
Chapter 13:
Model Checking Linear-Time Properties
of Probabilistic Systems

Christel Baier, Marcus Größer, and Frank Ciesinski

Technische Universität Dresden, Fakultät Informatik,
Institut für Theoretische Informatik,
01062 Dresden, Germany
baier@tcs.inf.tu-dresden.de

groesser@tcs.inf.tu-dresden.de

ciesinsk@tcs.inf.tu-dresden.de

1 Introduction . 519

2 Markov Decision Processes . 526

3 Maximal Reachability Probabilities . 533

4 Model Checking ω-Regular Properties . 538

5 Partial Order Reduction . 547

6 Partially Observable MDPs . 557

7 Conclusion . 559

8 Appendix . 560

References . 563

1 Introduction

This chapter is about the verification of Markov decision processes (MDPs)
which are one of the fundamental models for reasoning about probabilistic
phenomena of computer systems. MDPs have first been studied by Bellmann
[14] and Howard [54] in the 1950s. While this early work on MDPs was mo-
tivated by optimization problems that appear in the context of operations
research, nowadays MDPs are used in a variety of areas, including robotics,
stochastic planning, control theory, reinforcement learning, economics, manu-
facturing, and semantics of randomized protocols. In the context of finite-state
acceptors and transducers, MDPs served as basis for the introduction of prob-
abilistic automata [81, 73], which again interact with the theory of weighted

M. Droste, W. Kuich, H. Vogler (eds.), Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-01492-5 13, c© Springer-Verlag Berlin Heidelberg 2009

519

520 Christel Baier, Marcus Größer, and Frank Ciesinski

automata by generalizing the concept of probabilities to weights in an arbi-
trary semiring.

In this chapter, Markov decision processes are used as an operational model
for “probabilistic systems”. Probabilism appears as a rather natural concept
when providing the semantics of randomized algorithms or multi-agent sys-
tems with unreliable hardware components. In randomized algorithms, coin-
tossing is used as an explicit probabilistic algorithmic concept. Examples for
sequential randomized algorithms are the prominent primality tests by Miller
and Rabin or by Solovay and Strassen or algorithms that operate with ran-
domized data structures such as skip lists or universal hashing. For distributed
systems, there is a wide range of coordination protocols to solve, e.g., mutual
exclusion or leader election problems that utilize coin-tossing actions for sym-
metry breaking (see [44, 68]). For systems that operate with faulty compo-
nents, such as communication channels that might corrupt or lose messages,
or sensors that deliver wrong values in rare cases, probabilities can be used
to specify the frequency of such exceptional behaviors. Probabilistic seman-
tic models also play a central role in reasoning about systems that interact
with an environment on which only partial information by means of stochastic
assumptions about the I/O-operations of its interface is available.

The most popular operational models that support reasoning about prob-
abilistic behaviors are Markovian models (Markov chains or Markov decision
processes) where discrete probabilities are attached to the transitions. They
enjoy the memoryless property stating that the future system evolution just
depends on the current system state, but not on the specific steps that have
been performed in the past. The memoryless property is inherent also in
most non-stochastic automata models, such as labeled transition systems or
weighted automata. In the stochastic setting, however, the memoryless prop-
erty asserts that not only the enabled actions and the successor states are
uniquely determined by the current state, but also the probabilities for the
transitions. Markov chains are purely probabilistic, i.e., the possible behavior
in each state is specified by a probabilistic distribution for the successor states.
They can serve to formalize the stepwise behavior of sequential randomized
algorithms. For modeling probabilistic parallel systems, Markov chains are not
expressive enough to provide an interleaving semantics, which relies on the
representation of concurrent (independent) actions α and β, executed by dif-
ferent processes, by a non-deterministic choice between the action sequences
αβ and βα. Thus, models where probabilism and non-determinism co-exist
are required to provide an operational semantics of randomized distributed
algorithms. Stochastic models with nondeterminism are also needed for ab-
straction purposes (e.g., in the context of data abstraction, data-dependent
conditional branching might be replaced with non-deterministic branching) or
to model the potential interactions with an unpredictable environment (e.g.,
a human user). The operational semantics of such systems with probabilis-
tic and non-deterministic behaviors can be described by a Markov decision
process which is a stochastic model where the behavior in each state s is given

Model Checking Linear-Time Properties of Probabilistic Systems 521

Fig. 1. MDP for a randomized mutual exclusion protocol

by a set of enabled actions which are augmented by distributions that specify
the probabilistic effect of the execution of the enabled actions in state s. The
idea is that when entering state s, first an enabled action α is chosen nonde-
terministically which is then executed and the associated distribution yields
the probability for the next state. A Markov chain arises as a special case of
an MDP where for each state the set of enabled actions is a singleton.

Example 1.1 (A randomized mutual exclusion protocol). We consider here a
simple randomized mutual exclusion protocol for two concurrent processes
P1 and P2. When process Pi is in its non-critical section (represented by
location ni), it can perform a request (via action reqi) and then move to a
waiting section (location wi). In the waiting section, the process waits for
permission given by an arbiter to enter its critical section (location ci) from
where it can release and move to its non-critical section again (action reli).
The arbiter that coordinates the access to the critical sections is randomized
and permits process Pi to enter its critical section if the other process is in
its non-critical section. If both processes request access to the critical section,
the arbiter tosses a fair coin to decide which of the two processes has to wait
and which process may enter the critical section. The composite behavior of
the two concurrent processes and the arbiter can be modeled by the MDP
depicted in Fig. 1. Note that the actions req, enter, and rel do not have a
proper probabilistic effect, and thus yield a unique successor (the transition
probabilities that equal 1 are omitted from the figure). Only in state 〈w1, w2〉
there is a proper probabilistic choice performed by the arbiter to select the

522 Christel Baier, Marcus Größer, and Frank Ciesinski

next process to enter the critical section. In all other states of the MDP where
at least one of the processes is in its non-critical location, there is a non-
deterministic choice between the enabled actions of the processes P1 and P2.

One can think of an MDP as a directed graph where the edges are augmented
with action names and probabilities, i.e., positive real numbers ≤ 1, satis-
fying the side condition that for each state s and action name α either the
probabilities attached to the outgoing α-transitions of s sum up to 1 (which
ensures that they represent a probabilistic distribution) or s has no outgoing
α-transitions at all (in which case α is not enabled in s). Thus, an MDP can
be seen as a special instance of a weighted automaton where the weights are
elements of the interval]0, 1]. Applying the classical approach of weighted au-
tomata (see Chap. 3 of this handbook [35]) to an MDP (where we deal with
the semiring [0, 1] with standard multiplication and where maximum serves
as plus-operation), the weight of a finite path π is obtained by the product
of the weights of the transitions on π and can be understood as the probabil-
ity for π. To reason about the probabilities for properties over infinite paths
(which are crucial for properties that impose conditions on the “long-run be-
haviors” such as liveness properties), the special interpretation of the weights
as probabilities permits us to apply standard techniques of measure and prob-
ability theory. More precisely, the standard approach to define probabilities
for events in an MDP relies on the sigma-algebra over infinite paths generated
by the cylinder sets spanned by finite paths, and the probability measure is
defined using Carathéodory’s measure extension theorem. A summary of the
relevant measure-theoretic concepts is presented in the appendix; see Sect. 8.
This is an alternative approach to the interpretation of infinite words over
weighted automata discussed in [35, 31] where special algebraic assumptions
on the underlying semiring are made in order to define the weights of infinite
paths and words. In particular, the semiring has to permit an infinite sum
as well as a countably infinite product operation satisfying several commu-
tativity, associativity, and distributivity laws. Another approach to interpret
infinite words over weighted automata uses discounting, which is a well-known
concept in mathematical economics as well as systems theory in which later
events get less value than earlier ones [32–34].

The typical task for verifying a probabilistic system modeled by an MDP
is to prove that certain temporal properties hold almost surely, i.e., with prob-
ability 1, or with some high probability, no matter how the non-determinism
is resolved. The notion qualitative property is used when a certain event is
required to hold almost surely (or dually with zero probability). Thus, quali-
tative properties assert that a certain path condition E holds for almost all or
almost no paths. Depending on the type of condition E, the concept of qual-
itative properties is different from reasoning by means of purely functional
properties that require a certain event E to hold for all paths or for no path.
For example, if B is a set of states, then the qualitative reachability property
asserting that “almost all paths will enter a state in B” is slightly weaker than

Model Checking Linear-Time Properties of Probabilistic Systems 523

the functional reachability property requiring that “all paths will enter a state
in B”. The notion quantitative property refers to a condition that requires a
lower or upper bound in the open interval]0, 1[for the probability of a certain
event or imposes some conditions on the mean value of a random function.
For instance, typical requirements for a randomized mutual exclusion protocol
are the qualitative property stating that “almost surely each waiting process
will eventually get the grant to enter its critical section” and the quantitative
property stating that “each waiting process has the chance of at least 99%
to enter its critical section after having announced its demand five times”. In
the case of a communication protocol with a lossy channel, a natural quanti-
tative requirement could be that “with probability ≥ 0.98, any message will
be delivered correctly after at most three attempts to send it”.

When speaking about probability bounds in the context of verification
methods for MDPs, we range over all possible resolutions of the non-determin-
ism. This corresponds to a worst-case analysis. Thus, if the given MDP is an
interleaving model for a probabilistic multi-processor system, then the worst-
case analysis ranges over all orders of concurrent actions and does not impose
any restrictions on the relative speed of the processors. In cases where some
non-deterministic choices in an MDP stand for the potential behaviors of
an unknown environment, the worst-case analysis takes all possible activities
of the environment into account. Similarly, when certain non-deterministic
branches result from abstractions, then the worst-case analysis covers all con-
crete behaviors. By requiring that the probabilities for a given event E are 1
or sufficiently close to 1, the event E is supposed to characterize the “good”
(desired) behaviors. Verification problems for MDPs can also be rephrased in
the opposite way: if E describes the “bad” (undesired) behaviors, then the
goal is to prove that E holds with probability 0 or some sufficiently small
probability.

The notion qualitative analysis is used if the goal is to show that a cer-
tain event E appears with probability 0 or 1, while the notion quantitative
analysis refers to the task of computing the maximal or minimal probabili-
ties for E, when ranging over all schedulers, i.e., instances that resolve the
non-determinism. Sometimes, some mild conditions on the resolution of non-
deterministic choices along infinite paths are imposed, such as fairness as-
sumptions. Other instances of a quantitative analysis are obtained when the
goal is to establish lower or upper bounds for certain mean values, e.g., the
average power consumption of a complex task or the expected number of
rounds required to find a leader when imposing a leader election protocol.
Such variants of the verification problem for MDPs will not be addressed in
this chapter. Instead, we will concentrate on the quantitative reasoning by
means of extremal probabilities under the full class of schedulers.

In the literature, many variants of classical temporal logics for non-probabi-
listic systems have been adapted to specify the requirements of a probabilistic
system. One prominent example is the probabilistic variant of computation
tree logic (PCTL) [47, 15, 12] which yields an elegant formalism to specify

524 Christel Baier, Marcus Größer, and Frank Ciesinski

lower or upper probability bounds for reachability properties within a logical
framework. While PCTL is a representative for logics that are based on the
branching time view, one can also use purely path-based formalisms, such as
linear temporal logic (LTL) or automata over infinite words, to specify the de-
sired/good or undesired/bad event E, which is then the subject of a qualitative
or quantitative analysis [79, 90, 91, 23]. For finite-state MDPs, the quantitative
analysis against PCTL or LTL specifications mainly relies on a combination of
graph algorithms, automata-based constructions and (numerical) algorithms
for solving linear programs. Consequently, compared to the non-probabilistic
case, there is the additional difficulty to solve linear programs, and also the
required graph algorithms are more complex. This renders the state space ex-
plosion problem even more serious than in the non-probabilistic case and the
feasibility of algorithms for the quantitative analysis crucially depends on good
heuristics to increase efficiency. Among other features, the tool PRISM [61]
contains a PCTL model checker for MDPs which has been successfully applied
to, e.g., a series of randomized coordination algorithms, communication, and
security protocols. To tackle the state space explosion problem, PRISM uses
a tricky combination of data structures (multi-terminal binary decision dia-
grams and sparse matrices) for the internal representation of the MDP and the
numerical computations required for a quantitative analysis [72]. Motivated
by the success of the non-probabilistic model checker SPIN [51] where partial
order reduction techniques [74, 52, 87, 38] for the verification of interleaving
models are realized, the concept of partial order reduction has been adapted
for the quantitative analysis of MDPs against linear-time specifications [9, 26]
and implemented in the model checker LIQUOR [3, 5]. Several other tech-
niques that attempt to speed up the verification algorithms for MDPs and/or
to decrease the memory requirements have been proposed in the literature,
such as symmetry reduction [62], iterative abstraction-refinement algorithms
[25, 50], reduction techniques for linear programs [24, 5], and many others.
Most of these techniques are orthogonal to the symbolic approach of PRISM
and the partial order reduction approach of LIQUOR and can be applied in
combination with them.

Somehow dual to verification problems are controller synthesis problems
where one is typically interested in best-case scenarios (rather than the worst
case) and attempts to construct a scheduler where the probabilities for the
desired behaviors, say formalized by a linear-time property E, are maximal.
Assuming that all non-deterministic choices are controllable and that the con-
troller has complete knowledge of the computation leading to the current state,
then the methods for computing maximal probabilities for the event E can eas-
ily be extended for constructing a scheduler that maximizes the probabilities
for E. However, the assumption that complete knowledge about the history
is available is unrealistic for multi-agent systems when controllers for a single
agent or a coalition of agents are wanted. In this case, the adequate model
are partially observable MDPs [84, 70, 71] that extend ordinary MDPs by an
equivalence relation ∼ on the states. The idea is that equivalent states are not

Model Checking Linear-Time Properties of Probabilistic Systems 525

Fig. 2. Schema for the quantitative analysis

distinguishable by the controller and the task is to construct a controller (i.e.,
observation-based scheduler) for the partially observable MDP that maximizes
the probabilities for E, where “observation-based” means that the scheduler
can only observe the equivalence classes of the states that have been visited
in the past, but not the states themselves. In general, the controller synthesis
problem cannot be solved algorithmically as there is an undecidability result
for the qualitative controller synthesis problem that asks for the existence of
an observation-based scheduler where the probability to visit a certain set
of states infinitely often is positive [2]. However, for simpler properties (e.g.,
safety properties) and special patterns of liveness properties, the qualitative
controller synthesis problem is decidable.

