
Model Checking: From Tools to Theory�

Rajeev Alur

University of Pennsylvania

Abstract. Model checking is often cited as a success story for transi-
tioning and engineering ideas rooted in logics and automata to practice.
In this paper, we discuss how the efforts aimed at improving the scope
and effectiveness of model checking tools have revived the study of logics
and automata leading to unexpected theoretical advances whose impact
is not limited to model checking. In particular, we describe how our ef-
forts to add context-free specifications to software model checking led us
to the model of nested words as a representation of data with both a
linear ordering and a hierarchically nested matching of items. Such dual
structure occurs in diverse corners of computer science ranging from ex-
ecutions of structured programs where there is a well-nested matching of
entries to and exits from functions and procedures, to XML documents
with the hierarchical structure specified by start-tags matched with end-
tags. Finite-state acceptors of nested words define the class of regular
languages of nested words that has all the appealing theoretical prop-
erties that the class of regular word languages enjoys. We review the
emerging theory of nested words, its extension to nested trees, and its
potential applications.

1 Introduction

The abstract for the talk titled “The Birth of Model Checking” by Ed Clarke at
the 25 Years of Model Checking symposium begins as follows

The most important problem in model checking is the State Explosion
Problem. In particular, it is far more important than the logic or speci-
fication formalism that is used – CTL, LTL, CTL*, Büchi automata, or
the μ-calculus.

Indeed, without the spectacular progress on combating the state explosion prob-
lem, it is not clear if model checking would have had any impact on indus-
trial practice at all. However, we would like to argue that theory, in particular,
specification languages based on temporal logics, automata, and fixpoint logics,
have contributed significantly to the success of model checking. First, theory
of regular languages of finite and infinite words and trees, gives a clear un-
derstanding of which properties are algorithmically checkable. Second, modern

� This research was partially supported by NSF grants CPA 0541149, CNS 0524059,
and CCR 0410662.

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 89–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 R. Alur

industrial-strength specification languages such as PSL are rooted in the the-
ory of temporal logics [PSL05]. Such standardized specification languages have
an important role beyond model checking, namely, in testing as well as simula-
tion. Third, since fixpoint logic has a strong computational flavor, logics have
suggested ways of implementing symbolic model checkers. Finally, the vigorous
debate on relative merits of different specification languages has contributed to
the intellectual health and growth of the field. It is also worth noting that one
key manner in which model checking differs from program analysis is the use
of specification languages: model checking typically has focussed on efficiently
checking generic classes of properties such as safety and liveness, while program
analysis has emphasized specific analysis questions such as pointer analysis and
buffer overflows.

The foundational work on monadic second order logics and ω-automata over
words and trees dates back to research in 1960s. Particularly noteworthy results
include

1. Büchi’s Theorem: A language of infinite words is definable using monadic
second order logic of linear order (S1S) iff it is accepted by a (finite) Büchi
automaton [Büc62].

2. Kamp’s Theorem: A property of infinite words is expressible in first-order the-
ory of linear order iff it is expressible in linear temporal logic LTL [Kam68].

3. Rabin’s Theorem: The monadic second order theory of binary trees (S2S) is
decidable [Rab69].

The automata-theoretic approach to verification, advocated by Vardi and oth-
ers, connects model checking tools to the above results and their subsequent
refinements, and has been celebrated with numerous awards including the 2006
ACM Kannellakis Theory in Practice Award [WVS83, VW94, KVW00, Tho90,
Hol97, Kur94]. We wish to argue that, as the success of model checking tools
brought intense focus on expressiveness and decidability boundary, and this led
to fundamental advances in theory. Since automata and logics have applications
to other areas of computing, such as databases, document processing, and plan-
ning, model checking continues to contribute to these areas. We list two such
developments for illustrative purposes.

Tree automata, μ-calculus, and parity games: The use of branching-time
logics such as CTL [CE81] and μ-calculus [Koz83] in symbolic model checking
tools such as SMV [McM93] led researchers revisit the theory of infinite trees.
While classical theory of trees considers binary trees and their regular proper-
ties, programs are best modeled by trees that are unordered and unranked, and
we want to focus on properties that do not distinguish among bisimilar systems
(the notion of bisimilarity was introduced in theory of concurrency [Mil89]).
The resulting body of research led to new notions of automata such as alter-
nating tree automata [EJ91, JW96, MS85, CDG+02]. We now know that, for a
set L of infinite, unordered, unranked trees, the following are equivalent: (1)
L is bisimulation-closed and definable using monadic second order logic, (2)
L is definable in μ-calculus, and (3) L is accepted by an alternating parity

Model Checking: From Tools to Theory 91

tree automaton. This work also connects to deciding two-player games with
parity winning condition, and provides the basis for synthesis of correct con-
trollers with respect to LTL specifications and modular verification of open sys-
tems [Tho02,KVW01,AHK02].

Timed automata: Traditional automata do not admit an explicit modeling of
time, and consequently, in order to extend model checking techniques to timed
circuits, timed automata [AD94] were introduced as a formal notation to model
the behavior of real-time systems. Timed automata accept timed languages con-
sisting of sequences of events tagged with their occurrence times. Many analysis
problems for timed automata are solvable, and this has led to tools such as
Uppaal for verifying finite-state real-time systems [LPY97,DOTY96]. Theory of
regular timed languages has also been developed with an accompanying study
of real-time temporal logics [ACD93,AH94,AH93,HRS98]. Timed automata are
now used as a formal model of real-time computation in contexts beyond model
checking (see, for instance, textbooks on Signals and systems [LV02] and con-
trol theory [CL99]). The main technique for analysis of timed automata relies
on constructing a finite quotient of the infinite space of real-valued state vec-
tors [AD94], and this has led to many abstraction techniques for dynamical and
hybrid systems [AHLP00,PS02].

