4 896 1044817
40 0 4276 32.0 704 1416601 324 984 1427309 45.4 548 1113537
45 0 4624 28.7 684 1567187 29.4 836 1578048 434 928 1189996
50 0 4968 24.6 696 1718814 27.7 968 1728790 38.7 920 1261864

Table B.12: Benchmarks of regular expressions equivalence-testing algorithms (size 250).

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.

2 0 24280 89.1 33100 42101 1353 53756 43483 1.5 1628960 792275
3 0.1 5740 110.3 4096 79936 1539 3628 83571 55.7 19092 155960
4 0.8 2224 117.7 2884 107967 166.6 1088 111315 101.5 4044 180802
5 0.7 920 121.8 988 134096 167.6 1020 138514 117.3 2952 224329
6 0.6 1276 1229 1128 151983 165.3 1140 158603 118.7 1000 265352
7 0.4 1028 1283 744 165643 172.9 756 172708 123.4 680 287596
8 0.3 1744 128.3 688 180438 166.0 596 188777 121.8 888 322425
9 0.3 1684 1282 564 180048 171.9 608 185094 122.9 772 316961
10 03 1792 126.6 588 195486 164.2 632 202945 119.6 864 336736
11 02 1792 122.6 708 216601 161.3 764 228650 119.1 792 368731
12 02 1800 121.7 612 233450 160.0 768 240076 1225 712 367055
13 0.1 1800 1214 628 242104 154.0 740 252342 121.9 840 378420
14 0.1 1808 1183 616 260904 150.9 676 269141 119.4 876 394693
15 0.1 1448 1184 672 274833 147.2 680 283761 115.4 696 411041
16 0.1 2432 1147 616 289316 144.8 724 297642 1233 692 404055
18 0.1 2256 1133 716 303098 145.3 672 311610 114.0 792 426284
20 0 2364 25.9 980 1425369 29.0 1264 1449403 37.6 1052 1193842
25 0 2612 433 424 922688 49.5 1228 934423 53.8 1088 892580

continued on next page

175

continued from previous page

k H E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.

30 0 5004 354 916 1067968 41.9 768 1079795 46.3 924 1017910

35 0 5388 28.9 532 1272790 329 1196 1284407 39.6 1052 1129233

40 0 5616 26.3 756 1466441 29.2 1276 1480302 35.0 684 1253924

45 0 5712 23.2 1068 1656180 25.5 1336 1668491 32.0 904 1355850

50 0 6040 20.0 928 1829066 22.7 1280 1840555 31.7 952 1416892

Table B.13: Benchmarks of regular expressions equivalence-testing algorithms (size 300).
k E E, Eur
Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.

2 0 45764 97.5 7272 40706 118.2 11924 41661 0.8 735804 1359307
3 0 7756 85.7 13440 80145 125.7 4072 81518 37.0 63908 185316
4 0.5 2612 100.3 2164 112993 132.3 1888 117499 76.6 5068 215123
5 0.5 1636 108.3 1476 136348 139.9 972 140333 94.1 2176 254318
6 0.4 1960 115.0 1068 150291 140.7 836 153659 99.9 1316 283922
7 0.3 1936 111.9 696 178019 136.5 868 184100 97.5 908 334956
8 0.2 1968 112.3 868 191040 135.8 856 199192 99.3 880 361854
9 0.2 1996 113.8 708 187431 136.3 772 195004 98.5 1248 359315
10 02 1524 1122 780 208644 132.8 764 217145 96.4 1104 392960
11 0.1 1456 111.0 704 223752 131.7 384 235319 95.9 932 399759
12 0.1 2344 109.5 712 237247 129.2 820 247835 100.6 896 405017
13 0.1 2292 109.0 848 251086 1314 868 258626 97.8 1016 435618
14 0.1 2448 106.7 820 270982 127.9 836 280175 95.5 848 451183
15 0.1 2376 106.6 816 280009 124.2 740 290853 95.1 828 459198
16 0 2452 104.1 712 299581 120.5 756 310690 94.2 800 466710
18 0 2680 105.4 736 306700 123.1 744 315978 93.1 840 479033
20 0 2992 24.1 1364 1435185 24.8 1620 1461986 31.0 1612 1305703
25 0 3308 40.7 724 929140 43.0 1524 934820 44.6 1380 941082
30 0 5992 34.1 792 1116738 36.0 1564 1127015 39.5 1052 1051237
35 0 6344 26.1 1144 1329941 30.0 1544 1343321 339 1560 1226768
40 0 6692 21.8 1276 1537374 24.5 1636 1548112 30.1 1560 1359841
45 0 7100 19.2 1300 1730990 21.1 1644 1741320 26.7 1484 1462583
50 0 7480 17.2 1236 1905520 19.6 1624 1917470 26.1 1504 1550359

176 APPENDIX B. EQUIVALENCE OF REGULAR EXPRESSIONS

Appendix C

Finite automata minimisation

The following tables present experimental comparative results of several finite automata minimisation algo-
rithms (cf. Chapter 8). The sampling and experimental study were conducted as described in Chapter 5, using
datasets with 20 000 pairs of automata with n states over an alphabet of k symbols. Column Perf. refers to the
performance of the given algorithm, i.e., the number of automata minimised per second. The memory usage,
in kilobytes, is shown on column Sp. For matters of space economy, the names of the algorithms are not used.

Instead, the following mapping applies.

Algorithm Name Column Id.

DFA-MINIMISE-MOORE M
DFA-MINIMISE-HOPCROFT

DFA-MINIMISE-BRZOZOWSKI

- ="

DFA-MINIMISE-INCREMENTAL

177

178 APPENDIX C. FINITE AUTOMATA MINIMISATION

C.1 1ICDFAs

Table C.1: Benchmark of ICDFA minimisation algorithms (5 states).

k M H B w 1
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

2 2949.85 4 344234 4 142450 4 3616.63 4 433839 4
3 275482 4 257731 4 853.97 4 3205.12 4 540540 4
4 2604.16 4 2169.19 4 436.96 4 2617.80 4 4273.50 4
5 2436.05 4 1801.80 4 290.02 4 2312.13 4 3629.76 4
6 2207.50 4 1522.07 4 217.69 4 1865.67 4 425531 4
7 214592 4 1330.67 4 189.55 4 1277.13 4 3787.87 4
8 1966.56 4 1236.09 4 141.94 4 923.36 4 352733 4
9 1901.14 4 1089.32 4 123.15 4 755.00 4 3016.59 4
10 179051 4 980.39 4 119.71 4 592.24 4 276243 4
11 162337 4 919.54 4 101.92 4 482.16 4 3384.09 4
12 165425 4 855.43 4 90.30 4 367.17 4 278551 4
13 1628.66 4 805.47 4 84.38 4 293.68 4 2406.73 4
14 144196 4 735.83 4 79.25 4 241.16 4 234192 4
15 140548 4 691.80 4 71.40 4 222.64 4 2378.12 4
16 1380.26 4 674.08 4 70.31 4 184.94 4 2463.05 4
18 1456.66 4 674.53 4 63.16 4 149.95 4 2430.13 4
20 131752 4 586.16 4 57.53 4 107.93 4 2008.03 4
25 115340 4 469.37 4 45.24 4 5291 4 1814.88 4
30 103896 4 413.99 4 37.36 4 32.77 4 1539.64 4
35 878.34 4 374.53 4 31.73 4 21.27 4 133155 4
40 762.77 4 282.52 4 27.82 4 15.05 4 1480.38 4
45 845.30 4 262.70 4 24.74 4 9.90 4 1186.23 4
50 647.03 4 238.46 4 22.66 4 8.03 4 1091.70 4

Table C.2: Benchmark of ICDFA minimisation algorithms (10 states).

k M H B w I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

2 1336.80 4 175746 4 7345 4 691.80 4 235849 4
3 1175.08 4 922.08 4 2629 4 81.63 4 1958.86 4
4 1148.10 4 609.94 4 1293 4 11.72 4 2047.08 4
5 118343 4 518.80 4 7.83 4 2.32 4 1661.12 4
6 1007.04 4 472.47 4 5.34 4 0.57 4 171232 4
7 956.02 4 508.38 4 3.95 4 0.16 4 151630 4
8 942.06 4 445.73 4 3.05 4 0.06 4 1703.57 4
9 847.09 4 278.04 4 2.45 4 0.02 4 1567.39 4
10 828.15 4 250.46 4 1.89 4 0.01 4 1484.78 4
11 789.88 4 234.10 4 1.71 4 0 4 1282.05 4
12 813.33 4 223.28 4 1.48 4 - - 1301.23 4
13 72332 4 205.90 4 1.29 4 - - 137551 4
14 720.72 4 189.46 4 1.12 4 - - 127226 4
15 662.25 4 167.74 4 1.03 4 - - 112422 4
16 641.43 4 159.57 4 0.93 148 - - 1070.09 4
18 630.31 4 137.35 4 0.78 216 - - 116550 4

continued on next page

C.1. ICDFAS

continued from previous page

k M H B w I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
20 62460 4 12344 4 0.68 240 - - 1160.09 4
25 532,62 4 10095 4 0.50 1912 - - 885.73 4
30 41779 4 82.52 4 0.40 1640 - - 799.68 4
35 38l1.60 4 70.98 4 033 2788 - - 693.48 4
40 34135 4 60.16 4 028 4552 - - 622.47 4
45 313.03 4 54.55 4 024 3980 - - 539.95 4
50 281.84 4 49.74 4 021 3248 - - 488.75 4
Table C.3: Benchmark of ICDFA minimisation algorithms (20 states).
k M H B w I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 41237 4 441.69 4 0.31 110260 215 4 84245 4
3 385.13 4 216.66 4 0.03 63284 0 4 70497 4
4 39093 4 15459 4 0 112116 - - 759.30 4
5 35752 4 116.80 4 - - - - 72176 4
6 363.70 4 95.64 4 - - - - 660.93 4
7 396.66 4 77.94 4 - - - - 625.00 4
8 32631 4 71.25 4 - - - - 627.15 4
9 31138 4 61.91 4 - - - - 568.34 4
10 29735 4 56.39 4 - - - - 490.07 4
11 31923 4 50.74 4 - - - - 44238 4
12 300.66 4 46.46 4 - - - - 41736 4
13 283.60 4 41.80 4 - - - - 42354 4
14 28575 4 40.15 4 - - - - 42043 4
15 286.69 4 37.20 4 - - - - 388.04 4
16 321.02 4 33.77 4 - - - - 38535 4
18 240.61 4 30.95 4 - - - - 42274 4
20 22469 4 27.62 4 - - - - 370.78 4
25 17635 4 21.77 4 - - - - 338.58 4
30 16125 4 17.89 4 - - - - 31530 4
35 15166 4 15.05 4 - - - - 306.51 8
40 13534 4 13.38 4 - - - - 275.63 8
45 121.06 4 11.58 4 - - - - 230.81 4
50 109.82 4 10.69 4 - - - - 194.42 8
Table C.4: Benchmark of ICDFA minimisation algorithms (30 states).
k M H B w I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

2 178.55 4 127.64 4 - - - - 423.01 40

3 16798 4 75.46 4 - - - - 37376 56

4 16298 4 52.63 4 - - - - 348.06 72

5 16825 4 40.51 4 - - - - 32647 88

6 15390 4 34.88 4 - - - - 29691 104

7 160.64 4 28.00 4 - - - - 307.40 112

continued on next page

179

180 APPENDIX C. FINITE AUTOMATA MINIMISATION

continued from previous page

k M H B w 1

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
8 150.10 4 25.04 4 - - - - 296.38 116
9 14946 4 2235 4 - - - - 272.85 120
10 14297 4 19.61 4 - - - - 249.28 128
11 13422 4 1722 4 - - - - 238.46 128
12 13356 4 1636 4 - - - - 229.77 132
13 12651 4 1525 4 - - - - 22222 136
14 11982 4 14.07 4 - - - - 21226 144
15 12315 4 13.01 4 - - - - 204.14 144
16 11719 4 1198 4 - - - - 196.79 136
18 11237 4 1093 4 - - - - 191.33 140
20 10597 4 9.67 4 - - - - 182.54 144
25 89.50 4 7.68 4 - - - - 167.05 148
30 81.08 4 6.33 4 - - - - 153.16 152
35 76.30 4 5.21 4 - - - - 141.57 152
40 69.09 4 4.78 4 - - - - 128.39 152
45 64.65 4 4.23 4 - - - - 122.02 156
50 62.17 172 3.88 4 - - - - 117.52 160

Table C.5: Benchmark of ICDFA minimisation algorithms (40 states).

k M H B w 1

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 90.72 4 6593 4 - - - - 191.44 116
3 9036 4 3996 4 - - - - 196.36 184
4 86.85 4 2827 4 - - - - 169.88 200
5 8575 4 2145 4 - - - - 163.43 240
6 8642 4 17.64 4 - - - - 159.66 256
7 81.15 4 1529 4 - - - - 15349 280
8 82.04 4 13.07 4 - - - - 149.85 284
9 81.92 4 1149 4 - - - - 145.67 300
10 7699 4 1025 4 - - - - 143.07 304
11 7628 4 9.43 4 - - - - 143.88 312
12 7572 4 8.61 4 - - - - 132.14 320
13 7450 4 7.90 4 - - - - 13429 320
14 6946 4 7.38 4 - - - - 132.57 332
15 6847 4 6.76 4 - - - - 129.14 332
16 6825 4 6.41 4 - - - - 128.46 332
18 6644 4 5.74 4 - - - - 120.38 340
20 62.79 4 5.00 4 - - - - 116.82 348
25 56.10 276 4.04 4 - - - - 103.85 356
30 5140 1236 3.40 4 - - - - 96.06 360
35 4839 2096 2.88 4 - - - - 88.73 364
40 4631 2652 2.55 4 - - - - 84.28 368
45 4321 3288 2.24 4 - - - - 79.34 364
50 41.06 3708 1.99 4 - - - - 75.66 368

C.1. ICDFAS 181

Table C.6: Benchmark of ICDFA minimisation algorithms (50 states).

k M H B w 1

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 56.51 4 3948 4 - - - - 117.21 288
3 57.09 4 2326 4 - - - - 109.15 312
4 5423 4 17.07 4 - - - - 104.99 404
5 5772 4 13.16 4 - - - - 106.75 424
6 56.09 4 10.63 4 - - - - 102.93 452
7 55.14 4 9.03 4 - - - - 98.73 484
8 5562 4 7.61 4 - - - - 97.13 512
9 53.14 4 7.00 4 - - - - 94.84 528
10 5157 4 6.31 4 - - - - 94.33 540
11 5128 4 5.66 4 - - - - 93.44 552
12 49.63 172 5.02 4 - - - - 89.80 560
13 4889 172 4.75 4 - - - - 89.21 576
14 4953 172 4.25 4 - - - - 87.09 576
15 4748 688 4.14 4 - - - - 85.22 580
16 47.52 548 3.85 4 - - - - 84.85 584
18 4513 940 3.41 4 - - - - 80.90 592
20 43.15 940 3.08 4 - - - - 79.43 600
25 40.79 2496 2.45 4 - - - - 73.94 612
30 3744 3668 2.06 4 - - - - 67.54 620
35 3511 4556 1.74 4 - - - - 63.74 628
40 3345 5016 1.50 4 - - - - 59.02 632
45 31.68 6584 1.36 4 - - - - 57.20 632
50 29.80 7184 1.21 4 - - - - 53.31 636

Table C.7: Benchmark of ICDFA minimisation algorithms (60 states).