About This Chapter

In the remaining sections of this chapter, we will present the main concepts
of Markov decision processes as an operational model for probabilistic sys-
tems and present the basic steps for the (qualitative or quantitative) analysis
against linear-time properties. Branching time properties will not be addressed
here. For the basic steps to verify PCTL-like specifications for MDPs and the

526 Christel Baier, Marcus Größer, and Frank Ciesinski

symbolic MTBDD-based approach, we refer to [82] and Chap. 10 in [11], as
well as the literature mentioned there. We will start in Sect. 2 with the formal
definition of an MDP and related notions (paths, schedulers and their induced
probability measure) and illustrate the use of MDPs as an operational model
for probabilistic systems by means of a few examples. The core problem of
any quantitative analysis in an MDP is the problem of computing extremal
reachability probabilities by means of optimization techniques. This will be ex-
plained in Sect. 3. The general case of ω-regular properties will be addressed in
Sect. 4. We follow here the automata-based approach [90, 91, 23, 12] where we
are given a deterministic ω-automata representing a linear-time property E.
The maximal probability for E can be computed by a product construction
and a reduction to the probabilistic reachability problem (see Fig. 2). The
purpose of Sect. 5 is to explain the partial order reduction approach that
attempts to derive the maximal probabilities for E from a “small” fragment
of the MDP, thus avoiding the construction and analysis of the full MDP. In
Sect. 6, we introduce the model of partially observable MDPs and report on
results for special instances of the qualitative controller synthesis problem.
Some concluding remarks are given in Sect. 7. The chapter ends with an ap-
pendix (Sect. 8) that contains the definition of Markov chains and explains
the mathematical details of the stochastic process induced by a scheduler of
an MDP.

2 Markov Decision Processes

Throughout this chapter, we will use Markov decision processes (MDPs) as
an operational model for probabilistic systems. As in [80, 65, 27], the states
of an MDP might have several enabled actions. Each of the actions that are
enabled in state s is associated with a probability distribution which yields
the probabilities for the successor states. This corresponds to the so-called
reactive model in the classification of [89]. In addition, we assume here a
labeling function that attaches to any state s a set of atomic propositions
that are assumed to be fulfilled in state s. The atomic propositions will serve
as atoms in the formal specifications for properties. For instance, to formalize
deadlock freedom “processes P1 and P2 are never simultaneously in their
critical sections” or starvation freedom “whenever P1 is in his waiting section,
then P1 will eventually enter its critical section” for the randomized mutual
exclusion protocol in Fig. 1, we can deal with temporal formulas that use
the atomic propositions waiti, criti for i = 1, 2 which are attached to all states
where the local state of process Pi is wi or ci, respectively. We will now give the
formal definition of an MDP. For further basic definitions of, e.g., probability
distribution, or Markov chain, we refer to the appendix (Sect. 8).

Definition 2.1 ((State-labeled) Markov decision process (MDP)).
A Markov decision process is a tuple

Model Checking Linear-Time Properties of Probabilistic Systems 527

M = (S, Act, δ, μ,AP, L),

where:

• S is a finite non-empty set of states.
• Act is a finite non-empty set of actions.
• δ : S × Act × S → [0, 1] is a transition probability function such that for

each s ∈ S and α ∈ Act, either δ(s, α, .) is a probability distribution on S
or δ(s, α, .) is the null-function (i.e., δ(s, α, t) = 0 for any t ∈ S).

• μ is a probability distribution on S (called the initial distribution).
• AP is a finite set of atomic propositions.
• L : S → 2AP is a labeling function that labels a state s with those atomic

propositions in AP that are supposed to hold in s.

Act(s) = {α ∈ Act | ∃t ∈ S : δ(s, α, t) > 0} denotes the set of actions that are
enabled in state s. We require that Act(s) is non-empty for each state s ∈ S.

The intuitive operational behavior of an MDP is the following. If s is the
current state, then at first one of the actions α ∈ Act(s) is chosen non-
deterministically. Secondly, action α is executed leading to state t with prob-
ability δ(s, α, t).

Action α is called a probabilistic action if it has a random effect, i.e., if
there is at least one state s where α is enabled and that has two or more
α-successors (an α-successor of state s is a state t such that δ(s, α, t) > 0).
Otherwise, α is called non-probabilistic.

If all actions in Act are non-probabilistic and the initial distribution is a
Dirac distribution, i.e., a probabilistic distribution that assigns probability 1
to some particular state, then our notion of an MDP reduces to an ordinary
transition system with at most one outgoing α-transition per state and action
α and exactly one initial state.

Example 2.2 (The Monty Hall problem). Before we proceed, let us have a look
at a small example of an MDP. We consider here the Monty Hall problem:
“Suppose you are a contestant on a game show, and you are given the choice
of three doors: behind one door is a car, behind the others, goats. You choose
a door, but you do not open it. Then the host, who knows what is behind the
doors, has to open another door which has a goat behind it (if you initially
picked the door with the car behind it, the host randomly chooses one of the
other doors). He then asks whether you want to change your choice to the
other unopened door. After either sticking to your first choice or switching
to the other unopened door, you win what is behind the door that you have
finally chosen. Considering that your goal is to win the car, is it to your
advantage to switch your first choice?”

In Fig. 3, we depict an MDP for an abstraction of this problem where due
to symmetry the information which exact door reveals the car is neglected.
So, in the initial state s, the contestant chooses one of the three doors, each
with equal probability 1

3 . State t1 represents the case where the contestant has

528 Christel Baier, Marcus Größer, and Frank Ciesinski

Fig. 3. The abstract “Monty Hall problem”

chosen the door with the car behind it, states t2 and t3 represent the other
cases where the contestant has chosen a door with a goat behind it. Thus,
state t1 is labeled with the atomic proposition car, whereas t2 and t3 are
labeled with ∅. After this first choice, the game show host opens a door which
has a goat behind it. Note that now there are exactly two closed doors, one
with a car behind it (represented by state u1 and the labeling {get car}) and
one door with a goat behind it (represented by state u2 and the labeling ∅).
Now the contestant has the alternative to either stick to her/his chosen door
or to switch to the other closed door. So, in states t1, t2, and t3, there is a
non-deterministic choice between the actions switch and keep, leading to u1

or u2. Note that the actions switch and keep are non-probabilistic as there are
exactly two closed doors. After choosing switch or keep, the game is over. To
complete the MDP, we added an idling self-loop to the states u1 and u2. For
the sake of readability, we depict the transitions of the switch-action a little
thicker and we omit the labeling of the actions of state t2.

Paths and Schedulers of an MDP

Definition 2.3 (Path and corresponding notations). An infinite path
of an MDP is an infinite sequence π = ((s0, α1), (s1, α2), . . .) ∈ (S × Act)ω

such that δ(si, αi+1, si+1) > 0 for i ∈ N≥0. We write paths in the form

π = s0
α1−→ s1

α2−→ s2
α3−→ · · ·

Model Checking Linear-Time Properties of Probabilistic Systems 529

A finite path is a finite prefix of an infinite path that ends in a state. We use
the notation last(π) for the last state of a finite path π and |π| for the length
(number of actions) of a finite path. We denote by PathMfin , resp. PathMinf , the
set of all finite, resp. infinite, paths of M.

In order to be able to talk about the probability, e.g., to get the car in
the Monty Hall problem, we need another concept of the theory of MDPs,
namely the concept of schedulers. Schedulers are a means to resolve the non-
determinism in the states, and thus yield a discrete Markov chain and a prob-
ability measure on the paths. Intuitively, a scheduler takes as input the “his-
tory” of a computation (formalized by a finite path π) and chooses the next
action (resp. a distribution on actions).

Definition 2.4 (Scheduler). For a given MDP M = (S, Act, δ, μ,AP, L),
a history dependent randomized scheduler is a function

U : PathMfin → Distr(Act),

such that supp(U(π)) ⊆ Act(last(π)) for each π ∈ PathMfin . Here, Distr(Act)
denotes the set of probability distributions on Act while supp(U(π)) denotes
the support of U(π), i.e., the set of actions α ∈ Act such that U(π)(α) > 0.

A scheduler U is called deterministic, if U(π) is a Dirac distribution for each
π ∈ Pathfin, i.e., U(π)(α) = 1 for some action α, while U(π)(β) = 0 for every
other action β �= α. Scheduler U is called memoryless, if U(π) = U(last(π)) for
each π ∈ Pathfin (note that last(π) is a path of length 0). We denote by Sched,
the set of all (history dependent, randomized) schedulers. We write SchedD to
denote the set of deterministic schedulers, SchedM for the set of memoryless
schedulers, and SchedMD for the set of memoryless deterministic schedulers.
Note that the following inclusions hold.

• SchedM ⊆ Sched and SchedD ⊆ Sched
• SchedMD ⊆ SchedM and SchedMD ⊆ SchedD

A (finite or infinite) path s0
α1−→ s1

α2−→ s2
α3−→ · · · is called a U-path, if

U(s0
α1−→ · · · αi−→ si)(αi+1) > 0 for every 0 ≤ i < |π|.

Given an MDP M and a scheduler U , the behavior of M under U can be
formalized by a (possibly infinite-state) discrete Markov chain. By PrM,U , we
denote the standard probability measure on the standard σ-algebra of the in-
finite paths of M. Given a state s of M, we denote by PrM,U

s the probability
measure that is obtained if M is equipped with the initial Dirac distribu-
tion μs, with μs(s) = 1. A detailed definition of M and PrM,U is provided
in the appendix (Sect. 8). We also fix the following notation for convenience.
Given an MDP M, a scheduler U , and a measurable path property E, we will
write

PrM,U (E) def= PrM,U({
π ∈ PathMinf

∣
∣ π satisfies E

})

for the probability that the property E holds in M under the scheduler U .

530 Christel Baier, Marcus Größer, and Frank Ciesinski

Let us consider again the Monty Hall problem depicted in Fig. 3. It is easy
to see that under the scheduler U with1

U
(
s

choose−−−→ t1
)
(keep) = U

(
s

choose−−−→ t2
)
(switch) = U

(
s

choose−−−→ t3
)
(switch) = 1

the contestant will win the car with probability 1. This is, of course, an unre-
alistic scheduler as it uses the knowledge of whether the contestant has chosen
the door with the car behind it or not. If the door with the car was chosen
(state t1), then the scheduler decides to keep the door, if a door with a goat
was chosen (states t2, t3), then the scheduler decides to switch the door. As
the contestant does not know whether he has chosen the door with the car
behind it, the only realistic schedulers (that model a contestant’s choice) are
the two schedulers Us and Uk with

Us

(
s

choose−−−→ t1
)
(switch) = Us

(
s

choose−−−→ t2
)
(switch) = Us

(
s

choose−−−→ t3
)
(switch) = 1

and

Uk

(
s

choose−−−→ t1
)
(keep) = Uk

(
s

choose−−−→ t2
)
(keep) = Uk

(
s

choose−−−→ t3
)
(keep) = 1

where the contestant either decides to switch the door or to keep it. Simple
computations show that with M being the MDP of Fig. 3

PrM,Us(♦ get car) = PrM,Us
({

s
choose−−−→ t1

keep−−→ u1
idle−−→ · · · ,

s
choose−−−→ t2

switch−−−→ u1
idle−−→ · · · ,

s
choose−−−→ t3

switch−−−→ u1
idle−−→ · · ·

})

= 1 · 1
3 · 0 · 1 + 1 · 1

3 · 1 · 1 + 1 · 1
3 · 1 · 1

= 2
3

and similarly

PrM,Uk(♦ get car) =
1
3
.

This shows that it is an advantage to switch the door. Here, we used the
LTL-like notation ♦ get car to denote the reachability property stating that
eventually a state where get car holds will be reached. That is, given the
atomic proposition get car, a path π = s0

α1−→ s1
α2−→ · · · satisfies ♦ get car if

and only if there exists an index i ∈ N≥0 such that get car ∈ L(si).

Specifying Systems with an MDP-Semantics

In the literature, various modeling languages for probabilistic systems whose
stepwise behavior can be formalized by an MDP have been proposed. Such
languages can serve as a starting point for model checking tools that take as
1 Note that this completely determines the scheduler as there are no other paths
that end in a state with more than one enabled action.

Model Checking Linear-Time Properties of Probabilistic Systems 531

msg = ...; // the data to be sent

msg_sent = false;

do:: msg_sent == false ->

pif :0.9: -> msg_sent = true;

:0.1: -> skip

fip

od

Fig. 4. ProbMeLa-code for an unbounded retransmission protocol

input a description of the processes of a (parallel) system and a formalization
of the property to be checked. Semantic rules are used to construct the MDP
automatically. Then in further steps, model checking algorithms are applied.
An example for such a modeling language is ProbMeLa [4], which is the input
language of the model checker LIQUOR that supports the qualitative and
quantitative analysis of MDPs against linear-time properties. ProbMeLa is a
probabilistic version of the process meta-language ProMeLa which serves as
modeling language in connection with the prominent model checker SPIN for
non-probabilistic systems [51]. The core language of ProMeLa and ProbMeLa
relies on Dijkstra’s guarded commands guard -> cmd which can be used in
loops (do . . . od) and conditional commands (if . . . fi). One of the additional
probabilistic features of ProbMeLa is a probabilistic choice operator (pif . . .
fip) which can be seen as a probabilistic variant of conditional commands
as probabilities are assigned to the commands rather than Boolean guards.
Commands with the probabilistic choice operator have the form

pif :p1: -> cmd1;
...

:pn: -> cmdn

fip

where the pi’s are values in]0, 1] that sum up to 1 and specify a probabilistic
distribution for the commands cmdi.

For instance, the ProbMeLa-code in Fig. 4 might be a fragment of an
unbounded retransmission protocol where some process sends data (variable
msg) over a faulty medium such as a wireless radio connection or an other-
wise noisy connection. This ProbMeLa-code specifies a process that iteratively
attempts to send the message until it has been delivered correctly, where in
each iteration of the loop the message will be delivered with probability 0.9
and will be lost with probability 0.1 (which is modeled here by the command
skip). Termination of this protocol is guaranteed with probability 1 which
means that almost surely the message will be delivered eventually. Note that
there is an infinite computation where the message is lost in all iterations, but
the probability for this to happen is 0. This simple example illustrates the
difference between the functional and qualitative properties: the functional
property requiring termination along all paths does not hold for the protocol,

532 Christel Baier, Marcus Größer, and Frank Ciesinski

do

pif:0.5:-> first_fork = left; second_fork = right

:0.5:-> first_fork = right; second_fork = left

fip

if ::forks[first_fork]==false -> forks[first_fork]=true;

if

::forks[second_fork]==false -> forks[second_fork]=true;

// philosopher is eating

forks[second_fork]=false; forks[first_fork]=false

::forks[second_fork]==true -> forks[first_fork]=false

fi

::forks[first_fork]==true -> skip

fi

od

Fig. 5. ProbMeLa-code for each philosopher

while the qualitative property requiring termination along almost all paths
(i.e., with probability 1) holds. Furthermore, we can establish the quantita-
tive property stating that with probability 0.999 the message will be delivered
within the first three iterations.

In the context of distributed systems, such as mutual exclusion protocols,
leader election, or Byzantine agreement, coin tossing offers an elegant way
to design coordination algorithms that treat all processes equally, but avoid
deadlock situations since symmetry breaking is inherent in the random out-
comes of the coin tossing experiment. A prominent example is the randomized
solution of the dining philosophers problem suggested by Lehmann and Rabin
[66]. The philosophers are sitting at a round table and neighboring philoso-
phers have access to a shared resource (a fork). Each philosopher attempts
to alternate infinitely often between a thinking and an eating phase, where
the latter requires that the philosopher has picked up the fork to his left and
the fork to his right. The Lehmann–Rabin protocol works as follows. As soon
as a philosopher gets hungry, he decides to pick up his left or right fork by
tossing a fair coin. If the selected fork is available, then he picks up this fork
and checks whether the other fork is available, also. If so, then he takes it
and starts to eat. Otherwise, he returns the taken fork, and repeats the whole
procedure. This procedure can be described in ProbMeLa as shown in Fig. 5.
If all philosophers operate on the basis of this protocol, then deadlock free-
dom is ensured on all paths. Starvation freedom holds almost surely under all
schedulers, i.e., no matter how the steps of the philosophers are interleaved,
with probability 1 each philosopher gets to eat eventually, if he intends to
do so. Other classes of randomized algorithms, protocols, and scenarios are
modeled likewise.