In the rest of this paper, we focus in detail on our current line of research. We
describe how our efforts to understand limits of algorithmically checkable proper-
ties of pushdown models led us to the model of nested words as a representation
of data with both a linear ordering and a hierarchically nested matching of items.
Such dual structure occurs in diverse corners of computer science ranging from
executions of structured programs where there is a well-nested matching of en-
tries to and exits from functions and procedures, to XML documents with the
well-nested structure given by start-tags matched with end-tags. We review the
emerging theory of nested words and its potential applications [AM04,AEM04,
AKMV05,ACM06a,ACM06b,AM06,KMV06a,Alu07,AAB+07].

2 History of Verification of Pushdown Systems

Pushdown automata naturally model the control flow of sequential computation
in typical programming languages with nested, and potentially recursive, invo-
cations of program modules such as procedures and method calls. Consequently,
a variety of program analysis, compiler optimization, and model checking ques-
tions can be formulated as decision problems for pushdown automata.

When viewed as a generator of words, a pushdown model specifies a context-
free language of words. Decidability of regular requirements of pushdown models,
then, follows from classical results on pushdown automata: the product of a
pushdown automaton and a finite-state automaton gives a pushdown automaton,
and the emptiness of the language of a pushdown automaton can be checked
in polynomial-time (see any standard textbook on automata theory, such as,
[HU79]). The decision procedure for emptiness of pushdown automata, in fact,

92 R. Alur

forms the basis for many inter-procedural dataflow analysis problems [SP81,
RHS95] (see [Rep98] for a survey).

In the context of model checking, a pushdown automaton can be interpreted
as a generator of a context-free language of infinite words. Model checking of LTL
requirements against pushdown models is known to be decidable [BS92,BEM97]
(see, also, [ABE+05] for refined complexity bounds). Checking μ-calculus re-
quirements of pushdown models, and similarly, solving games over pushdown
graphs with winning condition specified in LTL, are also known to be decid-
able [Wal01]. The emergence of software model checking, as implemented in tools
such as SLAM and BLAST, brought pushdown verification to forefront [BR01,
HJM+02]. In these tools, a C program is mapped to a pushdown model (more
specifically, to Boolean programs that allow stack-based control flow, but with
only Boolean data variables) using predicate abstraction, and then symbolic
model checking is used to analyze the resulting model.

The typical program analysis tools over control-flow graphs and BDD-based
model checking tools such as Bebop, are based on the so-called summary com-
putation for pushdown models [BR00,Rep98]. Intuitively, the analysis algorithm
computes, for each procedure or a component, summaries of the form (x, y),
meaning that if the component is invoked with input x, it may return with out-
put y. The number of such summaries is finite, and can be computed by an
inductive fixpoint computation. An alternative view is based on the so-called
regular model checking [BEM97]. In a pushdown model, the state is completely
described by the control state and a finite word over the alphabet of stack sym-
bols describing the contents of the stack. It turns out that the set of reachable
states of a model is regular and can be represented by a finite-state automaton.
Model checking can be viewed as computation of the edges of this automaton,
and the model checker Moped is based on this approach [EHRS00]. Finally, there
exist interesting decidability results for logics interpreted over pushdown graphs,
typically using interpretation over trees [Cau03,KPV02].

While many analysis problems can be captured as regular requirements, and
hence, specifiable in LTL or μ-calculus, many others require inspection of the
stack or matching of calls and returns, and are context-free. Even though the
general problem of checking context-free properties of pushdown automata is
undecidable, algorithmic solutions have been proposed for checking many dif-
ferent kinds of non-regular properties. For example, access control requirements
such as “a module A should be invoked only if the module B belongs to the
call-stack,” and bounds on stack size such as “the number of interrupt-handlers
in the call-stack should never exceed 5,” require inspection of the stack, and
decision procedures for certain classes of stack properties already exist [JMT99,
CW02,EKS03,CMM+04]. Our own efforts to add expressiveness to LTL, while
maintaining decidability of model checking with respect to pushdown models,
led to the definition of temporal logic CaRet that allows matching of calls and
returns. CaRet can express the classical correctness requirements of program
modules with pre and post conditions, such as “if p holds when a module is
invoked, the module must return, and q holds upon return” [AEM04].

Model Checking: From Tools to Theory 93

This suggests that the answer to the question “which class of properties are
algorithmically checkable against pushdown models?” should be more general
than “regular.” The key feature of checkable requirements, such as stack inspec-
tion and matching calls and returns, is that the stacks in the model and the
property are correlated: while the stacks are not identical, the two synchronize
on when to push and when to pop, and are always of the same depth. We first
formalized this intuition by defining visibly pushdown automata (VPA). Such an
automaton operates over words over an alphabet that is partitioned into three
disjoint sets of calls, returns, and internal symbols. While reading a call symbol,
the automaton must push, while reading a return symbol, it must pop (if the
stack is non-empty), and while reading an internal symbol, it can only update
its control state. A language over a partitioned alphabet is a visibly pushdown
language if there is such an automaton that accepts it. This class has desirable
closure properties, tractable decision problems, multiple equivalent characteri-
zations, and adequate for formulating program analysis questions.

We now believe that a better way of exposing the matching call-return struc-
ture of the input word is by explicitly adding nesting edges [AM06]. Nested words
integrate trees and words as the underlying signature has both a linear order and
a hierarchical nesting relation. Finite-state acceptors of nested words define the
class of regular languages of nested words that has all the appealing theoretical
properties that the class of classical regular word languages enjoys. As we will
describe, this allows us to view programs as finite-state generators of regular
languages of nested words, as opposed to (infinite-state) pushdown generators of
(restricted classes of) context-free languages of words, thereby allowing model
checking of stronger requirements.

3 Nested Words

A nested word consists of a sequence of linearly ordered positions, augmented
with nesting edges connecting calls to returns (or open-tags to close-tags). The
edges create a properly nested hierarchical structure, while allowing some of the
edges to be pending. We will present definitions for finite nested words, but the
theory extends to infinite words.