k M H B w I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 42.08 4 2581 4 - - - - 84.15 364
3 40.69 4 15.16 4 - - - - 79.28 492
4 39.15 4 1099 4 - - - - 79.40 600
5 3837 4 8.76 4 - - - - 76.73 656
6 38.67 4 7.01 4 - - - - 73.08 708
7 3750 4 6.05 4 - - - - 72.08 740
8 37.66 4 5.17 4 - - - - 7095 772
9 36.72 172 4.56 4 - - - - 68.87 804
10 36.86 428 4.04 4 - - - - 68.13 824
11 3543 768 3.73 4 - - - - 65.58 836
12 35.02 940 3.34 4 - - - - 65.69 860
13 3520 1452 3.11 4 - - - - 64.35 860
14 3464 1712 2.89 4 - - - - 62.64 876
15 3393 1988 2.69 4 - - - - 61.72 880
16 3345 2300 2.48 4 - - - - 62.19 888
18 3339 2860 2.31 4 - - - - 59.99 908
20 32.04 3444 2.07 4 - - - - 57.47 912
25 2937 5184 1.65 4 - - - - 5431 932

continued on next page

182 APPENDIX C. FINITE AUTOMATA MINIMISATION

continued from previous page

k M H B w 1

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
30 2743 6640 129 4 - - - - 50.55 944
35 26.50 8088 .15 4 - - - - 49.39 952
40 2469 9628 1.02 4 - - - - 4585 964
45 23.12 10980 090 4 - - - - 43.09 968
50 21.86 12464 081 4 - - - - 41.38 968

Table C.8: Benchmark of ICDFA minimisation algorithms (70 states).

k M H B w I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 29.15 4 18.13 4 - - - - 61.45 484
3 2921 4 1081 4 - - - - 58.18 660
4 2824 4 7.61 4 - - - - 56.93 796
5 2881 4 6.03 4 - - - - 5544 912
6 27.86 172 4.94 4 - - - - 5395 968
7 27.89 684 4.11 4 - - - - 5320 1036
8 27.38 940 3.55 4 - - - - 53.04 1100
9 2697 1964 3.12 4 - - - - 5190 1120
10 26.67 2004 2.70 4 - - - - 49.89 1148
11 2657 2344 2.52 4 - - - - 49.70 1196
12 2589 2868 2.33 4 - - - - 49.60 1192
13 2576 3168 2.15 4 - - - - 48.87 1212
14 2577 3472 2.02 4 - - - - 4550 1236
15 25.68 4148 1.86 4 - - - - 47.14 1236
16 2543 4348 1.73 4 - - - - 46.71 1244
18 2440 5472 1.57 4 - - - - 4522 1268
20 2433 5828 1.43 4 - - - - 4437 1280
25 2241 8172 1.12 4 - - - - 41.89 1308
30 21.27 10204 0.93 4 - - - - 39.53 1328
35 1940 12340 0.80 4 - - - - 36.93 1340
40 18.96 14056 0.71 4 - - - - 35.17 1352
45 1798 16072 0.63 4 - - - - 34.16 1352
50 16.68 18084 0.55 4 - - - - 32.06 1356

Table C.9: Benchmark of ICDFA minimisation algorithms (80 states).

k M H B w I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 1999 684 13.18 4 - - - - 4491 712
32034 1196 7.78 4 - - - - 43.14 952
4 2036 684 5.61 4 - - - - 4195 1088
5 2078 684 4.36 4 - - - - 4173 1216
6 20.02 2580 3.54 4 - - - - 4039 1312
7 1996 3244 2.99 4 - - - - 39.34 1388
8 1971 3504 2.62 4 - - - - 39.49 1456
9 1934 4332 2.28 4 - - - - 38.23 1496

continued on next page

C.1. ICDFAS

continued from previous page

k M B W

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
10 19.31 4656 207 4 - - - - 38.08 1528
11 19.10 4972 1.85 4 - - - - 38.34 1572
12 19.06 5880 1.68 4 - - - - 37.03 1596
13 19.01 6372 1.57 4 - - - - 36.82 1612
14 18.24 6704 146 4 - - - - 36.58 1636
15 1859 6988 1.37 4 - - - - 36.31 1648
16 18.18 7876 1.27 4 - - - - 3548 1664
18 18.34 9020 1.16 4 - - - - 35.05 1688
20 18.12 9908 1.02 4 - - - - 34.81 1708
25 16.51 12856 0.81 4 - - - - 32.04 1748
30 15.88 15492 0.69 4 - - - - 30.33 1764
35 15.05 18104 058 4 - - - - 29.07 1780
40 1433 20472 0.51 4 - - - - 27.88 1796
45 13.58 23028 045 4 - - - - 26.13 1804
50 13.04 25644 0.41 4 - - - - 25.46 1804

Table C.10: Benchmark of ICDFA minimisation algorithms (90 states).

k M B W

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 1591 1496 789 4 - - - - 35.87 892
3 16.16 2220 4.81 4 - - - - 34.64 1164
4 18.61 80 344 4 - - - - 33.78 1376
5 19.65 84 266 4 - - - - 3223 1592
6 15.65 4044 215 4 - - - - 32.07 1668
7 15.53 4624 1.86 4 - - - - 31.27 1780
8 15.59 5304 1.59 4 - - - - 30.52 1864
9 15.41 5584 143 4 - - - - 30.25 1908
10 1524 6716 127 4 - - - - 30.33 1968
11 15.14 7292 .17 4 - - - - 29.81 1996
12 15.11 7880 1.05 4 - - - - 30.07 2036
13 1499 8216 096 4 - - - - 29.55 2060
14 1472 9068 090 4 - - - - 29.24 2092
15 1477 9944 083 4 - - - - 28.75 2104
16 1434 10628 079 4 - - - - 28.32 2132
18 1456 11980 0.71 4 - - - - 27.18 2164
20 1440 13152 0.64 4 - - - - 27.86 2192
25 1325 16752 0.51 4 - - - - 25.46 2500
30 12.68 19968 042 4 - - - - 24.52 2528
35 12.06 23384 036 4 - - - - 23.46 2540
40 11.58 26652 0.31 4 - - - - 22.48 2564
45 11.01 15088 028 4 - - - - 21.25 2576
50 1032 19832 025 4 - - - - 20.48 2720

183

184

APPENDIX C. FINITE AUTOMATA MINIMISATION

Table C.11: Benchmark of ICDFA minimisation algorithms (100 states).

k M H B w I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 12.66 2424 6.25 4 - - - - 28.23 1028
3 12.95 2732 374 4 - - - - 2773 1444
4 12.89 84 270 4 - - - - 27.13 1708
5 1290 84 209 4 - - - - 26.43 1928
6 12.53 5212 1.68 4 - - - - 25.87 2136
7 1247 6104 142 4 - - - - 25.53 2224
8 12.51 7012 1.23 4 - - - - 2525 2320
9 12.72 7888 1.10 4 - - - - 2512 2412
10 1222 5460 097 4 - - - - 2494 2452
11 1247 9372 088 4 - - - - 2431 2516
12 12.08 10224 081 4 - - - - 2443 2536
13 12.05 10836 075 4 - - - - 24.10 2564
14 1197 12016 070 4 - - - - 2435 2748
15 1197 12336 064 4 - - - - 23.84 2772
16 11.72 13512 0.60 4 - - - - 23.61 2796
18 11.69 15200 055 4 - - - - 2349 2828
20 11.65 16668 049 4 - - - - 22.53 2872
25 1075 21176 037 4 - - - - 21.58 3444
30 1043 25240 033 4 - - - - 20.58 3748
35 972 29328 028 4 - - - - 19.47 3640
40 9.69 33380 024 4 - - - - 18.98 3656
45 9.31 37212 022 4 - - - - 1849 3816
50 8.69 33184 0.18 4 - - - - 17.17 3824

Table C.12: Benchmark of ICDFA minimisation algorithms (1000 states).
k M H B w I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

2 0.02 407100 0.01 4 - - - - 023 33920
3 0.02 401108 0 4 - - - - 023 33964
5 0.02 396672 0 4 - - - - 023 34224

C.2. NFAS

C.2 NFAs

C.2.1 Transition density 0.1

Table C.13: Benchmark of NFA minimisation algorithms (5 states).

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

2 147275 4 1841.62 4 2758.62 4 2469.13 4
3 936.32 4 113250 4 1665.27 4 1486.98 4
4 539.95 4 640.40 4 1002.00 4 739.64 4
5 389.18 4 426.62 4 718.64 4 540.39 4
6 245.82 4 230.54 4 442.67 4 307.64 4
7 206.33 4 159.43 4 381.31 4 223.96 4
8 149.20 4 100.28 4 227.89 4 154.48 4
9 127.13 4 77.40 4 180.39 4 130.82 4
10 98.29 4 55.57 4 134.39 4 98.59 4
11 87.97 4 45.44 4 109.28 4 86.04 4
12 75.64 4 35.39 4 83.30 4 70.62 4
13 68.19 4 30.39 4 71.82 4 64.40 4
14 58.40 4 25.40 4 61.17 4 54.41 4
15 54.64 4 22.55 4 54.34 4 55.15 4
16 46.50 4 18.99 4 46.77 4 47.85 4
18 38.60 4 15.38 4 38.04 4 41.70 4
20 33.04 4 12.13 4 31.40 4 35.23 4
25 24.58 4 8.39 4 21.29 4 26.22 4
30 20.04 4 6.07 4 15.86 4 20.59 4
35 1697 4 4.86 4 12.30 4 17.52 4
40 14.44 4 3.98 4 9.92 4 14.83 4
45 1273 4 3.35 4 8.40 4 13.05 4
50 11.37 4 2.83 4 7.20 4 11.57 4

Table C.14: Benchmark of NFA minimisation algorithms (10 states).

k M H B

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 121.29 4388 188.19 4 24417 4 178.68 940
3 22.24 50352 17.48 4 33.47 136 29.26 13944
4 7.04 112268 3.39 4 9.26 84 10.14 21372
5 3.11 137640 1.14 4 3.80 84 4.60 32076
6 1.61 167044 0.47 56 1.87 184 2.56 27936
7 0.95 186900 0.22 752 1.09 152 1.59 42644
8 0.59 236764 0.11 192 0.69 276 1.08 64432
9 0.40 317660 0.06 208 0.46 5620 0.76 84360
10 028 394508 0.04 1984 0.33 8456 0.59 97536
11 021 411468 0.03 1852 0.25 8968 0.47 102772
12 0.16 341628 0.02 1280 0.19 8484 0.38 91084
13 0.13 469312 0.01 2044 0.15 9084 0.32 111716
14 0.10 424680 0.01 1992 0.12 8892 0.27 108192

continued on next page

185

186 APPENDIX C. FINITE AUTOMATA MINIMISATION

continued from previous page

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

15 0.08 454912 0.01 2488 0.10 9956 023 110484
16 0.07 412864 0 2732 0.08 8984 020 122136
18 - - - - 0.06 9928 0.16 135208
20 - - - - 0.05 14124 0.13 147228
25 - - - - 0.02 24296 0.08 166112
30 - - - - 0.01 25540 0.06 184780
35 - - - - 0.01 28292 0.05 208896
40 - - - - 0.01 28228 0.04 196908
45 - - - - 0 30328 0.03 224508
50 - - - - - - 0.03 246756

Table C.15: Benchmark of NFA minimisation algorithms (20 states).

k M H B 1
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 5.62 120428 46.58 4 159.22 4 18.41 3756
3 0.01 2046828 1.44 3348 6.51 48 0.39 196892
4 0 3127380 0.01 15380 0.18 65832 0.02 2019372
5 0 2144692 0 14600 0.01 678420 0 2011584
6 0 2151212 - - 0 1357920 - -
7 _ _ _ _ _ _ _ _
8 - - - - - - - -
9 _ _ _ _ _ _ _ _
10 - - - - - - - -
1 - - - - - - - -
12 - - - - - - - -
13 - - - - - - - -
14 - - - - - - - -
15 - - - - - - - -
16 - - - - - - - -
18 - - - - - - - -
20 - - - - - - - -
25 - - - - - - - -
30 - - - - - - - -
35 - - - - - - - -
40 - - - - - - - -
45 - - - - - - - -
50 - - - - - - - -

Table C.16: Benchmark of NFA minimisation algorithms (40 states).

k M H B 1

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 3874 80 5331 4 15997 4 4938 4
3492 55148 9.71 4 70.72 4 8.26 4
4 058 892300 2.69 708 36.15 4 1.91 1268
5 0.03 2041204 0.91 4092 21.40 4 0.53 36472

continued on next page

C.2. NFAS

continued from previous page

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
6 0 2051812 036 30232 13.65 1668 0.15 58832
7 0 1996880 0.14 63800 7.59 11872 0.04 160160
8 0 1960764 0.05 131532 5.82 18624 0.01 613596
9 0 1935436 0.02 195008 4.95 9560 0 2002856
10 0 2192876 0 310940 2.57 41136 - -
110 1960160 - - 2.85 8244 - -
12 0 2005308 - - 0.17 2048536 - -
13 0 2200008 - - 0.26 2113540 - -
14 0 2216932 - - 1.13 2011504 - -
15 0 2262660 - - 0.19 1991260 - -
16 0 4048120 - - 0.22 2059956 - -
18 - - - - - - - -
20 - - - - - - - -
25 - - - - - - - -
30 - - - - - - - -
35 - - - - - - - -
40 - - - - - - - -
45 - - - - - - - -
50 - - - - - - - -

Table C.17: Benchmark of NFA minimisation algorithms (60 states).

k M H B 1

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 3840 4 4273 4 110.02 4 4282 4
3 8.73 940 9.76 4 57.97 4 9.67 4
4 2.56 30932 3.41 4 34.40 4 3.34 4
5 0.90 169436 1.44 4 23.58 4 1.36 4
6 0.34 533612 0.69 3356 17.21 4 0.66 2044
7 0.12 1103324 0.39 6204 12.89 4 0.34 4460
8 0.04 2019804 0.23 11176 9.62 4 0.19 9944
9 - - 0.14 15480 7.71 2688 0.11 33088
10 - - 0.09 29140 6.16 1772 0.06 16176
1 - - 0.06 39704 5.19 156 0.04 35688
12 - - 0.04 54628 4.31 4348 0.02 40664
13 - - 0.03 63812 3.62 84 - -
14 - - 0.02 117552 2.95 18276 - -
15 - - 0.01 87536 2.61 9144 - -
16 - - 0.01 117532 2.23 13488 - -
18 - - - - 1.56 40728 - -
20 - - - - 1.34 5852 - -
25 - - - - 0.61 200264 - -
30 - - - - 0.51 138948 - -
35 - - - - 0.25 2313528 - -
40 - - - - 0.03 2231108 - -
45 - - - - 0.12 2115632 - -

continued on next page

187

188 APPENDIX C. FINITE AUTOMATA MINIMISATION

continued from previous page

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
50 - - - - 0.13 2019680 - -

Table C.18: Benchmark of NFA minimisation algorithms (80 states).

k M H B 1
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 3591 4 3685 4 7482 4 37.84 4
3 9.21 4 9.52 4 4292 4 9.79 4
4 2.94 2170524 3.56 13580 2840 4 3.28 67304
5 1.41 6828 1.60 4 19.81 4 1.60 4
6 0.68 42588 0.82 4 1438 4 0.83 4
7 - - 0.49 52 11.55 4 0.46 224
8 - - 0.30 2240 8.63 4 0.28 3268
9 - - 0.20 3660 7.41 4 0.19 3640
10 - - 0.13 5764 6.19 300 0.12 4120
1 - - 0.08 7968 5.21 84 0.09 7612
12 - - 0.06 10836 4.38 4 0.06 8064
13 - - 0.05 13032 3.88 4 - -
14 - - 0.03 19864 3.41 2032 - -
15 - - 0.03 21160 3.01 104 - -
16 - - 0.02 26856 2.54 4696 - -
18 - - - - 2.06 1948 - -
20 - - - - 1.70 2276 - -
25 - - - - 1.09 28044 - -
30 - - - - 0.76 45932 - -
35 - - - - 0.55 84072 - -
40 - - - - 0.36 113956 - -
45 - - - - 0.33 27088 - -
50 - - - - 0.24 152020 - -

Table C.19: Benchmark of NFA minimisation algorithms (100 states).