Model Checking Linear-Time Properties of Probabilistic Systems 533

3 Maximal Reachability Probabilities

Computing maximal or minimal probabilities for reachability objectives is one
of the core problems for a quantitative analysis of MDPs. In this section, we
summarize the main concepts that rely on linear programming or an iterative
approach which is known under the key word value iteration. Further details
and other methods (e.g., policy iteration) can be found in any textbook on
Markov decision processes; see, e.g., [80].

The notion “reachability” refers to the directed graph structure that is
obtained from M by ignoring the labels of transitions and states. That is, a
set B of states is said to be reachable from a state s if there exists a finite path
in M that starts in state s and ends in some state s′ ∈ B. In what follows,
we will use the LTL-like notation ♦B to denote the property “eventually
reach B” where B is a set of states. That is, given a set B ⊆ S of states,
a path π = s0

α1−→ s1
α2−→ · · · satisfies ♦B if and only if there exists an index

i ∈ N≥0 such that si ∈ B. The quantitative analysis of an MDP M against a
reachability specification amounts to establishing the best upper and/or lower
probability bounds that can be guaranteed to reach a given set B of states,
when ranging over all schedulers. That is, the goal is to compute

sup
U∈Sched

PrM,U (♦B) and inf
U∈Sched

PrM,U (♦B),

where the supremum and the infimum are taken over all schedulers U for M.
If M is clear from the context, we will omit the system M in the superscript
of PrM,U .

For the rest of this chapter, we will restrict to the computation of the
supremum because the results for the infimum are analogous. It is well known
[80, 15] that the history of a scheduler is of no relevance when it comes to
maximizing the probability of reaching a certain set of states and also that
randomization in the schedulers is not needed. Thus, the supremum is attained
by some memoryless deterministic scheduler (note that there are only finitely
many such schedulers). Thus,

sup
U∈Sched

PrU (♦B) = sup
U∈SchedM

PrU (♦B) = max
U∈SchedMD

PrU (♦B).

Note that the above chain of equality does not hold for arbitrary measurable
path properties.

The standard method to compute these maxima is to compute PrUs (♦B)
for each state s in M via a recursive equation system. Formally, let an MDP
M = (S, Act, δ, μ,AP, L) and a set B ⊆ S of target states be given. The
obligation is to compute

Prmax
s (♦B) def= max

U∈Sched
PrUs (♦B) = max

U∈SchedMD

PrUs (♦B)

for each state s ∈ S. Let xs denote this maximum for s ∈ S, that is,

534 Christel Baier, Marcus Größer, and Frank Ciesinski

xs
def= max

U∈SchedMD

PrUs (♦B).

Then if s /∈ B, it evidently holds that

xs = max

{∑

t∈S

δ(s, α, t) · xt

∣
∣ α ∈ Act(s)

}
.

Moreover, if s ∈ B, then obviously xs = 1, and if there is no path from
s to B, then xs = 0. The following theorem [22, 80, 15] states that these
characteristics are sufficient to specify the maximum values.

Theorem 3.1 (Equation system for maximal reachability probabili-
ties). Let M be an MDP with state space S and B ⊆ S. The vector (xs)s∈S

with xs = Prmax
s (♦B) is the unique solution of the following equation system:

• If s ∈ B, then xs = 1.
• If B is not reachable from s, then xs = 0.
• If s /∈ B and B is reachable from s, then

xs = max

{∑

t∈S

δ(s, α, t) · xt

∣
∣ α ∈ Act(s)

}
.

Obviously, xs = Prmax
s (♦B) is a solution of the above equation system. The

proof of its uniqueness is rather technical and omitted here.
Let us again consider the MDP of the Monty Hall problem depicted in

Fig. 3. So, we are interested in the set of target states B = {u1}. Then

xu1 = 1 xt1 = max{xu1 , xu2} xs = max
{

1
3 · xt1 + 1

3 · xt2 + 1
3 · xt3

}

xu2 = 0 xt2 = max{xu1 , xu2}
xt3 = max{xu1 , xu2}

and the unique solution is xu1 = xt1 = xt2 = xt3 = xs = 1 and xu2 = 0.
To actually compute the values Prmax

s (♦B) algorithmically, one can rewrite
the equation system in Theorem 3.1 into the following linear program [22]:

• If s ∈ B, then xs = 1.
• If B is not reachable from s, then xs = 0.
• If s /∈ B and B is reachable from s, then 0 ≤ xs ≤ 1 and for each action

α ∈ Act(s):
xs ≥

∑

t∈S

δ(s, α, t) · xt.

With the objective to
minimize

∑

s∈S

xs,

the vector (xs)s∈S with xs = Prmax
s (♦B) is the unique solution of this linear

program. Identifying the states s such that the value of xs is not fixed to 0

Model Checking Linear-Time Properties of Probabilistic Systems 535

or 1 by the first two items of the linear program as S? = { s ∈ S \ B | B is
reachable from s }, one can rewrite the third item into

(
1 − δ(s, α, s)

)
· xs −

∑

t∈S?\{ s }
δ(s, α, t) · xt ≥ δ(s, α, B)

where δ(s, α, B) =
∑

t∈B δ(s, α, t). Thus, the third item in the above theorem
can be read as a linear inequality A ·x ≥ b where x is the vector (xs)s∈S? and
A is a matrix with a row for each pair (s, α) with s ∈ S? and α ∈ Act(s), two
extra rows for each state s ∈ S? to represent the inequality 0 ≤ xs ≤ 1 and a
column for each state s ∈ S?. The precise values for Prmax

s (♦B) can thus be
computed by standard algorithms to solve linear programs, e.g., the simplex
algorithm or polytime methods [83].

Corollary 3.2 (Complexity of computing maximal reachability prob-
abilities). For an MDP M with state space S, B ⊆ S and s ∈ S, the values
Prmax

s (♦B) can be computed in time polynomial in the size of M.

This result, however, is more of theoretical interest than of practical rele-
vance. In practice, one often uses a different approach to calculate the values
Prmax

s (♦B), namely an iterative approximation technique called value itera-
tion (see, e.g., [80]) which is based on the following fact. The second item
in Theorem 3.1 could be omitted and replaced by the requirement that the
equations for xs in the third item holds for every state s ∈ S \B. However, the
uniqueness of the solution vector (xs)s∈S = (Prmax

s (♦B))s∈S is then no longer
guaranteed, but one can show that (xs)s∈S is the least solution in [0, 1]S . For
the value iteration, one fixes the value for s ∈ B to xs = 1 and starts with an
initial value of xs = 0 for all states s /∈ B. One then iteratively recalculates
the value according to item 3 of Theorem 3.1. That is,

xi
s = 1 for s ∈ B and i ∈ N≥0

x0
s = 0 for s /∈ B

xn+1
s = max

{∑

t∈S

δ(s, α, t) · xn
t

∣
∣ α ∈ Act(s)

}
for s /∈ B.

For the states s /∈ B, it can be shown that

lim
n→∞

xn
s = Prmax

s (♦B).

Note that x0
s ≤ x1

s ≤ x2
s ≤ · · · . Thus, the values Prmax

s (♦B) can be approxi-
mated by successively computing the vectors

(
x0

s

)
s∈S

,
(
x1

s

)
s∈S

,
(
x2

s

)
s∈S

, . . . ,

until maxs∈S |xn+1
s − xn

s | is below a termination threshold.
Let us once more consider the MDP of the Monty Hall problem depicted

in Fig. 3 and the target set B = {u1}. Thus, xi
u1

= 1 for every i ∈ N≥0. Note

536 Christel Baier, Marcus Größer, and Frank Ciesinski

that xi
u2

= xi−1
u2

, so xi
u2

will equal 0 for every i ∈ N≥0. With xi
t1 = xi

t2 =
xi

t3 = max{1 · xi−1
u1

, 1 · xi−1
u2

} we get

x0
u2

= 0 x0
t1 = x0

t2 = x0
t3 = 0 x0

s = 0

x1
u2

= 0 x1
t1 = x1

t2 = x1
t3 = 1 x1

s = max
{

1
3 · x0

t1 + 1
3 · x0

t2 + 1
3 · x0

t3

}
= 0

x2
u2

= 0 x2
t1 = x2

t2 = x2
t3 = 1 x2

s = max
{

1
3 · x1

t1 + 1
3 · x1

t2 + 1
3 · x1

t3

}
= 1

x3
u2

= 0 x3
t1 = x3

t2 = x3
t3 = 1 x3

s = max
{

1
3 · x2

t1 + 1
3 · x2

t2 + 1
3 · x2

t3

}
= 1.

As all values did not change in the last iteration, we can conclude that the
fixed point is reached.

Implementation Issues

It is obvious that for the set of states from which B is not reachable, the value
iteration is not needed as Prmax

s (♦B) = 0 if and only if B is not reachable
from s. Thus, it is advisable to first compute the set

S0
def= {s ∈ S | B is not reachable from s}

with a standard backward reachability analysis and then set xi
s = 0 for all

states s ∈ S0 and i ∈ N≥0. Note that this reduces the number of variables for
which the value iteration has to be performed. Similarly, one can first compute
the set

S1
def=

{
s ∈ S

∣
∣ Prmax

s (♦B) = 1
}

of states s such that Prmax
s (♦B) = 1. For all states s ∈ S1, we set xi

s = 1 for
all i ∈ N≥0 thus reducing again the number of variables for which the value
iteration has to be performed. The computation of S1 can be done efficiently
by Algorithm 1 using a nested fixpoint computation.

In the formal description of the value iteration, each variable xs with s /∈ B
is updated in every iteration. This might of course lead to a great amount of
unnecessary updates (consider for instance a unidirectional, very long chain
where the last state forms the target set B). So, when implementing the value
iteration one seeks to omit updating a value xs if there is no successor t of s
such that the value xt has been changed during the last update of xs. This
idea is reflected in Algorithm 2 which iteratively propagates probabilities by
means of a backward traversal of the MDP from B. The algorithm maintains
a set T of states for which the xt value has been changed. It then successively
removes a state t from the set T and updates the value xs for every state s
that has t as a successor. If such a value xs becomes altered, the state s is
added to T .

There are several variants of Algorithm 2 that differ in the data structure
used for the organization of the set T . For instance, the set T can be realized as
a stack, a (priority) queue or using buckets to aggregate states. For the priority
queue and the bucket structure, the sorting criterion is the value Δ(s). For
more information on such implementation details and other heuristics, see [5].

Model Checking Linear-Time Properties of Probabilistic Systems 537

Algorithm 1 Computation of S1

R := S
done := false
while done = false do

R′ := B
done′ := false
while done′ = false do

R′′ := R′∪{s | ∃α ∈ Act(s) : supp(δ(s, α, .)) ⊆ R ∧ supp(δ(s, α, .))∩R′ 	= ∅}
if R′′ = R′ then

done′ := true
end if
R′ := R′′

end while
if R′ = R then

done := true
end if
R := R′

end while
return R

Algorithm 2 Backward value iteration
compute S0, S1 and S? = S \ (S0 ∪ S1)
set xs := 1 for all states s ∈ S1 and xs := 0 for all states s ∈ S0

for all states s ∈ S? do
xs := max{

∑
t∈S1

δ(s, α, t) | α ∈ Act(s)}
end for
T := {s ∈ S? | xs > 0}
repeat

if T 	= ∅ then
pick some state t ∈ T and remove t from T
for all states s such that ∃ action α ∈ Act(s) with δ(s, α, t) > 0 do

x′
s := max{

∑
u/∈S0

δ(s, α, u) · xu | α ∈ Act(s)}
if x′

s > xs then
Δ(s) := x′

s − xs and xs := x′
s and add s to T

end if
end for

end if
until T = ∅ or termination threshold is matched

It should be noticed that if one is just interested in a qualitative reach-
ability analysis (where the task is to check whether Prmax

s (♦B) is 0 or 1),
then the computation of the values xs = Prmax(♦B) is not necessary. In fact,
algorithms to compute the sets S0 and S1 are sufficient.

538 Christel Baier, Marcus Größer, and Frank Ciesinski

4 Model Checking ω-Regular Properties

In the previous section, we have addressed the problem of computing ex-
tremal reachability probabilities in an MDP and have seen that this can be
represented as a recursive equation system or a linear program which can
be solved through fixpoint calculations or, e.g., the simplex algorithm. This
approach can easily be extended to constrained reachability properties (that
require to reach a certain target set B along finite paths that stay inside an-
other set C) or the general class of regular safety properties (which impose
conditions on the finite paths by means of a finite automaton). The quanti-
tative analysis against reachability probabilities is also the core problem for
quantitative reasoning about liveness properties or even arbitrary ω-regular
linear-time properties. In this section, we explain how extremal probabilities
for ω-regular properties represented by ω-automata can be calculated using a
graph-based algorithm and a reduction to the problem of computing maximal
reachability probabilities.

Before we proceed, we fix some notation on finite, resp. infinite words over
a given alphabet. Following the standard notation, given an alphabet Σ, we
write Σ+ for the set of all non-empty finite words over Σ, Σ∗ for the set of
all finite words over Σ (including the empty word ε) and Σω for the set of
all infinite words over Σ. Given a finite non-empty word ς = σ1σ2 . . . σn, the
length |ς| of ς equals n. For an infinite word ς, the length is equal to ∞. Given
a (non-empty finite or infinite) word ς = σ1σ2σ3 . . . ∈ Σ+ ∪ Σω and i ≤ |ς|,
we denote the ith letter of ς by ςi (i.e., ςi = σi).

Recall from Definition 2.1 that in our approach each state of an MDP is
labeled with a subset of a set AP of atomic propositions. Thus, each infinite
path of such an MDP produces a trace which is an infinite word over the
alphabet 2AP.

Definition 4.1 (Trace of a path). Given an MDP and an infinite path
π = s0

α1−→ s1
α2−→ s2

α3−→ · · · , we define the infinite word

trace(π) def= L(s0)L(s1)L(s2) . . . ∈
(
2AP

)ω

to be the trace of π.

Definition 4.2 (Linear-time property). A linear-time property (LT prop-
erty) over a given finite set AP of atomic propositions is a subset of (2AP)ω.

Given a state-labeled system, we say that a path π satisfies a given LT prop-
erty E, if and only if trace(π) ∈ E. LT properties are used to specify the infinite
behavior of a given system. For instance, the reachability property ♦ get car
is formally defined as the language

E =
{
ς ∈

(
2AP

)ω ∣
∣ ∃i : get car ∈ ςi

}
.

There are various formalisms (logics, automata, algebraic expressions) to spec-
ify LT properties. A very prominent logical formalism in model checking is

Model Checking Linear-Time Properties of Probabilistic Systems 539

the linear temporal logic (LTL) [78]. In this chapter, however, we will utilize
ω-automata to specify LT properties. While finite automata serve as accep-
tors for languages of finite words, the semantics of an ω-automaton refers to
a language over infinite words. The syntax and operational semantics of ω-
automata is roughly the same as for finite automata, except that the input
of an ω-automata is an infinite word and the acceptance condition imposes
constraints on infinite runs rather than on finite ones. As we assume that the
reader of this handbook is already familiar with the concept of ω-automata,
we just provide the definitions that are relevant for our purposes. For more
information on ω-automata, we refer to, e.g., [85, 40].

