
Minimal Automata
and Operational
State Complexity of
Block Languages

Guilherme Manuel Carvalho de Melo Duarte
Mestrado em Ciência de Computadores
Departamento de Ciências de Computadores
Faculdade de Ciências da Universidade do Porto
2024

Minimal Automata
and Operational
State Complexity of
Block Languages

Guilherme Manuel Carvalho de Melo Duarte
Dissertação realizada no âmbito do Mestrado em Ciências de
Computadores
Departamento de Ciências de Computadores
2024

Orientador
Rogério Ventura Lages dos Santos Reis, Professor Auxiliar,
Faculdade de Ciências da Universidade do Porto

Coorientador
Nelma Resende Araújo Moreira, Professora Auxiliar,
Faculdade de Ciências da Universidade do Porto

This page is intentionally left blank.

Acknowledgements

First, I would like to express my deepest gratitude to my advisors, Rogério Reis and Nelma

Moreira, for their ability to teach, their guidance, and their total availability throughout this

thesis.

To Luca Prigioniero, for his valuable suggestions and advice, not only as a co-author.

To my group of friends, for their capacity to make me laugh even during my grumpy moods.

To my family, especially, to my mother and to my brother, for their constant encouragement

and immense support not only during this thesis.

To Ana, whose impressive patience and kind heart have been a constant source of comfort and

motivation.

To those who now shine bright in the sky.

i

This page is intentionally left blank.

Agradecimentos

Em primeiro lugar, gostaria de expressar o meu mais profundo agradecimento aos meus orien-

tadores, Rogério Reis e Nelma Moreira, pela sua capacidade de ensinar, pela sua orientação e

pela sua total disponibilidade ao longo desta tese.

Ao Luca Prigioniero, pelas suas valiosas sugestões e conselhos, não só como coautor.

Ao meu grupo de amigos, pela capacidade de me fazerem rir mesmo nos meus momentos mais

rabugentos.

À minha família, em especial, à minha mãe e ao meu irmão, pelo constante incentivo e imenso

apoio não só durante esta tese.

À Ana, cuja impressionante paciência e bondoso coração têm sido uma fonte constante de

conforto e motivação.

Àqueles que agora brilham no céu.

iii

This page is intentionally left blank.

Abstract

Formal languages and automata theory are the backbone of theoretical computer science. While

formal languages categorise sets of words based on rules, automata theory explores various

machines, like finite automata, that can recognise these languages. In fact, these branches are

crucial in diverse fields such as pattern recognition, compilers, programming languages, software

verification, among others.

In this work we consider block languages, namely sets of words having the same length, moti-

vated primarily by their applications on image processing and code theory. We propose a new

representation for these languages, which we call bitmap. In particular, given an alphabet of

size k and a length ℓ, a block language can be represented by a bitmap of length kℓ, where

each bit indicates whether the corresponding word, according to the lexicographical order, be-

longs, or not, to the language (bit equal to 1 or 0, respectively). This representation turns out

to be a good tool for the investigation of several properties of block languages, making proofs

simpler and reasoning clearer. First, we show how to convert bitmaps into deterministic and

nondeterministic finite automata. We then focus on the size of the machines obtained from the

conversion and we prove that their size is minimal.

Furthermore, we give an analysis of the maximum number of states sufficient to accept every

block language in the deterministic and nondeterministic case. Moreover, we study the determin-

istic and nondeterministic state complexity of several standard operations on these languages.

Being a subclass of finite languages, the upper bounds of operational state complexity known

for finite languages apply for block languages as well. However, in several cases, smaller values

were found.

Keywords: regular languages, finite automata, finite languages, operational state complexity.

v

This page is intentionally left blank.

Resumo

As linguagens formais e a teoria dos autómatos são a coluna da teoria da computação. En-

quanto as linguagens formais classificam conjuntos de palavras com base em regras, a teoria

dos autómatos explora várias máquinas, como os autómatos finitos, que podem reconhecer essas

linguagens. De facto, estes ramos são cruciais em diversos domínios, como o reconhecimento de

padrões, compiladores, linguagens de programação, verificação de software, entre outros.

Neste trabalho consideramos as linguagens de bloco, nomeadamente conjuntos de palavras com

o mesmo comprimento, motivados principalmente pelas suas aplicações no processamento de

imagem e na teoria dos códigos. Propomos uma nova representação para estas linguagens, a

que chamamos bitmap. Em particular, dado um alfabeto de tamanho k e um comprimento ℓ,

uma linguagem de bloco pode ser representada por um bitmap de comprimento kℓ, em que

cada bit indica se a palavra correspondente, de acordo com a ordem lexicográfica, pertence ou

não à linguagem (bit igual a 1 ou 0, respetivamente). Esta representação revela ser uma boa

ferramenta para a investigação de várias propriedades das linguagens de bloco, tornando as

provas mais simples e os argumentos mais claros. Primeiro, mostramos como converter bitmaps

em autómatos finitos determinísticos e não determinísticos. De seguida, concentramo-nos no

tamanho das máquinas obtidas a partir da conversão e provamos que o seu tamanho é mínimo.

Para além disso, apresentamos uma análise do número máximo de estados suficiente para aceitar

todas as linguagens de blocos no caso determinístico e não determinístico. Estudamos ainda a

complexidade de estados determinística e não determinística de várias operações padrão nestas

linguagens. Sendo uma subclasse de linguagens finitas, os limites superiores de complexidade

de estado conhecidos para as linguagens finitas aplicam-se também às linguagens de blocos. No

entanto, em vários casos, foram encontrados valores inferiores.

Palavras-chave: linguagens regulares, autómatos finitos, linguagens finitas, complexidade de

estado operacional.

vii

This page is intentionally left blank.

Contents

Acknowledgements i

Agradecimentos iii

Abstract v

Resumo vii

List of Tables xiii

List of Figures xvi

List of Algorithms xvii

1 Introduction 1

1.1 Main Contributions . 2

1.2 Thesis Structure . 3

2 Preliminaries 5

2.1 Basic Definitions . 5

2.2 Symbols, Words, and Languages . 6

2.3 Regular Languages . 7

ix

x CONTENTS

2.4 Finite Automata . 8

2.4.1 Determinisation . 10

2.4.2 Minimisation . 11

2.5 Regular Expressions . 12

2.6 State Complexity . 13

3 Finite Languages 17

3.1 Finite Automata for Finite Languages . 17

3.2 Minimisation of Finite Automata for Finite Languages 19

3.3 Operational State Complexity for Finite Languages 20

3.4 Block Languages . 21

3.4.1 Finite Automata for Block Languages . 21

3.4.2 Applications . 22

4 Bitmaps for Block Languages 25

4.1 Bitmaps . 25

4.2 Minimal DFAs for Block Languages Described by Bitmaps 28

4.3 Minimal NFAs for Block Languages Described by Bitmaps 30

5 Block Languages State Complexity 37

5.1 Maximal Size of Minimal DFAs . 37

5.2 Maximal Size of Minimal NFAs . 43

5.3 Operational State Complexity . 44

5.3.1 Reversal . 45

CONTENTS xi

5.3.2 Word Addition and Word Removal . 49

5.3.3 Intersection . 51

5.3.4 Union . 54

5.3.5 Concatenation . 56

5.3.6 Block Complement . 57

5.3.7 Kleene Star and Plus . 59

6 Conclusions 61

6.1 Future Research Directions . 63

References 64

This page is intentionally left blank.

List of Tables

2.1 State complexity and nondeterministic state complexity for basic operations on

regular languages. 16

3.1 State complexity and nondeterministic state complexity for basic operations on

finite languages. 21

6.1 State complexity and nondeterministic state complexity for basic operations on

block languages. 62

xiii

This page is intentionally left blank.

List of Figures

2.1 An NFA for L = {w ∈ {a,b} | the third but last symbol is a }. 9

2.2 A DFA for L = {w ∈ {0, 1} | w is divisible by 4 }. 10

2.3 Determinisation of the NFA in Figure 2.1 using the subset construction. 10

2.4 Moore’s NFA with n states which any DFA requires at least 2n states. 11

2.5 Minimal DFAs for L1 (left) and L2 (right), defined in Example 2.10, with m = 3

and n = 2. 15

2.6 Minimal DFA with 6 states for the intersection of L1 and L2, defined in Exam-

ple 2.10, with m = 3 and n = 2. 15

3.1 A DFA for the finite language L = {wwR | w ∈ Σ2 } with the division of states

by their ranks. The sink-state Ω is omitted, as well as all transitions from and

to it. 18

3.2 Accessing a pixel of a 8 × 8 image by a word of length 3. 23

3.3 Image with resolution 2ℓ×2ℓ represented by the language L = {w ∈ Σℓ | |w|a 2 },

for ℓ = 7 and Σ = {a,b, c,d}. 23

4.1 The minimal DFA accepting the language of Example 4.1. 31

4.2 A minimal NFA accepting the language of Example 4.1. 35

5.1 The minimal DFA accepting the language MAXℓ for ℓ = 5. The sink-state is

omitted, as well as all transitions from and to it. 42

xv

xvi LIST OF FIGURES

5.2 The minimal DFA for Lℓ \ {w} = (a+ b)ℓ \ aℓ, for ℓ = 4. 51

5.3 The minimal DFA for Lk,d,x with k = 2, d = 3 and x = 1. The sink-state is

omitted, as well as all transitions from and to it. 53

5.4 The minimal DFA for L1,ℓ ∪ L2,ℓ = (a+ c)ℓ + (b+ c)ℓ, with ℓ = 4. The sink-state

is omitted as well as all transitions from and to it. 56

List of Algorithms

3.1 Revuz Algorithm for minimisation of acyclic DFAs. 19

4.1 Construction of the minimal DFA for a block language L from its bitmap repre-

sentation B. 29

4.2 Construction of a minimal NFA for a block language L from its bitmap represen-

tation B. 33

xvii

This page is intentionally left blank.

Chapter 1

Introduction

In the area of formal languages and automata theory, the class of regular languages is one of the

most investigated. Classical recognisers for this class are finite automata, in both deterministic

and nondeterministic variants. The ability of these machines to represent languages in a more

or less succinct way have been widely studied in the area of descriptional complexity. In this

context, the size of a model is measured in terms of the number of symbols used to write down

its description. In the specific case of finite automata, it is often considered the number of

states as a measure of complexity. In this area, the minimality of finite automata has been

also studied. For example, it is well known that, given a language, the deterministic finite

automaton of minimal size accepting it is unique (up to isomorphisms), and there exist efficient

algorithms for the minimisation of these machines [AMR12]. It is a more challenging task for

the nondeterministic case, since minimal nondeterministic finite automata are not necessarily

unique. Furthermore, given an integer n, deciding whether there is a nondeterministic finite

automaton with less than n states accepting a language is a PSPACE-hard problem [SM73].

In this work we consider finite languages where all words have the same length, which are called

homogeneous or block languages. Their investigation is mainly motivated by their applications

to several contexts such as code theory [DK12, KMR18] and image processing [KK21, KO14]. A

typical problem in code theory is the construction of maximal block languages, that correspond

to codes, capable of detecting and correcting errors. On the other hand, an image can be

represented by a block language, so automata can be used to generate, compress, and manipulate

images.

As a subclass of finite languages, block languages inherit some properties known for that class.

For instance, the minimisation of deterministic finite automata can be done in linear time in

the case of finite (and hence also block) languages [Rev92]. Due to the fact that all words have

the same length, there are some gains in terms of descriptional complexity. It is known that the

1

2 CHAPTER 1. INTRODUCTION

elimination of nondeterminism from an n-state nondeterministic finite automaton for a block

language costs 2Θ(
√
n) in size [KO14], which is smaller than the general case, for which the

cost in size is 2Θ(n) [MF71, SY97]. The maximum number of states of minimal deterministic

finite automata for finite and block languages were studied by Câmpeanu and Ho [CH04], and

Hanssen and Liu determined the number of block languages that attain that maximum state

complexity [KL19].

Here we propose a new representation for block languages. In particular, given an alphabet of

size k and a length ℓ, each block language can be represented by a binary string of length kℓ,

also called bitmap, in which each bit indicates whether the correspondent word, according

to the lexicographical order, belongs to the language (bit equal to 1) or not (bit equal to 0).

Then, we show how to convert bitmaps into deterministic and nondeterministic finite automata,

respectively, such that the devices yielded by these conversions have minimal size. While the

conversion to deterministic finite automata can be done in polynomial time in the size of the

bitmap, we prove that the transformation in the nondeterministic case is NP-complete.

Moreover, we also use bitmaps for studying the complexity of operations on block languages. Due

to the distinguishing property of the words sharing the same length, we study standard Boolean

binary operations over block languages with the same length, as well as the block complement

operation (i.e., Σℓ \ L, for a block language L over an alphabet Σ and block length ℓ > 0).

Nonetheless, we also consider operations such as concatenation, Kleene star, and Kleene plus,

which are not closed for the class of block languages of a given length, as well as specific

operations on block languages such as word removal and addition.

1.1 Main Contributions

From the developed work on this thesis, we submitted two conference papers:

1. G. Duarte, N. Moreira, L. Prigioniero, and R. Reis, Block Languages and their Bitmap

Representations, in 28th International Conference on Implementation and Application

of Automata, Akita, Japan. Accepted.

2. G. Duarte, N. Moreira, L. Prigioniero, and R. Reis, Operational Complexity on Block

Languages, in 14th International Workshop on Non-Classical Models of Automata

and Applications, Göttingen, Germany. Accepted.

This first paper introduces a new representation of block languages as a binary word called

bitmap, as well as several properties that allow us describe the construction from bitmaps to

1.2. THESIS STRUCTURE 3

minimal automata, both deterministic and nondeterministic. In this paper, we also give an

analysis of the maximum number of states sufficient to accept every block language in the

deterministic and nondeterministic case.

In the second paper, we study the deterministic and nondeterministic state complexity of sev-

eral operations, and also compare the obtained upper bounds with the ones known for finite

languages. We conclude that, in general, operations on block languages have lower complexities

compared to the ones in the general case.

All the source code developed was integrated on the FAdo project [RM02], and it is freely

available from http://fado.dcc.fc.up.pt/.

1.2 Thesis Structure

This dissertation is organised as follows:

Chapter 2 presents some basic notation and definitions of formal languages and automata

theory. In particular, we define regular languages (REs), deterministic (DFAs) and non-

deterministic finite automata (NFAs), as well as the state complexity of an automata.

Chapter 3 digs into finite languages, a subset of regular languages. This chapter explores

the structural properties of the finite automata that recognise finite languages, as well as

their operational state complexity, underscoring that it is generally lower compared to the

general case of regular languages. Moreover, this chapter also introduces block languages,

which consist of words of the same length, and examine their automata representations

and applications.

Chapter 4 marks the beginning of our contributions by introducing a new representation for

block languages called bitmaps. Moreover, it contains the description of the constructions

of minimal DFAs and NFAs from this bitmap representations.

Chapter 5 contains the analysis of the theoretical boundaries of minimal DFAs for block lan-

guages, as well of minimal NFAs. Furthermore, this chapters contains the study of the

operational state complexity of various operations on block languages and provides wit-

nesses to reason the tightness of the introduced bounds.

Chapter 6 reviews the contributions given in the previous two chapters and establishes possible

research lines of open problems that arose during our work.

This page is intentionally left blank.

Chapter 2

Preliminaries

In this chapter, we present some basic mathematical notions and definitions in formal languages

and automata theory. For more details, we refer the reader to Ullman and Hopcroft’s Intro-

duction to Automata Theory [HU79] and to Pin’s Handbook of Automata Theory [Pin21],

in particular, the chapters 1, 2, and 12 of the latter.

2.1 Basic Definitions

Given two integers i, j with i < j, let [i, j] denote the set of integers from i to j, including both i

and j, namely {i, i+1, . . . , j}. Moreover, if i is equal to 0, we omit this value, thus [j] = {0, 1, ..., j}.

Two integers a and b are congruent modulo n, namely a ≡ b (mod n), if a and b have the

same remainder when divided by n. That is,

a ≡ b (mod n) ⇔ (∃k ∈ Z) : a− b = kn.

Let f(n),g(n) : Z → Z be two functions. To evaluate the asymptotic behaviour of f(n) consid-

ering g(n), we use the Bachmann–Landau notation, namely

f(n) = O(g(n)), if (∃c,n0 ∈ N)(∀n > n0) : |f(n)| c · g(n);

f(n) = Ω(g(n)), if (∃c,n0 ∈ N)(∀n > n0) : |f(n)| c · g(n);

f(n) = Θ(g(n)), if (∃c1, c2,n0 ∈ N)(∀n > n0) : c1 · g(n) |f(n)| c2 · g(n);

f(n) = o(g(n)), if limn→∞
f(n)
g(n) = 0.

5

6 CHAPTER 2. PRELIMINARIES

2.2 Symbols, Words, and Languages

Let Σ be a finite set called an alphabet, whose elements are called letters or symbols. A word w

of Σ is a sequence of elements from Σ, and we denote w by a mere juxtaposition of those

elements, that is,

w = σ1σ2 · · ·σn,

where n ∈ N and σi ∈ Σ, for all i ∈ [1,n]. The length of a word w is given by its number of

symbols and is denoted as |w|. It can be inductively defined in the following way:

|ε| = 0,

|wσ| = |w|+ 1,

where σ ∈ Σ and ε denotes the empty word. For the number of occurrences of the symbol σ ∈ Σ

on the word w, we use the notation |w|σ. The reversal of a word w = σ1σ2 · · ·σn is denoted

by wR and is obtained by reversing the order of symbols of w, i.e., wR = σnσn−1 · · ·σ1.

The set Σn is defined as the set of all words of length n over an alphabet Σ. The infinite set of

words over the alphabet Σ results from the star operation (alternatively, Kleene closure) on

the set Σ, denoted as Σ, and is given by

Σ =

n0

Σn.

For example, over the alphabet Σ = {a,b} we have

Σ = {ε,a,b,aa,ab,ba,bb,aaa, . . .}.

Moreover, we define the set Σ+ as the plus closure of an alphabet Σ given by removing the

empty word from Σ, that is, Σ+ = Σ \ {ε}.

Given two words u = a1a2 · · ·an, v = b1b2 · · ·bm, the concatenation of u with v is denoted

as uv and represents the word

uv = a1a2 · · ·anb1b2 · · ·bm.