k M H B I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 31.03 4 30.04 4 5297 4 31.19 4
3 9.62 4 9.90 4 3230 4 10.06 4
4 3.79 4 3.86 4 21.83 4 3.98 4
5 1.83 364 1.92 4 1634 4 1.95 4
6 0.96 6448 1.04 4 1239 4 1.05 4
7 0.58 24904 0.59 4 9.81 4 0.62 4
8 0.35 45864 0.40 180 8.04 4 0.39 4
9 0.22 75688 0.27 84 6.62 4 0.27 260
10 0.15 134316 0.18 344 5.67 4 0.18 272
11 0.11 199668 0.14 3244 4.81 108 - -
12 0.07 340004 0.10 3896 4.15 136 - -

continued on next page

C.2. NFAS 189

continued from previous page

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

13005 601192 0.08 7164 372 108 - -
14 0.04 488056 0.06 7128 325 256 - -
15 0.02 641520 0.05 9724 2.87 224 - -
16 0.02 810172 0.04 9740 2.58 3628 - -
18 - - - - 2.00 4532 - -
20 - - - - 1.73 5460 - -
25 - - - - 1.14 13856 - -
30 - - - - 0.80 11840 - -
35 - - - - 0.58 27708 - -
40 - - - - 0.44 41200 - -
45 - - - - 036 68044 - -
50 - - - - 0.30 29704 - -

C.2.2 Transition density 0.5

Table C.20: Benchmark of NFA minimisation algorithms (5 states).

k M H B 1
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

2 94473 4 2057.61 4 1860.46 4 1499.25 4
3 39047 4 110497 4 1060.44 4 637.75 4
4 21179 4 443.75 4 725.42 4 322.52 4
5 110.76 4 292.39 4 460.08 4 166.66 4
6 74.39 4 155.42 4 309.31 4 96.21 4
7 44.34 4 108.73 4 217.84 4 59.88 4
8 36.10 4 78.65 4 150.42 4 47.31 4
9 27.05 172 59.83 4 107.93 4 34.45 4
10 2231 84 45.70 4 79.89 4 26.51 4
11 17.87 84 35.59 4 59.40 4 20.93 4
12 15.82 428 28.04 4 48.03 4 18.52 4
13 13.65 172 22.58 4 36.86 4 15.58 4
14 12.67 624 19.69 4 31.58 4 14.08 4
15 11.25 656 16.30 4 25.30 4 12.44 4
16 10.57 684 14.15 4 21.88 4 11.80 4
18 - - - - 16.23 4 10.34 4
20 - - - - 12.84 4 9.90 4
25 - - - - 8.39 4 8.93 4
30 - - - - 6.45 4 8.33 4
35 - - - - 5.31 4 8.06 4
40 - - - - 4.67 4 7.38 4
45 - - - - 4.00 4 6.88 4
50 - - - - 3.59 4 6.29 4

190 APPENDIX C. FINITE AUTOMATA MINIMISATION

Table C.21: Benchmark of NFA minimisation algorithms (10 states).

k M H B I
Perf. Sp Perf. Sp. Perf. Sp. Perf. Sp.
2 62247 4 92421 4 1250.00 4 1212.12 4
3 31436 4 44523 4 799.04 4 498.38 4
4 157.17 4 20092 4 546.29 4 199.02 4
5 94.88 4 129.80 4 393.23 4 118.00 4
6 59.86 4 79.19 4 293.77 4 72.74 4
7 43.12 4 56.95 4 21591 4 54.21 4
8 30.80 4 41.76 4 173.02 4 38.08 4
9 22.47 1196 31.90 4 143.98 4 29.83 4
10 17.18 236 25.52 4 118.51 4 22.95 4
11 13.13 84 21.33 4 105.46 4 18.73 4
12 11.02 940 17.43 4 90.38 4 15.89 4
13 854 6508 14.40 4 79.43 4 12.84 4
14 7.00 2732 12.53 4 71.57 4 10.92 4
15 5.73 25196 10.58 4 64.54 4 9.24 4
16 4.80 8616 9.24 4 58.63 4 7.99 4
18 - - - - 49.81 4 591 4
20 - - - - 41.61 4 4.72 4
25 - - - - 28.76 4 2.66 252
30 - - - - 21.29 4 1.65 1848
35 - - - - 15.55 4 1.11 5672
40 - - - - 12.00 84 0.76 5500
45 - - - - 9.23 84 0.55 19624
50 - - - - 7.43 100 0.40 30052

Table C.22: Benchmark of NFA minimisation algorithms (20 states).

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

2 469.92 4 687.52 4 47192 4 47732 4
3 166.01 4 18246 4 21224 4 171.04 4
4 97.05 4 96.39 4 167.00 4 10231 4
5 60.81 4 63.12 4 130.40 4 65.08 4
6 43.25 4 44.64 4 10092 4 45.86 4
7 30.61 4 33.51 4 84.23 4 32.73 4
8 23.12 4 24.55 4 74.33 4 24.70 4
9 18.10 4 18.79 4 64.66 4 19.48 4
10 14.52 4 14.78 4 57.02 4 15.04 4
11 1091 4 12.42 4 49.54 4 12.28 4
12 942 4 10.05 4 45.80 4 10.13 4
13 7.88 4 8.45 4 40.61 4 8.39 4
14 6.69 4 7.35 4 37.19 4 7.13 4
15 557 4 6.18 4 35.31 4 6.04 4
16 4.46 4 5.43 4 32.04 4 5.33 4
18 3.68 4 - - 28.88 4 4.08 4
20 297 1204 - - 24.42 4 3.31 4
25 176 428 - - 18.42 4 2.07 4

continued on next page

C.2. NFAS 191

continued from previous page

k M H B I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
30 1.19 1388 - - 14.18 4 130 4
35 086 2264 - - 11.84 4 1.01 4
40 064 6784 - - 9.94 4 078 4
45 050 9532 - - 8.16 4 0.63 140

50 040 10944 7.22 240 0.51 180

Table C.23: Benchmark of NFA minimisation algorithms (40 states).

k M H B 1

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 100.05 4 91.94 4 9742 4 100.62 4
3 49.72 4 4830 4 5975 4 50.01 4
4 30.83 4 2971 4 4439 4 31.38 4
5 21.19 4 2125 4 3429 4 21.46 4
6 15.47 4 1532 4 28.09 4 15.78 4
7 12.18 4 1191 4 24.08 4 12.09 4
8 9.48 4 9.41 4 21.10 4 9.17 4
9 7.65 4 7.87 4 1846 4 7.64 4
10 642 4 6.33 4 16.44 4 6.35 4
11 535 4 5.30 4 1507 4 5.38 4
12 445 4 4.58 4 1372 4 4.49 4
13 3.8l 4 3.89 4 1238 4 3.89 4
14 333 4 3.40 4 11.63 4 3.36 176
15 3.01 4 2.94 4 10.65 180 3.02 140
16 262 4 2.62 188 10.00 4 2.76 184
18 2.08 4 - - 8.88 288 2.17 328
20 1.73 212 - - 8.02 504 1.79 320
25 115 316 - - 6.14 1292 1.15 772
30 0.77 2172 - - 4.95 1920 0.78 1536
35 057 2772 - - 4.16 2464 0.58 1872
40 043 2832 - - 3.63 2336 0.45 2096
45 034 5452 - - 3.10 2836 0.36 2556
50 0.27 6192 - - 2.73 4488 0.29 4800

Table C.24: Benchmark of NFA minimisation algorithms (60 states).

k M H B I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 4077 4 38.16 4 3999 4 4040 4
3 2206 4 2229 4 2597 4 2213 4
4 1365 4 1355 4 1933 4 1383 4
5 941 4 9.43 4 1549 4 9.62 4
6 7.09 4 7.07 4 1276 4 7.04 4
7 527 4 5.40 228 10.87 272 5.28 348
8 425 332 4.23 568 9.36 576 4.17 576
9 342 664 3.55 548 8.25 796 3.48 988

continued on next page

192 APPENDIX C. FINITE AUTOMATA MINIMISATION

continued from previous page

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

10 2.87 888 280 1112 7.40 1120 2.85 1300
11 244 1300 237 1512 6.77 1408 235 1700
12 205 1564 2.06 1856 6.07 1392 211 2016
13 176 1996 1.75 2120 5.69 1704 1.77 2448
14 153 2428 1.53 2100 529 1824 1.54 2748
15 132 2732 1.35 2540 489 2728 136 3040
16 120 3032 1.19 3036 4.60 2392 1.19 3352
18 - - - - 403 3184 094 3964
20 - - - - 3.61 4020 0.77 4140
25 - - - - 2.86 5596 051 6344
30 - - - - 235 7404 037 7104
35 - - - - 1.99 8104 027 10612
40 - - - - 172 11680 021 11564
45 - - - - 1.51 13336 0.16 14000
50 - - - - 1.36 15784 0.13 14388

Table C.25: Benchmark of NFA minimisation algorithms (80 states).

k M H B I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 2338 4 2272 4 2228 4 2323 4
3 1262 4 12.16 4 1492 4 1257 4
4 7.99 4 7.70 4 11.07 4 8.04 4
5 5.46 4 5.49 484 9.11 268 5.45 472
6 4.05 64 3.95 712 7.22 260 4.04 616
7 3.02 344 3.06 1160 6.12 640 3.09 716
8 2.45 892 2.41 1124 5.46 1472 2.40 1964
9 1.96 1200 1.97 1604 4.70 1692 1.98 1720
10 1.62 1648 1.62 2132 4.27 1984 1.59 1992
11 1.36 2616 1.35 2936 3.88 2540 1.34 2496
12 1.17 3016 1.16 3168 3.53 3076 1.17 3060
13 1.00 3440 0.98 3152 3.24 3296 1.01 3744
14 0.90 3184 0.85 3388 3.04 3580 0.88 3760
15 078 3768 0.76 4124 2.85 4468 0.77 4116
16 0.67 4132 0.68 4660 2.68 4724 0.68 4352
18 053 4672 - - 2.30 5764 0.55 5552
20 044 5712 - - 2.09 5888 0.45 6188
25 0.28 8480 - - 1.63 8496 0.29 9384
30 0.20 14012 - - 1.35 12932 0.20 13648
35 0.15 16428 - - 1.16 15300 0.15 16252
40 0.11 18660 - - 1.02 17596 0.12 17796
45 0.09 22040 - - 0.88 20428 0.09 20420

50 0.07 24020 - - 0.78 21712 0.07 23312

C.2. NFAS

Table C.26: Benchmark of NFA minimisation algorithms (100 states).

k M H B I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 1494 4 1479 4 1341 4 1507 4
3 8.21 4 7.96 4 9.68 4 8.10 4
4 5.08 4 494 84 7.26 80 4.95 224
5 3.52 688 3.48 720 5.62 552 3.43 732
6 2.58 768 2.51 1164 4.67 1640 2.55 1308
7 1.95 1760 1.97 1656 4.04 1500 1.94 2384
8 1.56 2108 1.55 1996 3.49 2748 1.60 2812
9 1.27 2640 1.24 3028 3.09 3172 1.27 3208
10 1.05 2860 1.04 4132 2.84 3512 1.07 4100
11 0.89 3820 0.84 3740 2.52 4140 0.86 4048
12 0.75 4316 0.72 4888 2.29 4412 0.76 5160
13 0.63 5092 0.64 4808 2.13 4740 0.64 4980
14 0.56 4680 0.56 5080 1.98 6080 0.55 5292
15 048 6356 0.50 6088 1.83 6176 0.50 5800
16 044 5980 0.44 6676 1.71 6252 0.43 7300
18 0.34 7592 - - 1.53 8220 0.34 6828
20 0.30 8400 - - 1.36 9576 0.28 9408
25 0.18 14216 - - 1.06 12672 0.19 14872
30 0.12 18144 - - 0.89 15728 0.13 17072
35 0.09 20240 - - 0.75 20296 0.09 22160
40 0.07 25864 - - 0.65 23560 0.07 24620
45 0.05 29904 - - 0.57 26036 0.06 28488
50 0.05 32012 - - 0.52 28212 0.05 30968

C.2.3 Transition density 0.8

Table C.27: Benchmark of NFA minimisation algorithms (5 states).

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

2 1518.60 4 245398 4 197238 4 2242.15 4
3 1011.12 4 163398 4 142348 4 146520 4
4 705.21 4 1391.78 4 1102.53 4 966.65 4
5 518.67 4 816.65 4 913.24 4 730.19 4
6 383.06 4 673.62 4 733.40 4 521.51 4
7 307.97 4 478.24 4 777.90 4 433.46 4
8 262.19 4 480.65 4 642.67 4 389.18 4
9 218.69 4 294.55 4 665.33 4 265.85 4
10 174.84 4 251.25 4 486.14 4 227.89 4
11 158.32 4 219.82 4 415.11 4 181.70 4
12 136.57 4 185.56 4 424.17 4 156.27 4
13 12291 4 164.05 4 378.14 4 135.48 4
14 102.65 4 140.82 4 333.33 4 118.14 4
15 96.24 4 126.55 4 295.90 4 113.35 4
16 87.59 4 116.99 4 275.90 4 104.95 4

continued on next page

193

194 APPENDIX C. FINITE AUTOMATA MINIMISATION

continued from previous page

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

18 - - - - 271.37 4 9037 4
20 - - - - 197.60 4 7332 4
25 - - - - 143.68 4 5132 4
30 - - - - 116.83 4 40.09 4
35 - - - - 91.75 4 3155 4
40 - - - - 77.20 4 2625 4
45 - - - - 64.24 4 2198 4
50 - - - - 56.51 4 1847 4

Table C.28: Benchmark of NFA minimisation algorithms (10 states).

k M H B I
Perf. Sp Perf. Sp. Perf. Sp. Perf. Sp.

2 62344 4 1017.81 4 937.64 4 1137.00 4
3 339.84 4 647.03 4 554.17 4 544.95 4
4 221.06 4 231.10 4 44692 4 259.33 4
5 142.61 4 157.72 4 47585 4 161.00 4
6 109.05 4 112.60 4 319.69 4 113.47 4
7 85.74 4 86.43 4 221.11 4 90.15 4
8 71.13 4 70.05 4 199.40 4 68.46 4
9 5491 4 57.41 4 176.05 4 54.07 4
10 46.26 4 46.89 4 14986 4 47.61 4
11 37.62 4 39.11 4 133.48 4 39.51 4
12 31.22 4 33.91 4 12735 4 33.16 4
13 27.83 4 29.10 4 11286 4 28.97 4
14 2423 4 26.78 4 104.37 4 25.00 4
15 21.10 4 23.17 4 94.77 4 22.67 4
16 1892 4 20.06 4 90.16 4 19.50 4
18 - - - - 84.83 4 16.19 4
20 - - - - 74.12 4 13.43 4
25 - - - - 57.37 4 9.07 4
30 - - - - 47.00 4 6.41 4
35 - - - - 39.24 4 4.72 4
40 - - - - 33.15 4 3.80 4
45 - - - - 29.21 4 3.05 4
50 - - - - 25.30 4 2.54 4

Table C.29: Benchmark of NFA minimisation algorithms (20 states).

k M H B I
Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.