We use edges starting at −∞ and edges ending at +∞ to model “pend-
ing” edges. A nesting relation � of length � is a subset of {−∞, 1, 2, . . . �} ×
{1, 2, . . . �, +∞} such that if i � j then i < j; if i � j and i � j′ and i �= −∞
then j = j′, if i � j and i′ � j and j �= +∞ then i = i′, and if i � j and
i′ � j′ then it is not the case that i < i′ ≤ j < j′. The definition ensures that
nesting edges go only forward, do not cross, and every position is involved in
at most one nesting edge. Source positions for nesting edges are call positions,
target positions for nesting edges are return positions, and a position that is
neither a call or a return is called internal. A nested word n over an alphabet Σ
is a pair (a1 . . . a�,�), such that ai, for each 1 ≤ i ≤ �, is a symbol in Σ, and
� is a nesting relation of length �.

94 R. Alur

a b a a b a b a a b a a

a a a b b a

a

a b

a a b a a a a

n1

n2

n3

<a <b a a> <b a b> a> <a b a a>

a a> <b a a> <a <a

<a <a a> <b b> a> a(a(),b())

Fig. 1. Sample nested words

This nesting structure can be uniquely represented by a sequence specifying
the types of positions (calls, returns, and internals). In particular, we assume that
〈 and 〉 are special symbols that do not appear in the alphabet Σ. Then, define
the tagged alphabet Σ̂ to be the set that contains the symbols 〈a, a, and a〉 for
each a ∈ Σ. Given a nested word over Σ, we can map it to a word over Σ̂: at every
call position labeled a, output 〈a; at every return position labeled a, output a〉;
and at every internal position labeled a, output a. This correspondence between
nested words and words over tagged symbols is a bijection. Figure 1 shows some
nested words over the alphabet {a, b} along with their linear encodings.

Finite-state acceptors over nested words can process both linear and hierar-
chical structure. A nested word automaton (NWA) A over an alphabet Σ consists
of a finite set Q of states, an initial state q0 ∈ Q, a set of final states F ⊆ Q,
a call-transition function δc : Q × Σ 	→ Q × Q, an internal-transition function
δi : Q × Σ 	→ Q, and a return-transition function δr : Q × Q × Σ 	→ Q. The
automaton A starts in the initial state, and reads the nested word from left to
right. The state is propagated along the linear edges as in case of a standard
word automaton. However, at a call, the nested word automaton can propa-
gate a state along the outgoing nesting edge also. At a return, the new state is
determined based on the states propagated along the linear as well as the nest-
ing incoming edges. Formally, a run r of the automaton A over a nested word
n = (a1 . . . a�,�) is a linear sequence q0, . . . , q� of states and a nesting sequence
qij , for i � j, of states such that for each position 1 ≤ i ≤ �, if i is a call with
i � j, then δc(qi−1, ai) = (qi, qij); if i is an internal, then δi(qi−1, ai) = qi; and
if i is a return such that j � i, then δr(qi−1, qji, ai) = qi, where if j = −∞
then qji = q0. For a given nested word n, the automaton has precisely one run
over n. The automaton A accepts the nested word n if in this run, q� ∈ F .
The language L(A) of a nested-word automaton A is the set of nested words it
accepts. The resulting class of regular languages of nested words seems to have
all the appealing theoretical properties that the classes of classical regular word
and tree languages enjoy.

It is easy to see that if L is a regular language of nested words, then the
corresponding language of words over tagged symbols is a context-free language.

Model Checking: From Tools to Theory 95

This is because a nested word automaton can be interpreted as a pushdown
automaton over words: call transitions can be simulated by pushing the state
along nesting edge, and return transitions can access this state by popping the
stack. Languages of words with well-bracketed structure have been studied as
Dyck languages and parenthesis languages, and shown to have some special
properties compared to context-free languages (for example, decidable equiva-
lence problem) [McN67, Knu67]. The new insight is that the matching among
left and right parenthesis can be considered to be an explicit component of the
input structure, and this leads to a robust notion of regular languages using
finite-state acceptors.

There is an emerging and growing body of literature studying nested word
automata, and we review some of the results below.

Closure: The class of regular languages of nested words is (effectively) closed
under union, intersection, complementation, concatenation, and Kleene-∗. If L is
a regular language of nested words then all the following languages are regular:
the set of all prefixes of all the words in L; the set of all suffixes of all the words
in L; the set of reversals of all the words in L. Regular languages are closed
under tree-like operations that use hierarchical structure.

Determinization: A nondeterministic NWA A has finite set Q of states, a set
of initial states Q0 ⊆ Q, a set F ⊆ Q of final states, a call-transition relation
δc ⊆ Q×Σ×Q×Q, an internal-transition relation δi ⊆ Q×Σ×Q, and a return-
transition relation δr ⊆ Q×Q×Σ×Q. The automaton now has a choice at every
step, and accepts a word if one of the possible runs accepts. Nondeterministic
nested word automata are no more expressive than the deterministic ones: given
a nondeterministic automaton A with s states, one can effectively construct a
deterministic NWA B with 2s2

states such that L(B) = L(A). The construction
is a generalization of the classical subset construction for determinizing word
automata, and a state of B is set of pairs of states of A.

Logic based characterization: The classical correspondence between monadic
second order logic and finite recognizability for words and trees continues to hold
for nested words. The monadic second-order logic of nested words (MSO) is given
by the syntax:

φ := Qa(x) | x ≤ y | x� y | φ ∨ φ | ¬φ | ∃x.φ | ∃X.φ,

where a ∈ Σ, x, y are first-order variables, and X is a second order variable. The
semantics is defined over nested words in a natural way. A language L of nested
words over Σ is regular iff there is an MSO sentence φ over Σ such that L is the
set of all nested words that satisfy φ.