The empty word ε is the identity element of concatenation, i.e., εw = wε = w. Moreover, it is

easy to see that this operation is associative, that is, (uv)w = u(vw), for all u, v,w ∈ Σ, and

that is not commutative, i.e., uv ∕= vu. We also define w0 = ε and wn+1 = wnw, for w ∈ Σ

and n ∈ N+. Given a word w ∈ Σ, we say that

u ∈ Σ is a prefix of w if (∃v ∈ Σ) : w = uv;

u ∈ Σ is a suffix of w if (∃v ∈ Σ) : w = vu;

2.3. REGULAR LANGUAGES 7

u ∈ Σ is an infix of w if (∃v, x ∈ Σ) : w = xuv.

A language L of Σ is a set of words over the alphabet Σ. Several operations can be defined on

languages. Let L1,L2 ⊆ Σ and w ∈ Σ.

1. Union: L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2 };

2. Intersection: L1 ∪ L2 = {w | w ∈ L1 and w ∈ L2 };

3. Concatenation: L1L2 = {uv | u ∈ L1 and v ∈ L2 };

4. Complement : L1 = Σ \ L1 = {w ∈ Σ | w /∈ L1 };

5. Reversal: LR
1 = {wR | w ∈ L1 };

6. Power: Ln1 = L1L1 · · ·L1
n times

;

7. Star: L1 =

n0 L
n
1 ;

8. Plus : L+1 = L1 \ {ε};

9. Left quotient w.r.t. a word w: w−1L1 = {w ′ ∈ Σ | ww ′ ∈ L1 }.

2.3 Regular Languages

Regular languages (RL) are, according to the Chomsky hierarchy [Cho56], the most simple class

in terms of expressiveness. This set can be recursively defined over an alphabet Σ as follows:

Both the languages ∅ and {ε} are RL;

The singleton language {σ} is RL, for each σ ∈ Σ;

If L1 and L2 are both RL, then L1 ∪ L2, L1L2, and L1 are RL.

Now, let L be a language over an alphabet Σ. Two words x,y ∈ Σ are in the relation ∼L, denoted

as x ∼L y, if, for every word z ∈ Σ, xz ∈ L if, and only if, yz ∈ L. In other words, x ∼L y if

concatenating the same word to both x and y should either make both resulting words part of

the language or make both not part of the language. For a word w ∈ Σ, we write [w]∼L for the

equivalent class of w in the equivalence relation ∼L. Moreover, consider the following theorem

known as the Myhill-Nerode Theorem [Ner58]:

8 CHAPTER 2. PRELIMINARIES

Theorem 2.1 (Myhill-Nerode Theorem [Ner58], Part 1). Let L ⊆ Σ be a language. Then,

L is regular ⇔ the relation ∼L has a finite number of equivalence classes.

An immediate corollary of Theorem 2.1 is that if, for a language L, the equivalence ∼L has

infinitely many equivalence classes, it is not regular. Consider the following example of how

the Myhill-Nerode Theorem can be applied to prove that a language is not regular.

Example 2.2. Let L = {anbn | n ∈ N } be a language defined over {a,b}, and let us

prove that it is not regular. By Theorem 2.1, it suffices to find an infinite set of pairwise

indistinguishable words. Let S = {an | n ∈ N }. For each pair ai,aj ∈ S, if i ∕= j then we

have ai ≁L aj, since aibi ∈ L but ajbi /∈ L.

Moreover, a language L is regular if it can be defined by a finite automaton or, alternatively,

by a regular expression.

2.4 Finite Automata

A nondeterministic finite automaton (NFA) is a 5-tuple A = 〈Q,Σ, δ, I, F〉, where Q is a finite

set of states, Σ is the alphabet, δ : Q × Σ → 2Q is the transition function, I ⊆ Q is the set of

initial states, and F ⊆ Q is the set of final states.

The transition function can be extended to sets of states

δ : 2Q × Σ → 2Q

δ(Q ′,σ) =

q∈Q ′

δ(q,σ),

and also to words

δ : Q× Σ → 2Q

δ(q, ε) = {q},

δ(q,σw) = δ(δ(q,σ),w).

The size of an NFA is given by the cardinality of the set of states, namely |Q|.

An NFA might also contain transitions by the empty word ε, that is, δ(q, ε) = q ′ with q ∕= q ′,

and we call those ε-transitions. If an NFA contains ε-transitions, we call it an ε-NFA. Although

we will not be using them in this work, it is important to note, however, that ε-NFAs and NFAs

without ε-transitions have the same expressive power [HU79]. This means that any language

that can be recognised by an ε-NFA can also be recognised by an NFA, and vice versa.

2.4. FINITE AUTOMATA 9

A path in an automaton A is a finite sequence of consecutive transitions

c : q0
σ1−→ q1

σ2−→ q2 −→ . . . −→ qn−1
σn−−→ qn,

where qi ∈ δ(qi−1,σi), for all i ∈ [1,n], the state q0 is its origin, the state qn its end, the

word σ1σ2 · · ·σn its label, and n its length. The path c is initial if q0 ∈ I and final if qn ∈ F.

An NFA accepts a word w ∈ Σ if there is a path both initial and final with label w.

It is convenient to represent an automata by a labelled directed graph whose vertices are labeled

by the states of the automata and the edges are labeled by the transitions, as follows in Figure 2.1.

The initial states are identified by having an incoming edge with no origin and the final states

by two concentric circles.

q0 q1 q2 q3

a,b

a a,b a,b

Figure 2.1: An NFA for L = {w ∈ {a,b} | the third but last symbol is a }.

The right language of a state q ∈ Q, denoted as Lq(A), is the set of labels of paths that start

on q and are final, that is, Lq(A) = {w ∈ Σ | δ(q,w) ∩ F ∕= 0 }. Analogously, one defines the

left language of q, denoted as
←−
Lq(A), as the set of labels of paths that are initial and end on q,

that is,
←−
Lq(A) = {w ∈ Σ | q ∈ δ(I,w) }. The language accepted by A, denoted by L(A), is the

set of labels of paths both initial and final, i.e., L(A) =

q∈ILq(A). Two NFAs are equivalent

if they accept the same language.

An automaton can be qualified as accessible, co-accessible, and trim. An NFA is accessible if

all its states are accessible, that is, there is an initial path ending in q (
←−
Lq(A) ∕= ∅), for all

states q ∈ Q. It is co-accessible if all its states are co-accessible, i.e., for all states q ∈ Q, there

is a final path starting in q (Lq(A) ∕= ∅). Finally, an NFA is trim if it is both accessible and

co-accessible.

An NFA A = 〈Q,Σ, δ, I, F〉 is deterministic (DFA) if it contains exactly one initial state (|I| = 1),

and if, for every state q ∈ Q and for each symbol σ ∈ Σ, there exists at most one state q ′

such that δ(q,σ) = q ′. A DFA is complete if the transition function is total, that is, for

every state q ∈ Q and for each symbol σ ∈ Σ, δ(q,σ) is defined. An incomplete DFA can be

completed by adding a sink-state, denoted as the symbol Ω, which ensures that the automaton

has defined transitions for every possible input symbol from every state. That is, for every q ∈ Q

and σ ∈ Σ, δ(Ω,σ) = Ω and δ(q,σ) = Ω, if δ(q,σ) was previously not defined.

10 CHAPTER 2. PRELIMINARIES

q0 q1

q2 q3

0

1

0
10

1

0

1

Figure 2.2: A DFA for L = {w ∈ {0, 1} | w is divisible by 4 }.

2.4.1 Determinisation

To the conversion of an nondeterministic to an equivalent deterministic finite automata we call

determinisation. Although NFAs have in general a more succinct representation than DFAs,

the expressive power of both machines is the same. This equivalence was established through

the subset construction, presented by Rabin and Scott [RS59].

Proposition 2.3 (Subset Construction [RS59]). Let A = 〈Q,Σ, δ, I, F〉 be an NFA and D(A) =

2Q,Σ, δ ′, I, F ′

a DFA such that

δ ′ : 2Q × Σ → 2Q

δ ′(Q ′,σ) =

q∈Q ′

δ(q,σ),

and F ′ = {Q ′ | Q ′ ∩ F ∕= ∅ }. Then, D(A) is equivalent to A.

{q0} {q0,q1} {q0,q1,q2}

{q0,q2} {q0,q1,q3}

{q0,q1,q2,q3}{q0,q2,q3}

{q0,q3}

b

a a

b
a

b

a

b

a

b

a
b

a

b

a

b

Figure 2.3: Determinisation of the NFA in Figure 2.1 using the subset construction.

2.4. FINITE AUTOMATA 11

Clearly, the number of states of the DFA resulting from the subset construction is at most 2|Q|

states, which corresponds to all the subsets of the set Q. Later, the upper bound was proven to

be tight by Moore [Moo71] who provided an automaton with n states that requires at least 2n

states for its determinisation, depicted in Figure 2.4.

q0 q1 q2 · · · qn−1

b

a a,b a,b a,b

a

a

Figure 2.4: Moore’s NFA with n states which any DFA requires at least 2n states.

2.4.2 Minimisation

We say that an NFA is minimal if its number of states is the minimum among all NFAs that are

equivalent. Furthermore, for each regular language there exists a minimal deterministic finite

automaton that recognises it, and it is unique up to isomorphism [HU79]. A DFA A is minimal

if each state is accessible and co-accessible, and every two states are pairwise distinguishable,

that is, Lq(A) ∕= Lq ′(A), for every two states q,q ′ of A.

Recall from Section 2.3 the discussion of the relation ∼L and of equivalence classes, as well as

the first half of the Myhill-Nerode Theorem (Theorem 2.1). Consider this next result:

Theorem 2.4 (Myhill-Nerode Theorem [Ner58], Part 2). If a language L ⊆ Σ, defined over

an alphabet Σ, is regular, then the number of states in the minimal deterministic finite

automaton accepting L is given by the number of equivalent classes in the relation ∼L.

In fact, by the equivalence relation, it follows that if x ∼L y then x−1L = y−1L, that is, the

quotient of L by each word is identical. By Theorem 2.1, we know that a language is regular if

there is a finite number of equivalent classes. Now, Theorem 2.4 tells us that each state of the

minimal DFA refers to one of these quotients.

Moore’s algorithm [Moo56] is based on the computation of the Myhill-Nerode equivalence by

refinements of partitions of the set of states. Given an n-state DFA, Moore’s algorithm has

quadratic time complexity on the worst-case, but on the average-case it is bounded by O(n logn).

On the other hand, Hopcroft’s algorithm [Hop71] runs in O(n logn) in the worst-case, through a

more complex order of operations then Moore’s. Brzozowski’s algorithm [Brz62] is different from

the other two, since its inputs may be nondeterministic automata. Reversing the transitions of

12 CHAPTER 2. PRELIMINARIES

an NFA and switching initial and final states produces an NFA for the reversal of the original

language, and Brzozowski observed that reversing the automaton and converting it to a DFA

twice produces the minimal DFA of the original language. The worst-case complexity is, of

course, exponential in the number of state of the input DFA due to the determinisation steps.

The minimisation of nondeterministic finite automata is considered a challenge due to its

computation complexity. Unlike their deterministic counterpart, where minimisation can be

achieved efficiently, the problem of minimising NFAs is classified as PSPACE-complete [MS72],

so it is unknown the existence of polynomial-time algorithms, but there are some procedures to

obtain a minimal NFA [BT13]. Moreover, there are several algorithms with a practical perfor-

mance that permit to reduce the size of the NFAs, without guarantees that the obtained NFA

is the smallest one, p.e. bisimulations [IY03].

2.5 Regular Expressions

Introduced by Kleene in 1956 [Kle56], regular expressions are a declarative way to express the

words that we want to accept. They are used in pattern matching applications such as input

validation, search engines, and word processors.

The class of regular expressions (RE) and the languages they represent, L(·), can be recursively

defined as follows:

∅ and ε are RE, L(∅) = ∅ and L(ε) = {ε};

σ is a RE and L(σ) = {σ}, for σ ∈ Σ;

if α and β are RE, then

1. α+ β is also a RE, and L(α+ β) = L(α) ∪ L(β),

2. αβ is also a RE, and L(αβ) = L(α)L(β);

if α is a RE, then α is also a RE, and L(α) = L(α).

Example 2.5. The language L = {w ∈ {a,b} | the third but last symbol is a }, represented

by an NFA in Figure 2.1, can also be described by the regular expression

α = (a+ b)a(a+ b)(a+ b).

The Thompson algorithm [Tho68] converts any regular expression into an ε-NFA that recognises

the same language. Glushkov [Glu61] introduced the position automata that permits us to

2.6. STATE COMPLEXITY 13

convert a regular expression into an equivalent NFA without ε-transitions. The existence of

these algorithms imply the following result:

Proposition 2.6. For each regular expression, there is a finite automaton that recognises

the same language.

On the other hand, the Kleene’s algorithm [Kle56] transforms an NFA into a regular expression.

Brzozowski and McCluskey [BJ63] presented an algorithm that given an automaton without

any ε-transitions, it progressively eliminates the states until it ends up with an automaton

having a single transition. The label of that transition corresponds to the regular expression of

the language recognised by the automaton. Then, we have:

Proposition 2.7. For each language represented by a finite automaton, there is a regular

expression that recognises the same language.

As a corollary of Propositions 2.6 and 2.7, we have that the set of regular languages and the set

of languages recognised by a finite automaton are equal.

2.6 State Complexity

The ability of finite automata to represent a language in a more or less succinct way has been

widely studied in the area of descriptional complexity. In this context, the size of a model is

measured in terms of the number of symbols used to write down its description. The state

complexity of a language L, sc(L), is the size of its minimal DFA (number of states). The

nondeterministitic state complexity of a language L, nsc(L), is defined analogously. Since a

DFA is in particular an NFA, for any regular language L one has nsc(L) sc(L). As we saw

in Section 2.4.1, converting an n-state NFA to an equivalent DFA can lead to an automaton

with up to 2n states. Thus, sc(L) 2nsc(L).

The operational state complexity is the worst-case state complexity of a language resulting

from an operation, and is given as a function of the state complexities of the operands. For

instance, the deterministic state complexity of the intersection of two languages can be stated

as follows:

Example 2.8. Given an m-state DFA A1 and an n-state DFA A2, how many states are suf-

ficient and necessary, in the worst-case, to accept the language L(A1)∩L(A2) by a DFA A3?

And how large does the alphabet have to be to achieve that bound?

An upper bound can be obtained by providing an algorithm that, given automata for the

operands, constructs an automaton that accepts the language resulting from the operation

14 CHAPTER 2. PRELIMINARIES

applied to the language of the operands. The number of states, in the worst-case, of the resulting

machine is an upper bound for the state complexity of the referred operation.

Example 2.9. Proceeding with the intersection operation, let

A1 = 〈Q,Σ, δ1,q0, F1〉 and A2 = 〈P,Σ, δ2,p0, F2〉

be two minimal DFAs for L1 and L2, respectively, where sc(L1) = m and sc(L2) = n. Let A3

be the DFA resulting from the product automata of A1 and A2, that is,

A3 = 〈S,Σ, δ3, I, F3〉 ,

where:

S = Q× P;

(∀(p,q) ∈ S)(∀σ ∈ Σ) : δ3((p,q),σ) = (δ1(p,σ), δ2(q,σ));

I3 = (q0,p0);

F3 = F1 × F2.

It is not hard to see that A3 recognises the language L1 ∩ L2 and that it has exactly mn

states. Therefore, sc(L1 ∩ L2) mn.

To show that an upper bound is tight, a family of languages for each operation must be

given such that the resulting automata achieve that bound. We call those families witnesses or

streams.

Example 2.10. For the operational state complexity of the intersection of two regular

languages L1 and L2 with sc(L1) = m and sc(L2) = n, the bound mn is indeed tight.

Let m,n 1 and the languages

L1 = {w ∈ {a,b} | |w|a ≡ 0 (mod m) },

L2 = {w ∈ {a,b} | |w|b ≡ 0 (mod n) }.

It is easy to see that both sc(L1) = m and sc(L2) = n, as Figure 2.5 suggests. Yu et

al. [YZS94] showed that any DFA that recognises the language L1 ∩L2 requires at least nm

states (see Figure 2.6).

2.6. STATE COMPLEXITY 15

q0 q1 q2

b

a

b

a

b

a

p0 p1

a

b

a

b

Figure 2.5: Minimal DFAs for L1 (left) and L2 (right), defined in Example 2.10, with m = 3

and n = 2.

(q0,p0) (q1,p1) (q2,p0)

(q0,p1) (q1,p0) (q2,p1)

a

b

a

b

a

b

a

b

a

b

a

b

Figure 2.6: Minimal DFA with 6 states for the intersection of L1 and L2, defined in Example 2.10,

with m = 3 and n = 2.

In Table 2.1, we review some complexity bounds for regular languages, as well as the size of

the smallest alphabets for the family witnesses that attain the bound. When considering unary

operations, let L ⊆ Σ be a regular language with sc(L) = m (nsc(L) = m) and let A =

〈Q,Σ, δ,q0, F〉 be the complete minimal DFA (a minimal NFA) for L. Furthermore, k = |Σ|, f =

|F|, and l = |F− {q0}|. In the same way, for binary operations let L1 and L2 be regular languages

over the same alphabet with sc(L1) = m (nsc(L1) = m) and sc(L2) = n (nsc(L2) = n), and

let Ai = 〈Qi,Σ, δi,qi, Fi〉 be complete minimal DFAs (minimal NFAs) for Li, with i ∈ {1, 2}.

Furthermore, k = |Σ|, fi = |Fi|, and li = |Fi − {qi}|, for i ∈ {1, 2}.

Yu et al. [YZS94] studied, among others, the deterministic state complexity of union, intersec-

tion, star, and reversal. The complement for DFAs is trivial as one has only to exchange the final

states and thus, the state complexity of the complement is the same one of the original language.

Jirásek et al. [JJS05] studied the bound for concatenation of two languages and proved that it

is tight. The state complexity for the plus operation on a regular language L coincides with the

one for star in the first case, but one state can be saved. The state complexity of basic opera-

tions on NFAs was first studied by Holzer and Kutrib [HK03a], and also by Ellul [EoWDoCS02].

Jiráskova [Jir05] proved the bounds for the nondeterministic state complexity of complement,

star and reversal. An NFA accepting L+ coincides with one accepting L except that each final

state has also the transitions to the initial state.

16 CHAPTER 2. PRELIMINARIES

Regular Languages

sc |Σ| nsc |Σ|

L1 ∪ L2 mn 2 m+ n+ 1 2

L1 ∩ L2 mn 2 mn 2

L m 1 2m 2

L1L2
m · 2n − f1 · 2n−1, if n > 1 2

m+ n 2
m, if n = 1 1

L

2m−1 + 2m−l−1, if m > 1, l > 0 2

m+ 1 2m, if m > 1, l = 0 1

m+ 1, if m = 1 1

L+ 2m−1 + 2m−l−1 − 1 2 m 2

LR 2m 2 m+ 1 2

Table 2.1: State complexity and nondeterministic state complexity for basic operations on

regular languages.