2 17909 4 17098 4 229.62 4 20498 4
3 9317 4 97.83 4 155.64 4 98.75 4
4 5733 4 59.15 4 107.71 4 56.12 4
5 39.14 4 38.29 4 89.05 4 38.63 4
6 27.38 4 28.09 4 72.51 4 27.72 4
7 2054 4 20.83 4 62.12 4 21.01 4

continued on next page

C.2. NFAS 195

continued from previous page

k M H B 1

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
8 16.14 4 16.62 4 5451 4 16.61 4
9 13.06 4 1335 4 48.67 4 1350 4
10 1074 4 11.05 4 4437 4 11.00 4
11 8.83 4 9.05 4 3871 4 9.31 4
12 753 4 8.01 4 35.14 4 7.80 4
13 637 4 6.68 4 3284 4 6.79 4
14 5.67 4 5.86 4 30.02 4 5.78 4
15 4.96 4 5.10 4 2826 4 5.18 4
16 4.40 4 4.57 4 26.61 4 4.60 4
18 3.47 4 - - 23.66 4 3.66 4
20 2.84 4 - - 2142 4 2.94 4
25 1.83 4 - - 1641 4 1.90 4
30 1.25 4 - - 1328 4 1.32 4
35 092 4 - - 11.63 4 1.00 4
40 070 4 - - 9.98 4 0.76 4
45 056 192 - - 8.84 204 0.60 196
50 045 556 - - 7.47 212 0.49 208

Table C.30: Benchmark of NFA minimisation algorithms (40 states).

k M H B I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 4772 4 4548 4 5727 4 47.67 4
3 2417 4 2276 4 3722 4 2374 4
4 1429 4 1421 4 28.07 4 1453 4
5 9.74 4 9.60 4 21.86 4 9.74 4
6 6.98 4 7.00 4 1853 4 6.88 4
7 5.38 4 5.30 4 15.60 4 5.17 4
8 4.06 4 4.09 4 1357 4 4.12 4
9 3.34 4 3.35 4 1227 4 3.30 148
10 2.68 4 2.75 140 10.89 324 2.65 420
11 229 4 2.26 340 9.81 304 2.28 560
12 196 356 1.90 616 8.96 612 1.96 844
13 1.67 488 1.67 432 8.20 336 1.66 964
14 142 748 1.48 968 7.66 844 1.46 1068
15 1.25 1024 1.27 728 7.28 1432 1.25 1336
16 1.12 1052 1.12 1384 6.77 1208 1.13 1628
18 091 1772 - - 5.91 1932 0.88 2248
20 071 2224 - - 5.32 2204 0.72 2704
25 046 3392 - - 4.28 3464 0.48 3848
30 0.33 4076 - - 3.58 4052 0.33 4848
35 024 5556 - - 2.99 5340 0.24 5572
40 0.18 7212 - - 2.65 7060 0.19 7092
45 0.14 8684 - - 2.36 7264 0.15 8104

50 0.11 10972 - - 2.02 9300 0.12 9276

196 APPENDIX C. FINITE AUTOMATA MINIMISATION

Table C.31: Benchmark of NFA minimisation algorithms (60 states).

k M H B I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 20.84 4 20.65 4 2550 4 2054 4
3 1062 4 1030 4 16.94 4 10.68 4
4 6.50 4 6.47 4 1244 4 6.45 4
5 4.35 4 434 4 1022 4 434 4
6 3.16 4 3.06 288 8.32 284 3.07 284
7 2.37 156 2.42 572 7.09 432 2.38 576
8 1.83 612 1.85 908 6.17 752 1.86 932
9 1.50 944 1.48 1084 5.43 1172 1.46 1268
10 1.19 1280 1.22 984 4.87 1512 1.24 1592
11 1.02 1780 1.04 2076 4.40 1436 1.02 2108
12 0.87 2092 0.84 1676 4.03 2200 0.86 2404
13 0.75 2024 0.76 2692 3.80 2224 0.75 2528
14 0.65 2556 0.64 2048 3.48 2364 0.65 2856
15 057 2828 0.57 3100 3.29 3276 0.56 2952
16 0.50 3196 0.50 3544 3.08 3064 0.50 3516
18 - - - - 2.66 3784 0.41 3932
20 - - - - 2.42 4700 0.32 5008
25 - - - - 1.92 6324 0.21 5896
30 - - - - 1.60 7240 0.15 7400
35 - - - - 1.37 9236 0.11 11968
40 - - - - 1.18 11588 0.08 14148
45 - - - - 1.03 13408 0.06 15564
50 - - - - 0.93 15276 0.05 17344

Table C.32: Benchmark of NFA minimisation algorithms (80 states).

k M H B I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 11.72 4 11.66 4 1412 4 1155 4
3 5.93 4 6.04 4 9.63 4 6.01 4
4 371 4 3.60 4 7.16 4 3.69 136
5 2.43 84 2.46 748 571 472 2.45 576
6 1.83 776 1.79 1404 4.66 1012 1.78 948
7 1.35 820 1.33 1476 3.99 1592 1.34 1920
8 1.04 1016 1.04 1792 3.46 1376 1.05 1408
9 0.84 2192 0.82 1628 3.14 1796 0.83 2556
10 071 2084 0.68 2652 2.76 2688 0.69 2624
11 0.58 2860 0.58 3464 2.52 2816 0.57 3192
12 049 2952 0.47 3428 2.33 4008 0.49 3440
13 041 3224 0.42 4452 2.15 3836 0.42 4524
14 037 3912 0.36 3884 2.01 4436 0.36 4904
15 031 4544 0.32 4416 1.87 5312 0.32 4288
16 0.28 4780 0.27 4460 1.73 5952 0.28 4584
18 0.23 6560 - - 1.55 6112 0.23 5652
20 0.18 8828 - - 1.37 7448 0.18 7864
25 0.12 10720 - - 1.09 10916 0.12 11392

continued on next page

C.2. NFAS

continued from previous page

k M H B

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
30 0.08 15120 - - 0.91 13304 0.08 13980
35 0.06 16836 - - 0.77 14108 0.06 16532
40 0.04 20416 - - 0.68 18824 0.04 21000
45 0.03 24240 - - 0.59 20952 0.03 23700
50 0.03 28388 - - 0.55 22312 0.02 25184

Table C.33: Benchmark of NFA minimisation algorithms (100 states).

k M H B I

Perf. Sp. Perf. Sp. Perf. Sp. Perf. Sp.
2 754 4 728 4 920 4 746 4
3 3.84 164 388 672 6.13 324 375 384
4 237 692 2.31 1252 459 708 238 632
5 1.59 932 1.56 1268 357 1344 1.57 1508
6 1.14 2160 1.13 2088 298 2648 1.14 2496
7 0.87 2744 0.86 3452 244 3840 0.88 2888
8 0.68 3192 0.67 3432 227 3488 0.67 3500
9 0.54 3600 0.53 4940 2.00 3900 0.54 4928
10 045 4568 0.43 4512 1.77 4816 0.44 4572
11 037 5364 036 5160 1.65 5964 0.37 5508
12 031 6512 031 5752 1.51 7188 0.31 5872
13027 7592 027 6712 136 7388 0.27 6788
14 023 7236 023 7772 1.29 8460 023 8132
15 020 10088 020 9216 1.19 8068 0.20 9964
16 0.18 10744 0.18 10996 1.10 8948 0.18 10916
18 0.14 12660 - - 097 9848 0.14 12072
20 0.11 14304 - - 0.87 11840 0.11 12700
25 0.07 20120 - - 0.68 17692 0.07 18648
30 0.05 24512 - - 0.58 21520 0.05 25716
35 0.04 27896 - - 0.49 26824 0.03 26828
40 0.03 31060 - - 0.43 27860 0.03 34508
45 0.02 37336 - - 0.38 34160 0.02 36040
50 0.01 42280 - - 035 39916 0.02 39924

197

198 APPENDIX C. FINITE AUTOMATA MINIMISATION

Appendix D

Finite automata equivalence-testing

The tables on the following sections present experimental comparative results of several equivalence-testing
algorithms for finite automata (cf. Chapter 9). The sampling and experimental study were conducted as

described in Chapter 5, using datasets of 10 000 pairs of automata with n states over an alphabet of k symbols.

We present the results of only two algorithms which employ the usual minimisation-based method of testing
DFAs’ equivalence (cf. Section 9.1): DFA-MINIMISE-MOORE and DFA-MINIMISE-INCREMENTAL. We
already know, from the experimental results presented on Chapter 8, that the fastest DFA minimisation algo-
rithm is DFA-MINIMISE-INCREMENTAL, followed by DFA-MINIMISE-MOORE. Therefore, adding results
for DFA-MINIMISE-HOPCROFT, DFA-MINIMISE-BRZOZOWSKI, or DFA-MINIMISE-WATSON would bring
no surprise. For matters of space economy, the names of the algorithms are not used. Instead, the following

mapping applies.

Algorithm Name Column Id.
DFA-MINIMISE-MOORE M
DFA-MINIMISE-BRZOZOWSKI B
DFA-MINIMISE-INCREMENTAL I
DFA-EQUIVALENT-HK-P HK
NFA-EQUIVALENT-HKE-P HKe
DFA-EQUIVALENT-HKS-P HKs

Column Perf. refers to the performance of the given algorithm, i.e., the number of pairs of automata tested
for equivalence per second. The memory usage, in kilobytes, is shown on column Sp., and column Iter.

presents the average number of recursive calls (meaningful only on some algorithms) necessary to decide the

199

200 APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

equivalence of two automata.

D.1 ICDFAs

Table D.1: Benchmark of ICDFA equivalence-testing algorithms (10 states).

k M I HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. TIter. Perf. Sp. Tter. Perf. Sp. Tter.
2 1526.7 4 1913.8 4 2989.5 4 18.9 76335 4 2.5 15384.6 4 2.5
3 1303.7 4 1527.8 4 2600.7 4 18.9 71684 4 2.6 13986.0 4 2.6
4 1256.2 4 13140 4 2247.1 4 19.0 6451.6 4 2.6 12195.1 4 2.6
5 11204 4 1298.7 4 20283 4 19.0 5698.0 4 2.6 10989.0 4 2.6
6 971.3 4 1197.6 4 1742.1 4 19.0 54945 4 2.7 9900.9 4 2.7
7 916.5 4 1074.1 4 16103 4 19.0 5050.5 4 2.7 9803.9 4 2.7
8 914.0 4 1189.7 4 1464.1 4 19.0 4566.2 4 2.7 8510.6 4 2.7
9 789.5 4 991.0 4 13477 4 19.0 4587.1 4 2.7 8968.6 4 2.7
10 8133 4 988.1 4 1265.8 4 19.0 45045 4 2.7 8474.5 4 2.7
11 780.6 4 942.0 4 1196.1 4 19.0 4291.8 4 2.7 7751.9 4 2.7
12 7633 4 913.6 4 11723 4 19.0 42016 4 2.7 7968.1 4 2.7
13 7824 4 944.7 4 1066.0 4 19.0 3846.1 4 2.7 7299.2 4 2.7
14 747.1 4 834.0 4 1002.0 4 19.0 36563 4 2.7 7067.1 4 2.7
15 6445 4 790.8 4 943.8 4 19.0 36429 4 2.7 6872.8 4 2.7
16 6055 4 763.6 4 886.5 4 19.0 3565.0 4 2.7 6369.4 4 2.7
18 516.6 4 700.2 4 828.5 4 19.0 33333 4 2.7 6172.8 4 2.7
20 508.0 4 664.0 4 811.3 4 19.0 3262.6 4 2.6 53333 4 2.6
25 4128 4 550.8 4 649.1 4 19.0 2656.0 4 2.7 4914.0 4 2.7
30 364.6 4 520.4 4 548.3 4 19.0 2607.5 4 2.6 4395.6 4 2.6
35 3261 4 447.7 4 469.3 4 19.0 21857 4 2.6 4115.2 4 2.6
40 296.2 4 402.1 4 414.8 4 19.0 20703 4 2.6 3436.4 4 2.6
45 271.1 4 361.0 4 395.8 4 19.0 19379 4 2.6 3257.3 4 2.6
50 241.6 4 325.7 4 337.4 4 19.0 18535 4 2.6 3030.3 4 2.6
Table D.2: Benchmark of ICDFA equivalence-testing algorithms (20 states).
k M I HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. Tter. Perf. Sp. Iter. Perf. Sp. Iter.
2 3848 4 577.0 4 1628.6 4 38.9 55555 4 2.7 122699 4 2.7
3 3741 4 5124 4 1356.8 4 38.9 50125 4 2.8 10989.0 4 2.8
4 3562 4 501.8 4 1156.0 4 38.9 45558 4 2.8 9569.3 4 2.8
5 3492 4 4758 4 10438 4 39.0 44843 4 29 8733.6 4 2.9
6 3266 4 4673 4 925.9 4 39.0 39138 4 29 7692.3 4 2.9
7 2998 4 4258 4 825.0 4 39.0 36429 4 29 7407.4 4 29
8 2883 4 4057 4 744.0 4 39.0 34305 4 3.0 6329.1 4 3.0
9 2622 4 408.6 4 671.8 4 39.0 33613 4 29 6369.4 4 2.9
10 2734 4 3885 4 656.3 4 39.0 31645 4 29 5747.1 4 29
11 2475 4 3813 4 673.6 4 39.0 28089 4 3.0 5571.0 4 3.0
12 2323 4 366.5 4 566.0 4 39.0 29239 4 3.0 5128.2 4 3.0
13 2212 4 3477 4 503.1 4 39.0 27210 4 3.0 4987.5 4 3.0

continued on next page

D.1. ICDFAS 201
continued from previous page
k M HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. Tter. Perf. Sp. Iter. Perf. Sp. Iter.
14 217.1 4 3432 4 487.6 4 39.0 25839 4 3.1 47732 4 3.1
15 2068 4 3338 4 4472 4 39.0 25220 4 3.0 4566.2 4 3.0
16 1976 4 313.0 4 4331 4 39.0 23809 4 3.0 44052 4 3.0
18 1988 4 2899 4 396.6 4 39.0 22624 4 3.0 39138 4 3.0
20 1813 4 2735 4 363.1 4 39.0 22321 4 3.0 34305 4 3.0
25 160.6 4 237.1 4 291.0 4 39.0 17889 4 3.0 3058.1 4 3.0
30 1430 4 2075 4 2457 4 39.0 16233 4 3.1 26109 4 3.1
35 1288 4 193.1 4 2119 4 39.0 1473.8 4 3.0 23282 4 3.0
40 1160 4 176.4 4 1859 4 39.0 14054 4 29 2162.1 4 2.9
45 1026 4 1599 4 1662 4 39.0 12658 4 2.9 1926.7 4 2.9
50 955 4 1475 4 147.1 4 39.0 11574 4 29 17953 4 2.9
Table D.3: Benchmark of ICDFA equivalence-testing algorithms (30 states).
k M I HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. Tter. Perf. Sp. Tter. Perf. Sp. Iter.
2 1640 4 288.6 28 1196.1 4 58.9 42735 4 2.8 116959 4 2.8
3 1529 4 2717 44 907.4 4 58.9 4016.0 4 2.9 9708.7 4 2.9
4 1545 4 2478 60 787.7 4 58.9 3603.6 4 2.8 8695.6 4 2.8
5 1565 4 2379 72 672.9 4 58.9 3508.7 4 2.9 7092.1 4 2.9
6 1542 4 2309 88 611.2 4 59.0 3062.7 4 2.9 7142.8 4 29
7 1373 4 2253 100 546.4 4 59.0 2849.0 4 3.1 6079.0 4 3.1
8 1317 4 216.7 108 490.0 4 59.0 26350 4 3.0 5780.3 4 3.0
9 1300 4 200.7 108 460.6 4 59.0 25316 4 3.1 5291.0 4 3.1
10 1255 4 202.6 116 421.7 4 59.0 2386.6 4 3.0 4901.9 4 3.0
11 1225 4 1903 116 395.8 4 59.0 21953 4 3.1 4184.1 4 3.1
12 1171 4 180.4 120 375.1 4 59.0 22271 4 3.1 4219.4 4 3.1
13 1135 4 179.0 124 348.0 4 59.0 21482 4 3.1 3976.1 4 3.1
14 1119 4 1777 124 305.8 4 59.0 20408 4 3.1 3809.5 4 3.1
15 1074 4 1622 128 296.0 4 59.0 2081.1 4 3.1 3649.6 4 3.1
16 1035 4 165.1 124 278.7 4 59.0 19212 4 32 3389.8 4 3.2
18 1023 4 1577 128 266.0 4 59.0 1776.1 4 32 3003.0 4 32
20 96.8 4 149.6 132 238.4 4 59.0 1666.6 4 32 2773.9 4 32
25 847 80 130.6 136 186.1 4 59.0 1336.0 4 33 24154 4 33
30 771 84 118.0 136 160.3 4 59.0 1240.6 4 32 2004.0 4 32
35 704 84 109.1 140 135.5 4 59.0 1116.0 4 32 1768.3 4 3.2
40 63.6 172 98.7 144 120.8 4 59.0 10362 4 32 1571.0 4 32
45 60.6 740 92.8 144 107.8 4 59.0 947.4 4 32 1451.3 4 3.2
50 573 3524 86.7 148 98.9 4 59.0 879.5 4 3.1 1333.3 4 3.1
Table D.4: Benchmark of ICDFA equivalence-testing algorithms (40 states).
k M I HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. Tter. Perf. Sp. Iter. Perf. Sp. Iter.
2 837 4 164.6 100 8853 4 78.9 3565.0 4 2.7 99009 4 2.7
3 933 4 1620 172 7155 4 78.9 32362 4 2.8 8298.7 4 2.8
4 82 4 148.0 188 667.7 4 78.9 29985 4 29 73529 4 2.9