Definition 4.3 (Deterministic ω-automaton). We define a deterministic
ω-automaton as a tuple

A = (Q, Σ, δA, q0, Acc),

where:

• Q is a finite non-empty set of states.
• Σ is a finite non-empty input alphabet.
• δA : Q × Σ → Q is a transition function.
• q0 ∈ Q is the initial state.
• Acc is an acceptance condition.

In this chapter, we only consider acceptance conditions of the form

Acc = {(H1, K1), . . . , (Hn, Kn)}

and interpret them with a Rabin, resp. Streett semantics. Given a subset
T ⊆ Q of states, we call T :

• Rabin-accepting, if there exists 1 ≤ i ≤ n such that

T ∩ Hi = ∅ and T ∩ Ki �= ∅.

• Streett-accepting, if for every 1 ≤ i ≤ n

T ∩ Hi �= ∅ or T ∩ Ki = ∅.

Thus, Rabin and Streett acceptance are complementary to each other.
Given a deterministic ω-automaton A with an acceptance condition Acc =

{(H1, K1), . . . , (Hn, Kn)} and an infinite word ς = σ1σ2σ3 . . . over Σ, we
define the run for ς in A to be the infinite state sequence ρ = p0, p1, . . . such
that p0 = q0 and pi = δA(pi−1, σi) for every i ≥ 1. Given a run ρ, let

inf(ρ) =
{
p ∈ Q

∣
∣ ∞
∃ i ∈ N≥0 : pi = p

}

denote the set of states that occur infinitely often in ρ. We call a run ρ Rabin-,
resp. Streett-accepting, if and only if inf(ρ) is Rabin-, resp. Streett-accepting.
The Z-accepted language of A is defined as

540 Christel Baier, Marcus Größer, and Frank Ciesinski

Fig. 6. DSA for ♦ get car

LZ(A) def=
{
ς ∈ Σω

∣
∣ the run for ς in A is Z-accepting

}

for Z ∈ {Rabin, Streett}.
In order to argue more easily about the accepted language, we call the

combination of a deterministic ω-automaton and Rabin acceptance (resp.,
Streett acceptance) a deterministic Rabin automaton (DRA) (resp., deter-
ministic Streett automaton (DSA)). In the remainder of this section, we will
drop the Z from Z-accepting, Z-accepted language, and LZ(A), if it is clear
from the context.

To use deterministic Rabin, resp. Streett automata as a formalism for
representing LT properties, we will consider automata with the alphabet Σ =
2AP, where AP is the set of atomic propositions of the given system. For
example, the reachability property

E = ♦ get car =
{
ς ∈

(
2AP

)ω ∣
∣ ∃i : get car ∈ ςi

}

over the set AP = {get car} can be represented by the deterministic Streett
automaton A shown in Fig. 6 where the acceptance condition is Acc =
{({q1}, {q0, q1})}. It is easy to see that L(A) = E.

It is well known [85, 40] that the class of languages that are definable by
deterministic Rabin (or Streett) automata coincides with the class of ω-regular
languages and the class of MSO definable languages over infinite words. Thus,
DRA and DSA are powerful enough to express many interesting specifications
that arise in real-world scenarios. This includes simple temporal properties
like “eventually” (reachability properties), “always” (safety properties), and
liveness properties that result by combination of “eventually” and “always”,
such as “infinitely often” or “continuously from some moment on”. But also
more complex properties such as “each process will eventually enter its critical
section” or “between two eating phases of a dining philosopher there is always
a thinking phase” can be specified by DRA and DSA.

Natural requirements for MDPs and other types of probabilistic systems
attach lower or upper probability bounds on such LT properties. That is, the
typical task is to verify conditions such as “the probability that a waiting
process is never allowed to enter its critical section is less than 0.005” for a
randomized mutual exclusion protocol. But also qualitative properties play a
crucial role where the goal is to establish conditions such as “with probability 1
the repeated attempt to deliver a message will eventually be successful” for

Model Checking Linear-Time Properties of Probabilistic Systems 541

a communication protocol or “with probability 1 a leader will eventually be
elected” for a randomized leader election protocol.

In the remainder of this section, we explain the main steps for a quantita-
tive analysis of an MDP M against an ω-regular LT property, specified by a
DRA or DSA A (note that such properties are measurable). This requires us
to compute the maximal or minimal probabilities

Prmax
s (A) def= sup

U∈Sched
PrUs

(
L(A)

)
and Prmin

s (A) def= inf
U∈Sched

PrUs
(
L(A)

)

for the paths π of M that start in s and where π satisfies L(A), i.e., trace(π)
belongs to L(A). As for the quantitative reachability analysis, the supremum
and infimum are taken over all schedulers of the given MDP. In fact, there
exist schedulers that maximize or minimize the probabilities for paths with a
trace in L(A). Again, the supremum and infimum can be replaced with max-
imum and minimum. As in Sect. 3, we will focus here on explanations about
the computation of maximal probabilities, i.e., the computation of the values
Prmax

s (A). Analogous techniques are applicable to compute Prmin
s (A). How-

ever, since the class of ω-regular languages is closed under complementation,
algorithms to compute Prmax

s (A) are even sufficient to reason about minimal
probabilities. Given a deterministic ω-automaton A that specifies the desired
behaviors, we may switch to a deterministic ω-automaton B for the comple-
ment language L(A), i.e., B represents the undesired behaviors. (Here, we can
exploit the duality of Rabin and Streett acceptance. That is, if A is a DSA,
then we can use B = A, but treat B as a DRA, and vice versa.) We then
apply the techniques for computing the maximal probabilities Prmax

s (B) for
the “bad” event specified by B. The greatest lower bound for the probabili-
ties that can be guaranteed for the good behaviors is then obtained by the
following equation:

Prmin
s (A) = 1 − Prmax

s (B).

The key for the quantitative analysis of MDPs against ω-regular properties
lies in the concept of de Alfaro’s end components [27, 28]. They can be seen as
the MDP counterpart to terminal strongly connected components in Markov
chains. Intuitively, an end component of an MDP is a non-empty strongly
connected sub-MDP, that means an end component consists of a non-empty
state set T ⊆ S and a non-empty action set A(t) for each state t ∈ T such
that, once T is entered and only actions in A(t) are chosen, the set T will not
be left and any state of T can be reached from any other state in T .

Definition 4.4 (End components). Let M = (S, Act, δ, μ,AP, L) be an
MDP. Then an end component of M is a pair (T, A) where ∅ �= T ⊆ S
and A : T → 2Act is a function such that the following three conditions are
satisfied:

• ∅ �= A(s) ⊆ Act(s) for each state s ∈ T .
• If s ∈ T , t ∈ S and α ∈ A(s) such that δ(s, α, t) > 0 then t ∈ T .

542 Christel Baier, Marcus Größer, and Frank Ciesinski

• The underlying directed graph (T,→A) of (T, A) is strongly connected.

Here, →A denotes the edge-relation induced by A, that is s →A t if and only
if δ(s, α, t) > 0 for some action α ∈ A(s).

The importance of end components is due to the following observation about
the limit behavior of paths that has been established by de Alfaro [27, 28].
Given an infinite path π = s0

α1−→ s1
α2−→ s2

α3−→ · · · we denote by Lim(π)
the pair (T, A) where T = inf(π) is the set of states in π that are visited
infinitely often and A : T → 2Act is the function that assigns to any state
t ∈ T the set of actions α ∈ Act such that (si = t) ∧ (αi+1 = α) for infinitely
many indices i. Given an MDP M and a (possibly history-dependent and
randomized) scheduler U , it holds that in the process induced by U , almost
all paths of M “end” in an end component, that is, their limit Lim(.) forms
an end component.

Lemma 4.5 (Limiting behavior of MDPs and end components). For
any MDP M and scheduler U ,

PrM,U({
π ∈ PathMinf

∣
∣ Lim(π) is an end component

})
= 1.

This fundamental property of MDPs is one of the main features for computing
Prmax

s (A) for a given DRA, resp. DSA A via a reduction to the problem of
maximal reachability probabilities. Another feature is the product construc-
tion of the MDP and the automaton A.

Definition 4.6 (Product-MDP). As before, let M = (S, Act, δ, μ,AP, L)
be an MDP and let A = (Q, 2AP, δA, q0, Acc) be a DSA or DRA. The product
of M and A is defined as the MDP

M⊗A = (S × Q,Act′, δ′, μ′, Q, L′)

where the transition function δ′, the initial distribution μ′, and the labeling
function L′ are defined as follows:

• Act′
def= Act

• δ′(〈s, q〉, α, 〈s′, q′〉) def=
{

δ(s, α, s′) if q′ = δA(q, L(s′))
0 otherwise

• μ′(〈s, q〉) def=
{

μ(s) if q = δA(q0, L(s))
0 otherwise

• L′(〈s, q〉) def= { q }

Note that this construction requires a deterministic ω-automaton A, as for
a non-deterministic ω-automaton there is no straightforward way to define
appropriate transition probabilities for the product. We may observe a one-
to-one correspondence between the path

π = s0
α1−−→ s1

α2−−→ s2
α3−−→ · · ·

Model Checking Linear-Time Properties of Probabilistic Systems 543

in the MDP M and the path

π+ = 〈s0, q1〉 α1−−→〈s1, q2〉 α2−−→〈s2, q3〉 α3−−→ · · ·

in M⊗A that starts in state 〈s0, q1〉 where q1 = δA(q0, L(s0)). Given a path
π+ in M⊗A, the corresponding path in M is simply obtained by omitting
all automata states qi. Vice versa, given a path π as above, the corresponding
path π+ is obtained by adding the automaton states qi+1 = δA(qi, L(si))
to π. Thus, π+ emanates from π and the unique run for trace(π) in A. Recall
that the acceptance of a run imposes a condition on the set of states in the
automaton that appear infinitely often in that run. Hence, whether or not
trace(π) belongs to L(A) depends on the projection of inf(π+) to the states
in A, i.e., the set {q ∈ Q | ∃s ∈ S : 〈s, q〉 ∈ inf(π+)}. Since almost all paths
in M ⊗ A constitute an end component (by Lemma 4.5), the algorithm to
compute Prmax

s (A) relies on an analysis of the end components of the product
where the acceptance condition of A holds.

Definition 4.7 (Accepting end components). Given an MDP M =
(S, Act, δ, μ,AP, L) and a DRA, resp. a DSA A = (Q, 2AP, δA, q0, Acc), we
call an end component (T, A) of M⊗A accepting if and only if the set

T |Q
def=

{
q ∈ Q | ∃s ∈ S : 〈s, q〉 ∈ T

}

is accepting in A.

In the sequel, let AEC be the union of (the state-component of) all accepting
end components in the product-MDP M ⊗ A. That is, AEC consists of all
states 〈s, q〉 ∈ S × Q such that 〈s, q〉 ∈ T for at least one accepting end
component (T, A) of M⊗A. The probability for the paths in M under some
scheduler U that have their trace in L(A) agrees with the probability for the
paths in M ⊗ A whose limits yield an accepting end component under the
corresponding scheduler U+ for the product. We use here the fact that each
scheduler U for M can be mimicked by a scheduler U+ for M⊗A. Formally,
U+’s decision for a finite path π+ agrees with U ’s decision for the path that
results from π+ by dropping the automaton component from the states. The
maximal probabilities in M⊗A for paths π+ where Lim(π+) is an accepting
end component agree with the maximal probability in M ⊗ A for reaching
eventually the set AEC. Note that there is a scheduler that ensures that once
AEC has been reached, the set AEC will never be left and almost surely the
limiting behavior will constitute an accepting end component. This is the key
property to provide a formal proof for the following theorem [27, 12].

Theorem 4.8 (Maximal probabilities for ω-regular properties). Let
M, A, and AEC be as above. Then for each state s ∈ S:

Prmax
s (A) = Prmax

〈s,δA(q0,L(s))〉(♦AEC).

544 Christel Baier, Marcus Größer, and Frank Ciesinski

On the basis of this theorem, an algorithm to compute Prmax
s (A) can proceed

as follows. First, construct the product-MDP M⊗A, then compute the ac-
cepting end components and finally apply the techniques explained in Sect. 4
to compute the maximal reachability probabilities for the target set AEC in
the product. What remains is to explain the computation of the set AEC.
The notion of an accepting end component just depends on the topological
graph structure of the MDP M⊗A (the precise transition probabilities are
irrelevant). Therefore, purely graph-based methods are sufficient to compute
the set AEC. As the number of end components of an MDP M can grow
exponentially in the size of M, the naive approach that relies on an explicit
computation of all accepting end components is hopelessly inefficient. Instead,
one can use the concept of maximal end components to increase the efficiency.
An end component (T, A) of an MDP M′ is called maximal if there is no end
component (T ′, A′) of M′ such that (i) T ⊆ T ′, (ii) A(t) ⊆ A′(t) for every
t ∈ T , and (iii) (T, A) �= (T ′, A′). Obviously, the state sets of maximal end
components are pairwise disjoint and each end component is contained in
some maximal end component. In particular, the total number of maximal
end components is bounded by the number of states in M′. We will explain
first how the set of all maximal end components, which is denoted by MEC,
can be computed in polynomial time.

Computing the Set of Maximal end Components

Here, we address the problem of computing the set MEC of all maximal end
components in the product-MDP M⊗A. Recall that the states contained in
an end component (T, A) are strongly connected in the underlying directed
graph (T,→A) (see Definition 4.4). Furthermore, it is clear that a maximal
end component in M⊗A is contained in some strongly connected component
(SCC) of (S ×Q,→M⊗A), the underlying directed graph of M⊗A. Thus, an
algorithmic scheme for calculating the set MEC of all maximal end components
consists of the following steps [23, 27]:

1. In a first step, we compute a candidate set C of all possible maximal end
components as follows. Compute the SCCs and define

C = {(T, A) | T is an SCC and A(t) = Act(t) for t ∈ T}.

2. Pick and remove a candidate (T, A) from C.
3. For each state t ∈ T, remove all actions from A(t) that violate the second

condition of Definition 4.4, i.e., remove all α ∈ A(t) with
∑

u∈T (t, α, u) <
1 and call that modified candidate (T, A′).

4. Calculate all SCCs in the underlying directed graph (T,→A′) of (T, A′)
and insert them as new candidates into C (similar as in step 1, but with
action sets restricted to A′).

5. Repeat steps 2–4 until C reaches a fixpoint.

Model Checking Linear-Time Properties of Probabilistic Systems 545

When the fixpoint is reached, the set C equals the set MEC. Since during each
iteration for every candidate (T, A) ∈ C either there exist actions α in A(t)
that are removed, and thus causing a potential splitting of this candidate, or
a fixpoint is reached for C; the procedure obviously terminates. Furthermore,
the number of iterations is bounded by the total number of pairs (t, α) where
t is a state in M ⊗ A and α an action that is enabled in t. The costs per
iteration are dominated by the calculation of the SCCs in steps 1 and 4.
Thus, the complexity of the algorithm is polynomially bounded in the size of
M⊗A (i.e., the total number of states and transitions in M⊗A).