For an in depth study on operational state complexity over multiple classes of regular languages,

we refer the reader to [GMRY17].

Chapter 3

Finite Languages

The class of finite languages is a proper subset of regular languages, because every finite

language can be represented as a finite union of singletons, each corresponding to an individual

word in the language. Additionally, finite automata and regular expressions for these languages,

have structural properties that lead to more efficient manipulation algorithms and descriptional

complexity, as will be shown in Sections 3.1 to 3.3. Moreover, we will also consider languages

where all words have the same length in Section 3.4, as well as their representations using

automata and some applications.

Let us denote as Σℓ, for ℓ 0, the set of words over Σ of length at most ℓ. That is,

Σℓ = Σ0 ∪ Σ1 ∪ . . . ∪ Σℓ.

A finite language L which the longest word has length ℓ is a subset of Σℓ.

3.1 Finite Automata for Finite Languages

A trim NFA A = 〈Q,Σ, δ, I, F〉, that is, an NFA which every state is both accessible and co-

accessible, for a finite language L ⊆ Σℓ, with ℓ 0, is acyclic and ranked. An NFA is:

acyclic if it has no cycles, meaning that there are no paths of non-zero length within the

automaton that allow a return to a previously visited state. Formally,

A is acyclic ⇔ (∀q ∈ Q)(∀w ∈ Σ+) : δ(q,w) ∕= q;

ranked if the set of states Q can be partitioned into ℓ + 1 disjoint sets Q0,Q1, · · · ,Qℓ,

such that the longest word accepted from each state in Qi is i. For each q ∈ Q, we first

17

18 CHAPTER 3. FINITE LANGUAGES

define rank(q) as the largest final path starting at q, i.e.,

rank : Q → [ℓ]

rank(q) = max{ |w| | (w ∈ Σ) : δ(q,w) ∩ F ∕= ∅ }.

Then, we formally define

A is ranked ⇔ Q = Q0 ∪Q1 ∪ · · · ∪Qℓ

∧ (∀i, j ∈ [ℓ]) : i ∕= j =⇒ Qi ∩Qj = ∅

∧ (∀i ∈ [ℓ]) : Qi = {q ∈ Q | rank(q) = i}.

We also say that rank(A) = max{ rank(q0) | q0 ∈ I }. As an NFA for a finite language is acyclic,

we have 0 rank(q) ℓ, for every q ∈ Q, and that all transitions from states of rank i lead

only to states in ranks j, such that j < i. We define the width of a rank i ∈ [ℓ], namely width(i),

as the cardinality of the set Qi, and the width of an NFA A to be the maximal width of a rank,

i.e., width(A) = max{width(i) | i ∈ [ℓ] }.

A DFA for a finite language is also ranked but it may have a sink-state Ω which is the only

state with a self-loop and without a rank. The notion of ranks and widths analogously apply to

DFAs.

Example 3.1. See Figure 3.1 for the minimal DFA of L = {wwR | w ∈ Σ2 }, the language

of even size palindromes over an alphabet Σ. Note that the general case of infinite lan-

guages of palindromes is not regular. In particular, we have that rank(q9) = 0, since ε is

the largest word w such that δ(q9,w) is a final state. On the other hand, rank(q0) = 4,

because there exists a path from q0 to q9 of length 4. The width of this DFA is 4 and it is

achieved at rank 2 (width(2) = 4).

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

a

b

a

b

a

b

a

b

a

b

a

b

rank 2rank 3rank 4 rank 1 rank 0

Figure 3.1: A DFA for the finite language L = {wwR | w ∈ Σ2 } with the division of states by

their ranks. The sink-state Ω is omitted, as well as all transitions from and to it.

3.2. MINIMISATION OF FINITE AUTOMATA FOR FINITE LANGUAGES 19

3.2 Minimisation of Finite Automata for Finite Languages

As seen in Section 2.4.2, a complete and trim DFA for a finite language is minimal if it has no

indistinguishable states. However, since any finite automaton for a finite language is ranked, we

have the following result:

Lemma 3.2. Let A = 〈Q,Σ, δ, I, F〉 be a DFA for a finite language L ⊆ Σℓ, for some ℓ 0.

Then, if q,q ′ of Q are indistinguishable they have the same rank, that is, rank(q) =

rank(q ′).

Proof. Two states q and q ′ are indistinguishable if, and only if, their right language is the same,

that is, Lq(L) = Lq ′(L). If rank(q) ∕= rank(q ′) and supposing, w.l.o.g., that rank(q) > rank(q ′),

then there would exist a word w ∈ Lq(L) of length rank(q) that would not be in Lq ′(L). So, it

follows that rank(q) = rank(q ′).

Of course, a minimisation of an acyclic DFA can be done by any algorithm mentioned in Sec-

tion 2.4.2, but a much more efficient method can be applied. Revuz algorithm [AMR08, Rev92]

iteratively minimises each rank, from lowest to highest, using the observation in Lemma 3.2.

This algorithm runs in O(kn), where k = |Σ| and n is the number of states of the original

automaton, outperforming the other techniques.

1 def minimisationRevuz (A) :

2 assert A i s a c y c l i c

3 l et A = 〈Q,Σ, δ,q0, F〉
4 M = ∅
5 for i ∈ [rank(A)] do
6 for q,q ′ ∈ Qi ∧ q ≺ q ′ do
7 i f (q ∈ F ⇔ q ′ ∈ F) ∧ (Rnm(M, δ(q,σ)) = Rnm(M, δ(q ′,σ)))σ∈Σ then
8 M ← M ∪ {(q,q ′)}

9 delete(q)

10 return A

11

12 def Rnm(M ,q)

13 i f (∃q ′ ∈ Q) : (q,q ′) ∈ M then return q ′

14 else return q

Algorithm 3.1: Revuz Algorithm for minimisation of acyclic DFAs.

A sketch of this algorithm can be seen in Algorithm 3.1. It receives as input an acyclic DFA A and

returns an equivalent minimal DFA. It assumes that ≺ is any total order relation on the sets Qi,

for every i ∈ [rank(A)], and that Σ is ordered. As the name suggests, the function delete(q)

20 CHAPTER 3. FINITE LANGUAGES

removes q from Q and all related transitions. The correctness of this algorithms follows from

the fact that every transition from a state in rank i has a state in rank j as target, with j < i,

alongside the result in Lemma 3.2.

Câmpeanu and Ho [CH04] determined the exact maximal size of a minimal DFA for a finite

language as a function of the size of the alphabet and the length of the largest word of the

language.

Theorem 3.3 ([CH04]). Let L ⊆ Σℓ, with ℓ 1 and k = |Σ|, be a finite language recognised

by an m-state NFA. Then, the DFA obtained from this NFA by the subset construction

has at most O(k
m

1+logk) states.

Salomaa and Yu [SY97] showed that the blow-up of determinising an acyclic NFA is smaller

than for the general case.

Theorem 3.4 ([SY97]). Let L ⊆ Σℓ, with ℓ 1 and k = |Σ|, be a finite language. Then,

a DFA with

O(k
m

1+logk)

states is sufficient to recognise L.

3.3 Operational State Complexity for Finite Languages

The operational state complexity for finite languages is a well-studied matter. Notably, the

operational state complexity for finite languages is generally lower compared to the general case

of regular languages, both on the deterministic and nondeterministic case.

In Table 3.1, we review some complexity bounds for finite languages. Recall the notation used

in Table 2.1 defined in Section 2.6. Here, we say that |Σ| = f(m,n) if the size of Σ must be a

function of m and n, in which case we say that Σ is a growing alphabet.

Han et al. [HS08] proved that the upper bound for union and intersection of DFAs cannot be

reached with a fixed alphabet, and presented witnesses that use a growing alphabet. Câm-

peanu et al. [CCSY01] gave tight upper bounds for concatenation, star and reversal. The non-

deterministic state complexity of finite languages was studied by Holzer and Kutrib [HK03b].

3.4. BLOCK LANGUAGES 21

Finite Languages

sc |Σ| nsc |Σ|

L1 ∪ L2 mn− (m+ n) f(m,n) m+ n− 2 2

L1 ∩ L2 mn− 3(m+ n) + 12 f(m,n) O(mn) 2

L m 1 Θ(k
m

1+logk) 2

L1L2
(m− n+ 3)2n−2 − 1, if m+ 1 n 2

m+ n− 1 2
m+ n− 2, if l1 = 1 1

L
2m−3 + 2m−l−2, if l 2, m 4 3

m− 1, if m > 1 1
m− 1, if f = 1 1

L+ m 1 m, if m > 1 1

LR O(k
m

1+logk) 2 m 2

Table 3.1: State complexity and nondeterministic state complexity for basic operations on finite

languages.

3.4 Block Languages

We will now consider languages where all words have the same length. These languages are com-

monly referred in the literature as homogeneous or block languages, and we will use the latter

throughout this work. Formally, a block language L over an alphabet Σ and block length ℓ ∈ N
is a subset of Σℓ, that is, L ⊆ Σℓ. In Section 3.4.1 we will look into some gains in terms of

descriptional complexity of these languages, and some applications in Section 3.4.2.

3.4.1 Finite Automata for Block Languages

A minimal finite automaton A = 〈Q,Σ, δ, I, F〉 for a block language L ⊆ Σℓ, with ℓ 0 and k > 0,

is also acyclic and ranked as in the general case for finite languages. Therefore, the set of states Q

can also be split into ℓ+ 1 disjoint sets as Q = Q0 ∪Q1 ∪ . . .∪Qℓ, according to the rank of each

state. However, the right language of each state q ∈ Qi, for some i ∈ [ℓ], contains only words of

length i, that is, Lq(A) is also a block language. As a consequence, transitions in A are from

one rank to the previous one, i.e., if q ′ ∈ δ(q,σ) then q ∈ Qi and q ′ ∈ Qi−1, for some i ∈ [1, ℓ].

Also, we have |I| = |F| = 1, as every state in the respective ranks can be collapsed with a single

state.

Karhumäki and Okhotin [KO14] studied the cost in terms of number of states of determinising

an m-state NFA which recognises a block language, and they showed that it is smaller than the

22 CHAPTER 3. FINITE LANGUAGES

general case of finite languages (see Table 3.1). In the same paper, they also proposed a family

of witness languages which are recognised by small NFAs but any DFA must have much more

states, proving that the provided bound is in fact tight.

Theorem 3.5 ([KO14]). Let L ⊆ Σℓ, with ℓ 1 and k = |Σ|, be a block language recognised

by an m-state NFA. Then, the DFA obtained from this NFA by the subset construction

has at most 2O(
√
m) states.

Câmpeanu and Ho determined the maximum number of states required to recognise a block

language using a minimal deterministic finite automaton.

Theorem 3.6 ([CH04]). Let L ⊆ Σℓ, with ℓ 1 and k = |Σ|, be a block language. Then,

a DFA with
ℓ

i=0

min(2ℓ−i, 2k
ℓ

− 1)

states is sufficient to recognise L.

Hanssen and Liu [KL19] provide a formula for determining the number of block languages

with maximal state complexity, that is, the number of languages which minimal DFAs require

exactly the number of states in Theorem 3.6. Brzozowski and Konstantinidis [BK09] studied

the state complexity of languages where the block length equals the size of the alphabet, that

is, languages L ⊆ Σℓ such that |Σ| = ℓ.

3.4.2 Applications

Finite automata can be used to represent two-dimensional images [KK21, KO14], wherein the

value of each pixel is defined by the computation of the automaton using as input the word that

represents the pixel’s coordinates. For example, consider a square picture with resolution 2ℓ×2ℓ.

The coordinates of each pixel in the image are defined by a string of length ℓ over a four-

letter alphabet Σ = {a,b, c,d}. Given a word w ∈ Σℓ the corresponding pixel is given by

progressively subdividing the image into smaller squares, using each symbol of w to choose one

of the quadrants. In Figure 3.2 it is shown how to access the pixel defined by the word dbc in

a 8 × 8 image.

Using this encoding of pixel’s locations, one can define a black-and-white image as a formal

language, by listing the coordinates of all black (or white) pixels as the corresponding words.

These languages will be, of course, finite and, in particular, block as every pixel requires the

same amount of symbols to encode its position. In Figure 3.3 it is depicted the image represented

by the set of words of size 7 over the alphabet Σ = {a,b, c,d} that have at least two a’s.

3.4. BLOCK LANGUAGES 23

a b

cc
da

dc dd

dbc

Figure 3.2: Accessing a pixel of a 8 × 8 image by a word of length 3.

Moreover, operations on images become operations on languages. For instance, the image ob-

tained by inverting the colours of an image represented by a block language L ⊆ Σℓ, is represented

by the language Σℓ \ L, that is, the complement of L closed for words of length ℓ. Karhumäki et

al. [KPR03] studied the zoom operation on images, that is, given an n-state DFA represent-

ing a 2ℓ × 2ℓ image, the task is to produce a DFA for a 2ℓ
′ × 2ℓ

′
subimage of the image,

with ℓ ′ ℓ. They concluded that this operation is represented by a language which mini-

mal DFA requires Θ(n2.5) states and that the bound is tight.

Figure 3.3: Image with resolution 2ℓ × 2ℓ represented by the language L = {w ∈ Σℓ | |w|a 2 },

for ℓ = 7 and Σ = {a,b, c,d}.

24 CHAPTER 3. FINITE LANGUAGES

Block languages are also used in code theory. In block coding, a sequence of information over a

finite alphabet is divided into message blocks of fixed length, each consisting of n information

symbols. Then, each message is encoded into a distinct code-word of length ℓ > n, where

the extra symbols are used to detect and correct possible errors introduced by an imperfect

channel. This set of encoded message is often called a block code. In this field, a DFA for a

block language L is referred as a trellis for a block code C. In [SDDR03], the authors study

the partition of a block code C into disjoint subcodes, and algorithmically combine the minimal

subtrellis corresponding to these subcodes in order to get a reduced trellis for C. A typical

problem in code theory is the construction of maximal code blocks for error correcting [DK12,

KMR18]. A code block C is said to be maximal if extending it with additional code-words would

compromise its ability to detect and correct errors. Konstantinidis et al. [KMR18] proved that

the problem of deciding if a trellis recognises a maximal block code is coNP-hard.

Chapter 4

Bitmaps for Block Languages

In this chapter, we introduce a new representation for block languages, namely sets of words

that have the same size, and call them bitmaps. In Section 4.1 we define what a bitmap is, as

well as several associated properties. In Section 4.2 and Section 4.3, we explain how one can

construct the minimal DFA and a minimal NFA, respectively, from a bitmap representation of

a block language.

4.1 Bitmaps

Given an alphabet Σ = {σ1,σ2, . . . ,σk} of size k > 0 and an integer ℓ 0, let L ⊆ Σℓ be a block

language of block length ℓ 0 over Σ. The language L can be characterised by a word in {0, 1}k
ℓ

that we call bitmap and denote as

B(L) = b1b2 · · ·bkℓ ,

where bi = 1 if the i-th word of Σℓ is in L, in the lexicographical order. In this case, we denote i

by ind(w). We will denote the bitmap of a language simply as B when it is unambiguous to which

language the bitmap refers to. We also say that L(B) is the block language that B represents.

Example 4.1. Let Σ = {a,b}, ℓ = 4, and

L = {aaaa,aaba,aabb,abab,abba,abbb,babb,bbaa,bbab,bbba}.

The bitmap of L is

B = 1011011100011110.

For example, b1 = 1 since aaaa ∈ L and ind(aaaa) = 1. Also, b7 = 1 because ind(abba) = 7

and abba ∈ L. On the other hand, b16 = 0 as bbbb /∈ L.

25

26 CHAPTER 4. BITMAPS FOR BLOCK LANGUAGES

Given a block length ℓ > 0 and an alphabet size k > 0, it is easy to see that no two block

languages have the same bitmap characterisation, unless they are over different alphabets. Thus,

the following result applies:

Lemma 4.2. A bitmap B ∈ {0, 1}k
ℓ
, for some alphabet Σ of size k > 0 and block length ℓ > 0,

represents a unique language up to renaming of alphabet symbols.

Proof. Let L1,L2 ⊆ Σℓ be two different block languages over the same alphabet Σ. Because L1 ∕=
L2, there exists a word w ∈ L1 such that, w.l.o.g., w /∈ L2. So, their bitmap representation should

be different at the ind(w)-th bit. Thus, B(L1) ∕= B(L2).

The only exception of the previous lemma are the languages {ε} and {σℓ}. Since the first language

has block length ℓ = 0 and the second is a unary language (k = 1), both these languages get

represented by the same bitmap B = 1.

A bitmap B ∈ {0, 1}k
ℓ

can be divided into segments of length ki, for i ∈ [ℓ]. That is, the

bitmap B can be seen as

B = si1 s
i
2 · · · sikℓ−i ,

such that sij denotes the j-th segment of length ki, for each j ∈ [1, kℓ−i]. Whenever i > 0, each

segment of length ki can also be split into k segments, so sij is inductively defined as

sij =

bj, if i = 0;

si−1
(j−1)k+1 s

i−1
(j−1)k+2 · · · si−1

jk , otherwise.

Example 4.3. Recall Example 4.1, where B = 1011011100011110, k = 2 and ℓ = 4. We

have, for instance, when i = 1

s1
1 = s1

8 = 10, s1
2 = s1

4 = s1
7 = 11, s1

3 = s1
6 = 01, and s1

5 = 00.

For i = 2,

s2
1 = 1011, s2

2 = 0111, s2
3 = 0001, and s2

4 = 1110.

For i = 4, we have s4
1 = B.

The following lemma corresponds to the observation that each segment sij of a bitmap B ∈
{0, 1}k

ℓ
, over a k-letter alphabet, a block length ℓ 0, i ∈ [ℓ], and j ∈ [1, kℓ−i], represents the

bitmap of a quotient of L, that is, sij = B(w−1L), for some w ∈ Σℓ−i.

Lemma 4.4. Let L ⊆ Σℓ be a block language, where |Σ| = k and ℓ 0, and let B be the

bitmap of L. Also, let i ∈ [ℓ], j ∈ [1, kℓ−i], and w ∈ Σℓ−i be the j-th word of length ℓ − i,

i.e., ind(w) = j. Then, sij corresponds to the bitmap representation of the language w−1L.