continued on next page

202 APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

continued from previous page

k M I HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. TIter. Perf. Sp. Iter. Perf. Sp. Tter.
5 81.6 4 151.5 228 556.6 4 78.9 27855 4 3.0 66225 4 3.0
6 715 4 142.0 244 4622 4 79.0 23837 4 2.8 5763.6 4 2.8
7 755 4 1333 268 4047 4 79.0 23364 4 3.0 52219 4 3.0
8 744 180 1262 272 385.1 4 79.0 22598 4 3.1 4672.8 4 3.1
9 72.6 84 123.1 292 3389 4 79.0 21857 4 3.2 42372 4 32
10 695 156 119.8 292 305.0 4 79.0 2016.1 4 3.1 3976.1 4 3.1
11 702 84 119.0 300 2776 4 79.0 19379 4 3.1 38314 4 3.1
12 679 84 114.1 308 2583 4 79.0 17857 4 3.2 35714 4 32
13 66.6 84 108.9 308 2457 4 79.0 1760.5 4 33 34129 4 33
14 645 172 109.7 320 233.0 4 79.0 17559 4 3.1 32362 4 3.1
15 633 172 1045 316 2167 4 79.0 15974 4 32 29629 4 32
16 635 432 107.2 320 197.8 4 79.0 15455 4 3.2 28653 4 32
18 60.7 300 101.0 332 1913 4 79.0 14958 4 33 25348 4 33
20 598 620 96.1 332 178.1 4 79.0 1398.6 4 33 22675 4 33
25 52.0 1900 84.2 340 1385 4 79.0 1088.7 4 34 19782 4 34
30 47.1 2308 76.9 344 1183 4 79.0 956.0 4 34 1626.0 4 34
35 442 3044 71.3 348 1035 4 79.0 902.9 4 34 14450 4 34
40 41.8 3908 66.4 352 93.1 4 79.0 787.0 4 34 1270.6 4 34
45 379 4492 60.6 352 84.9 4 79.0 733.1 4 34 11454 4 34
50 367 5028 58.4 356 75.7 4 79.0 673.1 4 34 1065.5 4 34
Table D.5: Benchmark of ICDFA equivalence-testing algorithms (50 states).
k M I HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. TIter. Perf. Sp. Iter. Perf. Sp. Iter.
2 554 4 107.1 276 677.0 4 98.9 3003.0 4 2.7 10101.0 4 2.7
3 548 4 103.4 296 565.7 4 98.9 2617.8 4 29 8333.3 4 2.9
4 545 256 100.2 388 468.7 4 98.9 25445 4 3.0 6825.9 4 3.0
5 53.0 4 95.6 412 4133 4 99.0 22522 4 2.9 5665.7 4 2.9
6 515 172 89.9 440 3674 4 99.0 2016.1 4 32 5050.5 4 32
7 50.1 176 87.1 468 3248 4 99.0 1876.1 4 3.1 4347.8 4 3.1
8 49.8 428 86.1 500 2825 4 99.0 1858.7 4 3.0 4008.0 4 3.0
9 479 624 83.3 512 261.0 4 99.0 16934 4 32 3816.7 4 32
10 48.0 84 82.0 524 2320 4 99.0 1661.1 4 3.1 3590.6 4 3.1
11 478 816 80.0 540 2113 4 99.0 15540 4 32 3294.8 4 32
12 46.1 1132 71.7 548 2043 4 99.0 15408 4 3.2 3164.5 4 32
13 455 876 75.2 564 187.8 4 99.0 14925 4 35 2865.3 4 35
14 446 1708 74.2 564 184.1 4 99.0 13755 4 33 2832.8 4 33
15 438 4176 72.7 568 1682 4 99.0 1386.0 4 33 2673.7 4 33
16 417 3920 73.5 572 160.3 4 99.0 13342 4 3.2 2518.8 4 3.2
18 42,0 2116 69.3 580 1514 4 99.0 12084 4 3.5 2134.4 4 3.5
20 412 2524 67.4 588 1409 4 99.0 11527 4 34 1962.7 4 34
25 362 4140 60.8 600 110.6 4 99.0 932.8 4 33 1662.5 4 33
30 342 4908 56.3 612 95.0 4 99.0 825.7 4 34 1356.8 4 34
35 317 6092 52.4 616 83.6 4 99.0 731.5 4 35 1240.6 4 3.5
40 295 13580 48.0 620 74.0 4 99.0 659.8 4 35 1090.5 4 35

continued on next page

D.1. ICDFAS 203

continued from previous page

k M I HK HKe HKs

Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Tter.
45 284 13556 453 620 67.6 4 99.0 608.0 4 35 1000.0 4 35
50 258 13536 41.8 624 59.8 4 99.0 5836 4 3.4 885.7 4 34

Table D.6: Benchmark of ICDFA equivalence-testing algorithms (60 states).

k M I HK HKe HKs

Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Tter. Perf. Sp. Iter.
2 379 428 7777 352 564.0 4 118.9 2604.1 4 2.7 9661.8 4 2.7
3 385 172 743 476 4642 4 118.9 23952 4 29 8000.0 4 29
4 382 684 71.6 588 3829 4 118.9 1869.1 4 29 51282 4 29
5 37.1 876 683 640 3380 4 118.9 18399 4 3.1 45454 4 3.1
6 36.1 1136 64.8 696 2994 4 119.0 1632.6 4 3.0 42553 4 3.0
7 352 1132 635 724 2735 4 119.0 15552 4 3.1 3937.0 4 3.1
8 36.6 84 632 756 2420 4 119.0 15255 4 3.1 3629.7 4 3.1
9 36.0 328 61.8 792 230.1 4 119.0 14440 4 3.1 32894 4 3.1
10 358 2224 60.2 816 208.7 4 119.0 13351 4 32 28735 4 32
11 337 2664 59.0 820 196.0 4 119.0 13029 4 32 2836.8 4 32
12 33.0 2968 57.8 848 1819 4 119.0 1221.7 4 32 25673 4 32
13 326 3608 56.7 848 167.1 4 119.0 1162.1 4 32 23337 4 32
14 325 3904 557 864 1602 4 119.0 11554 4 33 22624 4 33
15 31.6 3896 543 868 1525 4 119.0 11223 4 33 2127.6 4 33
16 30.7 3544 532 876 1444 4 119.0 1079.9 4 33 2169.1 4 33
18 30.8 4284 504 896 1327 4 119.0 10293 4 3.3 18975 4 33
20 295 4832 48.8 900 1174 4 119.0 907.4 4 34 17079 4 34
25 269 6984 438 1056 95.2 4 119.0 729.9 4 34 1382.1 4 34
30 247 13624 409 1060 83.7 4 119.0 660.2 4 3.6 11641 4 3.6
35 239 9648 39.5 1108 71.7 4 119.0 601.3 4 34 10504 4 34
40 223 13592 36.0 1116 62.8 4 119.0 541.8 4 3.5 942.0 4 35
45 205 12540 335 1120 56.0 4 119.0 490.4 4 3.5 834.7 4 35
50 19.6 14104 323 1124 51.7 4 119.0 466.3 4 3.5 759.0 4 35

Table D.7: Benchmark of ICDFA equivalence-testing algorithms (70 states).

k M 1 HK HKe HKs

Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Tter.
2 284 880 58.1 472 486.1 4 138.9 2237.1 4 2.7 89285 4 2.7
3 28.7 940 548 o644 387.6 4 138.9 17969 4 2.8 5681.8 4 2.8
4 28.1 1392 52.1 780 3369 4 138.9 1721.1 4 3.0 50125 4 3.0
5 27.4 2160 50.6 896 291.0 4 138.9 1662.5 4 3.0 4291.8 4 3.0
6 26.5 2220 492 960 262.7 4 138.9 14619 4 3.0 3690.0 4 3.0
7 26.0 3900 48.6 1024 2335 4 139.0 1400.5 4 3.1 34662 4 3.1
8 263 3244 47.8 1088 210.8 4 139.0 1303.7 4 3.0 31948 4 3.0
9 25.5 3700 46.8 1108 1915 4 139.0 1273.8 4 3.1 29940 4 3.1
10 25.0 3540 450 1136 1819 4 139.0 1189.7 4 3.0 28409 4 3.0
11 246 4576 443 1180 168.8 4 139.0 1097.0 4 3.1 25673 4 3.1

continued on next page

204

APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

continued from previous page

k M HK HKe HKs

Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Tter. Perf. Sp. Iter.
12 244 3976 43.2 1180 157.0 4 139.0 11043 4 32 23529 4 32
13 234 5080 42.4 1328 1463 4 139.0 1071.8 4 3.1 23094 4 3.1
14 239 10640 41.8 1224 1392 4 139.0 1063.8 4 32 2100.8 4 32
15 233 5672 41.6 1224 1249 4 139.0 952.3 4 3.2 2018.1 4 32
16 227 6264 40.6 1228 122.1 4 139.0 931.5 4 33 1851.8 4 33
18 226 13560 38.9 1256 1082 4 139.0 907.0 4 34 16142 4 34
20 224 13272 37.6 1268 1004 4 139.0 817.3 4 3.6 15325 4 3.6
25 205 13700 34.6 1868 81.4 4 139.0 657.4 4 3.5 12376 4 3.5
30 18.6 23584 31.7 1908 71.5 4 139.0 589.7 4 3.6 10793 4 3.6
35 18.0 14144 30.0 1856 59.8 4 139.0 533.0 4 3.6 953.2 4 3.6
40 16.8 16248 27.9 1988 54.7 4 139.0 478.3 4 3.7 824.4 4 3.7
45 16.0 32320 27.0 2000 49.8 4 139.0 439.5 4 3.7 744.3 4 3.7
50 14.6 32288 25.0 2008 43.3 4 139.0 406.5 4 3.7 679.5 4 3.7

Table D.8: Benchmark of ICDFA equivalence-testing algorithms (80 states).

k M HK HKe HKs

Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.
2 19.8 4780 423 696 407.6 4 158.9 1792.1 4 2.8 6309.1 4 2.8
3 20.0 3860 41.2 940 338.6 4 158.9 16393 4 2.9 51546 4 29
4 19.6 5548 39.6 1080 2939 4 158.9 15503 4 2.9 44843 4 2.9
5 204 6572 39.3 1200 257.0 4 158.9 1499.2 4 3.0 41152 4 3.0
6 19.9 6828 38.5 1296 2245 4 159.0 12820 4 3.0 35335 4 3.0
7 19.5 7264 37.8 1372 2049 4 159.0 12437 4 3.0 32894 4 3.0
8 19.0 7260 36.7 1576 185.0 4 159.0 11534 4 3.1 29154 4 3.1
9 18.6 6768 35.9 1752 1659 4 159.0 1121.0 4 3.2 26809 4 32
10 184 8800 35.3 1652 157.1 4 159.0 10405 4 33 2433.0 4 33
11 182 7500 34.9 1952 1478 4 159.0 10256 4 33 23094 4 33
12 179 9864 33.9 1712 1362 4 159.0 981.3 4 32 21739 4 3.2
13 17.6 16184 333 1860 1294 4 159.0 932.8 4 3.2 19569 4 32
14 173 15664 32.0 1888 1222 4 159.0 913.2 4 33 1876.1 4 33
15 17.6 15680 323 1900 1123 4 159.0 879.1 4 33 1760.5 4 33
16 16.9 14968 31.8 2180 108.1 4 159.0 871.4 4 33 1652.8 4 33
18 174 16204 30.7 1940 96.2 4 159.0 798.4 4 35 14903 4 3.5
20 171 15524 304 2088 89.5 4 159.0 745.7 4 34 1373.6 4 34
25 155 17124 272 2916 73.1 4 159.0 569.9 4 35 11655 4 3.5
30 147 18932 26.0 2924 58.0 4 159.0 524.2 4 3.6 985.2 4 3.6
35 13.7 35460 240 3012 53.6 4 159.0 473.2 4 3.6 852.8 4 3.6
40 129 34656 22.8 3008 48.8 4 159.0 433.4 4 3.6 764.8 4 3.6
45 122 49468 21.8 3016 41.9 4 159.0 389.9 4 3.6 672.9 4 3.6
50 11.7 34608 20.5 3080 39.5 4 159.0 361.2 4 3.8 602.9 4 3.8

Table D.9: Benchmark of ICDFA equivalence-testing algorithms (90 states).
k M HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.
2 17.0 5580 34.6 880 357.9 178.9 15105 4 2.7 61919 4 2.7

continued on next page

D.1. ICDFAS 205

continued from previous page
k M HK HKe HKs

Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Tter. Perf. Sp. Iter.
3 16.6 6448 34.1 1152 3039 4 178.9 1355.0 4 2.8 51546 4 2.8
4 16.1 7024 325 1364 2614 4 178.9 1329.7 4 2.9 4166.6 4 2.9
5 159 7644 31.6 1580 2281 4 179.0 1260.2 4 3.0 3663.0 4 3.0
6 154 7624 30.2 2048 197.8 4 179.0 10869 4 3.0 32733 4 3.0
7 15.1 8732 29.3 2296 1804 4 179.0 10649 4 3.1 29498 4 3.1
8 15.0 9708 29.2 2380 161.5 4 179.0 1006.5 4 3.1 2688.1 4 3.1
9 148 9724 289 2416 149.6 4 179.0 978.4 4 3.1 2469.1 4 3.1
10 148 16500 28.0 2612 1349 4 179.0 926.3 4 3.1 23474 4 3.1
11 147 11380 27.2 2908 1255 4 179.0 878.3 4 3.1 21321 4 3.1
12 144 12188 27.2 2944 1174 4 179.0 846.7 4 32 1990.0 4 32
13 142 12740 26.6 2840 109.6 4 179.0 831.9 4 3.2 1892.1 4 3.2
14 138 12948 26.2 2868 1049 4 179.0 804.1 4 33 17452 4 33
15 140 11004 259 2884 98.0 4 179.0 779.4 4 33 16299 4 33
16 135 14656 253 2912 93.7 4 179.0 751.3 4 3.4 1526.7 4 34
18 134 23908 24.6 2948 87.4 4 179.0 713.7 4 33 1391.7 4 33
20 133 17016 242 3104 77.9 4 179.0 654.2 4 3.5 1261.8 4 3.5
25 124 34832 21.7 4020 64.3 4 179.0 509.2 4 35 10729 4 3.5
30 11.6 34820 20.3 4100 53.7 4 179.0 444.6 4 3.7 909.5 4 3.7
35 10.8 34748 19.4 4136 45.7 4 179.0 408.7 4 3.6 759.8 4 3.6
40 103 28752 184 4152 42.4 4 179.0 380.3 4 3.6 683.2 4 3.6
45 9.8 34156 17.0 4208 36.3 4 179.0 345.5 4 3.8 615.5 4 3.8
50 9.1 37292 163 4272 34.5 4 179.0 326.3 4 3.9 548.6 4 3.9

Table D.10: Benchmark of ICDFA equivalence-testing algorithms (100 states).