The correspondence between linear temporal logic and first-order logic con-
tinues to hold too. The logic Nested Word Temporal Logic (NWTL) has atomic
propositions, logical connectives, the linear next and previous operators, the hi-
erarchical next and previous operators (e.g., “hierarchical-next ϕ” holds at a
call position iff ϕ holds at the matching return), and until and since operators
that are interpreted over the “summary” paths. The summary path between two

96 R. Alur

positions i and j is the shortest path in the graph of the nested word: if the sum-
mary path from i to j reaches a call position k such that i ≤ k� k′ ≤ j, then it
will follow the nesting edge from k to k′. A language L of nested words is definable
in first-order logic of nested words (that is, the logic above without the second-
order variables X) iff it is expressible in the temporal logic NWTL [AAB+07].

Decision problems: Given a nested word automaton A and a nested word
n, the membership problem (is n in L(A)?) can be solved in linear time. The
space required is proportional to the depth of n since one needs to remember
the labeling of pending nesting edges at every position. If A is nondeterministic,
membership problem can be solved in time O(|A|3�) using dynamic programming
similar to the one used for membership for pushdown word automata.

The emptiness problem for nested word automata(is L(A) empty?) can be
solved in cubic time using techniques similar to the ones used for pushdown
word automata or tree automata.

Problems such as language inclusion and language equivalence are decidable.
These problems can be solved using constructions for complementation and lan-
guage intersection, and emptiness test. If one of the automata is nondetermin-
istic, then this would require determinization, and both language inclusion and
equivalence are Exptime-complete for nondeterministic NWAs.

4 Revised Formulation of Software Model Checking

Traditionally, execution of a program is modeled as a word over an alphabet Σ,
where the choice of Σ depends on the desired level of detail. As an example,
suppose we are interested in tracking read/write accesses to a program variable
x. Then, we can choose the following set of symbols: rd to denote a read access to
x, wr to denote a write access to x, en to denote beginning of a new scope (such
as a call to a function or a procedure), and ex to denote the ending of the current
scope, and sk to denote all other actions of the program. A program P generates,
then, a set L(P) of words over this alphabet. The specification S is given as a set
of “desirable” words, and verification corresponds to checking whether the inclu-
sion L(P) ⊆ S holds. Since typical programming languages are Turing complete,
the verification problem is undecidable. The first step in algorithmic program
verification is to approximate a program using data abstraction, where the data
in a program is abstracted using a finite set of boolean variables that stand for
predicates on the data-space [SH97,BMMR01,HJM+02]. The resulting model P ′

hence has finite data and stack-based control flow (see Boolean programs [BR00]
and recursive state machines [ABE+05] as concrete instances of pushdown mod-
els of programs). The language L(P ′) is a context-free language of words. If the
specification S is a regular language, then the verification question L(P ′) ⊆ S
can be solved. Consider the requirement that every write access is followed by a
read access. This can be expressed by the LTL formula �(wr → ♦ rd), and is
indeed a regular property. However, if we want to express the requirement that
“if a procedure writes to x, it must read x,” we must capture the scope of each
procedure by matching of en and ex symbols, and the requirement is not a regular

Model Checking: From Tools to Theory 97

language, and thus, not expressible in the specification languages supported by
existing software model checkers such as SLAM [BR00] and BLAST [HJM+02].
The specification is a context-free language, but this is not useful for algorithmic
verification since context-free languages are not closed under intersection, and
decision problems such as language inclusion and emptiness of intersection of
two languages are undecidable for context-free languages.

In the revised formulation, an execution is modeled as a nested word. In
addition to the linear sequence of symbols given by the program execution, from
each entry symbol en, there is a nesting edge to the matching exit symbol ex.
Following the nesting edge corresponds to skipping the called procedure, and a
path that uses only nesting and internal edges gives the part of the execution
that is local to a procedure. We can interpret the abstracted program P ′ as a
nested word automaton, and associate with it a regular language L′(P ′) of nested
words. It is worth noting that, in general, pushdown models can be interpreted
as nested word automata as syntactically the two definitions are same (in NWAs,
stack alphabet coincides with the set of states, acceptance is by final state, call
transitions are same as push transitions, and return transitions are same as pop
transitions). The difference is only in the semantics: pushdown automata define
word languages while NWAs define nested word languages.

The specification, now, is given as a language S′ over nested words, and verifi-
cation reduces to the language-inclusion problem for nested words: L′(P ′) ⊆ S′.
The question is solvable as long as S′ is a regular language of nested words.
Clearly, every regular language of words is also a regular language of nested
words. The requirement that “if a procedure writes to x, it must read x” also
becomes regular now, and there is a natural two-state deterministic nested-word
automaton that specifies it. The initial state is q0, and has no pending obli-
gations, and is the only final state. The state q1 denotes that along the local
path of the current scope, a write-access has been encountered, with no follow-
ing read access. The transitions are: for j = 0, 1, δi(qj , rd) = q0; δi(qj ,wr) = q1;
δi(qj , sk) = qj ; δc(qj , en) = (q0, qj); and δr(q0, qj , ex) = qj . The automaton reini-
tializes the state to q0 upon entry, while processing internal read/write symbols,
it updates the state as in a finite-state word automaton, and at a return, if the
current state is q0 (meaning the called context satisfies the desired requirement),
it restores the state of the calling context.

Further, we can design temporal logics for programs that exploit the nested
structure. An example of such a temporal logic is CaRet [AEM04], which ex-
tends linear temporal logic by local modalities such as ©aφ, which holds at a
call if the return-successor of the call satisfies φ. The formula �(wr → ♦a rd)
captures the specification “if a procedure writes to x, it must read x.” CaRet

can state many interesting properties of programs, including stack-inspection
properties, pre-post conditions of programs, local flows in programs, etc. Anal-
ogous to the theorem that a linear temporal formula can be compiled into an
automaton that accepts its models [VW94], any CaRet formula can be com-
piled into a nested word automaton that accepts its models. Decidability of

98 R. Alur

inclusion then yields a decidable model-checking problem for program models
against CaRet [AM04,AEM04].