4.1. BITMAPS 27

Proof. Let us prove by induction on i ∈ [ℓ]:

Base case i = 0: by definition, sij = bj. By construction of the bitmap, we have that bj = 1

if the word w ∈ Σℓ with ind(w) = j is in L. Since |w| = ℓ, either w−1L = {ε} or w−1L = ∅,
according to the membership or not of w in L.

Inductive step: since i > 0, we have that sij = si−1
(j−1)k+1 s

i−1
(j−1)k+2 · · · si−1

jk . By hy-

pothesis, we have that si−1
(j−1)k+k0

, for each k0 ∈ [1, k], corresponds to the bitmap of the

language w−1
k0

L, where |wk0 | = ℓ − (i − 1) and ind(wk0) = (j − 1)k + k0. One can observe

that the words {wk0}k0∈[1,k] are all equal on the first ℓ − i symbols, corresponding to

the j-th word of length ℓ − i. Thus, sij corresponds to the bitmap of the language w−1L

such that |w| = ℓ− i and ind(w) = j.

Example 4.5. Recall again Example 4.1, where B = 1011011100011110, Σ = {a,b} and the

block length is ℓ = 4. We have that s2
1 = 1011 is the bitmap of the language (aa)−1L =

{aa,ba,bb}, s3
2 = 00011110 is the bitmap of b−1L = {abb,baa,bab,bba}, and s4

1 = B is the

bitmap of ε−1L = L.

Given a bitmap B ∈ {0, 1}k
ℓ

of a block language over an alphabet of size k > 0 and a block

length ℓ 0, let Bi be the set of segments of B of length ki, for i ∈ [ℓ], in which there is at least

one bit different than zero. Formally,

Bi = { s ∈ {0, 1}k
i

| (∃j ∈ [1, kℓ−i]) : s = sij and sij ∕= 0k
i

}.

Example 4.6. For the bitmap of Example 4.1, B = 1011011100011110 with k = 2 and ℓ = 4,

we have B0 = {1}, B1 = {10, 11, 01}, B2 = {1011, 0111, 0001, 1110}, B3 = {10110111, 00011110},

and B4 = {B}.

The size of Bi is bounded by the number of segments with size ki, for each i ∈ [ℓ]. Also,

each segment is a composition of segments from the previous set Bi−1 or by zeros. These two

conditions are formally stated in the following lemma.

Lemma 4.7. Let L ⊆ Σℓ be a block language of length ℓ 0 over an k-letter alphabet Σ,

with a correspondent bitmap B. Then, for each i ∈ [ℓ], the cardinality of Bi is bounded

by |Bi| min(kℓ−i, 2k
i
− 1).

Proof. When i = 0, the result is trivial as B0 contains at most the segment 1. This happens

when L is not empty. Since there are at most kℓ−i unique segments of size ki in a bitmap of

28 CHAPTER 4. BITMAPS FOR BLOCK LANGUAGES

size kℓ, for i ∈ [ℓ], then |Bi| kℓ−i. Now, let s ∈ Bi, for some i ∈ [1, ℓ]. By definition, s can

be partitioned into s = s1s2 · · · sk (with |sj| = ki−1) and either sj ∈ Bi−1 or it is composed

only by zeros (implying that sj /∈ Bi−1), for every j ∈ [1, k]. Moreover, since s ∈ Bi it must

have at least one bit equal to 1, so s ∕= 0k
i
. Therefore, |Bi| (|Bi−1| + 1)k − 1. For simplicity,

let f(i) = (|Bi−1|+ 1)k − 1 and let us prove that f(i) 2k
i
− 1, by induction on i ∈ [1, ℓ].

Base case i = 1: f(1) = (| {1} |+ 1)k − 1 = 2k − 1;

Inductive step:
f(n+ 1) = (|Bn|+ 1)k − 1

 ((|Bn−1|+ 1)k − 1 + 1)k − 1
i.h.
 (2k

n

− 1 + 1)k − 1 = 2k
n+1

− 1.

Thus, |Bi| 2k
i
− 1, as desired.

One can also consider bitwise operations on bitmaps which correspond to set operations on

block languages. Let s1 = b1b2 · · ·bkℓ , and s2 = b ′
1b

′
2 · · ·b ′

kℓ be two bitmaps of block languages

over Σℓ, with |Σ| = k and ℓ 0. We define:

1. s1 ∧ s2 = (b1 ∧ b ′
1)(b2 ∧ b ′

2) · · · (bkℓ ∧ b ′
kℓ) and L(s1 ∧ s2) = L(s1) ∩ L(s2);

2. s1 ∨ s2 = (b1 ∨ b ′
1)(b2 ∨ b ′

2) · · · (bkℓ ∨ b ′
kℓ) and L(s1 ∨ s2) = L(s1) ∪ L(s2);

3. s1 = (¬b1)(¬b2) · · · (¬bkℓ) and L(s1) = Σℓ \ L(s1).

In the following sections, we will describe how one can construct minimal finite automata, both

deterministic and nondeterministic, from a bitmap representation of a block language.

4.2 Minimal DFAs for Block Languages Described by Bitmaps

In this section we relate the bitmap of a block language to its minimal DFA. Given a bitmap B

representing a block language L ⊆ Σℓ, with |Σ| = k and ℓ 0, one can directly build a mini-

mal DFA A for L. Let Q =
ℓ

i=0 Bi be the set of states of A, and the transition function δ will

map the states in Bi with the ones in Bi−1, for i ∈ [1, ℓ]. We will now detail this construction.

We start by the final state qf, which will be the segment 1 ∈ B0, as well as the sink-state Ω

corresponding to the segment 0. Then, for each rank i = 1, 2, . . . , ℓ, we consider every seg-

ment s ∈ Bi as a state in rank i. As stated in Lemma 4.4, every segment s corresponds to the

4.2. MINIMAL DFAS FOR BLOCK LANGUAGES DESCRIBED BY BITMAPS 29

bitmap of the quotient of the language L by some word w. The transitions from s are then given

by the segmentation of s into s1s2 · · · sk, where |sj| = ki−1, for every j ∈ [1, k]. More precisely,

we set δ(s,σj) = sj, for j ∈ [1, k]. Note that, if the language L is not empty, this construction

creates exactly one initial and one final state, since |B0| = |Bℓ| = 1.

1 def toMinDFA(B ,Σ ,ℓ) :

2 k ← |Σ|

3 Q ← {1, 0}

4 δ ← {(0 σ−→ 0)}σ∈Σ

5 for i ∈ [1, ℓ] do
6 Bi ← segment(B, ki)

7 Q ← Q ∪Bi

8 for s ∈ Bi do
9 S ← segment(s, k)

10 for (σj, sj) ∈ Σ× S do

11 δ ← δ ∪ (s
σj−→ sj)

12 return 〈Q,Σ, δ, B, 1〉

Algorithm 4.1: Construction of the minimal DFA for a block language L from its bitmap

representation B.

Consider Algorithm 4.1, which implements the above construction. Given a bitmap B for a

language over a k-letter alphabet Σ and block length ℓ, returns the minimal DFA for L(B). First,

it initialises the set of states Q with the final state 1 and the sink-state 0, and the transition

function δ with a loop on the sink-state by every symbol on the alphabet. Then, for every

rank i = 1, 2, . . . , ℓ, the procedure partitions the bitmap B into segments of length ki (using the

function segment) retrieving the set Bi and adding it to set of states Q. For each element s ∈
Bi, it decomposes it again in k segments, and adds the transitions to the δ function as previously

described. At the end of the for loop, the algorithm returns the automaton 〈Q,Σ, δ, B, 1〉 with

initial state B and final state 1.

The following lemma formalises the correctness of the construction, that is, the mapping from

bitmaps to DFAs preserves the language.

Lemma 4.8. Let L ⊆ Σℓ be a block language with bitmap B, where ℓ 0. Then, the DFA A

obtained by applying Algorithm 4.1 to B recognises L, that is, L(A) = L.

Proof. Let us show that both L(A) ⊆ L and L ⊆ L(A).

L(A) ⊆ L: let w ∈ Σℓ \ L. By construction, each state of A is a segment of B which,

by Lemma 4.4, is the bitmap of the quotient of L by some word. Since w /∈ L, w can be

split into two words w = w1w2 such that w−1
1 L = ∅. As for every word x, x−1∅ = ∅, we get

30 CHAPTER 4. BITMAPS FOR BLOCK LANGUAGES

w−1L = (w1w2)
−1L = w2

−1(w−1
1 L) = ∅. The empty language corresponds to the bitmap

associated with the sink-state, therefore the initial path with label w has the state 0 as

its end. Thus, w /∈ L(A).

L ⊆ L(A): let w ∈ L. Then, w−1L = {ε}, whose bitmap is 1. Therefore, the initial path

with label w is final, since its end is 1. Thus, w ∈ L(A).

Moreover, this construction yields the minimal DFA which accepts the language represented by

the bitmap, as stated in the following lemma.

Lemma 4.9. Let L ⊆ Σℓ be a block language with bitmap B, where ℓ 0 and |Σ| = k. Then,

the DFA A obtained by applying Algorithm 4.1 to B is minimal.

Proof. Recall the second part of Myhill-Nerode Theorem, introduced in Theorem 2.4. We must

prove that the number of equivalence classes on the relation ∼L is equal to the size of Q, the

set of states of A which, by construction, is given by Q =
ℓ

i=0 Bi. Let s1, s2 be two different

states of A. As A is deterministic, we have
←−
L s1(A) ∩

←−
L s2(A) = ∅. Now, let w1 ∈

←−
L s1(A)

and w2 ∈
←−
L s2(A). It also follows that w−1

1 L ∕= w−1
2 L as s1 ∕= s2, and s1 and s2 represent the

quotients of L by the words w1 and w2, respectively, as of Lemma 4.4. Then, w1 ≁L w2.

Combining the results of Lemmas 4.8 and 4.9, we obtain:

Theorem 4.10. Let L ⊆ Σℓ be a block language, for some ℓ 0. The construction of

a DFA from the bitmap B(L), detailed in Algorithm 4.1, yields the minimal DFA for L.

Example 4.11. Let L ⊆ {a,b}4 be the language of Example 4.1 with bitmap representa-

tion B = 1011011100011110. The correspondent minimal DFA obtained by applying Al-

gorithm 4.1 is depicted in Figure 4.1. The final state, found in rank 0, is the state 1,

and the sink-state (0) is omitted, as well as all transitions from and to it. States in

rank 1 correspond to 2-bit segments, in this case: 10, 11, and 01. In particular, we

have δ(10,a) = δ(01,b) = δ(11,a) = δ(11,b) = 1. States in rank 2 correspond to 22 = 4-

bit segments: 1011, 0111, 0001, and 1110. And we have, for instance, δ(0111,a) = 01

and δ(0111,b) = 11. Similarly for ranks 3 and 4. The initial state corresponds to B.

4.3 Minimal NFAs for Block Languages Described by Bitmaps

In this section, we will extend the use of bitmaps for block languages, by describing a construc-

tion of minimal NFAs from the bitmap representation. We will also present a proof on how, on

4.3. MINIMAL NFAS FOR BLOCK LANGUAGES DESCRIBED BY BITMAPS 31

B

00011110

10110111

0001

0111

1110

1011

01

11

10

1

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a,b

a

rank 2rank 3rank 4 rank 1 rank 0

Figure 4.1: The minimal DFA accepting the language of Example 4.1.

this case, for this class of languages, the problem is NP-complete.

Given a bitmap B representing a block language L ⊆ Σℓ, for some block length ℓ 0 and |Σ| =

k, one can build a minimal NFA similarly to the previous construction for minimal DFAs,

by iteratively finding the minimal number of states required at each rank of the NFA. The

main difference with the deterministic counterpart is that the quotients of the language can be

represented by a set of states, instead of a single one.

First, let us define a cover of a word, in this context. Let C be a finite set of binary words of

length n, that is, C ⊆ 2{0,1}n , for some n ∈ N. We say that C is a cover for a word s ∈ {0, 1}n (or,

alternatively, s is covered by C) if there is a subset of words in C such that the bitwise disjunction

of those words equal s. Formally,

C covers s ⇔ (∃m ∈ [1, |C|])(∃{c1, . . . , cm} ⊆ C) :

m

i=1

ci = s.

Most importantly, we extend this definition to sets in the natural way, that is, C is a cover of

a finite set of binary words B if every word in B is covered by C. Moreover, we say that C is

a minimal cover for B if there is no other set C ′ smaller than C that covers B.

Example 4.12. Let C = {1100, 1010, 0001} and B = {1100, 1110, 1101, 1111}. Then, C covers B

because C covers every word from B:

1100 = 1100;

32 CHAPTER 4. BITMAPS FOR BLOCK LANGUAGES

1110 = 1100 ∨ 1010;

1101 = 1100 ∨ 0001;

1111 = 1100 ∨ 1010 ∨ 0001.

One can observe that the set C is a minimal cover for B, but not unique since C ′ =

{1100, 0010, 0001} also covers B and |C| = |C ′|.

Let us now show how to obtain an NFA for a non-empty block language L with block length ℓ 0,

over a k-letter alphabet Σ, and with bitmap representation B. The construction starts as before,

where the final state 1 is added at rank 0. Additionally, we define the function ρ : {0, 1} → 2{0,1}

that maps segments into covers, that is, ρ(s) = {c1, c2, . . . , cm} if |s| = |ci| and
m

i=1 ci = s.

Initially, we set ρ(1) = {1}. Then, for each rank i = 1, 2, . . . , ℓ, we look for the minimal set Ci

that cover the set Bi, the collection of segments of B with length ki with at least one bit set

to 1. The states at rank i will be the segments found in the cover Ci. Subsequently, for each

segment s ∈ Bi we set ρ(s) = {c1, c2, . . . , cm} ⊆ Ci, such that ρ(s) is the cover of s in Ci.

The transitions from rank i to rank i− 1 will then be determined in a similar way to the DFA

construction. For each state c ∈ Ci in rank i, we segment c into c1c2 · · · ck, where |cj| = ki−1,

for every j ∈ [1, k], and set δ(c,σj) = ρ(cj), if only cj ∕= 0k
i−1

. We must also guarantee that ρ is

defined for each cj or, alternatively, that cj ∈ Bi−1. For that, we need to limit the search space

of the cover Ci, so that each word in the set is a composition of k words from Bi−1 or 0k
i−1

.

Formally, Ci ⊆ (Bi−1∪0k
i−1

)k \0k
i
. Also, as we previously saw, Bℓ = {B}, so the minimal cover

for Bℓ is itself. This result implies that B will be the single initial state at rank 0.

Let us look at Algorithm 4.2, containing the implementation of the above construction. Given

a bitmap B for a language over a k-letter alphabet Σ and block length ℓ, returns a minimal NFA

for L(B). First, the algorithm initialises the set of states Q with the final state 1, and the tran-

sition function δ. Additionally, it also defines the map ρ as we previously described, and prev as

the search space for the cover of the current rank, initially set to prev = B0 ∪ {0} = {1, 0}. Then,

for every rank i = 1, 2, . . . , ℓ, the procedure partitions the bitmap B into segments of length ki

with the use of the previously described function segment, retrieving the set Bi. As already

anticipated, it finds the minimal cover Ci for Bi by only using words in prev through the proce-

dure minCover, which will be described next. In the algorithm we denote, for simplicity, Ci(s)

as the cover of s in Ci, for each s ∈ Bi. Once a cover is found it first defines ρ as the cover

of s in Ci, and then, adds each element of the cover to the set of states Q. Finally, it adds to δ

the transitions from rank i to i− 1 as we described above, and updates prev at the end of each

iteration. The algorithm then returns the automaton 〈Q,Σ, δ, B, 1〉, where the states B and 1

are, respectively, the initial and the final state,.

4.3. MINIMAL NFAS FOR BLOCK LANGUAGES DESCRIBED BY BITMAPS 33

1 def toMinNFA(B ,Σ ,ℓ) :

2 k ← |Σ|

3 Q ← {1}

4 δ ← ∅
5 ρ ← {1 : {1}}

6 prev ← {1, 0}

7 for i ∈ [1, ℓ] do
8 Bi ← segment(B, ki)

9 Ci ← minCover(Bi,prev, k, i)

10 Q ← Q ∪ Ci

11 for s ∈ Ci do
12 ρ(s) ← Ci(s)

13 for c ∈ Ci do
14 C ← segment(c, k)

15 for (σj, cj) ∈ Σ× C∧ cj ∕= 0ki−1 do

16 δ ← δ ∪ (c
σj−→ c ′)c′∈ρ(cj)

17 prev ← Bi ∪ {0ki

}

18 return 〈Q,Σ, δ, B, 1〉

Algorithm 4.2: Construction of a minimal NFA for a block language L from its bitmap

representation B.

The function minCover(Bi,prev, k, i), that returns the minimal cover Ci for Bi, can be imple-

mented with the help of an SMT-solver [KS16]. Let Di be the set that contains all words of

length ki, such that each word is formed by concatenating k words from prev, excluding 0k
i
.

Also, let m denote the size of the minimal cover, that incrementally increases until a solution

is found, initially set to 1. Then, minCover consists in the following steps:

1. let xj be the Boolean variable that indicates whether the j-th word of Di is in Ci or not,

for j ∈ [1, |Di|];

2. let yj,t be the Boolean variable that indicates whether the j-th word of Di is in the cover

for the t-th word of Bi, for j ∈ [1, |Di|], and t ∈ [1, |Bi|];

3. ensure that there are m elements in the cover, that is,
|Di|

j=1 xj = m;

4. if yj,t is 1 then xj must also be 1, i.e., yj,t → xj;

5. for each s ∈ Bi, ensure that there must be a subset in Ci that covers s. That is, let st ∈ Bi

be the t-th element of Bi and cj ∈ Di be the j-th element of Di. Then, for all t ∈ [1, |Bi|],

st =

|Di|

j=1

c, where c =

cj, if yj,t = 1;

0k
i
, otherwise.

34 CHAPTER 4. BITMAPS FOR BLOCK LANGUAGES

Given these constraints, if a solution is found, then the cover Ci is given by the set of words

in Di with index j such that xj = 1. If no solution is found, increment m and repeat.

Theorem 4.13. Given a set of words B, each with length n ∈ N, the problem of finding

the minimal cover C for B is NP-complete.

Proof. The problem we aim to solve can be characterised as:

Instance: Collection of segments B and a positive integer m.

Question: Is there a collection of segments C of size m such that, for each s ∈ B, there is

a sub collection of C whose bitwise disjunction is exactly s?

By Lemma 4.4, each segment in the sets B and C represent a set of words of the same length.

Moreover, the bitwise disjunction over segments corresponds to the union over sets of words.