Remark 4.9. The algorithm to compute the maximal end components can also
be used to increase the efficiency of the algorithms for computing the extremal
probabilities for a reachability property ♦B. This is due to the fact that
whenever s and t are states that belong to the same maximal end component,
then Prmax

s (♦B) = Prmax
t (♦B). Hence, the given MDP can be simplified by

collapsing all states that belong to the same maximal end component into a
single state. This reduces the number of variables in the equation system or
linear program and can therefore lead to a major speed-up [5].

With the above algorithm for the computation of MEC, we can now explain
how the set AEC can be computed for the product-MDP of a given MDP M
and a given DRA, resp. DSA A.

Case 1: A Is a Deterministic Rabin Automaton

Let Acc = {(H1, K1), . . . , (Hn, Kn)} be the acceptance condition of A and let

H ′
i

def= {〈s, q〉 | s ∈ S, q ∈ Hi} and

K ′
i

def= {〈s, q〉 | s ∈ S, q ∈ Ki}.

Thus, an end component (T, A) is accepting, if there is an index 1 ≤ i ≤ n
such that

T ∩ H ′
i = ∅ and T ∩ K ′

i �= ∅.
Assume that (T, A) is accepting with respect to (H ′

i, K
′
i). Let M′

i be the MDP
that results from M⊗A by removing all states in H ′

i. Then (T, A) is obviously
an end component in M′

i, and moreover the maximal end component of M′
i

that contains (T, A) is also accepting with respect to (H ′
i, K

′
i). Hence, the set

AEC arises as the union of the sets AECi for 1 ≤ i ≤ n where AECi is the
union of (the state-components of) all maximal end components (T, A) in M′

i

where T ∩ K ′
i �= ∅.

Case 2: A Is a Deterministic Streett Automaton

In this case, an efficient way to realize the quantitative analysis on the basis
of Theorem 4.8 is obtained using the following lemma.

546 Christel Baier, Marcus Größer, and Frank Ciesinski

Lemma 4.10. Given an MDP M′ with state space S′, a target set of states
B ⊆ S′, and a set X with B ⊆ X ⊆ {t ∈ S′ | Prmax

t (♦B) = 1}, then for every
state s ∈ M′:

Prmax
s (♦B) = Prmax

s (♦X).

Let M′ = M⊗A. We denote by AMEC the union of all maximal end com-
ponents that have an accepting sub-component, i.e.,

AMEC def=
{
t ∈ S × Q | there exists (T, A) ∈ MEC such that t ∈ T and
there is some accepting end component (T ′, A′) with T ′ ⊆ T

}
.

It should be noticed that the correct term for AMEC is not “accepting max-
imal end components” but “maximal end components that contain at least
one accepting sub-end component”. We now show that with B = AEC and
X = AMEC the condition of Lemma 4.10 holds, i.e.,

AEC ⊆ AMEC ⊆
{
t
∣
∣ Prmax

t (♦AEC) = 1
}
.

This can be seen as follows. Let t ∈ AMEC be included in the end component
(T, A) that has the accepting sub-component (T ′, A′). As (T, A) is an end
component, there is a scheduler U which ensures that starting in state t, almost
surely each state in T will be visited infinitely often. Since T ′ ⊆ T , the set
T ′ will be visited almost surely. As T ′ ⊆ AEC, we get that PrUt (♦AEC) = 1.
Using Lemma 4.10, we thus can reformulate Theorem 4.8 as the following
theorem.

Theorem 4.11 (Maximum probability for ω-regular properties,
part II). Let M be as before, A a DSA2, and AEC and AMEC be as above.
Then for every state s of M:

Prmax
s (A) = Prmax

〈s,δA(q0,L(s))〉(♦AEC) = Prmax
〈s,δA(q0,L(s))〉(♦AMEC).

This observation allows us to switch from AEC to the larger set AMEC that
arises by the union of certain maximal end components. In the following, we
will describe how the set AMEC can be computed efficiently for a given MDP
M and a given deterministic Streett automaton A.

Calculating the Set AMEC

To compute the set AMEC, it remains to check for each maximal end com-
ponent (T, A) ∈ MEC if it contains an accepting end component with respect
to the given Streett acceptance condition Acc. In the sequel, let AMEC be
the set of all maximal end components that contain an accepting end com-
ponent. (Hence, AMEC is the set of all states that are contained in some
(T, A) ∈ AMEC.) For simplicity, we suppose that Acc consists of a single
acceptance pair, say Acc = {(H, K)}. Let
2 Theorem 4.11 also holds if A is a DRA.

Model Checking Linear-Time Properties of Probabilistic Systems 547

H ′ def= {〈s, q〉 | s ∈ S, q ∈ H} and

K ′ def= {〈s, q〉 | s ∈ S, q ∈ K}.

Assume that a maximal end component (T, A) violates the given Streett ac-
ceptance condition. Then T ∩ H ′ = ∅ and no sub-component can satisfy the
acceptance condition by containing an H ′-state. Hence, a sub-component can
only satisfy the acceptance condition Acc if it does not contain a K ′-state.
These ideas lead to the following procedure. Consider a maximal end compo-
nent (T, A) ∈ MEC.

1. If T ∩ H ′ �= ∅ or T ∩ K ′ = ∅, then (T, A) ∈ AMEC.
2. Otherwise let T1 = T \ K ′ and A1 such that A1(t) = {α ∈ A(t) |∑

t∈T1
(s, α, t) = 1} for each state t ∈ T1.

3. If an end component can be found in (T1, A1), then (T, A) ∈ AMEC.
4. Otherwise, (T, A) /∈ AMEC.

5 Partial Order Reduction

In contrast to the previous sections, where advanced solution techniques for
the value iteration have been discussed, we now focus on the state space
explosion problem. There exist diverse methods for tackling the state space
explosion problem for non-probabilistic as well as probabilistic systems. This
includes symbolic model checking methods and various reduction techniques,
see, e.g., [21] for an overview. The symbolic methods are mainly based on
multi-terminal binary decision diagrams and focus on a compact internal rep-
resentation of the (full) system [17, 45, 45, 6, 16, 72, 49, 69, 61]. So, these
methods do not aim at avoiding the state space explosion, but at using a
very compact representation of the given model. For instance, the PCTL-
model checkers PRISM [60], ProbVERUS [48] and RAPTURE [56] are based
on a symbolic representation of the system to be analyzed. In addition, hy-
brid approaches that combine the compact model representation of symbolic
techniques with the good performance of numerical computations of explicit
techniques have been developed [61]. Somewhat orthogonal to this approach
are numerous reduction techniques, where the goal is to generate only a re-
duced sub-system which is “equivalent” (with respect to the properties to be
verified) to the original system. Then model checking is applied to the reduced
system, yielding the desired answer not only for the reduced system, but also
for the original one. A large class of reduction techniques are bi-simulation–
minimization techniques [55, 8, 77, 18, 58] that aim to aggregate bi-similar
states and to construct an “equivalent” quotient of the original model. For
models with non-trivial but interchangeable components, symmetry reduction
techniques have been developed that use the inherent internal symmetries to
reduce the state space.

548 Christel Baier, Marcus Größer, and Frank Ciesinski

Another class of reduction techniques are partial order reduction methods
which have been thoroughly studied for non-probabilistic models [74, 52, 87,
38, 39, 76, 75] and have been extended to probabilistic systems in [9, 26, 7,
41, 42]. For partial order reduction, the starting point is usually a description
of an asynchronous parallel system by a representation of the sub-systems
that run in parallel, e.g., as in the language ProbMeLa that has been outlined
in Sect. 2. The rough idea behind partial order reduction is to construct a
reduced state graph by abolishing redundancies in the transition system that
originate from the interleaving of independent activities that are executed
in parallel. For independent actions α and β, the interleaving semantics rep-
resents their parallel execution by the nondeterministic choice between the
action sequences αβ and βα. If αβ and βα have the same effect to the control
and program variables, and thus lead to the same state, the investigation of
one order (αβ or βα) as a representative for both suffices under certain side
conditions. More general, instead of constructing the full system M, the goal
of partial order reduction is to generate an “equivalent” sub-system Mred of
the full transition system M. Here, “equivalence” is considered with respect
to the type of property to be verified. Of course, the algorithmic construction
and analysis of Mred should be more efficient than model checking the full
system M. We give a small example to illustrate these ideas. Consider two
processes P1 and P2 where P1 increments a variable x (action α) twice and
P2 increments a variable y (action β) twice. Assume that we are only inter-
ested in the value of y, that is, each state is labeled with its y value. Then
action α does not change the labeling, but action β does. Figure 7 shows the
two processes and their parallel execution, where the shade of a state node
represents its y value (the greater y is, the darker the node is). Now assume
that we want to check whether the property

“The value of y never decreases.”

holds on any path. For the system P1|||P2 of the parallel execution of P1 and
P2 in Fig. 7, this means

“The shades of the nodes never get lighter.”

along any path. Obviously, each path of the system satisfies this property.
Now this property has a remarkable feature. In order to decide whether a path
satisfies the property or not, it is only relevant what changes of the labeling
occur along the path, but not how often a certain labeling is repeated before
it changes. The property is so-called stutter invariant. It cannot distinguish
between two paths that follow the same pattern of changes in the labeling (but
may differ in the number of repetitions of a certain labeling). Such two paths
are called stutter equivalent. Now consider the reduced system (P1|||P2)red in
Fig. 7. As any path of P1|||P2 has a stutter equivalent path in (P1|||P2)red
and the property under consideration cannot distinguish between such paths,
it is sufficient to check whether all paths of the reduced system satisfy the

Model Checking Linear-Time Properties of Probabilistic Systems 549

Fig. 7. The idea of partial order reduction

property. If all paths of the reduced system satisfy the property, so do all
paths of the original system (and vice versa as the reduced system is a sub-
system of the original one). Thus, the reduced system is “equivalent” to the
original system with respect to the property.

The goal of partial order reduction is to give criteria with which an “equiv-
alent” reduced system can be generated. These criteria heavily depend on the
class of properties that one wants to preserve (e.g., LT properties, branch-
ing time properties) and on the kind of model. In the early 1990s, several
partial order reduction techniques have been developed for non-probabilistic
systems [86, 74, 87, 52, 38, 39, 75, 88, 76]. In the last few years, one instance
of partial order reduction techniques, the so-called ample set method has been
generalized to the probabilistic setting [9, 26, 7, 41, 42].

The interested reader might want to compare our notion of independent
actions with the independence relation used in Sect. 2.1 on weighted distrib-
uted systems in Chap. 10 in this handbook [36].

The Ample Set Method for MDPs and LT Properties

The rough idea of the ample set method is to assign to any reachable state
s of an MDP M an action-set ample(s) ⊆ Act(s) and to construct a re-
duced system Mred that results by using the action-sets ample(s) instead of
Act(s). That is, starting from the initial states of M, one builds up Mred

by only applying ample transitions. The reduced system should be equivalent
to the original system in the desired sense, e.g., simulation equivalent or bi-
simulation equivalent, etc. Depending on the desired equivalence, the defined
ample sets have to fulfill certain conditions to ensure the equivalence. These
equivalences typically identify those paths whose traces (i.e., words obtained
from the paths by projection on the state labels) agree up to stuttering. In
this context, stuttering refers to the repetition of the same state labels.

Definition 5.1 (Stutter equivalence). Two infinite words ς1 and ς2 over
the alphabet Σ are called stutter equivalent, denoted by

550 Christel Baier, Marcus Größer, and Frank Ciesinski

ς1 ≡st ς2,

if and only if there is an infinite word a1a2 . . . over the alphabet Σ such that

ς1 = ak1
1 ak2

2 . . . and ς2 = an1
1 an2

2 . . . ,

where ki, ni ∈ N≥1. Two infinite paths π1 and π2 in a state-labeled MDP
are called stutter equivalent, denoted by π1 ≡st π2, if and only if their traces
trace(π1) and trace(π2) over 2AP are stutter equivalent.

An LT property over AP is called stutter invariant, if it cannot distinguish
between stutter equivalent paths.

Definition 5.2 (Stutter invariant LT properties). An LT property E
over AP is called stutter invariant if for all stutter equivalent words ς1, ς2 ∈
(2AP)ω we have that

ς1 ∈ E if and only if ς2 ∈ E.

We call two MDPs stutter equivalent if for each scheduler of one of the MDPs
there exists a scheduler of the other MDP such that the schedulers yield the
same probabilities for any stutter invariant LT property.

Definition 5.3 (Stutter equivalence for MDPs). Given two MDPs Mi =
(Si, Acti, δi, μi, APi, Li), with i = 1, 2, we call M1 and M2 stutter equivalent,
denoted by

M1 ≡st M2,

if and only if for each scheduler U1 of M1 there exists a scheduler U2 of M2

such that,
PrM1,U1(E) = PrM2,U2(E)

for each stutter invariant measurable LT property E ⊆ (2AP)ω, and vice versa.

Before explaining the ample set method, we briefly illustrate its impact on
probabilistic linear-time model checking. Assume that we are given two stutter
equivalent MDPs M1,M2 and a stutter invariant measurable LT property E.
Then

sup
U∈SchedM1

PrM1,U (E) = sup
U∈SchedM2

PrM2,U (E).

The corresponding equality with inf instead of sup certainly also holds. Hence,
two stutter equivalent MDPs M1 and M2 are equivalent with respect to
stutter invariant measurable linear-time specifications. A prominent class of
stutter invariant measurable LT properties is the LTL fragment that does not
use the “NextStep”-operator [90].

The following result (Theorem 5.8 below) has been established in [9]. It
requires ample sets ample(s) for s ∈ S that enjoy the properties (A0)–(A4)
shown in Fig. 9 (these will be explained later) and asserts the stutter equiv-
alence of the original MDP M and the reduced MDP Mred that arises from
M by removing all enabled actions of a state s that are not included in the
ample set of s. The precise definition of Mred is as follows.

Model Checking Linear-Time Properties of Probabilistic Systems 551

Definition 5.4 (The reduced MDP). Let M = (S, Act, δ, μ,AP, L) be an
MDP, and suppose that for each state s ∈ S, ample(s) is a non-empty subset
of Act(s). Then the reduced MDP Mred is the MDP (Sred, Act, δred, μ,AP, Lred)
where the state space of Mred is the smallest sub-set Sred of S such that:

• {s ∈ S | μ(s) > 0} ⊆ Sred.
• Whenever s ∈ Sred and α ∈ ample(s) then {s′ ∈ S | δ(s, α, s′) > 0} ⊆ Sred.

The transition probability function δred : Sred × Act × Sred → [0, 1] is given by

δred(s, α, s′) =
{

δ(s, α, s′) if α ∈ ample(s)
0 otherwise.

The labeling function Lred : Sred → 2AP is the restriction of M’s labeling
function to the state space of Mred, i.e., Lred(s) = L(s) for all s ∈ Sred.

Thus, Mred can be obtained by an on-the-fly algorithm which first generates
all initial states of M and then successively expands each generated state s
by considering all actions α ∈ ample(s) and generating the α-successors of s
that have not been generated before.

The following Theorem 5.8 [9, 43] ensures that given a deterministic ω-
automaton A that accepts a stutter invariant language, it suffices to model
check Mred against A instead of M, provided that the ample sets satisfy
the conditions (A0)–(A4) in Fig. 9. Before presenting the theorem, we define
stutter actions, resp. independent actions that are used in the condition (A1),
resp. (A2). Stutter actions are actions that have no effect on the state labels,
no matter in which state they are taken.