Software model checking tools such as SLAM and BLAST support an asser-
tion language for writing monitors checking for violations of safety properties.
The monitor M is observing the executions of P , and reaches an error state
if an undesirable execution is detected. The verification question is to check if
the monitor can reach an error state. Given a C program P and a monitor M
written in the query language, the model checker first constructs an annotated C
program P ′ such that the verification problem reduces to analysis of P ′. While
current assertion languages for monitors support automata over words, now we
can strengthen them to allow automata over nested words. The transformation
of P to the annotated program P ′, to account for M , can be done with equal
ease even for this more expressive language. The resulting program P ′ can be
subjected to different analysis techniques such as testing, runtime monitoring,
static analysis, and model checking. Thus, the nested-word formulation can be
useful for any analysis technique. Even though we have emphasized pushdown
models in the theory of nested words, the proposed reformulation is useful even
if programs are not recursive as long as they are structured with stack-based
control flow.

5 Fixpoints for Local and Global Program Flows

In the branching-time approach to program verification, a program P is mod-
eled by an unranked unordered infinite tree TP such that nodes in TP are la-
beled with program states, and paths in TP correspond to executions of P . The
branching-time specification specifies the set S of desirable trees, and model
checking corresponds to the membership test TP ∈ S. The μ-calculus [Koz83]
is a modal logic with fixpoints, and is an extensively studied branching-time
specification formalism with applications to program analysis, computer-aided
verification, and database query languages [Eme90, Sti91]. From a theoretical
perspective, its status as the canonical temporal logic for regular requirements
is due to the fact that its expressiveness exceeds all commonly used tempo-
ral logics such as LTL, CTL, and CTL∗, and equals alternating parity tree
automata or the bisimulation-closed fragment of monadic second-order theory
over trees [EJ91, JW96]. From a practical standpoint, iterative computation of
fixpoints naturally suggests symbolic evaluation, and symbolic model checkers
such as SMV check CTL properties of finite-state models by compiling them into
μ-calculus formulas [BCD+92,McM93].

There are at least three reasons that motivated us to extend the theory of
nested words to the branching-time case. First, while algorithmic verification
of μ-calculus properties of pushdown models is possible [Wal01,BS99], classical
μ-calculus cannot express pushdown specifications that require inspection of the
stack or matching of calls and returns. This raises the question about the right
theoretical extension of μ-calculus that can capture CaRet and nested word
automata. Second, in the program analysis literature, it has been argued that

Model Checking: From Tools to Theory 99

data flow analysis, such as the computation of live variables and very busy ex-
pressions, can be viewed as evaluating μ-calculus formulas over abstractions of
programs [Ste91, Sch98]. This correspondence does not hold when we need to
account for local data flow paths. For instance, for an expression e that involves
a variable local to a procedure P , the set of control points within P at which e
is very busy (that is, e is guaranteed to be used before any of its variables get
modified), cannot be specified using a μ-calculus formula even though interproce-
dural dataflow analysis can compute this information. Can we extend μ-calculus
so that it can capture interprocedural dataflow analysis? Finally, the standard
reachability property “some p-state is reachable” is expressed by the μ-calculus
formula ϕ = μX.(p ∨ ©X). The meaning of ϕ is the smallest set X such that if
a state satisfies p or has a successor in X then it is in X . While this formula cap-
tures reachability over all models, over finite-state models, the specification also
encodes the symbolic algorithm for computing the set of states satisfying ϕ by
successive approximations of the fixpoint: let X0 to be the set of states satisfying
p, and at each step i, compute Xi+1 from Xi by adding states that can reach Xi

in one step (termination is obtained when Xi = Xi+1). Over pushdown models,
such a computation may not terminate. The correct way to compute reacha-
bility, as implemented in dataflow analysis or tools such as SLAM, is based on
“summarization” of paths. The summarization algorithm can be viewed as a
fixpoint computation over pairs of states of the form (x, y) meaning that state
y is reachable if the current procedure is called with input state x. This raises
the question if there is a different way of expressing reachability over pushdown
models.

A nested tree is a labeled tree T augmented with a nesting relation � over
the vertices of T such that every path through the tree is a nested word (see
[ACM06a] for precise definition). In context of program verification, the tree TP

corresponding to a program P , will be unranked, unordered, and infinite, and
the nesting relation is obtained by adding edges from call nodes to matching
returns. Note that a call node can have multiple matching returns (and, no
matching returns along some paths corresponding to executions in which the
called procedure does not return). It turns out there is an appealing fixpoint
calculus NTμ over nested trees that has the following properties:

1. The model-checking problem for NTμ is effectively solvable against push-
down models with no more effort than that required for weaker logics such
as CTL (Exptime-complete).

2. Evaluating NTμ formulas over pushdown models captures the standard
summary-based analysis algorithms, and thus, expressing a property in NTμ

amounts to describing symbolic computation for evaluation.
3. The logic NTμ encompasses all properties expressed by nested word au-

tomata as well as by the classical μ-calculus. This makes NTμ the most ex-
pressive known program logic for which algorithmic software model checking
is feasible. In fact, the decidability of most known program logics (μ-calculus,
temporal logics LTL and CTL, CaRet, etc.) can be understood by their

100 R. Alur

interpretation in the monadic second-order logic over trees. This is not true
for the logic NTμ, making it a new powerful tractable program logic.

4. The logic NTμ can capture local as well as global program flows, and thus,
interprocedural dataflow analysis problems can be stated in NTμ.

5. Expressiveness of NTμ coincides with alternating parity automata over nested
trees (APNTA). An APNTA is a finite-state tree automaton such that (a)
its transition relation is alternating, so along an edge it can send multiple
copies, (b) its acceptance condition is defined using parity condition over
the infinite run, and (c) like a nested word automaton, at a call node, the
automaton sends states to the immediate tree successor as well as to the
return successors along nesting edges, and at a return node, the state can
depend on the state at the immediate tree parent as well as the state along
the nesting edge from the matching call parent.