Therefore, this problem can be seen as: given a collection of sets B, is there a collection of

sets C of size m, such that, for each set s ∈ B, there exists a subset of C whose union equals s?

This problem corresponds exactly to the set-basis problem, and Stockmeyer proved that the

set-basis problem is NP-complete by reduction to the vertex-cover problem [Sto76].

The construction of NFAs from bitmaps described above preserves the language, as the following

lemma states.

Lemma 4.14. Let L ⊆ Σℓ be a block language with bitmap B, where ℓ 0. Then, the NFA A

obtained by applying Algorithm 4.2 to B recognises L, that is, L(A) = L.

Proof. Let A ′ be the DFA given by the construction of the minimal DFA from a bitmap (Al-

gorithm 4.1). In Lemma 4.8, we proved that L(A ′) = L. Now, let us prove that L(A) = L(A ′).

Let s ∈ Bi be a state from A ′ in rank i, for some i ∈ [ℓ]. By construction, ρ(s) = {c1, . . . , cm},

where {cj}j∈[1,m] are states in A that exactly cover s. As L(s) =
m

j=1 L(cj), one concludes

that L(A) = L(A ′).

Moreover, the NFA given by this construction is minimal, as follows in the next lemma.

Lemma 4.15. Let L ⊆ Σℓ be a block language with bitmap B, where ℓ 0. Then, the NFA A

obtained by applying Algorithm 4.2 to B is minimal.

Proof. Let w ∈ Σℓ−i, for some i ∈ [ℓ], and P be the set of states reachable from the initial

state q0 of A after consuming w, that is, P = δ(q0,w). Let P1,P2 be two non-empty subsets

4.3. MINIMAL NFAS FOR BLOCK LANGUAGES DESCRIBED BY BITMAPS 35

of P such that P1∩P2 ∕= ∅, and let s1 =

q∈P1
q and s2 =

q∈P2

q correspond to the bitmaps of

the right languages of the sets P1 and P2, respectively. Suppose that s1 = s2, so P1 and P2 cover

the same bitmaps. Then, Ci \ P1 (alternatively, Ci \ P2) would also cover the set Bi, hence Ci

would not be minimal. Thus, s1 ∕= s2.

B

10110111

00011110

0001

0110

1010

01

10

1

a

b

a,b

b

a

a

b

b

b

a

b

a,b

b

a

rank 2rank 3rank 4 rank 1 rank 0

Figure 4.2: A minimal NFA accepting the language of Example 4.1.

Combining the results of Lemmas 4.14 and 4.15, we obtain:

Theorem 4.16. Let L ⊆ Σℓ be a block language, for some ℓ 0. The construction of

a NFA from the bitmap B(L), detailed in Algorithm 4.2, yields a minimal NFA for L.

Example 4.17. Let L ⊆ {a,b}4 and B(L) = 1011011100011110 be the language of Exam-

ple 4.1 and its bitmap representation, respectively. A correspondent minimal NFA ob-

tained by applying the above construction is depicted in Figure 4.2. The final state,

found in rank 0, is the state 1. In rank 1, we have B1 = {01, 11, 10} and C1 = {01, 10}

is a minimal cover for B1, thus only two states are needed in this rank of the NFA. For

rank 2, B2 = {1011, 0111, 0001, 1110} and C2 = {1010, 0110, 0001}, because 1011 = 0001 ∨

1010, 0111 = 0110 ∨ 0001, and 1110 = 1010 ∨ 0110. In rank 3 two states are needed and

rank 4 has only the initial state.

This page is intentionally left blank.

Chapter 5

Block Languages State Complexity

In this chapter, we will analyse the state complexity of block languages, namely, the maximal

size of a minimal finite automaton for a block language, both for the deterministic and nonde-

terministic case (Section 5.1 and Section 5.2, respectively). In Section 5.3, we present results

for the operational state complexity.

5.1 Maximal Size of Minimal DFAs

Câmpeanu and Ho [CH04] studied the maximal number of states that a minimal DFA may need

to accept a block language over a k-letter alphabet and block size ℓ, with k > 0 and ℓ 0. They

derived the following result:

Theorem 5.1 ([CH04], Corollary 10). Let L ⊆ Σℓ be a block language over a k-letter alphabet

and block length ℓ 0. Then,

sc(L) kℓ−r+1 − 1
k− 1

+

r−1

i=0

(2k
i

− 1) + 1,

where r = min{ i ∈ [ℓ] | kℓ−i 2k
i
− 1 }.

Proof. Let B be the bitmap representation of L, A be the minimal DFA for L and Q it set of

states. As seen in Section 4.2, the width of rank i ∈ [ℓ] of A is given by the cardinality of the

set Bi. By Lemma 4.7, we know that |Bi| min(kℓ−i, 2k
i
− 1). A DFA is of maximal size

if each rank has maximal width, that is, if the rank i has min(kℓ−i, 2k
i
− 1) states, for each

37

38 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

rank i ∈ [ℓ], and if it also contains a sink-state. Thus, we have

|Q|
ℓ

i=r

kℓ−i +

r−1

i=0

(2k
i

− 1) + 1

=
kℓ−r+1 − 1

k− 1
+

r−1

i=0

(2k
i

− 1) + 1,

as desired.

In the next result we give an estimation of the value of r.

Theorem 5.2. Let ℓ > 0, k > 1, and r = min{ i ∈ [ℓ] | kℓ−i 2k
i
− 1 }. Then,

r = ⌊logk ℓ⌋+ 1 + x, for some x ∈ {−1, 0, 1}.

Proof. By definition of r, we have that both the following inequalities hold: kℓ−r 2k
r
− 1

and kℓ−(r−1) > 2k
r−1

− 1. From the first inequality we obtain:

kℓ−r 2k
r

− 1 =⇒ kℓ−r < 2k
r

=⇒ (ℓ− r) log2 k < kr

=⇒ logk(ℓ− r) + logk(log2 k) < r

=⇒ logk(ℓ− r) < r

=⇒ logk(ℓ(1 −
r

ℓ
)) < r

=⇒ logk ℓ+ logk(1 −
r

ℓ
) < r =⇒ logk ℓ < r.

While, from the second inequality, we get:

kℓ−r+1 > 2k
r−1

− 1 =⇒ kℓ−r+1 2k
r−1

=⇒ (ℓ− r+ 1) · log2 k kr−1

=⇒ logk(ℓ− r+ 1) + logk(log2 k) r− 1

=⇒ logk(ℓ− r+ 1) > r− 2

=⇒ logk ℓ+ logk(1 +
1 − r

ℓ
) > r− 2 =⇒ logk ℓ > r− 2.

Moreover, r is a natural number, so it is not hard to see that r can be written as the floor

of logk ℓ plus a small constant, as claimed.

We now present a family of witness languages whose minimal DFAs that recognise them are

of maximal size, according to the bounds given in Theorem 5.1. The bitmap representation of

these languages correspond to sequences of binary representations of the first positive integers,

as we will see in Lemma 5.4.

5.1. MAXIMAL SIZE OF MINIMAL DFAS 39

We denote the binary representation of a positive integer i by i[2]. To access the t-th rightmost

symbol of a word s we will use the notation last(s, t), that is, let s = s1s2 · · · sn be a word

of length n > 0 and t ∈ [1,n]. Then, last(s, t) = sn−t+1. Also, recall that given a block

language L ⊆ Σℓ and a word w ∈ L, we denote by ind(w) the index of w in the lexicographical

ordered list of the words of Σ|w|.

Let ℓ > 0, and r = min{ i ∈ [ℓ] | 2ℓ−i 22i − 1 } as in Theorem 5.1 but with a fixed k = 2.

In a minimal DFA with maximal size, the rank having the largest width is either r or r − 1,

depending on whether 2ℓ−r > 22r−1
− 1 holds or not, respectively. Let rℓ be that rank and tℓ =

max(2ℓ−r, 22r−1
− 1) its width, i.e., width(rℓ) = tℓ. Then, we consider the following family of

languages:

MAXℓ = {w1w2 | w1 ∈ Σℓ−rℓ , w2 ∈ Σrℓ ,

i = ind(w1), j = ind(w2), last(i[2], j) = 1 },

defined over Σ = {a,b}. Informally, these languages contain words of size ℓ that can be split

in w1 of size ℓ − rℓ and w2 of size rℓ, with corresponding indices i = ind(w1) and j = ind(w2),

such that the j-th rightmost symbol of i[2] is 1.

Example 5.3. The maximal widths for each rank of a minimal DFA for a language with

words of length ℓ = 5 and k = 2 is {1, 3, 8, 4, 2, 1}, according to the bounds studied in Theo-

rem 5.1. Then, rℓ = 2 and tℓ = width(rℓ) = 8. For this configuration, we have

MAX5 = {aaaaa,aabab,abaaa,abaab,abbba,baaaa,

baaba,babab,babba,bbaaa,bbaab,bbaba,bbbbb}.

For instance, let w1 = baa where i = ind(w1) = 5 and i[2] = 101. For j = 1 and j =

3, we have that last(i[2], j) = 1, which correspond to the words aa and ba, respectively.

Thus, baaaa,baaba ∈ MAX5.

Now, let pad(s, t) be the function that concatenates leading zeros to a binary word s until its

length equals t. We have the following pattern on the bitmap of MAXℓ:

Lemma 5.4. Let r, rℓ, and tℓ be defined as before for ℓ > 0 and alphabet size k = 2. Let

Ptℓ,rℓ =

tℓ

i=1

pad(i[2], 2rℓ)R.

Then, the bitmap of the language MAXℓ is given by

B(MAXℓ) =

Ptℓ,rℓ , if tℓ = 2ℓ−r;

Ptℓ,rℓ · 02rℓ , if tℓ = 22r−1
− 1.

40 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

Proof. Let us show for either value of tℓ that the bitmap has length 2ℓ, which is not clear for

the case tℓ = 22r−1
− 1, and that the bitmap represent the language MAXℓ, that is, each bit

equals to 1 in B(MAXℓ) corresponds to a word in MAXℓ, and vice versa.

1. tℓ = 2ℓ−r:

In this case rℓ = r. Also, |B(MAXℓ)| = 2ℓ−r · 2rℓ = 2ℓ, so the bitmap has the intended

length. Now, let us prove that if a word w is in MAXℓ, then the corresponding bit on

the bitmap is 1. Let w1w2 ∈ MAXℓ, such that w1 ∈ Σℓ−rℓ , i = ind(w1), w2 ∈ Σrℓ ,

and j = ind(w2). According to Lemma 4.4, the segment of B(MAXℓ) which corresponds

to the bitmap of w−1
1 MAXℓ is pad(i[2], 2rℓ)R. So let us prove that the j-th leftmost bit

of pad(i[2], 2rℓ)R is 1, implying that w2 belongs to the quotient of MAXℓ w.r.t to w1

according to B(MAXℓ). In fact, the j-th leftmost bit of pad(i[2], 2rℓ)R is 1 if, and only,

the j-th rightmost bit of pad(i[2], 2rℓ) is 1. The latter condition is equivalent to check

if last(i[2], j) = 1, which holds, by definition of the language. To prove that each bit of

the bitmap corresponds to a word in the language, one can follow the described steps in

reverse.

2. tℓ = 22r−1
− 1:

Now, rℓ = r − 1. Let us first prove that the size of B(MAXℓ) is 2ℓ. From the value of tℓ,

we have tℓ 2ℓ−r. This implies that:

tℓ 2ℓ−r =⇒ 22r−1
− 1 2ℓ−r

=⇒ 22r−1 2ℓ−r

=⇒ 2r−1 > ℓ− r.

From the definition of r, we have that tℓ 2ℓ−r+1, leading to:

tℓ 2ℓ−r+1 =⇒ 22r−1
− 1 2ℓ−r+1

=⇒ 22r−1 2ℓ−r+1 22r−1
> 1

=⇒ 2r−1 ℓ− r+ 1.

Then, these two conditions imply that 2r−1 = ℓ − r + 1, so B(|MAXℓ|) = 2rℓ22r−1
=

2rℓ+ℓ−r+1 = 2ℓ, as desired.

In 1. we already ensure that the bits equal to 1 on the bitmap correspond to words which

are in MAXℓ. Then, let us prove that the padding of 2rℓ zeros concatenated at the end

of the bitmap correspond to words that do not belong to MAXℓ. By Lemma 4.4, the

last 2rℓ bits of the bitmap correspond to the bitmap of w−1
1 MAXℓ, such that w1 ∈ Σℓ−rℓ

and i = ind(w1) = tℓ + 1 = 22r−1
. Thus, it suffices to prove that w−1

1 MAXℓ = ∅. By the

definition of the language, w1w2 ∈ MAXℓ if, and only if, last(i[2], j) = 1, for w2 ∈ Σrℓ

and j = ind(w2). Since i is a power of 2, j must be at least 2r−1 + 1 for the condition to

hold. However, we have ind(w2) 2r−1, for all w2 ∈ Σrℓ . Therefore, w−1
1 MAXℓ = ∅.

5.1. MAXIMAL SIZE OF MINIMAL DFAS 41

Example 5.5. By Lemma 5.4, the bitmap of the language MAX5 from Example 5.3,

where tℓ = 8 and rℓ = 2, is

B(MAX5) =

8

i=1

pad(i[2], 4)R = 1000 0100 1100 0010 1010 0110 1110 0001.

We now prove that the minimal DFA for MAXℓ is of maximal size.

Lemma 5.6. Let r, rℓ, and tℓ be defined as before for ℓ > 0 and alphabet size k = 2. Then,

the minimal DFA accepting the language MAXℓ has maximal size.

Proof. Let B be the bitmap representation of MAXℓ, according to Lemma 5.4, and A be the

minimal DFA for MAXℓ given by the construction in Algorithm 4.1. As we previously saw, the

width of rank i ∈ [ℓ] of A is given by the cardinality of the set Bi. Then, A is of maximal size

if each rank has maximal width, that is, if the rank j has kℓ−j states, for j ∈ [r, ℓ], or 2k
j
− 1

states, for j ∈ [r− 1]. Let us consider both possible values of tℓ:

1. tℓ = 2ℓ−r:

(a) (∀j ∈ [r− 1]) : |Bj| = 22j − 1:

In particular, Br contains the binary representation of the consecution integers from 1

to tℓ with 2r bits. For the ranks j < r, the set Bj will contain the binary representation

of the same numbers but using 2j bits, as the segments of this set have length 2j.

Then, we have

Bj = { pad(i[2], 2j)R | ∀i ∈ [1, tℓ] }.

Clearly, the size of Bj is bounded by the number of positive integers which binary

representation uses at most 2j bits, so |Bj| 22j −1. On the other hand, tℓ 22j −1,

by the definition of tℓ and r. Thus, the proposition holds.

(b) (∀j ∈ [r, ℓ]) : |Bj| = 2ℓ−j:

From the observation in 1.(a) referring to the set Br, it is easy to see that its cardi-

nality is |Br| = 2ℓ−r. Also, the set Bj is given by the segmentation of B into segments

of length 2j. Of course, |Bj| = 2ℓ−j.

2. tℓ = 22r−1
− 1:

(a) (∀j ∈ [r− 1]) : |Bj| = 22j − 1:

Analogous to the first case 1.(a).

42 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

(b) (∀j ∈ [r, ℓ]) : |Bj| = 2ℓ−j:

As we saw on the previous case 1.(b), it suffices to show that |Br| = 2ℓ−r. Recall that,

in this case, rℓ = r − 1. By construction, B is composed by tℓ consecutive segments

with at least one bit equals to 1 followed by a single segment of zeros, all of length 2rℓ .

Since m is odd, each element of Br, that has length 2r, will be equal either to the

binary representation of two consecutive numbers or the second number represented

is zero. Then, |Br| = 22rℓ−1 and, as mentioned in proof of Lemma 5.4 1.(b), 2r−1 =

ℓ − r + 1 for this particular value of tℓ. Thus, |Br| = 22r−1−1 = 2ℓ−r+1−1 = 2ℓ−r, as

desired.

Example 5.7. In Figure 5.1 it is depicted the minimal DFA for MAX5, where tℓ = 8

and rℓ = 2.

q7

q8

q10

q9

q11

q12

q13

q14

q3

q4

q5

q6

q1

q2

q0

q15

q17

q16

q18

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

a

a

b

a,b

a

a

b

a

b

a

b

a,b

rank 2rank 3rank 4rank 5 rank 1 rank 0

Figure 5.1: The minimal DFA accepting the language MAXℓ for ℓ = 5. The sink-state is

omitted, as well as all transitions from and to it.

5.2. MAXIMAL SIZE OF MINIMAL NFAS 43

5.2 Maximal Size of Minimal NFAs

Let L ⊆ Σℓ be a block language of block length ℓ 0 and k = |Σ|, with bitmap representation B.

Now, let A be a minimal NFA for L, given by the construction described in Section 4.3. The

states on rank i of A are given by the set Ci, a minimal cover for the set of segments of length ki

of B, namely Bi, for i ∈ [ℓ]. The size of the set Ci is bounded by the size of Bi. Also, it can

be noticed that ki words suffice to cover any set Bi. These bounds are formally stated in the

following lemma:

Lemma 5.8. Let L ⊆ Σℓ be a block language of words of length ℓ 0 over an k-letter

alphabet Σ, with a correspondent bitmap B. Then, for each i ∈ [ℓ], the cardinality of Ci, a

minimal cover for Bi, is bounded by |Ci| = min(kℓ−i, ki).

Proof. The bound |Ci| kℓ−i, for r ∈ [ℓ], refers to the maximal size of Bi (Lemma 4.7). It is

easy to see that Bi covers itself, for all the sets Bi, so the bound follows. On the other hand, we

have |Ci| ki since the set Br can be covered by the set of unit segments {ui}i∈[1,ki] of size ki,

where ui represents the word of zeros, apart from the i-th position which is 1.

We say that a minimal NFA is of maximal size if, for each i ∈ [ℓ], the width of rank i

is min(kℓ−i, ki). As a result of the previous lemma, we are able to determine an upper bound

for the nondeterministic state complexity of a block language.

Theorem 5.9. Let L ⊆ Σℓ be a block language over a k-letter alphabet and block length ℓ 0.

Then,

nsc(L)

2 · k
ℓ
2 − 1
k− 1

+ k
ℓ
2 , if ℓ is even;

2 · k
⌈ ℓ

2⌉ − 1
k− 1

, otherwise.

Proof. If ℓ is even, there are an odd number of ranks, and the width of the minimal NFA with

the maximal size is attained at the rank j that satisfies kℓ−j = kj, according to Lemma 5.8.