Definition 5.5 (Stutter action). Given an MDP M = (S, Act, δ, μ,AP, L),
we call an action α ∈ Act a stutter action if and only if for all states s, t ∈ S,

δ(s, α, t) > 0 implies L(s) = L(t).

The main ingredient of any partial order reduction technique in the proba-
bilistic or non-probabilistic setting is an adequate notion for independence of
actions. The rough idea is a formalization of actions belonging to different
processes that are executed in parallel and do not affect each other, e.g., as
they only refer to local variables and do not require any kind of synchroniza-
tion. In non-probabilistic systems, independence of two actions α and β means
that, for any state s where both α and β are enabled, the execution of α does
not affect the enabledness of β (i.e., the α-successor of s has an outgoing β-
transition), and vice versa, and in addition the action sequences αβ and βα
lead to the same state. In the probabilistic setting, it is additionally required
that αβ and βα have the same probabilistic effect.

Definition 5.6 (Independence of actions, cf. [9, 26]). Two actions α
and β with α �= β are called independent in an MDP M if and only if for
each state s ∈ S with {α, β} ⊆ Act(s) it holds that:

552 Christel Baier, Marcus Größer, and Frank Ciesinski

Fig. 8. Examples of independent actions

1. δ(s, α, t) > 0 implies β ∈ Act(t).
2. δ(s, β, u) > 0 implies α ∈ Act(u).
3. For each state v ∈ S:

∑

t∈S

δ(s, α, t) · δ(t, β, v) =
∑

u∈S

δ(s, β, u) · δ(u, α, v).

Two different actions α and β are called dependent if and only if α and β are
not independent. If A ⊆ Act and α ∈ Act\A, then α is called independent from
A if and only if for each action β ∈ A, α and β are independent. Otherwise,
α is called dependent on A.

Example 5.7 (Independent actions). Figure 8 shows a fragment of an MDP
M1 representing the parallel execution of independent actions α and β. For
example, α might stand for the outcome of the experiment of tossing a “one”
with a dice, while β stands for tossing a fair coin. In general, whenever α
and β represent stochastic experiments that are independent in the classical
sense, then α and β viewed as actions of an MDP are independent. However,
there are also other situations where two actions can be independent that do
not have a fixed probabilistic branching pattern. For instance, actions α and
β in the MDP M2 in Fig. 8 are independent. To see this, first notice that
only in state s both α and β are enabled. The α-successors t, s of s have a
β-transition to state u, while the β-successor u has an α-transition to itself.
The probabilistic effect under the action sequences αβ and βα is the same as
in either case state u is reached with probability 1.

Theorem 5.8 (Ample set method for MDPs). Let M = (S, Act, δ,
μ,AP, L) be an MDP and ample : S → 2Act a function satisfying conditions
(A0)–(A4) in Fig. 9. Then

M ≡st Mred,

where Mred denotes the reduced MDP that emanates from the MDP M and
the ample sets defined by the function ample according to Definition 5.4.

Model Checking Linear-Time Properties of Probabilistic Systems 553

(A0) (Non-emptiness condition) For each state s ∈ S, it holds that
∅ 	= ample(s) ⊆ Act(s).

(A1) (Stutter condition) If s ∈ Sred and ample(s) 	= Act(s), then all actions
α ∈ ample(s) are stutter actions.

(A2) (Dependence condition) For each path π = s
α1−→ · · · αn−−→ sn

γ−→ · · ·
in M where s ∈ Sred and γ is dependent on ample(s) there exists an index
i ∈ {1, . . . , n} such that αi ∈ ample(s).

(A3) (End component condition) For each end component (T, A) in Mred

we have that: α ∈
⋂

t∈T A(t) implies α ∈
⋃

t∈T ample(t).

(A4) (Branching condition) If π = s
α1−→ s1

α2−→ · · · αn−−→ sn
α−→ · · · is a path

in M where s ∈ Sred, α1, . . . , αn, α /∈ ample(s) and α is probabilistic, then
|ample(s)| = 1.

Fig. 9. Conditions for the ample sets of MDPs

We now provide explanations why conditions (A0)–(A4) that have been pro-
posed in [9] ensure the stutter equivalence of M and Mred. Condition (A0)
simply assures that Mred is a sub-MDP of M (recall that in Definition 2.1 we
required that all states of an MDP are non-terminal). Thus, each scheduler
of Mred is also a scheduler of M. So, the interesting part is the transforma-
tion of a given scheduler U of M into an “equivalent” scheduler Ured of Mred

(where “equivalence” is understood with respect to the probabilities of stutter
invariant measurable LT properties). The details of the scheduler transforma-
tion U → Ured are rather technical and will not be explained here. The main
idea is an iterative approach where an infinite sequence U0 = U ,U1,U2, . . . of
schedulers for M is constructed such that:

• Ui,Ui+1,Ui+2, . . . agree on all finite paths of length at most i.
• All finite Ui-paths of length i are paths in Mred.
• PrM,Ui(E) = PrM,U (E) for all stutter invariant measurable LT proper-

ties E.

The scheduler Ured is then defined to be the limit of the schedulers Ui, that is,

Ured(π) = Ui+1(π)

if π is a path of length i in Mred.
The transformations Ui �→ Ui+1 all rely on the same schema. For simplicity,

we just give a very rough sketch of the idea for the case i = 0 and assume that
U0 = U is a deterministic scheduler. Suppose we are given a U-path starting
in state s that relies on the action sequence α1α2α3 . . . and α1 /∈ ample(s)
(otherwise, Ured just chooses α1 with probability 1). If at least one of these
actions belongs to ample(s), then we pick the smallest index i such that αi ∈
ample(s). Note that condition (A1) ensures that αi is a stutter action as α1 /∈
ample(s). Condition (A2) ensures that αi is independent from α1, . . . , αi−1.

554 Christel Baier, Marcus Größer, and Frank Ciesinski

Hence, we can switch from the action sequence α1α2 . . . αi−1αi to the action
sequence αiα1α2 . . . αi−1. Both action sequences can be executed from state s
and yield the same distribution over the states that can be reached afterward.
In addition, the action sequences α1α2 . . . αi−1αi and αiα1α2 . . . αi−1 produce
stutter equivalent paths that end in the same state (recall that αi is a stutter
action). These ideas are sketched in the following picture.

Since αi ∈ ample(s), scheduler U1 will choose αi with some positive probability
(the probabilities for the chosen actions rely on a rather complex formula that
will not be discussed here). If the given U-path does not contain an action
in ample(s) then we pick an arbitrary action β ∈ ample(s) (this is possible
by (A0)) and replace the action sequence α0α1 . . . with βα0α1 . . . (this is
possible by (A2) as β is independent from each αi). The scheduler U1 will
then choose β with some positive probability. Note that this also yields some
path that is stutter equivalent to the given U-path. In summary, given a U-
path π starting in state s, the basic idea is to permute the first ample action
of s that occurs along π to the beginning of the action sequence of π. If no
such action exists, an arbitrary ample action of s is pre-pended to the action
sequence of π. This step is then repeated ad infinitum to yield a scheduler Ured

of Mred. However, we cannot immediately conclude that U and Ured yield the
same probabilities for stutter invariant measurable LT properties because the
generated Ured-paths might “delay” a certain action of a U-path ad infinity as
in the following example.

The state labeling is given by the shades of the states, thus β is a stutter
action, while α is not. For ample(s) = {β} and scheduler U where U(π) = α
for all paths π with last(π) = s, the construction sketched above (see [43] for
the details) yields

Ui(s
β−→ s

β−→ · · · β−→ s︸ ︷︷ ︸
length j

) =
{

β for j ≤ i − 1,
α for j = i.

Model Checking Linear-Time Properties of Probabilistic Systems 555

Fig. 10. Example to justify condition (A4)

Thus, scheduler Ured always schedules β in the state s. In fact, Ured is the only
scheduler for Mred as Mred consists only of state s with the β-loop. Under
U and each of the schedulers Ui, we obtain probability 1 to reach the gray
state t, while the probability to reach state t under Ured is 0. However, in this
example, conditions (A0), (A1), (A2), and (A4) hold, but the end component
(s, {β}) of Mred violates the end component condition (A3), which ensures
that in the scheduler transformation almost surely there is no action of M
that is postponed forever. Note that condition (A3) refers to end components
in the reduced MDP Mred rather than M (the definition of an end component
has been provided in Definition 4.4).

It is worth noting that conditions (A0)–(A3) suffice in the non-probabilistic
setting to ensure the equivalence between a transition system and its reduced
system with respect to stutter invariant LT properties [74, 75]. However, for
MDPs, we need the additional branching condition (A4). The intuitive reason
for this is that the experiments

“first toss a coin, then decide between action β and γ” and
“first decide between action β and γ, then toss a coin”

are different. This becomes obvious in the example shown in Fig. 10. Starting
in state s of M, if first the coin is tossed (action α) and then, depending on its
outcome, action β is chosen in state s1 and action γ is chosen in state s2, then
this yields that a “smiling” state is reached with probability one. If, however,
the choice between β and γ is resolved before the coin is tossed, that is the β-
transition or the γ-transition is taken in state s, then taking α in state u, resp.
state t, will not result in reaching the “smiling” states with probability one.
Note that if we choose ample(s) = {β, γ} for the MDP M shown in Fig. 10,
then conditions (A0)–(A3) are satisfied, whereas condition (A4) is violated.
So, a scheduler of M might schedule a probabilistic non-ample action of the

556 Christel Baier, Marcus Größer, and Frank Ciesinski

starting state s. Depending on the outcome (moving to state s1 or s2), the
scheduler chooses different ample actions (of s). Thus, choosing α first, post-
pones the real non-deterministic decision between the ample actions β and γ.
The reduced system Mred is forced to decide immediately for a particular
ample action β or γ of s (more precisely a distribution over the ample actions
of s) in its first step before the outcome of α is known. This decision is fixed
from then on. It is exactly this behavior that one has to forbid to gain stutter
equivalence between the given system M and its reduced system. That means
that if the system can branch probabilistically with non-ample actions (with
respect to the starting state), then there should be only one ample action of
the starting state. The additional branching condition (A4) ensures exactly
this.

The above remarks only present rough explanations to justify conditions
(A0)–(A4). For a full proof of Theorem 5.8, see [43].

Remark 5.9. Theorem 5.8 ensures that, given a deterministic ω-automaton
that accepts a stutter invariant language, it suffices to model check Mred in-
stead of M. As Mred is in general smaller than M, this yields a possible
speed-up of the analysis. Of course, the algorithmic construction of appro-
priate ample sets together with the construction and the analysis of Mred

should be more efficient than model checking the full system M. Note that
even a reduction that eliminates only actions, but does not shrink the state
space, might yield a speed-up of the analysis as the probabilistic model check-
ing procedure relies on solving linear programs where the number of linear
inequalities for any state s is given by the number of outgoing actions of s.

Experimental Results

The partial order approach for MDPs has been implemented in the model
checker LIQUOR [3, 5] using heuristics for approximating the conditions (A2),
(A3) and (A4) given in Fig. 9. These heuristics use a superset of the depen-
dence relation and rely on a pre-analysis of the control flow graph induced by
programs given in the specification language ProbMeLa (Sect. 2). Several case
studies with LIQUOR have shown that the partial order reduction (POR) can
lead to a major speed-up and can also decrease the space requirements. To
give an impression on the dimension of the time and space requirements for
realistic systems, the following table summarizes the results for a randomized
leader election protocol (where variable N in the first column denotes the
number of parallel processes in the model):

Randomized leader election
without POR with POR

N states transitions time states transitions time
4 53621 156072 1.1 s 21063 78072 1.1 s
5 896231 3.2 · 106 34 s 299670 1.3 · 106 21 s
6 1.1 · 107 6.2 · 107 813 s 4.1 · 106 1.4 · 107 180 s

Model Checking Linear-Time Properties of Probabilistic Systems 557

In other cases, for instance in models of parallel processes that share common
synchronization points, the reduction can be even better. More results and
more detailed information about applied heuristics and techniques can be
found in [5].

6 Partially Observable MDPs

The analysis techniques of Sects. 3, 4, and 5 yield worst-case schedulers where
the probability for a certain undesired event is maximal, or dually, where
the probability for the desired behavior is minimal. To some extent, these
techniques are also applicable to controller synthesis problems where the goal
is to design a scheduler (i.e., a controller) that resolves the internal non-
determinism and optimizes the probabilities for a certain LT property. How-
ever, in this context, the general notion of a scheduler appears to be inadequate
since it relies on the complete knowledge of the system history. Consider again
the Monty Hall problem from Example 2.2 and the corresponding MDP M
in Fig. 3. We saw in Example 2.2 that

sup
U∈Sched

PrM,U (♦ get car) = 1,

where the supremum is attained by the scheduler U with

U
(
s

choose−−−→ t1
)
(keep) = 1

and
U

(
s

choose−−−→ t2
)
(switch) = U

(
s

choose−−−→ t3
)
(switch) = 1.

As already pointed out in the example, this scheduler U does not reflect a
realistic choice of the contestant, as the contestant does not know whether
she/he has chosen the door with the car behind it, or not. So, the only realistic
schedulers (that model a contestant’s choice) are schedulers that make the
same choice for each path that ends either in state t1, t2, or t3. In this case,
these are the two schedulers Us and Uk with

Us

(
s

choose−−−→ t1
)
(switch) = Us

(
s

choose−−−→ t2
)
(switch) = Us

(
s

choose−−−→ t3
)
(switch) = 1

and

Uk

(
s

choose−−−→ t1
)
(keep) = Uk

(
s

choose−−−→ t2
)
(keep) = Uk

(
s

choose−−−→ t3
)
(keep) = 1

where the contestant either decides to switch the door or to keep it. So, in
this scenario, we are actually interested in computing the supremum, resp.
infimum of PrM,U (♦ get car) under all “realistic” schedulers. A model that
allows us to express such requests is given by partially observable Markov
decision processes (POMDPs) [84, 70, 71, 67].

558 Christel Baier, Marcus Größer, and Frank Ciesinski

Definition 6.1 (Partially observable Markov decision process). A par-
tially observable Markov decision process is a pair (M,∼), where:

• M = (S, Act, δ, μ,AP, L) is a Markov decision process.
• ∼ ⊆ S × S is an equivalence relation such that for all states s, t ∈ S with

s ∼ t we have Act(s) = Act(t).

If s ∈ S, then [s]∼ denotes the equivalence class of state s with respect to ∼.

Given a POMDP (M,∼), an observation-based scheduler U is a scheduler for
M that is consistent with ∼, i.e., U(s0

α1−→ · · · αn−→ sn) = U(t0
α1−→ · · · αn−→ tn)

if si ∼ ti for 0 ≤ i ≤ n. The set of observation-based schedulers is denoted by
Sched(M,∼).