6. While the correspondence between alternating tree automata and fixpoint
calculus holds as in the classical tree case, the correspondence between
monadic second order logic and fixpoint calculus fails: the monadic second
order logic over nested trees and NTμ seem to have incomparable expressive-
ness (though this is not proved formally yet). Both logics have undecidable
satisfiability problem [ACM06b].

We intuitively describe the logic NTμ below. The variables of the calculus
evaluate not over sets of vertices, but rather over sets of subtrees that capture
summaries of computations in the “current” program block. The fixpoint oper-
ators in the logic then compute fixpoints of summaries. For a given vertex s of
a nested tree, consider the subtree rooted at s such that the leaves correspond
to the matching returns as specified by the nesting relation (while modeling
program, such a subtree captures all the computations till the procedure that s
belongs to returns). In order to be able to relate paths in this subtree to the trees
rooted at the leaves, we allow marking of the leaves: a 1-ary summary is speci-
fied by the root s and a subset U of the leaves of the subtree rooted at s. Each
formula of the logic is evaluated over such a summary. The central construct
of the logic corresponds to concatenation of call trees: the formula 〈call〉ϕ{ψ}
holds at a summary 〈s, U〉 if the vertex s has a call-edge to a vertex t, and there
exists a summary 〈t, V 〉 satisfying ϕ and for each leaf v that belongs to V , the
subtree 〈v, U〉 satisfies ψ.

This logic is best explained using the specification of local reachability: let us
identify the set of all summaries 〈s, U〉 such that there is a local path from s
to some node in U (i.e. all calls from the initial procedure must have returned
before reaching U). In our logic, this is written as the formula ϕ = μX.〈ret〉R1 ∨
〈loc〉X ∨ 〈call〉X{X}. The above means that X is the smallest set of summaries
of the form 〈s, U〉 such that (1) there is a return-edge from s to some node in
U , (2) there is an internal edge from s to t and there is a summary 〈t, U〉 in X ,
or (3) there is a call-edge from s to t and a summary 〈t, V 〉 in X such that from
each v ∈ V , 〈v, U〉 is a summary in X . Notice that the above formula identifies
the summaries in the natural way it will be computed on a pushdown system:

Model Checking: From Tools to Theory 101

compute the local summaries of each procedure, and update the reachability
relation using the call-to-return summaries found in the procedures called.

Using the above formula, we can state local reachability of a state satisfying
p as: μY.(p ∨ 〈loc〉Y ∨ 〈call〉ϕ{Y }) which intuitively states that Y is the set of
summaries (s, U) where there is a local path from s to U that goes through a
state satisfying p. The initial summary (involving the initial state of the program)
satisfies the formula only if a p-labeled state is reachable in the top-most context,
which cannot be stated in the standard μ-calculus. This example also illustrates
how local flows in the context of dataflow analysis can be captured using our
logic.

6 Modeling and Processing Linear-Hierarchical Data

While nested words were motivated by program verification, they can poten-
tially be used to model data with the dual–linear and hierarchical, structure.
Such dual structure exists naturally in many contexts including XML docu-
ments, annotated linguistic data, and primary/secondary bonds in genomic se-
quences. Also, in some applications, even though the only logical structure on
data is hierarchical, linear sequencing is added either for storage or for stream
processing. Data with linear-hierarchical structure is traditionally modeled us-
ing binary (or more generally, ordered) trees and queried using tree automata
(see [Nev02, Lib05, Sch04] for recent surveys on applications of tree automata
and tree logics to document processing).

Even though tree models and tree automata are extensively studied with a
well-developed theory with appealing properties (see [CDG+02]), they seem ill
suited to capture and query the linear structure. First, tree-based approach im-
plicitly assumes that the input linear document can be parsed into a tree, and
thus, one cannot represent and process data that may not parse correctly. Word
operations such as prefixes, suffixes, and concatenation, while natural for docu-
ment processing, do not have analogous tree operations. Second, tree automata
do not generalize word automata. Finite-state word automata can be exponen-
tially more succinct than tree automata. For example, the query that patterns
p1, . . . pn appear in the document in that order (that is, the regular expres-
sion Σ∗p1Σ

∗ . . . pnΣ∗) compiles into a deterministic word automaton with n+1
states, but standard deterministic bottom-up tree automaton for this query must
be of size exponential in n. This deficiency shows up more dramatically if we
consider pushdown acceptors: a query such as “the document contains an equal
number of occurrences of patterns p and q” is a context-free word language but
is not a context-free tree language.

In a nutshell, binary/ordered trees encode both linear and hierarchical struc-
ture, but not on an equal footing. Recently we have argued that the model of
nested words is a better integration of the two orderings, and can either sim-
plify or improve existing ways of document processing [KMV06b, Alu07]. We
have already seen that words are nested words where all positions are internals.
Ordered trees can be interpreted as nested words using the following traversal:

102 R. Alur

to process an a-labeled node, first print an a-labeled call, process all children in
order, and print an a-labeled return. Binary trees, ranked trees, unranked trees,
forests, and documents that do not parse correctly, all can be represented with
equal ease. Figure 1 shows the ordered tree corresponding to the third nested
word, the first two do not correspond to trees.

Since XML documents already contain tags that specify the position type,
they can be interpreted as tagged encoding of nested words without any pre-
processing. As we have seen already, the class of regular languages of nested
words seems to have all the appealing theoretical properties that the classes
of classical regular word and tree languages enjoy, and decision problems such
as membership, emptiness, language inclusion, and language equivalence are all
decidable, typically with the same complexity as the corresponding problem for
tree automata.