This implies j = ℓ
2 , so we have:

nsc(L) 2 ·
ℓ
2−1

i=0

ki + k
ℓ
2 = 2 · k

ℓ
2 − 1
k− 1

+ k
ℓ
2 .

If ℓ is odd, there are an even number of ranks, and the width of the minimal NFA with maximal

size is reached both in rank ⌊ ℓ2⌋ and ⌈ ℓ2⌉. Then, we have:

nsc(L) 2 ·
⌊ ℓ

2⌋

i=0

ki = 2 · k
⌊ ℓ

2⌋+1 − 1
k− 1

= 2 · k
⌈ ℓ

2⌉ − 1
k− 1

,

44 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

as desired.

We will now present a family of witness languages which minimal NFAs that recognise them

are of maximal size. Let k 1 and d 0. Then, the languages

Lk,d = {wwR | w ∈ Σd },

defined over Σ = {σ1,σ2, . . . ,σk}, correspond to the set of palindromes of size 2d.

Lemma 5.10. Any minimal NFA that recognises the language Lk,d, for k > 0 and d 0,

is of maximal size.

Proof. Let A be a minimal NFA for Lk,d, and mi be the width of A at rank i ∈ [2d]. Let us

prove that mi is maximal, that is:

1. (∀i ∈ [d, 2d]) : mi = k2d−i :

Let w1,w2 ∈ Σ2d−i be two words that differ in at least one symbol. Let us prove

that w−1
1 Lk,d ∩ w−1

2 Lk,d = ∅. Let w3 ∈ Σi s.t. w1w3 ∈ Lk,d. Then, w3 can be de-

composed into uuRwR, such that |u| = Σi−d. On the other hand, w2w3 ∈ Lk,d if, and

only if, w1 = w2, which is a contradiction. Thus, w−1
1 Lk,d ∩ w−1

2 Lk,d = ∅ and, as a

consequence, k2d−i states are needed at rank i, one for each word in Σ2d−i.

2. (∀i ∈ [d]) : mi = ki :

Let us look at AR, the NFA for LR
k,d given by reversing every transition in A and swapping

the initial with the final states. In fact, it is easy to see that Lk,d = LR
k,d, hence L(A) =

L(AR). In 1., we proved that mj = k2d−j, for every rank i ∈ [d, 2d]. The i-th rank in A

corresponds to the (2d− i)-th rank in AR, so that bound must be preserved.

By the arguments provided in the previous proof, we have the following corollary:

Corollary 5.11. The minimal NFA for Lk,d is deterministic.

5.3 Operational State Complexity

In this section we consider operations on block languages defined by their bitmap representations

and study both the deterministic and nondeterministic state complexity of those operations. As

5.3. OPERATIONAL STATE COMPLEXITY 45

introduced in Section 2.6, the operational state complexity is the state complexity, in the worst-

case, of a language resulting from an operation, and is given as a function of the state complexity

of the operands.

We will consider operations that are closed for block languages, i.e., the resulting language is

also a block language, such as union and intersection of two block languages with the same block

length, reversal, complement closed to the block, word addition and word removal. We will also

analyse concatenation between two block languages whose words are of different lengths, as well

as the Kleene star and the plus operations. The upper bounds of operational state complexity

known for finite languages apply for block languages, which can be consulted in Table 3.1.

Additionally, we show how to build the bitmap of the language resulting by applying each

operation and, to show that the provided bounds are tight, we also present a family of witness

languages parameterised by the state complexity of the operands. In general, the witnesses

provided may also be parametrised by other more natural parameters for block languages as,

for example, the block length ℓ and the width of each rank of the automata.

5.3.1 Reversal

In the following, given a bitmap B of a block language L ⊆ Σℓ, |Σ| = k, and ℓ > 0, we compute

the bitmap for the reversal language LR, namely BR. The bitmap for LR can be constructed by

swapping the values of bi and bj from B, such that i = ind(w) and j = ind(wR), for some w ∈ Σℓ.

Trivial solutions require kℓ additional space to either store in a set the indexes already swapped

or to construct a new bitmap. We now propose a routine that constructs the bitmap BR in-place,

that is, by performing operations on B and without requiring extra space.

The perfect shuffle of length 1 of two words u = u1u2 · · ·un and v = v1v2 · · · vn of same

length n, denoted by u 1 v, is obtained by interleaving the letters of u and v, namely,

u 1 v = u1v1 · · ·unvn.

If j ∈ N is a divisor of n, the perfect shuffle of length j, denoted as j, of u and v is the perfect

shuffle of blocks of length j, that is,

u j v = u1 · · ·ujv1 · · · vj · · · un−j+1 · · ·unvn−j+1 · · · vn.

Moreover, this shuffle operation can be extended for any number m 2 of words w1,w2, . . . ,wm

of the same length n. We define m
j (w1w2 · · ·wm) as the perfect shuffle of blocks of length j

taken from each of the wi words. That is, with wi = wi,1wi,2 · · ·wi,n, for each i ∈ [1,m],

m
j (w1 · · ·wm) = w1,1 · · ·w1,j · · ·wm,1 · · ·wm,j · · · w1,n−j+1 · · ·w1,n · · ·wm,n−j+1 · · ·wm,n.

46 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

Let us now show that the shuffle operation can be used to obtain the bitmap representation

of the reversal of a language. Given a bitmap B of length kℓ, with k, ℓ > 0, we define Ri, for

each i ∈ [ℓ− 1], as follows:

Ri =

B, if i = 0;

k
ki−1(Ri−1), otherwise.

Lemma 5.12. Let L ⊆ Σℓ be a block language, for some ℓ > 0 and |Σ| = k, with bitmap

representation B. The bitmap for the reversal of L, namely BR, is given by

Rℓ−1 = k
kℓ−2(

k
kℓ−3(. . . (k

1 (B)) . . .)).

Proof. Let us prove that L(Rℓ−1) = LR. For i = 0, of course L(R0) = L(B) = L. Next, for i = 1

we have R1 = k
1 (B). This operation performs the cyclic permutation S1 = (1 2 · · · ℓ) in each

word of L(B), that is, each symbol of every word in L(B) is shifted one position to their right

and the last symbol becomes the first. The following operation, R2 = k
k(R1), performs the

permutation S2 = (2 3 · · · ℓ) in every word of L(R1). Analogously, in this transformation each

symbol apart from the first of every word in L(R1) is shifted one position to their right but

the last symbol becomes the second. In general, the j-th shuffle performs the permutation Sj =

(j (j+ 1) · · · ℓ), for j ∈ [1, ℓ− 1]. The composition of the transformations S1, S2, . . . , Sℓ−1 ensure

that L(Rℓ−1) = LR [PLW83].

Example 5.13. Let Σ = {a,b} and ℓ = 3. Let B = b1b2b3b4b5b6b7b8 be a bitmap for a block

language L such that b1 = b4 = b5 = 1, and the remaining bits are 0. We have

R0 = b1b2b3b4b5b6b7b8 and L(R0) = {aaa,abb,baa},

R1 = b1b5b2b6b3b7b4b8 and L(R1) = {aaa,bab,aba},

R2 = b1b5b3b7b2b6b4b8 and L(R2) = {aaa,bba,aab},

and L(R2) = LR, as desired.

Now we turn to the analyse of the state complexity of this operation.

Lemma 5.14. Given an m-state DFA for a block language L, 2O(
√
m) states are sufficient

for a DFA accepting LR.

Proof. A DFA for LR, with ℓ > 0, can be given by reversing each transition of the DFA for L,

swapping the initial and final states, and then determinising the resulting NFA. The cost of

the determinisation of an m-state NFA for a block language is 2Θ(
√
m) in terms of number of

states [KO14], so the state complexity of the reversal must also be limited by this bound.

5.3. OPERATIONAL STATE COMPLEXITY 47

In the following, we show that this bound is tight. Recall the language MAXℓ, defined in Sec-

tion 5.1, over the alphabet Σ = {a,b} and for ℓ > 0. As before, let

1. r = min{ i ∈ [ℓ] | 2ℓ−i 22i − 1 }, where r = ⌊logk ℓ⌋+ 1 + x, for some x ∈ {−1, 0, 1};

2. tℓ = max(2ℓ−r, 22r−1
− 1);

3. rℓ = r, if tℓ = 2ℓ−r, or rℓ = r− 1, if tℓ = 22r−1
− 1.

We claim that the minimal DFA for the reversal of MAXℓ, namely MAXR
ℓ , has its width bounded

by 2rℓ+1. That is, for every rank i ∈ [ℓ], width(i) 2rℓ+1.

Lemma 5.15. A minimal DFA A such that width(A) 2rℓ+1 is sufficient to accept the

reversal of the language MAXℓ, for ℓ > 0.

Proof. Let A be a DFA such that the last rℓ+1 ranks have maximal width (according to Theo-

rem 5.1), that is, width(i) = 2ℓ−i, for each i ∈ [ℓ− rℓ, ℓ]. In particular, we have that the width of

the rank ℓ−rℓ is 2rℓ . We can order the states in this rank in such a way that qj is the state whose

left language is the reverse of the j-th word of Σrℓ , for each j ∈ [1, 2rℓ]. Formally,
←−
Lqj

(A) = {wR}

such that |w| = rℓ and ind(wR) = j. Moreover, let us define the right language of qj as

Lqj
(A) = {w ∈ Σℓ−rℓ | i = ind(wR), last(i[2], j) = 1 }.

From the definition of the language, it is easy to see that A accepts MAXR
ℓ . Consider Aqj

as

the DFA A with initial state qj, and let us show that width(Aqj
) 2, for all j ∈ [1, 2rℓ].

Let j ∈ [1, 2rℓ], r ′ ∈ [ℓ − rℓ − 1], and Br ′ be the set of segments of size 2r
′

of the bitmap

of MAXR
ℓ . Let s ∈ Br ′ and w1 ∈ Σℓ−rℓ−r ′

such that s represents the language w−1
1 Lqj

(A),

according to Lemma 4.4. From the definition of the language, w1w2 ∈ Lqj
(A) if, and only

if, last(i[2], j) = 1, for w2 ∈ Σr ′
and i = ind((w1w2)

R) = ind(wR
2 w

R
1). We will now show that the

number of states on the rank r ′ of Aqj
is bounded by 2, by arguing that |Br ′ | 2. Consider the

following two cases:

1. j < ℓ− rℓ − r ′:

In this case, the membership of w1w2 in Lqj
(A) has already been decided by the choice

of w1. Then, it is sufficient to check if last(i ′[2], j) = 1, where i ′ = ind(wR
1), since |wR

1 | = ℓ−

rℓ−r ′. We have that either i ′[2] has its j-th but last symbol (bit) equal to 1, which implies

that s = 11 · · · 1, or has not, implying that s = 00 · · · 0, so s /∈ Br ′ . Therefore, |Br ′ | = 1.

2. j ℓ− rℓ − r ′:

Now, w1w2 ∈ Lqj
(A) depends on the choices of w1. If w1 ∈ Σℓ−rℓ−r ′

\ {bℓ−rℓ−r ′
},

48 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

the binary representation of i ′, with i ′ = ind(wR
1), requires at most ℓ − rℓ − r ′ bits.

Then, the j-th but last symbol of i, corresponds to the (j − ℓ + rℓ + r ′)-th symbol of w2.

Hence, u−1Lqj
(A) = v−1Lqj

(A), for all u, v ∈ Σℓ−rℓ−r ′
\ {bℓ−rℓ−r ′

}. On the other hand,

if w1 = bℓ−rℓ−r ′
, it results on a different quotient, since ℓ− rℓ − r ′ + 1 bits are needed for

the binary representation of ind(w1). Therefore, |Br ′ | = 2.

This result implies that width(Aqj
) = 2. As a consequence, the width of the ranks r ′ ∈ [ℓ−rℓ−1]

of A are bounded by 2rℓ+1, as desired.

We now show that a DFA for MAXℓ has exponentially many states than a DFA for MAXR
ℓ .

Lemma 5.16. Let A1 be an m-state DFA for MAXR
ℓ . Then, a DFA A2 for MAXℓ needs

at least 2Ω(
√
m) states.

Proof. For this proof, assume that 2ℓ−r > 22r−1
− 1 (i.e., tℓ = 2ℓ−r), which implies that rℓ = r.

A similar proof follows, otherwise.

Let Q and P be the set of states of A1 and A2, respectively. By Lemma 5.6, A2 is of maximal

size and width(A2) = 2ℓ−r = tℓ. Therefore, the number of states of A2 is

|P| =

rℓ−1

i=0

(22i − 1) +
ℓ

i=rℓ

2ℓ−i

=

rℓ−1

i=0

22i − rℓ + 2ℓ−rℓ+1 − 1

 22rℓ−1 − (rℓ + 1) 2ℓ−rℓ+1 > 0

 22log2 ℓ+2−1 − (log2 ℓ+ 3) 22rℓ−1 ≫ rℓ, r = rℓ, and r < log2 ℓ+ 2

 24ℓ−1 − (log2 ℓ+ 3) = 2Ω(ℓ).

By Lemma 5.15, A1 has its width bounded by 2rℓ+1. Moreover, the width of each rank i ∈ [r−1]

of A1 is also bounded by 22i −1, as we have seen in Theorem 5.1. Then, let r ′ = min{ i ∈ [r−1] |

2rℓ+1 22i − 1 }. In particular, we have

2rℓ+1 > 22r
′−1

− 1 =⇒ 2rℓ+1 22r
′−1

=⇒ rℓ + 1 2r
′−1

=⇒ log2 ℓ+ 3 2r
′−1 r = rℓ and r < log2 ℓ+ 2

=⇒ r ′ log2(log2 ℓ+ 3) + 1.

5.3. OPERATIONAL STATE COMPLEXITY 49

The value of r ′ tells us how many ranks in A1 can achieve the maximal width of 2rℓ+1. Then,

the number of states of A1 is bounded by

|Q|
r ′−1

i=0

(22i − 1) + 2rℓ+1(ℓ− rℓ − r ′) +
ℓ

i=ℓ−rℓ

2ℓ−i

 22r
′
− r ′ + 2rℓ+1(ℓ− rℓ − r ′ + 1)− 1

 22log2(log2 ℓ+3)+1
+ 2 · 2rℓ(ℓ+ 1) r ′ log2(log2 ℓ+ 3) + 1

 26 · 2log2 ℓ
2
+ 23 · 2log2 ℓ(ℓ+ 1) r = rℓ and r < log2 ℓ+ 2

 26ℓ2 + 23(ℓ2 + ℓ) = O(ℓ2).

Thus, we have that sc(MAXR
ℓ) = m = O(ℓ2) and sc(MAXℓ) = 2Ω(

√
m), as desired.

With the results in Lemmas 5.14 and 5.16, we have:

Theorem 5.17. Let L ⊆ Σℓ, for some ℓ > 0, such that sc(L) = m. Then, sc(LR) 2O(
√
m),

and the bound is tight.

The NFA for the reversal of a language L ⊆ Σℓ is given by reversing the transitions on the NFA

for L and swapping the initial and final states. In fact, the nondeterministic state complexity

of the reversal of a finite language coincides with the nondeterministic state complexity of the

language, so no better result can be obtained for the block languages.

Theorem 5.18. Let L ⊆ Σℓ, for some ℓ > 0. Then, nsc(LR) = nsc(L).

Proof. The construction above shows that nsc(LR) nsc(L). The following family of languages

shows that, in particular, the equality holds. Let Lℓ = {aℓ}, with ℓ > 0. Since Lℓ = LR
ℓ , nsc(Lℓ) =

nsc(LR
ℓ).

5.3.2 Word Addition and Word Removal

Consider a language L ⊆ Σℓ, for some ℓ > 0, over an alphabet of size k. The operations of adding

or removing a word w ∈ Σℓ from the language, L \ {w} and L ∪ {w}, respectively, correspond to

the not operation on the ind(w)-th bit of B, the bitmap of L. From that observation, we can

estimate the state complexity of these operations.

Theorem 5.19. Let L ⊆ Σℓ be a block language such that sc(L) = m. Let L ′ = L ⊕ {w},

for ⊕ ∈ {\,∪} and w ∈ Σℓ. Then, m− (ℓ− 1) sc(L ′) m+ (ℓ− 1).

50 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

Proof. Let B and B ′ be the bitmap representations of L and L ′, respectively. Let us assume that

the operation ⊕ results in a different language. Then, the bitmaps B and B ′ differ exactly for

one bit. Moreover, for every i ∈ [ℓ], there is exactly one j ∈ [1, kℓ−i] such that sij ∕= tij, where sij

and tij denote the j-th bitmap segment of size ki of B and B ′, respectively. Also, recall Bi

(resp. B ′
i), the set of segments of size ki of B (resp. B ′). Then, there are four possible cases:

1. sij ∈ B ′
i and tij ∈ Bi: the two sets have the same size;

2. sij ∈ B ′
i and tij /∈ Bi: B ′

i has one more element than Bi;

3. sij /∈ B ′
i and tij ∈ Bi: Bi has one more element than B ′

i;

4. sij /∈ B ′
i and tij /∈ Bi: the two sets have the same size.

Therefore, the difference on the number of states from a minimal DFA which accepts the lan-

guage L ′ and the DFA which accepts L is bounded by ℓ−1, which is the number of ranks neither

initial nor final.

These bounds also extend to the nondeterministic state complexity, as proved in the following

result.

Theorem 5.20. Let L ⊆ Σℓ be a block language with, such that nsc(L) = n. Let L ′ = L⊕ {w},

for some ⊕ ∈ {\,∪} and w ∈ Σℓ. Then, n− (ℓ− 1) nsc(L ′) n+ (ℓ− 1).

Proof. Consider the proof of Theorem 5.19 and its notation. If the case (2) verifies, that

is, |B ′
i| = |Bi|+ 1, then the cover will require, at most, one more segment to cover the new set.

Analogously, the size of the cover for B ′
i can be smaller by one than the cover for Bi, for the

case (3).

The upper bounds from Theorems 5.19 and 5.20 are reachable, as stated in the following theorem.

Theorem 5.21. The bounds given in Theorems 5.19 and 5.20 are tight.

Proof. Let Σ = {a,b} and ℓ > 0. For word removal, consider Lℓ = (a+ b)ℓ and let w = aℓ. We

have sc(Lℓ) = nsc(Lℓ) + 1 = ℓ + 2, while sc(Lℓ \ {w}) = nsc(Lℓ \ {w}) + 1 = 2ℓ + 1, as Figure 5.2

suggests. For word addition, consider L ′
ℓ = {aℓ} and let w = bℓ. We have sc(L ′

ℓ) = nsc(L ′
ℓ)+ 1 =

ℓ+ 2, while sc(L ′
ℓ ∪ {w}) = nsc(L ′

ℓ ∪ {w}) + 1 = 2ℓ+ 1.