k M HK HKe HKs

Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.
2 119 6828 269 1016 3274 4 198.9 1337.7 4 2.8 58139 4 2.8
3 126 6760 27.0 1428 271.0 4 198.9 1319.2 4 2.9 5076.1 4 2.9
4 12.6 10876 259 2092 2319 4 198.9 1207.7 4 3.0 41928 4 3.0
5 125 9324 26.0 2180 2025 4 199.0 11325 4 3.0 36363 4 3.0
6 122 5680 244 2916 1772 4 199.0 993.0 4 3.0 31152 4 3.0
7 12.0 10560 242 3136 159.8 4 199.0 956.0 4 3.1 2805.0 4 3.1
8 12.1 15636 237 3228 1498 4 199.0 925.9 4 3.1 2531.6 4 3.1
9 11.9 12036 234 3760 1350 4 199.0 872.2 4 3.2 2306.8 4 3.2
10 11.8 15588 232 3500 1254 4 199.0 827.8 4 32 20533 4 3.2
11 11.9 6400 222 3696 1140 4 199.0 793.6 4 3.2 19193 4 3.2
12 11.7 14380 222 3712 108.1 4 199.0 773.0 4 33 18535 4 33
13 114 15496 219 3744 1023 4 199.0 738.8 4 33 16750 4 33
14 114 16756 21.6 4092 96.1 4 199.0 736.9 4 33 1603.8 4 33
15 11.2 17500 21.6 4208 89.3 4 199.0 710.2 4 33 1539.6 4 33
16 11.2 17636 212 3976 85.2 4 199.0 679.3 4 3.4 14094 4 34
18 11.1 19840 20.2 4004 75.2 4 199.0 624.2 4 35 1287.0 4 35
20 10.6 20804 19.7 4176 69.3 4 199.0 576.3 4 3.4 11043 4 34
25 99 34860 18.0 5148 56.8 4 199.0 451.6 4 35 913.6 4 35
30 94 34764 172 5196 47.1 4 199.0 406.3 4 3.6 799.0 4 3.6

continued on next page

206 APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

continued from previous page

k M I HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Iter. Perf. Sp. Iter.
35 9.0 33860 16.0 5260 419 4 199.0 3740 4 3.7 6975 4 3.7
40 85 37796 155 4916 378 4 199.0 346.8 4 3.7 6251 4 3.7
45 82 41772 147 4980 337 4 199.0 319.7 4 3.7 560.6 4 3.7
50 7.7 72696 13.6 5484 307 4 199.0 2962 4 4.0 4937 4 4.0
Table D.11: Benchmark of ICDFA equivalence-testing algorithms (1000 states).
k M I HK HKe HKs
Perf. Sp. Perf. Sp. Perf. Sp. Iter. Perf. Sp. Tter. Perf. Sp. Iter.
2 0 722008 0.1 106048 198 4 1998.9 384 4 1.9 1003.0 4 1.9
30 709360 0.1 89628 172 4 1998.9 330 4 2.0 742.6 4 2.0
5 0 750956 0.1 106156 141 4 1998.9 343 4 2.0 471.1 4 2.0

D.2 NFAs

D.2.1 Transition density 0.1

Table D.12: Benchmarks of NFA equivalence-testing algorithms (10 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 11325 4 2469.13 4 2.65
3 16.83 156 1996.00 4 2.87
4 4.53 268 1647.44 4 3.27
5 1.82 80 1336.89 4 3.87
6 0.92 940 1113.58 4 4.27
7 0.53 96 896.05 4 4.95
8 0.34 9672 708.71 4 6.30
9 0.23 8900 653.16 4 6.52
10 0.17 14772 491.40 4 8.47
11 0.12 13364 453.30 4 8.84
12 0.09 14896 353.73 4 11.10
13 0.08 14580 305.34 4 12.03
14 0.06 17444 279.87 4 12.25
15 0.05 16864 247.64 4 12.83
16 0.04 18524 223.26 4 13.76
18 0.03 19232 168.71 4 17.86
20 0.02 26580 144.21 4 18.64
25 0.01 35560 86.72 4 25.80
30 0 42660 59.74 4 32.48

continued on next page

D.2. NFAS 207

continued from previous page

k B HKe

Perf. Sp. Perf. Sp. Tter.
35 - - 3972 4 43.22
40 - - 3149 4 47.65
45 - - 2340 4 57.10
50 - - 2038 4 61.40

Table D.13: Benchmarks of NFA equivalence-testing algorithms (20 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 71.89 4 230.52 4 35.86
3 3.36 16 50.57 4 123.15
4 0.09 79936 18.15 4 274.71
5 0 1191140 8.72 684 482.91
6 - - 5.06 88 717.31
7 - - 3.22 2476 966.78
8 - - 241 10348 1155.18
9 - - 1.69 15468 1468.38
10 - - 1.31 6572 1713.98
11 - - 0.97 8620 2082.52
12 - - 0.83 20336 2283.89
13 - - 0.70 20012 2474.38
14 - - 0.57 24492 2785.20
15 - - 0.48 23508 3114.74
16 - - 0.42 28272 3310.10
18 - - 0.32 29104 3882.34
20 - - 0.25 51052 4518.78
25 - - 0.16 75124 5613.25
30 - - 0.11 100684 7112.44
35 - - 0.09 172056 7614.04
40 - - 0.06 120372 9103.66
45 - - 0.05 152428 10382.44
50 - - 0.03 146560 12245.75

Table D.14: Benchmarks of NFA equivalence-testing algorithms (40 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 - - 26652 4 13.82
3 - - 68.39 4 43.58
4 - - 23.41 4 101.38
5 - - 9.69 4 202.95
6 - - 4.77 4 349.39
7 - - 2.62 84 535.15
8 - - 1.54 48 811.78
9 - - 1.01 5736 1109.62
10 - - 0.62 5872 1517.80

continued on next page

208 APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

continued from previous page

k B HKe

Perf. Sp. Perf. Sp. Iter.
1 - - 045 3544 2001.46
12 - - 0.33 29436 2541.30
13 - - 0.25 53512 3132.36
14 - - 020 32172 3616.60
15 - - 0.15 66804 4418.74
16 - - 0.11 87092 552191
18 - - 0.07 135696 7287.14
20 - - 0.04 153936 9727.51
25 - - 0.02 391644 18368.53
30 - - 0.01 502552 26557.71
35 - - 0 1446000 71860.49
40 - - 0 3368664 120343.03
45 - - 0 1097796 82113.93
50 - - 0 522788 90174.10

Table D.15: Benchmarks of NFA equivalence-testing algorithms (60 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 - - 265.60 4 8.68
3 - - 87.94 4 21.01
4 - - 34.05 4 44.80
5 - - 15.66 4 78.65
6 - - 7.97 4 127.22
7 - - 4.51 4 195.49
8 - - 2.89 4 272.07
9 - - 1.89 268 377.61
10 - - 1.28 148 495.55
1 - - 0.91 1240 632.84
12 - - 0.67 760 792.35
13 - - 0.51 1328 957.59
14 - - 0.40 1448 1163.66
15 - - 0.32 1584 1361.83
16 - - 0.25 1620 1622.38
18 - - 0.14 108 2232.30
20 - - 0.09 1092 2919.56
25 - - 0.04 6088 4733.13
30 - - 0.02 6696 8086.07
35 - - 0.01 65480 11338.04
40 - - 0 181164 16446.70
45 - - 0 192196 22649.48
50 - - 0 66524 25910.24

Table D.16: Benchmarks of NFA equivalence-testing algorithms (80 states).

k B HKe
Perf. Sp. Perf. Sp. Tter.
2 - - 202.79 4 6.58

continued on next page

D.2. NFAS 209

continued from previous page

k B HKe

Perf. Sp. Perf. Sp. Iter.
3 - - 7875 4 15.33
4 - - 3391 4 29.85
5 - - 1634 4 51.31
6 - - 8.35 4 81.92
7 - - 4.95 4 118.32
8 - - 3.08 4 164.64
9 - - 2.08 4 217.10
10 - - 1.45 80 278.06
11 - - 1.00 108 359.78
12 - - 0.76 240 433.89
13 - - 0.57 180 526.17
14 - - 0.44 248 635.16
15 - - 0.34 84 769.42
16 - - 0.29 1604 881.25
18 - - 0.18 1672 1145.70
20 - - 0.12 1392 1520.26
25 - - 0.05 3344 2604.95
30 - - 0.02 5508 4381.41
35 - - 0.01 28108 5615.67
40 - - 0.01 26392 8421.14
45 - - 0 32748 10223.66
50 - - 0 14964 14861.83

Table D.17: Benchmarks of NFA equivalence-testing algorithms (100 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 - - 17021 4 5.19
3 - - 83.62 4 10.11
4 - - 41.03 4 18.15
5 - - 20.93 4 29.11
6 - - 11.48 4 44.18
7 - - 7.12 4 62.12
8 - - 4.56 172 85.53
9 - - 3.13 384 110.08
10 - - 2.22 64 140.00
11 - - 1.62 696 173.13
12 - - 1.23 932 206.52
13 - - 0.96 864 244.11
14 - - 0.75 1256 289.14
15 - - 0.61 1356 332.79
16 - - 0.49 1636 381.38
18 - - 0.33 2132 48725
20 - - 0.24 2732 618.20
25 - - 0.11 6616 1013.27
30 - - 0.06 7652 1505.29

continued on next page

210 APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

continued from previous page

k B HKe

Perf. Sp. Perf. Sp. Iter.
35 - - 0.03 9940 2229.77
40 - - 0.02 14524 3066.48
45 - - 0.01 16020 3989.93
50 - - 0.01 15020 5296.07

D.2.2 Transition density 0.5

Table D.18: Benchmarks of NFA equivalence-testing algorithms (10 states).

k B HKe

Perf. Sp. Perf. Sp. Tter.
2 542.88 4 194552 4 3.26
3 38197 4 127551 4 4.78
4 220.84 4 873.36 4 6.66
5 159.69 4 610.50 4 8.73
6 121.16 4 430.84 4 10.92
7 10225 4 315.05 4 12.96
8 83.74 4 239.75 4 14.98
9 68.39 4 183.62 4 17.50
10 60.43 4 153.18 4 19.52
11 51.68 4 128.13 4 21.53
12 46.16 4 108.02 4 23.21
13 40.26 4 91.34 4 25.72
14 36.23 4 83.61 4 27.09
15 3272 4 70.35 4 30.26
16 29.29 4 65.01 4 31.19
18 25.04 4 53.81 4 34.45
20 20.63 4 42.35 4 39.56
25 14.29 4 27.74 4 47.77
30 10.56 4 20.05 4 54.90
35 7.66 4 15.39 4 62.10
40 6.07 96 11.78 4 70.68
45 452 68 9.59 4 76.01
50 3.66 240 7.96 4 81.83

Table D.19: Benchmarks of NFA equivalence-testing algorithms (20 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 19025 4 1798.56 4 2.58
3 10587 4 942.50 4 3.35
4 7753 4 664.01 4 4.10
5 6279 4 544.66 4 4.95
6 49.90 4 341.64 4 6.08
7 4207 4 264.48 4 6.90

continued on next page

D.2. NFAS 211

continued from previous page

k B HKe

Perf. Sp. Perf. Sp. TIter.
8 3624 4 22381 4 8.02
9 3145 4 18148 4 8.89
10 2834 4 138.14 4 10.20
11 2516 4 11397 4 11.40
12 2287 4 93.15 4 12.87
13 2049 4 80.93 4 14.01
14 18.66 4 65.18 4 15.22
15 17.16 4 56.51 4 16.83
16 1586 4 49.82 4 17.95
18 1381 4 42.52 4 20.18
20 1210 4 32.87 4 23.54
25 894 4 20.10 4 29.73
30 7.03 4 14.07 4 36.18
35 581 164 10.29 4 42.06
40 475 172 8.16 4 46.00
45 3.89 496 6.73 268 51.99
50 3.36 708 5.49 84 56.44

Table D.20: Benchmarks of NFA equivalence-testing algorithms (40 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 4545 4 773.99 4 2.49
3 29.09 4 37023 4 2.99
4 2196 4 212.85 4 3.50
5 17.52 4 159.92 4 4.04
6 1439 4 12653 4 4.55
7 1238 4 10443 4 5.11
8 11.01 4 87.10 4 5.57
9 9.59 4 73.64 4 6.05
10 8.56 4 64.69 4 6.51
11 7.62 4 52.10 4 6.92
12 6.90 4 45.87 4 7.48
13 6.12 168 41.37 172 8.07
14 571 16 36.87 340 8.63
15 540 532 33.63 712 9.03
16 521 652 30.63 908 9.57
18 438 624 25.24 1208 10.52
20 3.92 884 21.09 1752 11.68
25 3.05 1852 14.75 2648 14.16
30 2.54 3040 10.80 3260 16.77
35 210 3564 8.54 4208 18.84
40 1.79 4444 6.54 4512 21.85
45 157 6268 5.51 5552 23.75

50 1.39 5756 4.45 6128 27.18

212 APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

Table D.21: Benchmarks of NFA equivalence-testing algorithms (60 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 19.65 4 222.17 4 2.50
3 1325 4 14253 4 3.00
4 9.71 4 99.47 4 3.51
5 7.74 160 78.36 168 4.02
6 6.45 1008 61.84 856 4.48
7 5.45 1372 50.84 1264 5.03
8 4.72 1768 37.37 1884 5.54
9 4.14 2060 31.34 2328 6.04
10 3.67 2512 27.39 2676 6.41
11 335 2352 23.92 3220 7.02
12 3.04 3044 21.54 3728 7.49
13 282 3392 18.82 4224 8.11
14 2.62 3744 17.19 4636 8.42
15 245 4260 15.73 5064 8.98
16 227 4488 14.25 5516 9.62
18 195 5472 12.09 6624 10.48
20 1.82 6200 10.20 7028 11.52
25 144 8680 7.23 9996 13.93
30 1.13 11196 5.57 11216 16.34
35 0.99 16048 4.30 16152 19.10
40 085 16760 3.52 18536 21.06
45 074 18828 2.86 20940 23.41
50 0.68 24080 2.42 23848 26.10

Table D.22: Benchmarks of NFA equivalence-testing algorithms (80 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 11.04 4 129.08 4 2.52
3 7.31 4 85.82 4 2.99
4 5.52 596 62.51 576 3.49
5 4.44 1164 48.76 1284 4.01
6 3.60 2176 33.73 1848 4.49
7 3.16 1956 28.26 2596 5.00
8 2.66 3140 23.63 3240 5.53
9 2.41 3284 20.71 4016 5.94
10 216 3828 17.54 4600 6.58
11 193 4740 15.71 5192 6.96
12 1.78 5344 14.11 5580 7.55
13 1.61 5700 12.59 5924 8.07
14 151 5904 11.44 6488 8.55
15 140 7616 10.04 7516 9.13
16 133 8380 9.28 7600 9.47
18 1.16 8568 7.86 8960 10.54
20 1.04 10116 6.80 10416 11.31
25 0.83 14560 4.85 14188 14.02

continued on next page

D.2. NFAS 213

continued from previous page

k B HKe

Perf. Sp. Perf. Sp. Iter.
30 0.67 18188 3.66 18396 16.49
35 056 23308 292 20820 19.09
40 050 24356 234 24560 21.61
45 044 28892 1.92 28256 24.34
50 039 31812 1.63 32956 26.64

Table D.23: Benchmarks of NFA equivalence-testing algorithms (100 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 734 4 89.03 4 2.53
3 4.88 632 59.09 628 3.02
4 3.64 1372 43.04 1032 3.50
5 282 1872 29.62 2056 4.00
6 233 3392 2333 3192 4.51
7 2.02 4036 19.23 3228 5.06
8 1.71 4752 16.30 4956 5.49
9 1.53 5664 14.31 5460 6.04
10 1.40 6036 12.61 5692 6.50
1 - - 11.17 6360 6.99
12 - - 9.80 6812 7.55
13 - - 8.73 8496 8.04
14 1.00 10524 8.05 8656 8.57
15 091 9540 7.11 8816 9.16
16 087 11612 6.65 9880 9.54
18 075 13196 5.54 11548 10.60
20 0.67 13412 4.81 13424 1143
25 052 20232 3.47 20288 13.96
30 044 23988 2.67 22612 1648
35 038 29604 2.13 29352 18.88
40 032 33748 1.71 32644 21.61
45 029 40292 1.42 38108 23.97
50 025 41936 1.19 43544 26.77