In order to study the relationship of nested word automata to various kinds
of word and tree automata, let us consider restricted classes of nested word
automata and the impact of these restrictions on expressiveness and succinct-
ness [Alu07]. Flat automata do not propagate information along the nesting
edges at calls, and correspond exactly to classical word automata accepting the
weaker class of regular word languages. Bottom-up automata, on the other hand,
do not propagate information along the linear edges at calls. Over the sub-
class of nested words corresponding to ordered trees, these automata correspond
exactly to bottom-up tree automata for binary trees and stepwise bottom-up
tree automata [BKMW01] for unranked trees. However, there is an exponen-
tial price in terms of succinctness due to this restriction. The class of joinless
automata avoids a nontrivial join of information along the linear and nesting
edges at returns, and this concept is a generalization of the classical top-down
tree automata. While deterministic joinless automata are strictly less expressive,
nondeterministic ones can accept all regular languages of nested words. The suc-
cinctness gap between nested word automata and traditional tree automata holds
even if we restrict attention to paths (that is, unary trees): nested word automata
are exponentially more succinct than both bottom-up and top-down automata.
We have also studied pushdown nested word automata by adding a stack to the
finite-state control of nondeterministic joinless automata. Both pushdown word
automata and pushdown tree automata are special cases, but pushdown nested
word automata are strictly more expressive than both. In terms of complexity
of analysis problems, they are similar to pushdown tree automata: membership
is Np-complete and emptiness is Exptime-complete.

These results suggest that nested words and nested word automata may be
a more suitable way to model and process linear-hierarchical data. We need to
explore if compiling existing XML query languages into nested word automata
reduces query processing time in practice.

Acknowledgements. I would also like to thank Marcelo Arenas, Pablo Barcelo,
Swarat Chaudhuri, Kousha Etessami, Neil Immerman, Leonid Libkin, P. Mad-
husudan, Benjamin Pierce, and Mahesh Viswanathan, for past and ongoing re-
search collaboration on nested words.

Model Checking: From Tools to Theory 103

References

[AAB+07] Alur, R., Arenas, M., Barcelo, P., Etessami, K., Immerman, N., Libkin, L.:
First-order and temporal logics for nested words (unpublished manuscript,
2007)

[ABE+05] Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis,
M.: Analysis of recursive state machines. ACM Transactions on Program-
ming Languages and Systems 27(4), 786–818 (2005)

[ACD93] Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time.
Information and Computation 104(1), 2–34 (1993)

[ACM06a] Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and
global program flows. In: Proceedings of the 33rd Annual ACM Symposium
on Principles of Programming Languages, pp. 153–165 (2006)

[ACM06b] Alur, R., Madhusudan, P., Chaudhuri, S.: Languages of Nested Trees. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 329–342.
Springer, Heidelberg (2006)

[AD94] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126, 183–235 (1994)

[AEM04] Alur, R., Etessami, K., Madhusudan, P.: A Temporal Logic of Nested
Calls and Returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 467–481. Springer, Heidelberg (2004)

[AH93] Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness.
Information and Computation 104(1), 35–77 (1993)

[AH94] Alur, R., Henzinger, T.A.: A really temporal logic. Journal of the
ACM 41(1), 181–204 (1994)

[AHK02] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal
logic. Journal of the ACM 49(5), 1–42 (2002)

[AHLP00] Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.: Discrete abstrac-
tions of hybrid systems. Proceedings of the IEEE 88(7), 971–984 (2000)

[AKMV05] Alur, R., Madhusudan, P., Viswanathan, M., Kumar, V.: Congruences for
Visibly Pushdown Languages. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–
1114. Springer, Heidelberg (2005)

[Alu07] Alur, R.: Marrying words and trees (unpublished manuscript, 2007)
[AM04] Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of

the 36th ACM Symposium on Theory of Computing, pp. 202–211 (2004)
[AM06] Alur, R., Madhusudan, P.: Adding Nesting Structure to Words. In: H.

Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer,
Heidelberg (2006)

[BCD+92] Burch, J.R., Clarke, E.M., Dill, D.L., Hwang, L.J., McMillan, K.L.: Sym-
bolic model checking: 1020 states and beyond. Information and Computa-
tion 98(2), 142–170 (1992)

[BEM97] Boujjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown au-
tomata: Applications to model checking. In: Mazurkiewicz, A., Winkowski,
J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidel-
berg (1997)

[BKMW01] Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regu-
lar hedge languages over unranked alphabets: Version 1. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technol-
ogy (2001)

104 R. Alur

[BMMR01] Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predi-
cate abstraction of C programs. In: SIGPLAN Conference on Programming
Language Design and Implementation, pp. 203–213 (2001)

[BR00] Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean pro-
grams. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS,
vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

[BR01] Ball, T., Rajamani, S.: The SLAM toolkit. In: Computer Aided Verifica-
tion, 13th International Conference (2001)

[BS92] Burkart, O., Steffen, B.: Model checking for context-free processes. In:
Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137.
Springer, Heidelberg (1992)

[BS99] Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for
infinite sequential processes. Theoretical Computer Science 221, 251–270
(1999)

[Büc62] Büchi, J.R.: On a decision method in restricted second-order arithmetic.
In: Proceedings of the International Congress on Logic, Methodology, and
Philosophy of Science 1960, pp. 1–12. Stanford University Press (1962)

[Cau03] Caucal, D.: On infinite transition graphs having a decidable monadic the-
ory. Theoretical Computer Science 290(1), 79–115 (2003)

[CDG+02] Comon, H., Dauchet, M., Gilleron, R., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications. Draft (2002),
http://www.grappa.univ-lille3.fr/tata/

[CE81] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic
of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

[CL99] Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems.
Kluwer Academic Publishers, Dordrecht (1999)

[CMM+04] Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Pals-
berg, J.: Stack size analysis for interrupt driven programs. Information and
Computation 194(2), 144–174 (2004)

[CW02] Chen, H., Wagner, D.: Mops: an infrastructure for examining security prop-
erties of software. In: Proceedings of ACM Conference on Computer and
Communications Security, pp. 235–244 (2002)