5.3. OPERATIONAL STATE COMPLEXITY 51

q0

q1

q2

q3

q4

q5

q6

q7 Ω

a

b

a,b a,b
a,b

a

b

a

b b

a

a,b

a,b

rank 2rank 3rank 4 rank 1 rank 0

Figure 5.2: The minimal DFA for Lℓ \ {w} = (a+ b)ℓ \ aℓ, for ℓ = 4.

5.3.3 Intersection

Let L1,L2 ⊆ Σℓ be two block languages, for some ℓ > 0 and |Σ| = k, and their respective

bitmaps B(L1), B(L2). The bitmap of the intersection of L1 and L2 is B(L1)∧ B(L2).

Let A1 = 〈Q ∪ {Ω1},Σ, δ1,q0, {qf}〉 and A2 = 〈P ∪ {Ω2},Σ, δ2,p0, {pf}〉 be the minimal DFAs

for L1 and L2, respectively. As L1 and L2 are, in particular, both finite languages, a DFA A3

for L1 ∩ L2 has at most mn− 3(m+n)+ 12 states, where |Q| = m− 1 and |P| = n− 1, as shown

in [HS08] (see Table 3.1). This bound is the result of:

1. The states (q0,p), such that p ∈ P∪ {Ω2} and p ∕= p0, and (q,p0), such that q ∈ Q∪ {Ω1}

and q ∕= q0, are not reachable from the initial state (q0,p0), thus m+n− 2 states can be

saved;

2. The states (Ω1,p), such that p ∈ P \ {p0}, and (q,Ω2), such that q ∈ Q \ {q0}, can be

merged with (Ω1,Ω2), thus m+ n− 4 states can be saved;

3. The states (qf,p), such that p ∈ P \ {p0,qf}, and (q,qf), such that q ∈ Q \ {q0,qf}, can

also be merged with (Ω1,Ω2), as (qf,pf) is the only final state, thus m+n− 6 states can

be saved.

Thus, the number of remaining states is

mn− (m+ n− 2)− (m+ n− 4) + (mn− 6) = mn− 3(m+ n) + 12.

However, for block languages more states can be saved since a state (q,p) of A3 is both accessible

and co-accessible if, and only if, rank(q) = rank(p), for every q ∈ Q, p ∈ P. Let Qi denote the set

of states of rank i in A1, and mi = width(i) = |Qi|. Analogously, let Pi denote the set of states

of rank i in A2, and ni = width(i) = |Pi|. Also, we have m = 1+
ℓ

i=0 mi and n = 1+
ℓ

i=0 ni,

since the sink-states Ωj do not belong to any rank, for j ∈ {1, 2}. We have that:

52 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

Lemma 5.22. Given two minimal DFAs A1 and A2 for block languages L1 and L2, respec-

tively, a DFA with
ℓ

i=0

mini + 1

states is sufficient to recognise the intersection of L1 and L2, where mi and ni are the

widths of rank i in A1 and A2, respectively, for i ∈ [ℓ].

Proof. Given the above considerations, the set of states of the DFA resulting from trimming

A3 are, in the worst-case,
ℓ

i=0 Qi × Pi and a single sink-state is needed.

Let us show that this bound is tight for an alphabet of fixed size, as opposed to the general case

of finite languages where a growing alphabet is required [HS08]. Consider the following family

of languages, defined over an alphabet Σ of size k 2, and let d 0 and x ∈ {0, 1}:

Lk,d,x = {a1a2 · · ·a2d ∈ Σ2d | (∀i ∈ [1,d]) : (i ≡ x (mod 2) =⇒ ai = a2d−i) }.

Informally, it contains the words that can be split into two halves of size d, where, if x = 0

(x = 1, resp.), then the symbols in even (odd, resp.) positions of the first half are equal to their

symmetric position in the second half.

Lemma 5.23. Let k 2, d 0, and x ∈ {0, 1}. Also, let A be the minimal DFA for Lk,d,x

over a k-letter alphabet Σ and let mi be the width of A, for i ∈ [2d]. Then, for i ∈ [d, 2d]

we have:

mi =

k⌈

2d−i
2 ⌉, if x = 0;

k⌊
2d−i

2 ⌋, if x = 1,

and for i ∈ [d] we have mi = m2d−1.

Proof. Let us prove for x = 0.

1. (∀i ∈ [d, 2d]) : mi = k⌈
2d−i

2 ⌉:

Let w1,w2 ∈ Σ2d−i such that they differ at least in one even position. Now, let w3 =

σ2(i−d)wR
1 , for some σ ∈ Σ. It is easy to see that w1w3 ∈ Lk,d,0 but w2w3 /∈ Lk,d,0, so w1

and w2 have different quotients, and so they have to reach different states. Therefore, the

number of states on rank i of A is given by k⌈
2d−i

2 ⌉, where the exponent is the number of

odd integers between i and 2d.

2. (∀i ∈ [d]) : mi = m2d−i:

It is easy to see that the proposition holds, as Lk,d,x = LR
k,d,x, following a similar argument

to the one provided in the proof for Lemma 5.10.

5.3. OPERATIONAL STATE COMPLEXITY 53

For x = 1, k⌊
2d−i

2 ⌋ is the number of even integers between i and 2d, so the proof is similar. Refer

to Figure 5.3 for support.

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

a

b

a,b

a,b

a

b

b

a

a

a

b

b

a,b

a,b

a

b

rank 3 rank 2 rank 1 rank 0rank 4rank 5rank 6

Figure 5.3: The minimal DFA for Lk,d,x with k = 2, d = 3 and x = 1. The sink-state is omitted,

as well as all transitions from and to it.

Lemma 5.24. For some d 0 and k 2, let A1 and A2 be DFAs that accept Lk,d,0

and Lk,d,1, respectively. A DFA that recognises Lk,d,0 ∩ Lk,d,1 needs at least
2d

i=0 mini + 1

states, where mi and ni correspond to the widths of rank i ∈ [2d] in A1 and A2, respectively.

Proof. It is easy to see that

Lk,d,0 ∩ Lk,d,1 = {wwR | w ∈ Σd } = Lk,d

is the family of languages provided as witness for the maximal nondeterministic state complexity

of a block language in Section 5.2. In particular, we concluded that a minimal NFA for Lk,d must

be of maximal size (Lemma 5.10), and that the NFA must be deterministic (Corollary 5.11).

Let A3 be that DFA with set of states S = S0∪S1∪ . . .∪S2d, such that Si corresponds to the set

of states in rank i ∈ [2d] of A3. As A3 is an NFA of maximal size, |Si| = |S2d−i| = k2d−i, and,

as seen in the proof of Lemma 5.23, we have mi = m2d−i = k⌈
2d−i

2 ⌉ and ni = n2d−i = k⌊
2d−i

2 ⌋,

for i ∈ [d, 2d]. In fact,

|Si| = mini = k⌈
2d−i

2 ⌉k⌊
2d−i

2 ⌋ = k2d−i.

From Lemmas 5.22 and 5.24 we have:

Theorem 5.25. Given two block languages L1,L2 ⊆ Σℓ, for ℓ > 0, with minimal DFAs A1

and A2, respectively, we have

sc(L1 ∩ L2)
ℓ

i=0

mini + 1,

54 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

and the bound is tight for alphabets of size at least 2, where mi and ni are the widths of

rank i in A1 and A2, respectively, for i ∈ [ℓ].

For the nondeterministic state complexity, the bounds are the same as in the deterministic case

except that the sink-state is not considered. In fact, the family of witnesses for the tightness of

deterministic state complexity is also a witness for the nondeterministic one.

Theorem 5.26. Let A1 be an m-state minimal NFA for a block language L1 ⊆ Σℓ, and A2

be an n-state minimal NFA for L2 ⊆ Σℓ, for some ℓ 0. Also, let mi and ni refer to

the widths of rank i of A1 and A2, respectively. Then, an NFA with
ℓ

i=0 mini states is

sufficient to recognise the intersection of L1 and L2 and the bound is tight for k > 1.

Proof. That
ℓ

i=0 mini states are sufficient follows from the previous discussions. That are

necessary results from considering again the languages Lk,d,x, for k > 1, d > 0 and x ∈ {0, 1}.

Similar arguments to the ones used for Corollary 5.11 can be given to justify that the mini-

mal NFAs for Lk,d,x are, in fact, deterministic. Then, we have sc(Lk,d,x)− 1 = nsc(Lk,d,x). The

rest of the proof follows similarly to the proof of Lemma 5.24.

5.3.4 Union

Let L1,L2 ⊆ Σℓ be two block languages, for some ℓ > 0 and |Σ| = k, and their respective

bitmaps B(L1), B(L2). The bitmap of the union of L1 and L2 is B(L1)∨ B(L2).

Let A1 = 〈Q ∪ {Ω1},Σ, δ1,q0, {qf}〉 and A2 = 〈P ∪ {Ω2},Σ, δ2,p0, {pf}〉 be the minimal DFAs

for L1 and L2, respectively, with |Q| = m − 1 and |P| = n − 1. Again, as L1 and L2 are

both finite languages, a DFA A3 for L1 ∪ L2 has at most mn − (m + n) states, as shown

in [HS08] (see Table 3.1). This bound is the result of:

1. The states (q0,p), such that p ∈ P∪ {Ω2} and p ∕= p0, and (q,p0), such that q ∈ Q∪ {Ω1}

and q ∕= q0, are not reachable from the initial state (q0,p0), thus m+n− 2 states can be

saved;

2. The final states (qf,Ω2), (Ω1,pf), and (qf,pf) can be merged into a single final state,

so 2 extra states can be saved.

However, again, one only needs to consider pairs of states (q,p) such that rank(q) = rank(p),

for q ∈ Q,p ∈ P. Let Qi denote the set of states of rank i in A1, and mi = width(i) = |Qi|.

Analogously, let Pi denote the set of states of rank i in A2, and ni = width(i) = |Pi|. Also, we

5.3. OPERATIONAL STATE COMPLEXITY 55

have m = 1 +
ℓ

i=0 mi and n = 1 +
ℓ

i=0 ni, since the sink-states Ωj do not belong to any

rank, for j ∈ {1, 2}. We have that:

Lemma 5.27. Given two DFAs A1 and A2 for block languages L1 and L2, respectively,

a DFA with
ℓ−1

i=1

(mini +mi + ni) + 3

states is sufficient to recognise the union of L1 and L2, where mi and ni are the widths of

rank i in A1 and A2, respectively, for i ∈ [1, ℓ− 1].

Proof. Let A3 be the product automaton from A1 and A2. As mentioned above, the fi-

nal states (qf,Ω2) and (Ω1,pf) can be merged with (qf,pf), and a state (p,q) ∈ Q × P

is only accessible from the initial state if rank(p) = rank(q). Therefore, the DFA result-

ing from trimming A3 has a single initial state, a final state and a sink-state, and also the

states (Qi × Pi) ∪ (Qi × {Ω2}) ∪ ({Ω1} × Pi), at each rank i ∈ [1, ℓ − 1]. Thus, the sufficient

number of states follows.

In fact, the bound is tight for an alphabet with size at least 3.

Lemma 5.28. Given two DFAs A1 and A1 for block languages L1 and L2 over Σℓ, respec-

tively, a DFA with
ℓ−1

i=1(mini+mi+ni)+3 states is necessary to recognise the union of L1

and L2, where mi and ni are the widths of rank i in A1 and A2, respectively, for i ∈ [1, ℓ−1]

and |Σ| > 2.

Proof. Since A1 and A2 are deterministic, mℓ−1 and nℓ−1, the width of rank ℓ−1 in A1 and A2,

respectively, are bounded by k and not equal to 0. Analogously, the width of the rank ℓ − 1 of

the DFA for the union of L(A1) and L(A2) is also at most k. When k = 2, it is easy to see that

the inequality 0 < mℓ−1nℓ−1 +mℓ−1 + nℓ−1 k has no solutions.

Now, consider the languages L1,ℓ = (a + c)ℓ and L2,ℓ = (b + c)ℓ, and let A1 and A2 be the

minimal DFAs that recognise them, respectively, for some ℓ > 0 and Σ = {a,b, c}. It is easy to

see that sc(L1,ℓ) = sc(L2,ℓ) = ℓ + 2 and mi = ni = 1, for every i ∈ [ℓ]. The minimal DFA that

recognises the language L1,ℓ ∪ L2,ℓ requires 3 states at each rank i ∈ [1, ℓ − 1]: one state when

an a has already been read, so the word is in L1,ℓ; one state when an b has already been read, so

the word is in L2,ℓ; and one state for when only c’s have been read (refer to Figure 5.4). Then,

sc(L1,ℓ ∪ L2,ℓ) =

ℓ−1

i=1

(nimi + ni +mi) + 3 = 3ℓ.

56 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

a

c

b

a, c a, c

a, c

b, c b, c

b, c

a

c

b

a

c

b

a,b, c

rank 2rank 3rank 4 rank 1 rank 0

Figure 5.4: The minimal DFA for L1,ℓ ∪ L2,ℓ = (a+ c)ℓ + (b+ c)ℓ, with ℓ = 4. The sink-state is

omitted as well as all transitions from and to it.

From Lemmas 5.27 and 5.28 we have:

Theorem 5.29. Given two block languages L1,L2 ⊆ Σℓ, for ℓ > 0, with minimal DFAs A1

and A2, respectively, we have

sc(L1 ∪ L2)
ℓ−1

i=1

(mini +mi + ni) + 3,

and the bound is tight for alphabets of size at least 3, where mi and ni are the widths of

rank i in A1 and A2, respectively, for i ∈ [1, ℓ− 1].

For the nondeterministic state complexity, the upper bound is the same as for finite languages

over the same alphabet size.

Theorem 5.30. Let L1,L2 ⊆ Σℓ with ℓ > 0 and |Σ| = k, such that nsc(L1) = m and nsc(L2) =

n. Then, nsc(L1 ∪ L2) m+ n− 2, and this bound is reached.

Proof. Let A1 and A2 be minimal NFAs for L1 and L2 with m and n states, respectively.

An NFA for L1 ∪ L2 can be constructed by merging the initial states of A1 and A2, as well

as the final states, so 2 states can be saved. In fact, this bound is tight, as the following

languages suggest. Let L1,ℓ = {aℓ} and L2,ℓ = {bℓ}, for some ℓ > 0 and Σ = {a,b}. We have

that nsc(L1,ℓ) = nsc(L2,ℓ) = ℓ+ 1 and nsc(L1,ℓ ∪ L2,ℓ) = 2ℓ.

5.3.5 Concatenation

Consider two languages L1 ⊆ Σℓ1 and L2 ⊆ Σℓ2 , for some ℓ1, ℓ2 > 0 and |Σ| = k, with

bitmaps B(L1) and B(L2), respectively. It is not difficult to see that replacing each 1 in B(L1)

5.3. OPERATIONAL STATE COMPLEXITY 57

by B(L2) and each 0 by 0k
ℓ2 results in a bitmap for the language B(L1L2). This ensures that

each word of L1L2 is obtained by concatenating a word of L1 with a word of L2, and for each

word obtained in such way the correspondent bit in B(L1L2) is set to 1.

The deterministic state complexity of the concatenation for block languages coincide with the

one for the finite languages when the first operand, L1, has a single final state in its mini-

mal DFA (see Table 3.1). Therefore, we have the following exact upper bound:

Theorem 5.31. Let L1 ⊆ Σℓ1 and L2 ⊆ Σℓ2, for some ℓ1, ℓ2 > 0, be two block languages over

a k-letter alphabet, where sc(L1) = m and sc(L2) = n. Then, sc(L1L2) = m+ n− 2.

Proof. Let B(L1) and B(L2) be the bitmaps of these languages. Also, let A1 and A2 be the

minimal DFAs for L1 and L2, respectively, and let A3 be the minimal DFA for L1L2. The width

of the rank i of A3 is |B(L2))i|, if i ∈ [ℓ2], or is |B(L1))i−ℓ2 |, if i ∈ [ℓ2 + 1, ℓ1 + ℓ2]. Then, A3

saves 2 states by reusing the final state of A1 for the initial state of A2 (alternatively, reusing

the initial state of A2 for the final state of A1) and also by eliminating one of the sink states.

For the nondeterministic state complexity, the same result as the deterministic case is expected,

which coincides with the state complexity for the finite languages.

Theorem 5.32. Let L1 ⊆ Σℓ1 and L2 ⊆ Σℓ2, for some ℓ1, ℓ2 > 0, be two block languages over

a k-letter alphabet, where nsc(L1) = m and nsc(L2) = n. Then, nsc(L1L2) = m+ n− 1.

Proof. Let A1 and A2 be two minimal NFAs for two block languages L1 and L2. An NFA

for L1L2 can be constructed by merging the final state of A1 with the initial state with A2, so

a single state is saved.

In fact, any two non-empty block languages L1 and L2 result in a family of witness languages, as

this operation preserves the ranks of the automata of the operands, both on the deterministic

and nondeterministic case.

Example 5.33. Let L1,ℓ1 = {aℓ1} and L2,ℓ2 = {aℓ2}, for ℓ1, ℓ2 > 0, over Σ = {a}. For the

deterministic state complexity, we have sc(L1,ℓ1) = ℓ1+2, sc(L2) = ℓ2+2, and sc(L1,ℓ1L2,ℓ2) =

ℓ1+ℓ2+2. For the nondeterministic state complexity, we have nsc(L1,ℓ1) = ℓ1+1, nsc(L2,ℓ2) =

ℓ2 + 1, and nsc(L1,ℓ1L2,ℓ2) = ℓ1 + ℓ2 + 1.

5.3.6 Block Complement

Consider a language L ⊆ Σℓ, for some ℓ > 0 and alphabet of size k > 0, and let B be its bitmap.

We now consider the block complement language, namely Σℓ \ L, which we will denote by L
ℓ.

58 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

The bitmap of the language L
ℓ, namely B, is given by complementing every bit of B.

Theorem 5.34. Let L ⊆ Σℓ, with ℓ > 0, be a block language with |Σ| = k, such that sc(L) = m.

Then, m− (ℓ− 1) sc(Lℓ) m+ (ℓ− 1).

Proof. The number of states on a rank i ∈ [ℓ] of the minimal DFA for L
ℓ is given by the

cardinality of Bi, the set of the non-null segments of length ki on the bitmap B. If, for some j ∈
[1, kℓ−i], we have that sij = 00 · · · 0, which by definition implies that sij /∈ Bi, then sij = 11 · · · 1
and so sij ∈ Bi. On the other hand, if sij = 11 · · · 1 then sij = 00 · · · 0, and so sij ∈ Bi but sij /∈ Bi.