If we equip the MDP M for the Monty Hall problem with the equivalence
relation ∼ given by [s]∼ = {s}, [u1]∼ = {u1}, [u2]∼ = {u2} and

[t1]∼ = [t2]∼ = [t3]∼ = {t1, t2, t3},

then the deterministic observation-based schedulers of the POMDP (M,∼)
are the “realistic” schedulers that actually model a contestant’s choice in the
game. Thus, in the Monty Hall scenario, we are interested in computing

sup
U∈Sched

(M,∼)
D

PrM,U (♦ get car),

resp. in computing the infimum. Here, Sched
(M,∼)
D denotes the set of determin-

istic observation-based schedulers of the POMDP (M,∼). Unfortunately, we
cannot expect to have algorithmic solutions for the task to compute extremal
reachability probabilities, when ranging over observation-based schedulers.
For a similar partial information model which uses distributed schedulers in-
stead of observation-based schedulers, it has been shown that there is no
algorithm that computes this supremum under all distributed schedulers. In
fact, the supremum is not even approximable [37]. For the model of POMDPs,
there even exist the following undecidability results for qualitative questions,
which have recently been shown in [2, 43].

In what follows, we use LTL-notations to denote LT properties. The symbol
♦ stands for “eventually”, � for “always”. Thus, the combination �♦ denotes
“infinitely often” and ♦� means “continuously from some moment on”.

Theorem 6.2 (Undecidability results for POMDPs). The following
problems are undecidable. Given a POMDP (M,∼) and a set B of states
in M, is there a deterministic observation-based scheduler U for (M,∼) such
that:

(a) PrM,U (�♦B) > 0?
(b) PrM,U (♦�B) = 1?

Model Checking Linear-Time Properties of Probabilistic Systems 559

Those results as well as the undecidability result mentioned above on quali-
tative reachability from [37] are remarkable since the corresponding questions
for (fully observable) MDPs are decidable in polynomial time (see Sect. 4).
However, some other variants of qualitative verification problems for POMDPs
have been shown to be decidable [29, 2, 43].

Theorem 6.3 (Decidable problems for POMDPs). The following prob-
lems are decidable. Given a POMDP (M,∼) and a set B of states in M, does
there exist U ∈ Sched(M,∼) such that:

(a) PrM,U (�B) > 0?
(b) PrM,U (♦B) > 0?
(c) PrM,U (�B) = 1?
(d) PrM,U (♦B) = 1?
(e) PrM,U (�♦B) = 1?
(f) PrM,U (♦�B) > 0?

In fact, in [2, 43], it has been shown that the problems (e) and (d) are reducible
to each other and that the latter one can be reduced to the similar question
for (fully observable) MDPs using an advanced powerset construction. The
proof of (f) (see [43]) uses the interreducibility of (d) and (e), and (a) which
has been shown in [29].

7 Conclusion

In this chapter, we have summarized the main features of Markov decision
processes as an operational model for parallel probabilistic systems and model
checking against ω-regular linear-time properties. We have supposed here that
the properties are given by deterministic ω-automata. Instead of automata
specifications, any logic that can be translated into automata can be used
to provide a formalization of the requirements such as linear temporal logic,
the mu-calculus, or monadic second-order logic. As quantitative reasoning
about probabilistic systems relies on a combination of graph-based and nu-
merical methods, heuristics that attack the state space explosion problem are
even more important than in the non-probabilistic case. In this chapter, we
have explained the partial order reduction approach. Several other reduction
techniques to reduce the time and space requirements such as abstraction
techniques, minimization with simulation-like relations, symmetry reduction,
and symbolic approaches with variants of binary decision diagrams have been
discussed in the literature and are topics of current research projects (see the
references given in Sects. 1 and 5).

One of the key features of model checking tools is the concept of coun-
terexamples that can be returned to the user if the checked property does not
hold for the system. In the probabilistic setting, counterexamples are more
complex, as single error traces are inadequate. First results on the generation

560 Christel Baier, Marcus Größer, and Frank Ciesinski

of counterexamples for probabilistic systems and their use in abstraction-
refinement approaches are presented in the recent papers [1, 46, 50]. Another
current research trend is the investigation of alternating-time and game-based
approaches that deal with MDP-like models representing the activities of sev-
eral players. The concept of partially observable MDPs is one instance thereof
(see Sect. 6), another instance are stochastic 21

2 -player games (see, e.g., [20,
30, 19, 53]).

The classical model of Markov decision processes is adequate for the analy-
sis against safety and liveness properties and other conditions on the temporal
order of events, but not to reason about timing constraints within a dense
time domain. The treatment of continuous-time Markov decision processes
or other stochastic models where time-dependent distributions are attached
to the transitions (e.g., [10]) or probabilistic variants of timed automata are
examples for other very active research fields [64, 57, 63].

Many concepts for reasoning about MDPs viewed as acceptors for lan-
guages over finite words (Rabin’s probabilistic finite automata [81]) can be
generalized rather naturally for weighted automata. Such a generalization of
concepts for MDPs to weighted automata is, however, less clear for the case
of infinite words. It would also be interesting to see whether the measure-
theoretic concepts that yield the basis to define the probabilities for ω-regular
properties can be adapted to other classes of weighted automata to reason
about the weights for (measurable) sets of infinite paths. This could yield
an interesting alternative to the concept of discounting which is well known
for MDPs augmented with a reward function that assigns rewards to states
and/or actions (see, e.g., [80]) and has been discussed recently in [32–34] for
weighted automata and to the approaches investigated in Chaps. 3 and 5 that
enforce convergence of infinite series by imposing certain algebraic assump-
tions on the semiring of a weighted automaton.

8 Appendix

In this appendix, we give the formal definitions needed for the theory of MDPs
that is used in the previous sections.

Markov Chains

We first start with the definition of a probability distribution.

Definition 8.1 (Probability distribution). Let S be a countable set.
A probability distribution on S is a function

μ : S → [0, 1] such that
∑

s∈S

μ(s) = 1.

Given a probability distribution μ on S, supp(μ) denotes the support of μ, i.e.,
the set of states s ∈ S with μ(s) > 0. For each s ∈ S, μs denotes the unique

Model Checking Linear-Time Properties of Probabilistic Systems 561

Dirac distribution on S that satisfies μs(s) = 1. By Distr(S), we denote the
set of all probability distributions on S.

Next, we give the definition of a discrete Markov chain, which is basically a di-
rected graph where the edges are labeled with a probability in [0, 1], such that
in each state the probabilities of its outgoing edges sum up to one. Moreover,
there is an initial probability distribution on the vertices of the graph.

Definition 8.2 (Discrete Markov chain). A discrete Markov chain is a
tuple

M = (S, p, μ),

where:

• S is a countable non-empty set of states.
• p : S × S → [0, 1] is the so-called transition probability function such that

p(s, .) is a probability distribution on S for each s ∈ S.
• μ is a probability distribution on S (called the initial distribution).

Let T = {(s, t) | p(s, t) > 0, s, t ∈ S} be the set of transitions with posi-
tive probability. We refer to the directed graph (S, T) as the underlying graph
of M. Note that (S, T) has no terminal nodes. A discrete Markov chain in-
duces a stochastic process on the set S of its states in a natural way. The
probability that the process starts in a certain state (the 0th step) is deter-
mined by the starting distribution. Moreover, being in state s in the (n− 1)st
step, the probability that the process is in state t in the nth step is equal
to p(s, t). The fact that those probabilities do not depend on the previous
steps (history-independent or memoryless) is called the Markov property. For
a detailed discussion on Markov chains, see, e.g., [59]. Before we go on, we fix
some notation for paths of a discrete Markov chain.

Definition 8.3 (Path and corresponding notation). An (in)finite path
of a discrete Markov chain M is an (in)finite state sequence π = s0s1 . . . such
that p(si, si+1) > 0 for all i. Given a finite path π = s0s1 . . . sn, the length |π|
of π equals n. For an infinite path π, the length is equal to ∞. Given a path
π = s0s1 . . . and i ≤ |π|, we denote the ith state of π by πi (i.e., πi = si)
and the ith prefix by π↑i = s0, s1, . . . , si. We denote by Pathfin (resp. Pathinf)
the set of finite (resp. infinite) paths of a given discrete Markov chain and by
Pathfin(s) (resp. Pathinf(s)) the set of finite (resp. infinite) paths starting in
the state s. The empty path is denoted by ε.

If necessary, then we will index Path by the corresponding system, e.g., PathMinf .
We now define the probability space that formalizes the stochastic process
induced by a discrete Markov chain.

Definition 8.4 (Basic cylinder). Given a discrete Markov chain M, we
define, for every π ∈ PathMfin , the basic cylinder of π as

Δ(π) =
{
ρ ∈ PathMinf : ρ↑|π| = π

}
.

562 Christel Baier, Marcus Größer, and Frank Ciesinski

Definition 8.5 (Probability space of a discrete Markov chain). Given
a discrete Markov chain M = (S, p, μ), we define a probability space

Ψ =
(
PathMinf , Δ, Pr

)
,

such that:

• Δ is the σ-algebra generated by the empty set and the set of basic cylinders
in PathMinf .

• Pr is the uniquely induced probability measure which satisfies the following:
Pr(Δ(ε)) = 1 and for every basic cylinder Δ(s0, s1, . . . , sn) over S:

Pr
(
Δ(s0, s1, . . . , sn)

)
= μ(s0) · p(s0, s1) · · · · · p(sn−1, sn).

Given a state s ∈ S, we denote by Prs the probability measure that is obtained
if M is equipped with the starting distribution μs, thus Prs(Δ(s)) = 1. We
call the a set P ⊆ Pathinf of infinite paths measurable if and only if P ∈ Δ.

The existence of the induced probability measure Pr follows from a well-known
theorem in measure theory, which is known as Carathéodory’s measure ex-
tension theorem. The uniqueness follows from the fact that the set of basic
cylinders is intersection-stable. For more information on measure theory, see,
e.g., [13].

Markov Decision Processes

We will now explain formally the probability space that emanates from a
Markov decision process and a given scheduler. Let

M = (S, Act, δ, μ,AP, L),

be an MDP and U a scheduler that resolves the nondeterminism in M (for
the definition of an MDP and a scheduler see Sect. 2 of this chapter). The
behavior of M under U can be formalized by an infinite-state discrete Markov
chain MU = (PathMfin , p, μ), where

p(π, π′) = U(π)(α) · δ
(
last(π), α, last(π′)

)
,

for π, π′ ∈ PathMfin with |π′| = |π| + 1, π′↑|π| = π and α is the last action on
the path π′, i.e.,

π
α−→ last(π′) = π′.

As the states of MU are finite paths of M, this notation is somewhat incon-
venient. Consider Ω = (PathMU

inf , ΔMU) and Ω′ = (PathMinf , Δ
M), where ΔMU

(resp. ΔM) is the σ-algebra generated by the empty set and the set of basic
cylinders over MU (resp. M). We define

f : PathMU
inf → PathMinf

Model Checking Linear-Time Properties of Probabilistic Systems 563

as f(π0
α1−→ π1

α2−→ · · ·) = last(π0)
α1−→ last(π1)

α2−→ · · · (note that the πi’s
are finite paths of M). Then f is a measurable function and we define the
following probability measure on ΔM:

PrM,U (A′) = PrMU
(
f−1(A′)

)
, for A′ ∈ ΔM.

Then given a scheduler U for M, the probability measure PrM,U formalizes
the behavior of M under U , where we have the convenience to talk about
measures of sets of infinite paths of M. As for discrete Markov chains, given
a state s ∈ S, we denote by PrM,U

s the probability measure that is obtained
if M is equipped with the starting distribution μs. For a detailed discussion
on MDPs, see, e.g., [80].

We also fix the following notation for convenience. Given an MDP M,
a scheduler U , and a path property E, we will write

PrM,U (E) = PrM,U({
π ∈ PathMinf

∣
∣ π satisfies E

})

for the probability that the property E holds in M under the scheduler U .

References

1. H. Aljazzar, H. Hermanns, and S. Leue. Counterexamples for timed prob-
abilistic reachability. In Proceedings of the 3rd International Workshop
on Formal Modeling and Analysis of Timed Systems (FORMATS’05), vol-
ume 3829 of Lecture Notes in Computer Science, pages 177–195. Springer,
Berlin, 2005.

2. C. Baier, N. Bertrand, and M. Grösser. On decision problems for prob-
abilistic Büchi automata. In Proceedings of the 11th International Con-
ference on Foundations of Software Science and Computation Structures
(FOSSACS’08), volume 4962 of Lecture Notes in Computer Science, pages
287–301. Springer, Berlin, 2008.

3. C. Baier and F. Ciesinski. Liquor: A tool for qualitative and quantitative
linear time analysis of reactive systems. In Proceedings of the 3rd Interna-
tional Conference on the Quantitative Evaluation of SysTems (QEST’06),
pages 131–132. IEEE Computer Society Press, Los Alamitos, 2006.

4. C. Baier, F. Ciesinski, and M. Grösser. ProbMeLa: A modeling language
for communicating probabilistic systems. In Proceedings of the 2nd ACM–
IEEE International Conference on Formal Methods and Models for Code-
sign (MEMOCODE’04), pages 57–66. IEEE Computer Society Press, Los
Alamitos, 2006.

5. C. Baier, F. Ciesinski, M. Grösser, and J. Klein. Reduction techniques for
model checking Markov decision processes. In Proceedings of the 5th Inter-
national Conference on Quantitative Evaluation of SysTems (QEST’08),
pages 45–54. IEEE Computer Society Press, Los Alamitos, 2008.

564 Christel Baier, Marcus Größer, and Frank Ciesinski

6. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and
M. Ryan. Symbolic model checking for probabilistic processes. In Pro-
ceedings of the 24th International Colloquium on Automata, Languages
and Programming (ICALP’97), volume 1256 of Lecture Notes in Com-
puter Science, pages 430–440. Springer, Berlin, 1997.

7. C. Baier, P. d’Argenio, and M. Größer. Partial order reduction for prob-
abilistic branching time. In Proceedings of the 3rd Workshop on Quan-
titative Aspects of Programming Languages (QAPL’05), volume 153(2)
of Electronic Notes in Theoretical Computer Science, pages 97–116.
Springer, Berlin, 2006.

8. C. Baier, B. Engelen, and M. Majster-Cederbaum. Deciding bisimularity
and similarity for probabilistic processes. Journal of Computer and Sys-
tem Sciences, 60:187–231, 2000.

9. C. Baier, M. Größer, and F. Ciesinski. Partial order reduction for prob-
abilistic systems. In Proceedings of the 1st International Conference on
Quantitative Evaluation of SysTems (QEST’04), pages 230–239. IEEE
Computer Society Press, Los Alamitos, 2004.

10. C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Efficient computa-
tion of time-bounded reachability probabilities in uniform continuous-time
Markov decision processes. Theoretical Computer Science, 345(1):2–26,
2005.

11. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
Cambridge, 2008.

12. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branch-
ing time logic with fairness. Distributed Computing, 11(3):125–155, 1998.

13. H. Bauer. Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie.
de Gruyter, Berlin, 1978.

14. R. Bellmann. A Markovian decision process. Journal of Mathematics and
Mechanics, 6(4):679–684, 1957.

15. A. Bianco and L. De Alfaro. Model checking of probabilistic and nondeter-
ministic systems. In Proceedings of the 15th Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’95),
volume 1026 of Lecture Notes in Computer Science, pages 499–513.
Springer, Berlin, 1995.

16. M. Bozga and O. Maler. On the representation of probabilities over struc-
tured domains. In Proceedings of the 11th International Conference on
Computer Aided Verification (CAV’99), volume 1633 of Lecture Notes in
Computer Science, pages 261–273. Springer, Berlin, 1999.

17. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation,
98(2):142–170, 1992.

18. S. Cattani and R. Segala. Decision algorithms for probabilistic bisimula-
tion. In Proceedings of the 13th International Conference on Concurrency
Theory (CONCUR’02), volume 2421 of Lecture Notes in Computer Sci-
ence, pages 371–385. Springer, Berlin, 2002.

Model Checking Linear-Time Properties of Probabilistic Systems 565

19. K. Chatterjee. Stochastic ω-regular games. PhD thesis, University of Cal-
ifornia at Berkeley, 2007

20. K. Chatterjee, L. de Alfaro, and T. Henzinger. The complexity of sto-
chastic Streett and Rabin games. In Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming (ICALP’05), vol-
ume 3580 of Lecture Notes in Computer Science, pages 878–890. Springer,
Berlin, 2005.

21. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cam-
bridge, 1999.

22. C. Courcoubetis and M. Yannakakis. Markov decision processes and reg-
ular events (extended abstract). In Proceedings of the 17th International
Colloquium on Automata, Languages and Programming (ICALP’90), vol-
ume 443 of Lecture Notes in Computer Science, pages 336–349. Springer,
Berlin, 1990.

23. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic ver-
ification. Journal of the ACM, 42(4):857–907, 1995.

24. P.R. d’Argenio, B. Jeannet, H.E. Jensen, and K.G. Larsen. Reduction
and refinement strategies for probabilistic analysis. In Proceedings of the
Joint International Workshop on Process Algebra and Performance Mod-
eling and Probabilistic Methods in Verification (PAPM–PROBMIV’02),
volume 2399 of Lecture Notes in Computer Science, pages 57–76. Springer,
Berlin, 2002.

25. P.R. d’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability
analysis of probabilistic systems by successive refinements. In Proceed-
ings of the 1st Joint International Workshop on Process Algebra and
Performance Modeling and Probabilistic Methods in Verification (PAPM–
PROBMIV’01), volume 2165 of Lecture Notes in Computer Science, pages
57–76. Springer, Berlin, 2001.

26. P.R. d’Argenio and P. Niebert. Partial order reduction on concurrent
probabilistic programs. In Proceedings of the 1st International Confer-
ence on Quantitative Evaluation of SysTems (QEST’04), pages 240–249.
IEEE Computer Society Press, Los Alamitos, 2004.

27. L. de Alfaro. Formal verification of probabilistic systems. PhD thesis,
Stanford University, 1997

28. L. de Alfaro. Stochastic transition systems. In Proceedings of the 9th Inter-
national Conference on Concurrency Theory (CONCUR’98), volume 1466
of Lecture Notes in Computer Science, pages 423–438. Springer, Berlin,
1998.

29. L. de Alfaro. The verification of probabilistic systems under memoryless
partial-information policies is hard. In Proceedings of the 2nd Interna-
tional Workshop on Probabilistic Methods in Verification (ProbMiV’99),
pages 19–32. Birmingham University, Research Report CSR-99-9, 1999.

30. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular
games. Journal of Computer and System Sciences, 68:374–397, 2004.

566 Christel Baier, Marcus Größer, and Frank Ciesinski

31. M. Droste and P. Gastin. Weighted automata and weighted logics. In this
Handbook. Chapter 5. Springer, Berlin, 2009.

32. M. Droste and D. Kuske. Skew and infinitary formal power series. Theo-
retical Computer Science, 366:199–227, 2006.

33. M. Droste and G. Rahonis. Weighted automata and weighted logics with
discounting. In Proceedings of the 12th International Conference on Imple-
mentation and Applications of Automata (CIAA’07), volume 4783 of Lec-
ture Notes in Computer Science, pages 73–84. Springer, Berlin, 2007.

34. M. Droste, J. Sakarovitch, and H. Vogler. Weighted automata with dis-
counting. Information Processing Letters, 108(1):23–28, 2008.

35. Z. Esik and W. Kuich. Finite automata. In this Handbook. Chapter 3.
Springer, Berlin, 2009.

36. I. Fichtner, D. Kuske, and I. Meinecke. Traces, series-parallel posets, and
pictures: a weighted study. In this Handbook. Chapter 10. Springer, Berlin,
2009.

37. S. Giro and P.R. d’Argenio. Quantitative model checking revisited: nei-
ther decidable nor approximable. In Proceedings of the 5th International
Conference on Formal Modelling and Analysis of Timed Systems (FOR-
MATS’07), volume 4763 of Lecture Notes in Computer Science, pages
179–194. Springer, Berlin, 2007.

38. P. Godefroid. Partial Order Methods for the Verification of Concurrent
Systems: an Approach to the State Explosion Problem, volume 1032 of Lec-
ture Notes in Computer Science. Springer, Berlin, 1996.

39. P. Godefroid, D. Peled, and M. Staskauskas. Using partial-order methods
in the formal validation of industrial concurrent programs. In Proceed-
ings of the International Symposium on Software Testing and Analysis
(ISSTA’96), pages 261–269. ACM, New York, 1996.

40. E. Grädel, W. Thomas, and T. Wilke, editors. Outcome of the 2001
Dagstuhl Seminar on Automata, Logics, and Infinite Games: A Guide
to Current Research, volume 2500 of Lecture Notes in Computer Science.
Springer, Berlin, 2002.

41. M. Größer and C. Baier. Partial order reduction for Markov decision
processes: A survey. In Proceedings of the 4th International Symposium on
Formal Methods for Components and Objects (FMCO’05), volume 4111
of Lecture Notes in Computer Science, pages 408–427. Springer, Berlin,
2006.

42. M. Größer, G. Norman, C. Baier, F. Ciesinski, M. Kwiatkowska, and
D. Parker. On reduction criteria for probabilistic reward models. In Pro-
ceedings of the 26th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’06), volume 4337 of Lecture
Notes in Computer Science, pages 309–320. Springer, Berlin, 2006.

43. M. Größer. Reduction methods for probabilistic model checking. PhD
thesis, Technische Universität, Dresden, 2008

44. R. Gupta, S. Smolka, and S. Bhaskar. On randomization in sequential and
distributed algorithms. ACM Computing Surveys, 26(1):7–86, 1994.

Model Checking Linear-Time Properties of Probabilistic Systems 567

45. G. Hachtel, E. Macii, A. Pardo, and F. Somenzi, Probabilistic analysis of
large finite state machines. In Proceedings of the 31st Design Automation
Conference (DAC’94), pages 270–275. ACM, New York, 1994.

46. T. Han and J.-P. Katoen. Counterexamples in probabilistic model check-
ing. In Proceedings of the 13th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’07),
volume 4424 of Lecture Notes in Computer Science, pages 60–75. Springer,
Berlin, 2007.

47. H. Hansson and B. Jonsson. A logic for reasoning about time and relia-
bility. Formal Aspects of Computing, 6(5):512–535, 1994.

48. V. Hartonas-Garmhausen, S. Campos, and E. Clarke. Probverus: Proba-
bilistic symbolic model checking. In Proceedings of the 5th International
Workshop on Formal Methods for Real-Time and Probabilistic Systems
(ARTS’99), volume 1601 of Lecture Notes in Computer Science, pages
96–110. Springer, Berlin, 1999.

49. H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle.
On the use of MTBDDs for performability analysis and verification of sto-
chastic systems. The Journal of Logic and Algebraic Programming: Special
Issue on Probabilistic Techniques for the Design and Analysis of Systems,
56:23–67, 2003.

50. H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In Pro-
ceedings of the 20th International Conference on Computer Aided Veri-
fication (CAV’08), volume 5123 of Lecture Notes in Computer Science,
pages 162–175. Springer, Berlin, 2008.

51. G. Holzmann. The SPIN Model Checker, Primer and Reference Manual.
Addison–Wesley, Reading, 2003.

52. G.J. Holzmann and D. Peled. An improvement in formal verification. In
Proceedings of the 7th International Conference on Formal Description
Techniques (IFIP’94), pages 197–211. Chapman & Hall, London, 1995.

53. F. Horn. Random games. PhD thesis, RWTH Aachen and Université Paris
7, 2008

54. R. Howard. Dynamic Programming and Markov Processes. MIT Press,
Cambridge, 1960.

55. T. Huynh and L. Tian. On some equivalence relations for probabilistic
processes. Fundamenta Informaticae, 17:211–234, 1992.

56. B. Jeannet, P.R. d’Argenio, and K.G. Larsen. RAPTURE: A tool for
verifying Markov decision processes. In Proceedings of the International
Conference on Concurrency Theory (CONCUR’02): Tools Day, Technical
Report, Faculty of Informatics, Masaryk University Brno, 2002.

57. M. Jurdzinski, F. Laroussinie, and J. Sproston. Model checking probabilis-
tic timed automata with one or two clocks. Logical Methods in Computer
Science, 4(3-1):4–20, 2008.

58. J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstrac-
tion for continuous-time Markov chains. In Proceedings of the 19th In-
ternational Conference on Computer Aided Verification (CAV’07), vol-

568 Christel Baier, Marcus Größer, and Frank Ciesinski

ume 4590 of Lecture Notes in Computer Science, pages 316–329. Springer,
Berlin, 2007.

59. J. Kemeny and J. Snell. Denumerable Markov Chains. Van Nostrand,
Princeton, 1976.

60. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic sym-
bolic model checker. In Proceedings of the 12th International Conference
on Modelling Tools and Techniques for Computer and Communication
System Performance Evaluation (TOOLS’02), volume 2324 of Lecture
Notes in Computer Science, pages 113–140. Springer, Berlin, 2002.

61. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic
model checking with PRISM: A hybrid approach. International Journal
on Software Tools for Technology Transfer (STTT), 6(2):128–142, 2004.

62. M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for
probabilistic model checking. In Proceedings of the 18th International
Conference on Computer Aided Verification (CAV’06), volume 4144
of Lecture Notes in Computer Science, pages 238–248. Springer, Berlin,
2008.

63. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Verification
of real-time probabilistic systems. In Modeling and Verification of Real-
Time Systems: Formalisms and Software Tools, pages 249–288. Wiley,
New York, 2008

64. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic ver-
ification of real-time systems with discrete probability distributions. The-
oretical Computer Science, 282:101–150, 2002.

65. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Infor-
mation and Computation, 94(1):1–28, 1991.

66. D. Lehmann and M.O. Rabin. On the advantage of free choice: A symmet-
ric and fully distributed solution to the dining philosophers problem (ex-
tended abstract). In Proceedings of the 8th Annual ACM Symposium on
Principles of Programming Languages (POPL’81), pages 133–138. ACM,
New York, 1981.

67. W. Lovejoy. A survey of algorithmic methods for partially observable
Markov decision processes. Annals of Operations Research, 28(1):47–65,
1991.

68. N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco,
1996.

69. A. Miner and D. Parker. Symbolic representations and analysis of large
probabilistic systems. In Proceedings of the GI/Dagstuhl Research Semi-
nar on Validation of Stochastic Systems, volume 2925 of Lecture Notes in
Computer Science. Springer, Berlin, 2003.

70. G. Monahan. A survey of partially observable Markov decision processes:
Theory, models, and algorithms. Management Science, 28(1):1–16, 1982.

71. C. Papadimitriou and J. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

Model Checking Linear-Time Properties of Probabilistic Systems 569

72. D. Parker. Implementation of symbolic model checking for probabilistic
systems. PhD thesis, University of Birmingham, 2002.

73. A. Paz. Introduction to Probabilistic Automata. Academic Press, San
Diego, 1971.

74. D. Peled. All from one, one for all: On model checking using representa-
tives. In Proceedings of the 5th International Conference on Computer-
Aided Verification (CAV’93), volume 697 of Lecture Notes in Computer
Science, pages 409–423. Springer, Berlin, 1993.

75. D. Peled. Partial order reduction: Linear and branching time logics and
process algebras. In Proceedings of the DIMACS Workshop on Partial Or-
der Methods in Verification, volume 29(10) of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 233–257. Ameri-
can Mathematical Society, Providence, 1997

76. D. Peled, V. Pratt, and G. Holzmann, editors. Proceedings of the DIMACS
Workshop on Partial Order Methods in Verification, volume 29(10) of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, Providence, 1997.

77. A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic
systems. In Proceedings of the 11th International Conference on Concur-
rency Theory (CONCUR’00), volume 1877 of Lecture Notes in Computer
Science, pages 334–349. Springer, Berlin, 2000.

78. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Symposium on the Foundations of Computer Science (FOCS’77), pages
46–57. IEEE Computer Society Press, Los Alamitos, 1977.

79. A. Pnueli and L. Zuck. Probabilistic verification by tableaux. In Proceed-
ings of the Symposium on Logic in Computer Science (LICS’86), pages
322–331. IEEE Computer Society Press, Los Alamitos, 1986.

80. M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, New York, 1994.

81. M.O. Rabin. Probabilistic automata. Information and Control, 6(3):230–
245, 1963.

82. J.J.M.M. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathe-
matical Techniques for Analyzing Concurrent and Probabilistic Systems,
volume 23 of CRM Monograph Series. American Mathematical Society,
Providence, 2004.

83. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, Berlin, 2003.

84. E.J. Sondik. The optimal control of partially observable Markov processes.
PhD thesis, Stanford University, 1971.

85. W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science, volume B, Chapter 4, pages 133–191. Elsevier, Ams-
terdam, 1990.

86. A. Valmari. A stubborn attack on state explosion. Formal Methods in
System Design, 1:297–322, 1992.

570 Christel Baier, Marcus Größer, and Frank Ciesinski

87. A. Valmari. State of the art report: Stubborn sets. Petri-Net Newsletters,
46:6–14, 1994.

88. A. Valmari. Stubborn set methods for process algebras. In Proceedings
of the DIMACS Workshop on Partial Order Methods in Verification, vol-
ume 29(10) of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 213–231. American Mathematical Society, Prov-
idence, 1997.

89. R. van Glabbeek, S. Smolka, B. Steffen, and C. Tofts. Reactive, generative,
and stratified models of probabilistic processes. In Proceedings of the 5th
IEEE Symposium on Logic in Computer Science (LICS’90), pages 130–
141. IEEE Computer Society Press, Los Alamitos, 1990.

90. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proceedings of the 26th Symposium on Foundations of Com-
puter Science (FOCS’85), pages 327–338. IEEE Computer Society Press,
Los Alamitos, 1985.

91. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the Symposium on Logic in Com-
puter Science (LICS’86), pages 332–344. IEEE Computer Society Press,
Los Alamitos, 1986.

	Chapter 13: Model Checking Linear-Time Properties of Probabilistic Systems
	Introduction
	About This Chapter

	Markov Decision Processes
	Paths and Schedulers of an MDP
	Specifying Systems with an MDP-Semantics

	Maximal Reachability Probabilities
	Implementation Issues

	Model Checking omega-Regular Properties
	Computing the Set of Maximal end Components
	Case 1: A Is a Deterministic Rabin Automaton
	Case 2: A Is a Deterministic Streett Automaton
	Calculating the Set AMEC

	Partial Order Reduction
	The Ample Set Method for MDPs and LT Properties
	Experimental Results

	Partially Observable MDPs
	Conclusion
	Appendix
	Markov Chains
	Markov Decision Processes

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