[DOTY96] Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In:
Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066,
pp. 208–219. Springer, Heidelberg (1996)

[EHRS00] Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms
for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P.
(eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg
(2000)

[EJ91] Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus, and determinacy.
In: Proceedings of the 32nd IEEE Symposium on Foundations of Computer
Science, pp. 368–377 (1991)

[EKS03] Esparza, J., Kucera, A., Schwoon, S.S.: Model-checking LTL with regular
valuations for pushdown systems. Information and Computation 186(2),
355–376 (2003)

[Eme90] Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier Sci-
ence Publishers, Amsterdam (1990)

http://www.grappa.univ-lille3.fr/tata/

Model Checking: From Tools to Theory 105

[HJM+02] Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G.,
Weimer, W.: Temporal-Safety Proofs for Systems Code. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 526–538. Springer,
Heidelberg (2002)

[Hol97] Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software
Engineering 23(5), 279–295 (1997)

[HRS98] Henzinger, T.A., Raskin, J.-F., Schobbens, P.: The Regular Real-Time
Languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 580–593. Springer, Heidelberg (1998)

[HU79] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley (1979)

[JMT99] Jensen, T., Le Metayer, D., Thorn, T.: Verification of control flow based
security properties. In: Proceedings of the IEEE Symposium on Security
and Privacy, pp. 89–103 (1999)

[JW96] Janin, D., Walukiewicz, I.: On the expressive completeness of the proposi-
tional mu- calculus with respect to monadic second order logic. In: Sassone,
V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277.
Springer, Heidelberg (1996)

[Kam68] Kamp, J.: Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California, Los Angeles (1968)

[KMV06a] Kumar, V., Madhusudan, P., Viswanathan, M.: Minimization, Learning,
and Conformance Testing of Boolean Programs. In: Baier, C., Hermanns,
H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 203–217. Springer, Heidel-
berg (2006)

[KMV06b] Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown lan-
guages for XML. Technical Report UIUCDCS-R-2006-2704, UIUC (2006)

[Knu67] Knuth, D.E.: A characterization of parenthesis languages. Information and
Control 11(3), 269–289 (1967)

[Koz83] Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer
Science 27, 333–354 (1983)

[KPV02] Kupferman, O., Piterman, N., Vardi, M.Y.: Model Checking Linear Proper-
ties of Prefix-Recognizable Systems. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 371–385. Springer, Heidelberg (2002)

[Kur94] Kurshan, R.P.: Computer-aided Verification of Coordinating Processes: the
automata-theoretic approach. Princeton University Press (1994)

[KVW00] Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach
to branching-time model checking. Journal of the ACM 47(2), 312–360
(2000)

[KVW01] Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information
and Computation 164(2), 322–344 (2001)

[Lib05] Libkin, L.: Logics for Unranked Trees: An Overview. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 35–50. Springer, Heidelberg (2005)

[LPY97] Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Springer Inter-
national Journal of Software Tools for Technology Transfer 1 (1997)

[LV02] Lee, E.A., Varaiya, P.: Structure and interpretation of signals and systems.
Addison-Wesley (2002)

[McM93] McMillan, K.L.: Symbolic model checking: an approach to the state explo-
sion problem. Kluwer Academic Publishers (1993)

[McN67] McNaughton, R.: Parenthesis grammars. Journal of the ACM 14(3), 490–
500 (1967)

106 R. Alur

[Mil89] Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
[MS85] Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and

second-order logic. Theoretical Computer Science 37, 51–75 (1985)
[Nev02] Neven, F.: Automata, Logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002

and EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)
[PS02] Pappas, G.J., Simic, S.: Consistent abstractions of affine control systems.

IEEE Transactions on Automatic Control 47(5), 745–756 (2002)
[PSL05] IEEE 1850 standard for property specification language (PSL) (2005)
[Rab69] Rabin, M.O.: Decidability of second order theories and automata on infinite

trees. Transactions of the AMS 141, 1–35 (1969)
[Rep98] Reps, T.: Program analysis via graph reachability. Information and Soft-

ware Technology 40(11-12), 701–726 (1998)
[RHS95] Reps, T., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis

via graph reachability. In: Proceedings of the ACM Symposium on Princi-
ples of Programming Languages, pp. 49–61 (1995)

[Sch98] Schmidt, D.A.: Data flow analysis is model checking of abstract interpreta-
tions. In: Proceedings of the 25th Annual ACM Symposium on Principles
of Programming Languages, pp. 68–78 (1998)

[Sch04] Schwentick, T.: Automata for XML – a survey. Technical report, University
of Dortmund (2004)

[SH97] Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Hei-
delberg (1997)

[SP81] Sharir, M., Pnueli, A.: Two approaches to inter-procedural data-flow anal-
ysis. In: Program flow analysis: Theory and applications. Prentice-Hall,
Englewood Cliffs (1981)

[Ste91] Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R.
(eds.) TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Heidelberg
(1991)

[Sti91] Stirling, C.S.: Modal and temporal logic. In: Handbook of Logic in Com-
puter Science, pp. 477–563. Oxford University Press (1991)

[Tho90] Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier Sci-
ence Publishers (1990)

[Tho02] Thomas, W.: Infinite Games and Verification. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg
(2002)

[VW94] Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Informa-
tion and Computation 115(1), 1–37 (1994)

[Wal01] Walukiewicz, I.: Pushdown processes: Games and model-checking. Infor-
mation and Computation 164(2), 234–263 (2001)

[WVS83] Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation
paths. In: Proceedings of the 24th IEEE Symposium on Foundations of
Computer Science, pp. 185–194 (1983)

	Model Checking: From Tools to Theory
	Introduction
	History of Verification of Pushdown Systems
	Nested Words
	Revised Formulation of Software Model Checking
	Fixpoints for Local and Global Program Flows
	Modeling and Processing Linear-Hierarchical Data

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