If sij contains both zeros and ones, then both sij ∈ Bi and sij ∈ Bi, so the operation does not

alter the cardinality of the set. Therefore,
|Bi|− |Bi|

 1, and so the upper bound follows.

As a family of languages that achieve the upper bound, consider Lℓ = {aℓ}, for ℓ > 0, over the

alphabet {a,b}. It is easy to see that sc(Lℓ) = ℓ + 2. We have that L
ℓ
ℓ = (a + b)ℓ \ {aℓ} and, as

we saw in the proof of Theorem 5.21, sc(Lℓℓ) = 2ℓ+ 1.

For the nondeterministic state complexity of the block complement operation, the bound meets

the cost of the determinisation of NFAs for block languages. This bound is asymptotically tight

for alphabets of size at least 2.

Lemma 5.35. Let L ⊆ Σℓ be a block language with |Σ| = k, such that L is accepted by

an m-state NFA. Then, 2O(
√
m) states are sufficient for any NFA that recognises L

ℓ.

Proof. Let A1 be an NFA for L with m states. The minimal DFA A2 for L will have at

most 2O(
√
m) states [KO14]. Furthermore, the minimal DFA A3 for L

ℓ will have at most ℓ + 1

more states then A2, as shown in Theorem 5.34. As previously mentioned, the nondeterministic

state complexity is bounded by the deterministic state complexity, that is, nsc(L) sc(L), so

the sufficient number of states follows.

Consider the following family presented by Karhumäki and Okhotin [KO14]:

Lk,d = {a1a2 · · ·a2d | (∃i ∈ [1,d]) : ai = ai+d ∈ Σ \ {σk} }

defined over a k-ary alphabet Σ = {σ1,σ2, . . . ,σk}. Informally, this language contains words that

can be split into two halves of size d, such that there is at least one position in the first half that

matches its counterpart in the second one, and it is different than the prohibited symbol σk.

The authors also showed the following result:

Proposition 5.36 ([KO14], Lemma 3). For each k 2 and d 2, the language Lk,d is

recognised by an NFA with (k− 1)d2 + 2d states.

5.3. OPERATIONAL STATE COMPLEXITY 59

Let us now focus on the block complement of these languages, in particular, in this following

result:

Lemma 5.37. For each k 2 and d 2, the language L
2d
k,d, defined over a k-letter

alphabet Σ, requires at least kd states on the d-th rank.

Proof. First, notice that L
2d
k,d, the block complement of the language Lk,d, can be formally

defined as

L
2d
k,d = {a1a2 · · ·a2d | (∀i ∈ [1,d]) : ai ∕= ai+d or ai = σk }.

Let u and v be two distinct words in Σd. It is easy to see that u−1L
2d
k,d ∕= v−1L

2d
k,d. Moreover,

there is at least a word w ∈ u−1L
2d
k,d such that w /∈ v−1L

2d
k,d, and vice versa, thus neither set is

a subset of the other. As a consequence, one state in rank d is needed for each word in Σd.

With these results, it is possible to determine that the nondeterministic state complexity for

the block complement operation given in Lemma 5.35 is tight.

Theorem 5.38. Let m 2 and Σ an alphabet of size k 2. Then, there exists a lan-

guage L ⊆ Σℓ, for some ℓ > 0, such that nsc(L) = m and nsc(Lℓ) = 2Ω(
√
m).

Proof. Consider d as the largest integer for which (k − 1)d2 + 2d m. As shown in [KO14],

we have that

d =

m

k− 1
+

1
(k− 1)2

−
1

k− 1

m

k− 1
− 2.

Then, Lk,d is a language recognised by an-m-state NFA, while every NFA for L
ℓ
k,d requires, by

Lemma 5.37, at least

kd k

m

k− 1
− 2

= 2Ω(
√
m)

states, as required.

5.3.7 Kleene Star and Plus

Let L ⊆ Σℓ, for some ℓ 0, and B its bitmap representation. From B, one can obtain the

minimal DFA for L, namely A1 = 〈Q,Σ, δ1,q0, {qf}〉. A DFA A2 = 〈Q \ {qf},Σ, δ2,q0, {q0}〉,
recognises the language L if:

1. δ2(q,σ) = q0, for all q ∈ Q and σ ∈ Σ, such that δ1(q,σ) = qf;

60 CHAPTER 5. BLOCK LANGUAGES STATE COMPLEXITY

2. δ2(q,σ) = δ1(q,σ), for all the remaining pairs (q,σ) ∈ Q× Σ.

That is, the DFA for L is given by substituting all the transitions with final state as the target

state to transitions to the initial state, and setting the initial state also as accepting. The same

applies for a NFA for L, as the following theorem states.

Theorem 5.39. Let L ⊆ Σℓ, with ℓ 0, be a block language with sc(L) = n and nsc(L) = m.

Then, sc(L) = n− 1 and nsc(L) = m− 1.

Continuing with the above setting, a DFA A3 = 〈Q,Σ, δ3,q0, {qf}〉 recognises the language L+

if δ3(qf,σ) = δ1(q0,σ), for all σ ∈ Σ, and if it behaves as δ1 for the remaining states. Again,

the NFA for L+ is given by applying the same changes to the minimal NFA for L.

Theorem 5.40. Let L ⊆ Σℓ, with ℓ 0. Then, sc(L+) = sc(L) and nsc(L+) = nsc(L).

Chapter 6

Conclusions

Formal languages, defined by specific sets of words over a given alphabet, play an important role

in various fields as in pattern recognition, programming languages, compiler design, software

verification, and others. On the other hand, automata theory studies abstract machines for

recognising and processing these languages. This thesis explores these concepts, focusing on

sets of languages that share a uniform length, namely block languages, with applications in

image processing and code theory. In particular, we propose the use of a new representation for

these languages, that we call bitmaps, which turns out to be a good tool for the investigation

of several properties of this class of language as, for example, the maximal size of the machines

that represent them.

The initial part of the thesis consists of the study of the state of the art of the general case of

finite languages, along with the existing results on the representation of block languages. Build-

ing from this knowledge, we present the representation of a block language as a binary word,

such that each bit indicates whether the corresponding word, according to the lexicographical

order, belongs, or not, to the language. Subsequently, we studied the conversion of these repre-

sentations into machines that recognise the respective language, specifically deterministic finite

automata (DFAs) and nondeterministic finite automata (NFAs). Apparently, the mapping of

bitmaps to minimal DFAs is a straightforward task, as there is a direct correlation between

bitmaps of a language and its quotients w.r.t. a word. Consequently, the Myhill-Nerode The-

orem can be invoked to justify the minimality of the resulting DFAs. On the other hand, the

construction of minimal NFAs from bitmaps is not trivial and was proven to be NP-complete.

The problem is characterised by finding, for each rank of the NFA, the minimal set that cov-

ers the set of states of the same rank of the DFA. While representing languages by bitmaps

does not directly reduce the complexity of this problem, it enable us to encode language op-

erations as logic operations, thereby simplifying the implementation of our construction. The

implementation of these algorithms can be found in the FAdo system [RM02].

61

62 CHAPTER 6. CONCLUSIONS

Block Languages

sc |Σ| nsc |Σ|

L1 ∪ L2
ℓ−1

i=1(mini +mi + ni) + 3 3 m+ n− 2 2

L1 ∩ L2
ℓ

i=0 mini + 1 2
ℓ

i=0 mini 2

L1L2 m+ n− 2 1 m+ n− 1 1

Σℓ \ L m+ ℓ− 1 2 O(2
√
m) 2

L ∪ {w} m+ ℓ− 1 2 m+ ℓ− 1 2

L \ {w} m+ ℓ− 1 2 m+ ℓ− 1 2

L∗ m− 1 1 m− 1 1

L+ m 1 m 1

LR 2Θ(
√
m) 2 m 1

Table 6.1: State complexity and nondeterministic state complexity for basic operations on block

languages.

The second part of our work corresponds to the analysis of the state complexity of block lan-

guages. Initially, we establish bounds on the maximal size of minimal NFAs for block languages.

The maximal size for minimal DFAs have already been studied before, however we extend this

analysis by estimating one of the parameters within this bound. Then, we examine the oper-

ational state complexity of standard operations applied to block languages. Let L1 be a block

language over an alphabet of size k > 0, a block length of ℓ > 0 and sc(L1) = m (nsc(L1) = m).

Also, we denote by mi the width of rank i of the minimal DFA (a minimal NFA) for L1. Anal-

ogously, let L2 be a block language over the same alphabet and block size as L1 and sc(L2) = n

(nsc(L2) = n). Moreover, we denote by ni the width of rank i of the minimal DFA (a mini-

mal NFA) for L2. Table 6.1 summarises the obtained results, and one can compare these results

with the ones for finite languages summarised in Table 3.1. For Boolean operations, the bounds

are given using the rank widths and are smaller than the ones for finite languages. For the

deterministic state complexity of concatenation and Kleene star, the bounds correspond to spe-

cial cases of the ones for finite languages. For reversal, the results are analogous to the ones

for finite languages, but here considering the bounds known for the determinisation of block

languages. The remaining results for nondeterministic state complexity meet the values known

for finite languages except for the specific operations for block languages (block complement,

word addition, and word removal).

The main contributions of this thesis were documented in two submitted (and accepted) confer-

ence papers. The first focuses on the bitmap representation of block languages, the construction

of minimal finite automata from bitmaps, and the maximal size of these machines. The second

paper primarily addresses the operational state complexity of block languages.

6.1. FUTURE RESEARCH DIRECTIONS 63

6.1 Future Research Directions

As future work, we would like to extend bitmaps to the general case of finite languages. A finite

language can be seen as a finite union of block languages. Therefore, the central focus of this

research would be to determine how to obtain the minimal finite automaton for the union of

two block languages with different block lengths by examining their bitmap representations.

Another possible line of work would be to express the bounds given for the deterministic state

complexity of Boolean operations on block languages as a function of the number of states of

the operands, as it is usually done. The bound that we propose is given as function of the rank

widths of the automata, where one can easily conclude that it is smaller than the one given for

finite languages, but it would be interesting to estimate this difference.

Moreover, it would be interesting to analyse the operation state complexity for the general

complement operation on block languages. Unlike the one we studied, this operation results in

an infinite language. Even though for the deterministic analysis it is trivial (turn every non-final

state, including the sink state, into a final state in the original automaton, and convert the final

state into a non-final state), for the nondeterministic case it seems to be a more difficult task.

This page is intentionally left blank.

References

[AMR08] Marco Almeida, Nelma Moreira, and Rogério Reis. Exact generation of minimal

acyclic deterministic finite automata. 19(4):751–765, 2008.

[AMR12] Marco Almeida, Nelma Moreira, and Rogério Reis. Finite automata minimiza-

tion algorithms. In Jiacun Wang, editor, Handbook of Finite State Based

Models and Applications, pages 145–170. CRC Press, 2012.

[BJ63] J. A. Brzozowski and E. J. McCluskey Jr. Signal flow graph techniques for

sequential circuit state diagrams. IEEE Trans. on Electronic Computers, EC-

12(2):67–76, 1963.

[BK09] Janusz Brzozowski and Stavros Konstantinidis. State-complexity hierarchies

of uniform languages of alphabet-size length. Theoretical Computer Science,

410(35):3223–3235, 2009. Descriptional Complexity of Formal Systems.

[Brz62] Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs

for definite events. 1962.

[BT13] Janusz A. Brzozowski and Hellis Tamm. Minimal nondeterministic finite au-

tomata and atoms of regular languages. CoRR, abs/1301.5585, 2013.

[CCSY01] Cezar Câmpeanu, Karel Culik II, Kai Salomaa, and Sheng Yu. State complexity

of basic operations on finite languages. In Oliver Boldt and Helmut Jürgensen,

editors, 4th WIA’99, volume 2214, pages 60–70, 2001.

[CH04] Cezar Câmpeanu and Wing Hong Ho. The maximum state complexity for finite

languages. 9(2-3):189–202, 2004.

[Cho56] N. Chomsky. Three models for the description of language. IRE Transactions

on Information Theory, 2(3):113–124, 1956.

[DK12] Krystian Dudzinski and Stavros Konstantinidis. Formal descriptions of code

properties: Decidability, complexity, implementation. Int. J. Found. Comput.

Sci., 23(1):67–85, 2012.

65

66 REFERENCES

[EoWDoCS02] K. Ellul and University of Waterloo. Department of Computer Science. Descrip-

tional Complexity Measures of Regular Languages. University of Waterloo,

2002.

[Glu61] V M Glushkov. The abstract theory of automata. Russian Mathematical Sur-

veys, 16(5):1, oct 1961.

[GMRY17] Yuan Gao, Nelma Moreira, Rogério Reis, and Sheng Yu. A survey on opera-

tional state complexity. Journal of Automata, Languages and Combinatorics,

21(4):251–310, 2017.

[HK03a] Markus Holzer and Martin Kutrib. State complexity of basic operations on non-

deterministic finite automata. In Jean-Marc Champarnaud and Denis Maurel,

editors, Implementation and Application of Automata, pages 148–157, Berlin,

Heidelberg, 2003. Springer Berlin Heidelberg.

[HK03b] Markus Holzer and Martin Kutrib. State complexity of basic operations on non-

deterministic finite automata. In Jean-Marc Champarnaud and Denis Maurel,

editors, 7th CIAA 2002, volume 2608, pages 148–157, 2003.

[Hop71] John Hopcroft. An n log n algorithm for minimizing states in a finite automaton.

In Zvi Kohavi and Azaria Paz, editors, Theory of Machines and Computations,

pages 189–196. Academic Press, 1971.

[HS08] Yo-Sub Han and Kai Salomaa. State complexity of union and intersection of

finite languages. Int. J. Found. Comput. Sci., 19(3):581–595, 2008.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory,

languages and computation. 1979.

[IY03] L. Ilie and S. Yu. Reducing NFAs by invariant equivalences. Theoret. Comput.

Sci., 306(1-3):373–390, 2003.

[Jir05] Galina Jiraskova. Jirásková, g.: State complexity of some operations on binary

regular languages. theoret. comput. sci. 330, 287-298. Theoretical Computer

Science, 330:287–298, 02 2005.

[JJS05] Jozef Jirásek, Galina Jirásková, and Alexander Szabari. State complexity of con-

catenation and complementation of regular languages. In Michael Domaratzki,

Alexander Okhotin, Kai Salomaa, and Sheng Yu, editors, Implementation and

Application of Automata, pages 178–189, Berlin, Heidelberg, 2005. Springer

Berlin Heidelberg.

[KK21] Juhani Karhumäki and Jarkko Kari. Finite automata, image manipulation, and

automatic real functions. In Jean-Éric Pin, editor, Handbook of Automata

Theory, pages 1105–1143. European Mathematical Society, 2021.

REFERENCES 67

[KL19] Bjørn Kjos-Hanssen and Lei Liu. The number of languages with maximum state

complexity. In T. V. Gopal and Junzo Watada, editors, 15th TAMC, volume

11436 of LNCS, pages 394–409. Springer, 2019.

[Kle56] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata,

pages 3–42. Princeton University Press, Princeton, 1956.

[KMR18] Stavros Konstantinidis, Nelma Moreira, and Rogério Reis. Randomized genera-

tion of error control codes with automata and transducers. RAIRO, 52:169–184,

2018.

[KO14] Juhani Karhumäki and Alexander Okhotin. On the determinization blowup for

finite automata recognizing equal-length languages. In R. Freivalds C. S. Calude

and K. Iwama, editors, Computing with New Resources - Essays Dedicated

to Jozef Gruska, volume 8808 of LNCS, pages 71–82. Springer, 2014.

[KPR03] Juhani Karhumäki, Wojciech Plandowski, and Wojciech Rytter. The complexity

of compressing subsegments of images described by finite automata. Discrete

Applied Mathematics, 125(2):235–254, 2003.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures:An Algorithmic

Point of View. Springer, 2016.

[MF71] Albert R. Meyer and Michael J. Fischer. Economy of description by automata,

grammars, and formal systems. In 12th Annual Symposium on Switching and

Automata Theory, pages 188–191, Los Alamitos, 1971. IEEE.

[Moo56] Edward F. Moore. Gedanken-Experiments on Sequential Machines, pages

129–154. Princeton University Press, Princeton, 1956.

[Moo71] F.R. Moore. On the bounds for state-set size in the proofs of equivalence between

deterministic, nondeterministic, and two-way finite automata. IEEE Transac-

tions on Computers, C-20(10):1211–1214, 1971.

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expres-

sions with squaring requires exponential space. In 13th Annual Symposium on

Switching and Automata Theory (swat 1972), pages 125–129, 1972.

[Ner58] A. Nerode. Linear automaton transformations. Procedings of the American

Mathematical Society, pages 541–544, 1958.

[Pin21] Jean-Éric Pin, editor. Handbook of Automata Theory. European Mathematical

Society Publishing House, Zürich, Switzerland, 2021.

[PLW83] Diaconis Persi, Graham R. L., and Kantor William.M. The mathematics of

perfect shuffles. Advances in Applied Mathematics, 4:175–196, 1983.

68 REFERENCES

[Rev92] Dominique Revuz. Minimisation of acyclic deterministic automata in linear time.

Theoret. Comput. Sci., 92(1):181–189, 1992.

[RM02] Rogério Reis and Nelma Moreira. Fado: tools for finite automata and regular

expressions manipulation. 11 2002.

[RS59] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal of Research and Development, 3(2):114–125, 1959.

[SDDR03] Priti Shankar, Amitava Dasgupta, Kaustubh Deshmukh, and B. Sundar Rajan.

On viewing block codes as finite automata. Theor. Comput. Sci., 290(3):1775–

1797, 2003.

[SM73] L.J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:

Preliminary report. In 5th Annual ACM Symposium on Theory of Comput-

ing, pages 1–9. ACM, 1973.

[Sto76] L. Stockmeyer. Set basis problem is NP-complete. Technical Report Report No.

RC-5431, IBM Research Center, 1976.

[SY97] Kai Salomaa and Sheng Yu. NFA to DFA transformation for finite languages

over arbitrary alphabets. 2(3):177–186, 1997.

[Tho68] Ken Thompson. Programming techniques: Regular expression search algorithm.

Commun. ACM, 11(6):419–422, jun 1968.

[YZS94] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of

some basic operations on regular languages. Theoretical Computer Science,

125(2):315–328, 1994.