D.2.3 Transition density 0.8

Table D.24: Benchmarks of NFA equivalence-testing algorithms (10 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 38550 4 1968.50 4 2.45
3 24366 4 1449.27 4 297
4 22701 4 1089.32 4 3.43
5 15971 4 904.15 4 3.99
6 11852 4 712.75 4 445

continued on next page

214 APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

continued from previous page

k B HKe

Perf. Sp. Perf. Sp. Iter.
7 103.79 4 620.73 4 4.98
8 93.43 4 521.64 4 5.45
9 83.64 4 430.66 4 5.88
10 76.01 4 372.16 4 6.36
11 65.73 4 328.19 4 6.82
12 6175 4 28425 4 7.28
13 5397 4 253.10 4 7.73
14 51.03 4 21394 4 8.25
15 48.49 4 191.57 4 8.77
16 45.50 4 168.63 4 9.31
18 4145 4 148.58 4 10.16
20 36.64 4 12377 4 11.13
25 2773 4 82.31 4 13.47
30 2275 4 58.74 4 15.80
35 19.01 4 43.83 4 18.16
40 16.07 4 33.95 4 20.56
45 14.54 4 27.47 4 22.84
50 12.67 4 22.20 4 25.07

Table D.25: Benchmarks of NFA equivalence-testing algorithms (20 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 106.80 4 1150.74 4 2.51
3 73.71 4 880.28 4 2.98
4 52.31 4 616.52 4 3.48
5 43.56 4 516.52 4 3.95
6 34.99 4 337.60 4 4.45
7 30.15 4 271.73 4 4.99
8 26.95 4 259.20 4 5.51
9 23.38 4 196.61 4 5.98
10 21.20 4 169.89 4 6.43
11 - - 131.01 4 6.91
12 1747 4 108.94 4 7.53
13 - - 95.61 4 7.94
14 - - 87.98 4 8.48
15 13.85 4 78.50 4 8.88
16 - - 72.85 4 9.41
18 1148 4 61.92 4 10.59
20 10.38 4 52.60 4 11.42
25 8.11 4 33.24 4 13.99
30 641 4 24.08 4 16.45
35 5.50 308 18.74 180 18.62
40 4.82 480 14.08 272 21.58
45 414 232 11.46 84 24.19

50 3.80 808 9.57 520 26.26

D.2. NFAS

Table D.26: Benchmarks of NFA equivalence-testing algorithms (40 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 2895 4 457.87 4 2.53
3 1831 4 22222 4 3.01
4 1381 4 147.66 4 3.49
5 1072 4 11559 4 3.96
6 9.40 4 84.40 4 4.52
7 7.88 148 71.12 136 5.04
8 6.82 504 58.11 440 5.50
9 6.04 720 49.30 676 6.03
10 5.62 1188 43.59 1236 6.63
11 4385 1372 35.07 1400 7.07
12 450 1268 31.21 1696 7.50
13 419 1920 27.97 1992 7.98
14 3.94 2428 25.00 2448 8.42
15 3.56 1924 22.70 2820 8.98
16 3.35 2476 20.80 3120 9.56
18 295 3200 16.52 3828 10.53
20 2.63 4112 13.72 4664 11.64
25 2.09 5884 9.83 6096 14.01
30 175 6952 7.17 7384 16.62
35 150 8248 5.57 8552 19.02
40 1.29 10480 4.38 10188 21.76
45 1.15 11440 3.60 11816 24.05
50 1.00 14664 2.98 12900 26.31

Table D.27: Benchmarks of NFA equivalence-testing algorithms (60 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 1293 4 169.11 4 2.50
3 8.33 4 10478 4 3.04
4 6.36 288 74.14 4 3.49
5 4.98 468 57.88 572 4.00
6 4.20 660 44.68 1180 4.56
7 3.50 1524 38.03 1664 4.97
8 3.04 1492 28.43 2112 5.51
9 2.66 2144 24.07 2304 5.98
10 246 3044 20.97 3088 6.58
11 223 3500 18.31 3708 7.07
12 2.06 3112 16.52 4144 7.44
13 1.87 3816 14.24 4212 7.99
14 1.78 4080 12.95 4844 8.42
15 1.6l 4772 11.84 5312 9.00
16 1.52 5712 10.86 5780 9.46
18 1.36 6100 9.05 6356 10.45
20 1.19 7844 7.64 7212 11.50
25 095 10512 5.43 10848 13.88

continued on next page

215

216 APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

continued from previous page

k B HKe

Perf. Sp. Perf. Sp. Iter.
30 078 12912 4.07 12440 16.92
35 0.67 17604 3.09 17668 19.32
40 059 18264 256 20140 21.34
45 052 21444 2.09 21968 24.01
50 046 23228 1.77 22088 26.41

Table D.28: Benchmarks of NFA equivalence-testing algorithms (80 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 7.08 4 9544 4 2.50
3 476 240 63.68 348 3.02
4 351 384 45776 784 3.52
5 284 1136 3593 1600 4.02
6 2.34 1936 24.87 2376 4.53
7 2.01 3080 20.94 2532 4.98
8 1.76 3200 17.90 3160 5.50
9 1.54 3876 1541 3612 5.99
10 140 4444 13.15 4520 6.46
11 128 5660 11.76 5052 6.92
12 1.17 5844 1031 5644 7.47
13 1.07 6348 9.33 5620 8.05
14 099 6620 8.58 6444 8.44
15 094 8228 7.66 7724 9.00
16 086 9244 7.00 7352 9.45
18 075 8636 5.88 8976 10.56
20 0.66 11080 4.93 12432 11.58
25 054 16940 3.58 14296 13.95
30 045 18420 2.67 18656 16.55
35 038 23144 2.13 22052 18.84
40 032 28588 1.69 28112 21.73
45 029 30648 1.38 32112 2391
50 026 34552 1.19 34796 26.05

Table D.29: Benchmarks of NFA equivalence-testing algorithms (100 states).

k B HKe

Perf. Sp. Perf. Sp. Iter.
2 462 84 64.27 252 2.46
3 3.07 1052 42.01 892 3.03
4 226 2400 30.87 2256 3.49
5 183 3076 20.71 3100 3.98
6 149 4396 16.89 4000 4.49
7 128 6436 13.89 4824 5.10
8 1.09 7348 11.60 5872 5.56
9 099 7516 1022 6616 598

continued on next page

D.2. NFAS 217

continued from previous page

k B HKe

Perf. Sp. Perf. Sp. Iter.
10 0.89 8544 8.96 8008 6.44
11 - - 7.96 8452 6.98
12 - - 6.91 9960 7.61
13 - - 6.25 10168 8.14
14 065 13104 5.51 12636 8.56
15 0.58 13288 507 11972 9.20
16 056 15532 4.67 14532 951
18 049 17508 392 15908 10.40
20 044 18956 331 18024 11.83
25 035 26408 238 25320 14.07
30 028 31236 1.86 31508 16.06
35 024 36904 1.44 35496 19.16
40 021 41860 1.16 40472 21.65
45 0.19 46796 093 47192 24.05

50 017 56212 0.79 54524 26.73

218 APPENDIX D. FINITE AUTOMATA EQUIVALENCE-TESTING

Appendix E

Minimal ICDFA density

The values presented on Table E.1 are the exact percentages of minimal ICDFAs for the given number of states

n and alphabet size k.

kin 2 3 4 5 6 7
2 50% 59% 66% 12% 15% T7%
3 50% 65% 78% 86% - -
4 50% 69% 15% - - -
5 50% 66% - - - -

Table E.1: Exact percentages of minimal ICDFAs.

Table E.2 and Table E.3 show the probabilities of obtaining a minimal ICDFA when using a uniform random
generator. These were calculated while performing the experimental tests for Chapter 8. The sampling and

experimental study were conducted as described in Chapter 5, using datasets of 20 000 elements.

Table E.2: Probability of randomly generating a minimal ICDFA.

kin 5 10 20 30 40 50

2 0.59750 0.69035 0.75055 0.77290 0.77725 0.79095
3 0.73145 0.86240 0.93405 0.95430 0.96610 0.97335
4 0.77310 0.89505 0.94830 0.96595 0.97480 0.97890
5 0.79545 0.90135 0.95160 0.96525 0.97405 0.98030
6 0.80085 0.90325 0.94960 0.96635 0.97710 0.98075
7 0.80475 0.89945 0.94945 0.96475 0.97515 0.97960
8 0.79815 0.89990 0.94955 0.96685 0.97465 0.98130

continued on next page

219

220 APPENDIX E. MINIMAL ICDFA DENSITY

continued from previous page

kin 5 10 20 30 40 50

9 0.79385 0.89995 0.95105 0.96620 0.97480 0.97910
10 0.80060 0.90155 0.95115 0.96490 0.97455 0.98100
11 0.79720 0.89970 0.94890 0.96780 0.97625 0.98010
12 0.80125 0.90000 0.94920 0.96585 0.97615 0.97940
13 0.80250 0.90295 0.94790 0.96590 0.97625 0.97820
14 0.79715 0.90195 0.95220 0.96785 0.97545 0.98045
15 0.80865 0.89565 0.94985 0.96450 0.97395 0.97965
16 0.80000 0.89910 0.94985 0.96660 0.97560 0.98030
18 0.80120 0.89885 0.94940 0.96655 0.97400 0.97805
20 0.80210 0.90120 0.94800 0.96455 0.97585 0.97960
25 0.79890 0.89910 0.95060 0.96610 0.97355 0.97945
30 0.80280 0.90030 0.94875 0.96745 0.97280 0.98035
35 0.80330 0.90210 0.95195 0.96790 0.97550 0.98060
40 0.80205 0.90125 0.95140 0.96540 0.97605 0.98015
45 0.79610 0.90230 0.94950 0.96645 0.97465 0.98070
50 0.80065 0.89730 0.94805 0.96935 0.97665 0.97945

Table E.3: Probability of randomly generating a minimal ICDFA (cont.).

kin 60 70 80 90 100 1000

2 0.78465 0.79775 0.79280 0.80155 0.79640 0.85590
3 0.97690 0.98285 0.98480 0.98670 0.98730 0.99980
4 0.98470 0.98520 0.98615 0.98915 0.99000 -
5 0.98275 0.98630 0.98785 0.98905 0.98980 0.97230
6 0.98305 0.98540 0.98580 0.98840 0.98925 -
7 0.98285 0.98700 0.98750 0.98900 0.98915 -
8 0.98215 0.98645 0.98710 0.98740 0.99045 -
9 0.98505 0.98540 0.98640 0.98940 0.99035 -
10 0.98295 0.98640 0.98625 0.98905 0.98940 -
11 0.98125 0.98515 0.98770 0.98825 0.99070 -
12 0.98470 0.98540 0.98735 0.98900 0.98985 -
13 0.98340 0.98615 0.98730 0.98945 0.98935 -
14 0.98360 0.98520 0.98585 0.98910 0.99045 -
15 0.98250 0.98700 0.98715 0.99055 0.99010 -
16 0.98390 0.98735 0.98580 0.98730 0.98970 -
18 0.98305 0.98410 0.98785 0.98825 0.99005 -
20 0.98270 0.98535 0.98845 0.98955 0.99030 -
25 0.98335 0.98670 0.98765 0.98885 0.98990 -
30 0.98260 0.98670 0.98855 0.98930 0.98985 -
35 0.98530 0.98585 0.98780 0.98900 0.98930 -
40 0.98520 0.98625 0.98760 0.98920 0.99045 -
45 0.98350 0.98655 0.98755 0.98795 0.99055 -
50 0.98420 0.98490 0.98755 0.98760 0.98810 —

Appendix F

Subset construction

The following graphs, on Figures F.1 and F.2, reflect the behaviour of the subset construction when applied to
samples of 20 000 NFAs as described on Chapter 5. We collected experimental data for two parameters: space

usage of the method, and the average size of the resulting DFAs.

Due to the large range of values — applying the subset construction to some samples with 40 states and a
transition density # = 0.1 results in DFAs with almost 10 000 states, while no equivalent sample with transition

density ¢t = 0.8 produces DFAs with more than 51 states — the graphs are presented in a logarithmic scale.

It is clear, on all cases, that the samples with transition density ¢ = 0.1 easily produce combinatorial
explosions. Datasets of NFAs with 20 states, for example, sometimes result in DFAs with more than 13 000
states, consuming more than 100 MB of memory. NFAs with transition densities ¢ = 0.5 or ¢ = 0.8 produce

rather similar results, and nothing that suggests the possibility of a combinatorial explosion.

221

222 APPENDIX F. SUBSET CONSTRUCTION

Memory (kb)
Memory (kb)

(a) Transition density t = 0.1 (b) Transition density t = 0.5

Memory (kb)

(c) Transition density t = 0.8

Figure F.1: Subset construction: space used to obtain an equivalent DFA.

DFA size

DFA size

(a) Transition density t = 0.1

DFA size

(c) Transition density ¢ = 0.8

Figure F.2: Sub set construction: average size of the equivalent DFAs.

223

224 APPENDIX F. SUBSET CONSTRUCTION

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison Wesley, 1974.

M. Almeida, N. Moreira, and R. Reis. Enumeration and generation with a string
automata representation. Theoretical Computer Science, 387(2):93-102, 2007.
Special issue ”Selected papers of DCFS 2006”.

M. Almeida, N. Moreira, and R. Reis. Antimirov and Mosses’s rewrite system
revisited. In O. Ibarra and B. Ravikumar, editors, Proceedings of the 13th International
Conference on Implementation and Application of Automata, CIAA 2008, number

5448 in Lecture Notes on Computer Science, pages 46—56. Springer, 2008.

Marco Almeida. psmon, 2009-2010. http://savannah.nongnu.org/projects/

psmon/.

Valentin Antimirov. Partial derivatives of regular expressions and finite automaton

constructions. Theoretical Computer Science, 155(2):291-319, 1996.

Valentin M. Antimirov and Peter D. Mosses. Rewriting extended regular expressions.
In G. Rozenberg and A. Salomaa, editors, Developments in Language Theory, pages

195-209, 1993.

Manuel Baclet and Claire Pagetti. Around hopcroft’s algorithm. In Oscar H. Ibarra and
Hsu-Chun Yen, editors, Implementation and Application of Automata, volume 4096 of

Lecture Notes on Computer Science, pages 114—125. Springer, 2006.

225

226

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Frédérique Bassino, Julien David, and Cyril Nicaud. On the Average Complexity of
Moore’s State Minimization Algorithm. In Susanne Albers and Jean-Yves Marion,
editors, 26th International Symposium on Theoretical Aspects of Computer Science
STACS 2009 Proceedings of the 26th Annual Symposium on the Theoretical Aspects of
Computer Science, pages 123—134, Freiburg Germany, 2009. IBFI Schloss Dagstuhl.

Frédérique Bassino, Julien David, and Cyril Nicaud. REGAL: a library to randomly
and exhaustively generate automata. In Jan Holub and Jan Zd 4rek, editors, Imple-
mentation and Application of Automata, volume 4783 of Lecture Notes on Computer

Science, pages 303-305. Springer, 2007.

Gerard Berry and Ravi Sethi. From regular expressions to deterministic automata.

Theoretical Computer Science, 48(1):117-126, 1986.

J. A. Brzozowski. Canonical regular expressions and minimal state graphs for definite
events. In J. Fox, editor, Proceedings of the Symposium on Mathematical Theory of
Automata, volume 12 of MRI Symposia Series, pages 529-561, New York, NY, April
24-26 1962. Polytechnic Press of the Polytechnic Institute of Brooklyn, Brooklyn,
NY.

Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the Association

for Computing Machinery, 11(4):481-494, October 1964.

Anne Briiggemann-Klein and Derick Wood. Deterministic regular languages. In

STACS 92, pages 173-184. Springer-Verlag, 1992.

J.-M. Champarnaud, G. Hansel, T. Paranthoén, and D. Ziadi. Random generation
models for NFAs. J. Autom. Lang. Comb., 9(2-3):203-216, 2004.

J.-M. Champarnaud, A. Khorsi, and T. Paranthoén. Split and join for minimizing:
Brzozowski’s algorithm. In M. Balik and M. Simének, editors, Proceedings of the
Prague Stringology Conference, PSC’02, Research report DC-2002-03, pages 96—104.
Czech Technical University of Prague, 2002.

BIBLIOGRAPHY 227

[16] Chia-Hsiang Chang. From Regular Expressions to DFA’s Using Compressed NFA'’s.
PhD thesis, Courant Institute of Mathematical Sciences, New York University, October

1992. http://cs.nyu.edu/web/Research/Theses/chang_chia-hsiang.pdf.

[17] Chia-Hsiang Chang and Robert Paige. From Regular Expressions to DFA’s Using
Compressed NFA’s. In CPM ’92: Proceedings of the Third Annual Symposium on

Combinatorial Pattern Matching, pages 90-110. Springer-Verlag, 1992.
[18] William G. Cochran. Sampling Techniques. John Wiley & Sons, third edition, 1977.

[19] J. H. Conway. Regular Algebra and Finite Machines. Mathematical Series. Chapman
and Hall, 11 New Fetter Lane, London, EC4, 1971.

[20] Thomas H. Cormen, Charles. E. Leiserson, Ronald. L. Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press, second edition, 2003.

[21] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming wei Wang. Regular expressions:
New results and open problems. J. Autom. Lang. Comb., 9:233-256, September 2004.

[22] FAdo: Tools for formal languages manipulation. http://www.ncc.up.pt/FAdo.
[23] Free Software Foundation. GNU grep. http://www.gnu.org/software/grep/.
[24] Free Software Foundation. GNU time. http://www.gnu.org/software/time/.

[25] Python Software Foundation. Python 2.6, 2006-2010. http://docs.python.org/
release/2.6.6/.

[26] Python Software Foundation. Python programming language, 2006-2010. http:

//www.python.org.

[27]1 A. Ginzburg. A procedure for checking equality of regular expressions. Journal of
the Association for Computing Machinery, 14(2):355-362, April 1967. http://cs.

simons-rock.edu/cmpt320/ginzburg.pdf.

[28] V. M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys,
16(5):1, 1961. http://stacks.iop.org/0036-0279/16/i=5/a=A01.

228

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

BIBLIOGRAPHY

David Gries. Describing an algorithm by Hopcroft. Technical Report TR 72-151,
Cornell University, Ithaca, New York 14850, December 1972.

Ralph P. Grimaldi. Discrete and Combinatorial Mathematics. Addison Wesley, fourth
edition, 1999.

J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite
automata. Technical Report TR 71-114, University of California, Berkeley, California,
November 1971.

J. E. Hopcroft and J. D. Ullman. A linear list merging algorithm. Technical Report TR
71-111, Cornell University, November 1971.

J. E. Hopcroft and J. D. Ullman. Set merging algorithms. SIAM J. Comput., 2(4):294—
303, 1973.

John Hopcroft. An nlogn algorithm for minimizing states in a finite automaton.
In Z. Kohavi, editor, The Theory of Machines and Computations, pages 189—196.
Academic Press, New York, 1971.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison Wesley, second edition, 2000.

International Edition.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison Wesley, first edition, April 1979.

D. A. Huffman. The synthesis of sequential switching circuits. Technical Report 274,
Massachusetts Institute of Technology, January 1954. Reprinted from the Journal of
the Franklin Institute Vol. 257, Nos. 3 and 4, March and April, 1954.

D. A. Huffman. The synthesis of sequential switching circuits. Journal of Symbolic

Logic, 20(1):69-70, 1955.

S. C. Kleene. Representation of events in nerve nets and finite automata. Technical

Report RM-704, U. S. Air Force, December 1951.

BIBLIOGRAPHY 229

[40] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison Wesley, second edition, 1973.

[41] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison Wesley, first edition, 1973.

[42] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer

Programming. Addison Wesley, second edition, 1981.

[43] Timo Knuutila. Re-describing an algorithm by Hopcroft. Theoretical Computer
Science, 250(1-2):333-363, 2001.

[44] Dexter Kozen. A completeness theorem for kleene algebras and the algebra of regular

events. Inf. Comput., 110:366-390, May 1994.

[45] Dexter C. Kozen. Automata and Computability. Undergraduate Texts in Computer

Science. Springer, 1997.

[46] Jonathan Lee and Jeffrey Shallit. Enumerating regular expressions and their languages.
In Michael Domaratzki, Alexander Okhotin, Kai Salomaa, and Sheng Yu, editors,
Implementation and Application of Automata, volume 3317 of Lecture Notes in

Computer Science, pages 2-22. Springer Berlin / Heidelberg, 2005.

[47] Ted Leslie. Efficient approaches to subset construction. Master’s thesis, University of
Waterloo, Waterloo, Ontario, Canada, 1995. http://www.csd.uwo.ca/Research/

grail/.papers/subset.ps.

[48] Ondrej Lhotdk. A general data structure for efficient minimization of deterministic
finite automata. Course project, CS 662 Formal Languages and Parsing, December

2000.

[49] Sylvain Lombardy and Jacques Sakarovitch. VAUCANSON-G. http://www-igm.

univ-mlv.fr/~lombardy/Vaucanson-G/.

[50] Harry G. Mairson. Generating words in a context-free language uniformly at random.

Information Processing Letters, 49(2):95-99, 1994.

230 BIBLIOGRAPHY

[51] R. McNaughton and H. Yamada. Regular expressions and state graphs for automata.

IRE Transactions on Electronic Computers, EC-9(1):39-47, 1960.

[52] Edward F. Moore. Gedanken-experiments on sequential machines. Automata Studies,

34:129-153, 1956. Princeton University Press.

[53] Gonzalo Navarro. Nr-grep: A fast and flexible pattern matching tool. Software
Practice and Experience (SPE, 31:2001, 2000.

[54] Gonzalo Navarro. Approximate regular expression searching with arbitrary integer

weights. Nordic J. of Computing, 11:356-373, December 2004.

[55] Gonzalo Navarro and Mathieu Raffinot. Compact DFA representation for fast regular
expression search. In Proceedings of the Sth International Workshop on Algorithm

Engineering, WAE *01, pages 1-12, London, UK, 2001. Springer-Verlag.

[56] C. Nicaud. Etude du comportement en moyenne des automates finis et des langages

rationnels. PhD thesis, Université de Paris 7, 2000.
[57] PostgreSQL object-relational DBMS, 2008-2010. http://www.postgresql.org.
[58] Debian Project. Debian gnu/linux, 2010. http://www.debian.org.

[59] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3(2):114-125, 1959.

[60] R. Reis, N. Moreira, and M. Almeida. On the representation of finite automata. In
C. Mereghetti, B. Palano, G. Pighizzini, and D.Wotschke, editors, Proceedings of the
7th International Workshop on Descriptional Complexity of Formal Systems, DCFS
2005, pages 269-276, 2005.

[61] R. Reis, N. Moreira, and M. Almeida. On the representation of finite automata.
Technical Report DCC-2005-04, DCC - FC & LIACC, Universidade do Porto, April
2005. http://www.dcc.fc.up.pt/Pubs/TR05/dcc-2005-04.ps.gz.

BIBLIOGRAPHY 231

[62] G. Rozenberg and A. Salomaa, editors. Word, Language, Grammar, volume 1 of

Handbook of Formal Languages. Springer, 1997.

[63] A. Salomaa. Theory of Automata, volume 100 of International Series of Monographs

in Pure and Applied Mathematics. Pergamon Press, first edition, 1969.

[64] Arto Salomaa. Two complete axiom systems for the algebra of regular events. J. ACM,

13(1):158-169, 1966.

[65] Jeftrey Shallit. Regular expressions enumeration and state complexity. In Proceedings
of the 9th International Conference on Implementation and Application of Automata,

CIAA 2004,2004. http://www.cs.uwaterloo.ca/~shallit/Talks/ciaa7.ps.

[66] Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, 2008.

[67] Graphviz — Graph Visualization Software. The DOT Language. http://www.
graphviz.org/doc/info/lang.html.

[68] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time
(preliminary report). In STOC ’73: Proceedings of the fifth annual ACM symposium
on Theory of computing, pages 1-9, New York, NY, USA, 1973. ACM.

[69] Deian Tabakov and Moshe Y. Vardi. Experimental evaluation of classical automata

constructions. In In LPAR 2005, LNCS 3835, pages 396—411. Springer, 2005.

[70] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal

of the Association for Computing Machinery, 22(2):215-225, April 1975.

[71] Ken Thompson. Programming techniques: Regular expression search algorithm.

Communications of the ACM, 11(6):419-422, 1968.

[72] Bruce W. Watson. An incremental DFA minimization algorithm. In L. Karttunen,
K. Koskenniemi, and G. van Noord, editors, Proceedings of the Second International
Workshop on Finite-State Methods in Natural Language Processing, Helsinki, Finland,
August 2001.

232 BIBLIOGRAPHY

[73] Bruce W. Watson and Jan Daciuk. An efficient DFA minimization algorithm. Natural
Language Engineering, 9(1):49-64, 2003.

[74] Bruce William Watson. Taxonomies and Toolkits of Regular Language Algorithms.
PhD thesis, Eindhoven University of Technology, 1995.

[75] Derick Wood. Theory of Computation. John Wiley & Sons, 1987.

[76] Sheng Yu. Word, Language, Grammar, volume 1 of Handbook of Formal Languages,
chapter Regular Languages, pages 41-110. Springer, 1997.

Author Index

A

Aho, Alfred V. 137, 138, 142

Almeida,Marco 141

Antimirov, Valentin M. 79
B

Baclet, Manuel 106

Bassino, Frédérique 105, 107

Brzozowski, Janusz A. 105, 113
C

Conway, J.H. 140
D

Daciuk, Jan 106, 114
G

Glushkov, V..M. 53
H

Hopcroft, John E. 19, 105, 110, 137

Huffman, D. A. 105, 108
K

Karp, R M. ... ool 137

Kleene, Stephen C. 45
L

Lhotdk,Ondfej 106

233

M

Moore, EdwardF. 105, 108

Mosses, Peter D. 79
N

Nicaud, Cyril 105
P

Pagetti, Claire 106
R

Rabin, M.O. 41

Reis, Rogério 34
S

Scott, D. 41

Shallit, Jeffrey 108
T

Tabakov,Deian 106

Tarjan, RobertE. 19, 20, 137

Thompson, K. 51
U

Ullman,J.D. 19, 137
A%

Vardi, Moshe Y. 106

234 AUTHOR INDEX

w
Watson, Bruce .. 105, 106, 114, 116, 117

Yu,Sheng 7,101

Algorithm Index

D
DFA-EQUIVALENT-HK-P.......... 138
DFA-EQUIVALENT-HKI-P 141
DFA-EQUIVALENT-HKN-P......... 145
DFA-EQUIVALENT-HKR-P......... 150
DFA-EQUIVALENT-P 136
DFA-ISOMORPHIC-P 136
DFA-MINIMAL-WATSON-P 117
DFA-MINIMISE-BRZOZOWSKI 113
DFA-MINIMISE-INCREMENTAL 119
DFA-MINIMISE-WATSON 115
DFA-REVERSEcoovii.... 113
DFA-MINIMISE-HOPCROFT. 111
DFA-MINIMISE-MOORE. 108

F
FA-DETERMINISTIC 41
FIND ... 18

I
ICDFA-TO-STRINGcovvn.. .. 36

M
MAKE . ..ot 18

N
NFA-EQUIVALENT-HKE-P......... 143

235

NFA-REVERSEcviiiina... 113
R
RE-DETERMINISTIC.covvnnn.. .. 81
RE-DERIVATIVEScccovvnn. 94
RE-EQUIVALENT-P................. 94
RE-EQUIVALENT-PARTIAL-P....... 99
RE-EQUIVALENT-S-P............. 149

RE-EQUIVALENT-UNION-FIND-P . . 100

RE-LINEAR . ..o 81

RE-PARTIAL-DERIVATIVES 98
RE-PRE-LINEAR 80
U
UNION . ot e 18
UNION-FINDt 17

Subject Index

Symbols
regular expression 45
A
algorithms
DFA minimisation 107
alphabet...........l 20
associative
concatenation................... 21
asymptotic lowerbound 13
asymptotic tightbound 14
asymptotic upper bound 13
AVETaAZE-CaASC. ..o, 105
B
benchmarks
DFA equivalence............... 152
DFA minimisation 106
regular expression equivalence .. 101
C
cardinality
L 9
collapsingrule...................... 20
complement
Sl 11

236

concatenation
languageooo... 23
word. ... 21

containedl 10

D

deterministic finite automaton . . see DFA

DFA .. 26
accepted. ..., 28
alphabet........................ 26
complete 27
distinguishable.................. 29
equivalence classes.............. 30
equivalent...................... 29
extended transition function. 28
final states 26
indistinguishable 29
initial state 26
initially connected............... 29
input symbols................... 26
isomorphic 26
language 29
minimal 29
partitions, 30
quotient automaton.............. 30

SUBJECT INDEX

sinkstate....................... 27
SIZ@ .t 26
skeleton........................ 26
start state....................... 26
StAteS .. v it 26
4016111 (U 26
transition diagram............... 26
transition function............... 26
M. . 29

DFA minimisation

Brzozowski’s algorithm......... 113
Experimental results............ 128
Hopcroft’s algorithm 110
Moore’s algorithm 108
New incremental algorithm 117

Watson’s incremental algorithm . 114

difference

SBL .t 11
disjoint 11
distributes

language 23

E

elements

SBL e ettt 9

emptiness-of-complement problem ... 56

empty language 22
empty list ... 12
empty set...........oiiiiiiiiii... 9

emptywordl 21

237
equal
language ...l 22
SBL e ettt 10
WOrdS . ..o 22
equivalence relation................. 30
F
finite
Y 9
finite automaton 25
flags. ... 37
G
Glushkov automata.................. 53
group automata.................... 105
I
identity
language 23
WOrd . ..o 22
incremental
DFA minimisation 105
infinite
Y 9
intersection
Y PP 10
iterated logarithm 19
K
Kleene closure
language 23

238
L
language ..., 22
length
list..ooe 12
WOrdooiii 21
letters.......covviiiiii 20
linearset..............oooiieiiin., 97
LSt oo 12
M
marked
StAES .o 109
monoido, 22
multiplicity
multiset 11
multisetoooiiiiiiia., 11
N
n-tuple.........o 12
NFA 39
ACCEPLS . oo vt 40
BMPLY . oot 40
equivalent...................... 40
initial state 40
language ... 40
subset construction 41
transition function............... 39
non-deterministic
finite automaton see NFA
initial state 40

nonzero powers

SUBJECT INDEX

language ... 24
nullstring.......................... 21
P
path compression................ 19, 20

powers

language 23
prefix

WOrdoovi i 22
product

language 23
proper

prefix ... 22

suffix ... 22
propersubset......... 10

R

Do 45
€ e 45
alphabeticsize 47
complement 55
concatenation 45
constantpart.................... 47
derivative....................... 58
deterministic.................... 57
difference 55
disjunction 45
dissimilar....................... 48
empty word property 47
equivalent...................... 46

SUBJECT INDEX

extended, 55
head il 57
intersectiono.eee... 55
irreducible...................... 50
Kleene closure 46
language ... 46
linearooooiii... 57
ordinary length.................. 47
partial derivatives 59
pre-linear....................... 57
similar oo L 48
SIZE .t 47
StAT ..t 46
tail........oo 57
uncollapsible 49
10000 10) 4 R 45
reversal
language ... 24
word. ... 22
right-invariant
equivalence relation 30
S
Y] PP 9
size
list. .o 12
star
language ... 23
State

accessible 29

239
useful ... 29
SN .o v v 21
subset ... 10, 11
subset construction.................. 41
suffix
word. ... 22
symbols. ... 20
U
union
SBL . 10
unionbyrank 18,20
universal language 22
UNIVETSE . o e et e e eeiiee e 9
unmarked
SEALES .« v 110
W
weighted unionrule................. 20
WOrd. ..o 21
WOTISE-CASE . . oo v et ettt 13
Z
Zero
language 23
zero-based indexing 12

