
Why3: Shepherd Your Herd of Provers?

François Bobot1,2, Jean-Christophe Filliâtre1,2,
Claude Marché2,1, and Andrei Paskevich1,2

1 Lab. de Recherche en Informatique, Univ Paris-Sud, CNRS, Orsay, F-91405
2 INRIA Saclay – Île-de-France, Orsay, F-91893

Abstract. Why3 is the next generation of the Why software verification
platform. Why3 clearly separates the purely logical specification part
from generation of verification conditions for programs. This article fo-
cuses on the former part. Why3 comes with a new enhanced language
of logical specification. It features a rich library of proof task transfor-
mations that can be chained to produce a suitable input for a large set
of theorem provers, including SMT solvers, TPTP provers, as well as
interactive proof assistants.

1 Introduction

Why3 is the next generation of the Why software verification platform. In this
article, we present it as an environment for logical specification that targets
a multitude of automated and interactive theorem provers. It provides a rich
syntax based on first-order language and a highly configurable toolkit to convert
specifications into proof obligations in various formats.

The development of Why3 is mainly motivated by the necessity to model
the behavior of programs (both purely applicative and imperative) and formally
prove their properties. It is commonly admitted that verification of non-trivial
programs requires designing a pure logical model of the considered programs. In
JML [10] or Spec# [2], for instance, such models are described using the pure
fragment of the underlying programming language. In the L4.verified project [18],
the Haskell language is used to model the C code of a micro-kernel. Proof assis-
tants such as Coq [6], PVS [25], or Isabelle [17] also provide rich specification
languages that are convenient to model programs.

Why3 distinguishes itself from the aforementioned approaches in that we
want to provide as much automation as possible. Instead of being a theorem
prover by itself, Why3 intends to provide a front-end to third-party theorem
provers. To this end, we propose a common specification language which aims at
maximal expressiveness without sacrificing efficiency of automated proof search

? This work was partly funded by the U3CAT (ANR-08-SEGI-021, http://frama-c.
com/u3cat/) and DECERT (ANR-08-DEFI-005, http://decert.gforge.inria.

fr/) projects of the French national research organization (ANR), and the Hi-
lite project (http://www.open-do.org/projects/hi-lite/) of the System@tic ICT
cluster of Paris-Région Île-de-France.

(Section 2). Another challenge is modular specification. Our proposal is a notion
of reusable theories and an associated mechanism of “cloning” (Section 3). As
we target a large set of theorem provers whose language and logic range from
mono-sorted first-order logic to many-sorted first-order logic modulo theories to
the Calculus of Inductive Constructions, we provide an extensible framework
to translate the language of Why3 to these various logic languages (Section 4).
Finally, we briefly describe the set of tools in the current distribution of Why3
(Section 5).

2 Logic

The logic of Why3 is a first-order logic with polymorphic types and several
extensions: recursive definitions, algebraic data types and inductive predicates.

Types. A type can be non-interpreted, an alias for a type expression or an alge-
braic data type. For instance, the type of polymorphic binary trees is introduced
as follows:

type tree ’a = Leaf | Node (tree ’a) ’a (tree ’a)

A particular case of algebraic types are enumerations.

type answer = Yes | No | MayBe

Built-in types include integers (int), real numbers (real) and polymorphic tu-
ples. The following declaration defines the type answer tree as an alias for a
pair:

type answer_tree ’a = (tree ’a, answer)

Function and Predicate Symbols. Every function or predicate symbol in Why3
has a (polymorphic) type signature. For example, an abstract function that
merges two integer trees can be declared as follows:

function merge (tree int) (tree int) : tree int

Both functions and predicates can be given definitions, possibly mutually recur-
sive. As examples, we can calculate the height of a tree

function height (t: tree ’a) : int = match t with
| Leaf -> 0
| Node l _ r -> 1 + max (height l) (height r)

end

or test whether the elements of a tree are both sorted and within given bounds

predicate sorted (t: tree int) (min: int) (max: int) =
match t with
| Leaf -> true
| Node l x r ->

sorted l min x /\ min <= x <= max /\ sorted r x max
end

Why3 automatically verifies that recursive definitions are terminating. To do so,
it looks for an appropriate lexicographic order of arguments that guarantees a
structural descent. Currently, we only support recursion over algebraic types.
Other kinds of recursively defined symbols have to be axiomatized. In future
versions of Why3, we plan to allow annotating recursive definitions with ter-
mination measures. Such definitions would generate proof obligations to ensure
termination.

Another extension to first-order language adopted in Why3 is inductive pred-
icates. Such a predicate is the least relation satisfying a set of clauses. For in-
stance, the subsequence relation over finite lists is inductively defined as follows:

inductive sub (list ’a) (list ’a) =
| empty: sub (Nil: list ’a) (Nil: list ’a)
| cons : forall x: ’a, s1 s2: list ’a.

sub s1 s2 -> sub (Cons x s1) (Cons x s2)
| dive : forall x: ’a, s1 s2: list ’a.

sub s1 s2 -> sub s1 (Cons x s2)

Standard positivity restrictions apply to ensure the existence of a least fixed
point.

Terms and Formulas. First-order language is extended, both in terms and for-
mulas, with pattern matching, let-expressions, and conditional (if-then-else)
expressions. We have decided to be faithful to the usual distinction between terms
and formulas that is made in the first-order logic. Thus we make a difference be-
tween a predicate symbol and a function symbol which returns a bool-typed
value, bool being defined with type bool = True | False. However, to facil-
itate writing, conditional expressions are allowed in terms, as in the following
definition of absolute value:

function abs (x: int) : int = if x >= 0 then x else -x

Such a construct is directly accepted by provers not making a distinction between
terms and formulas (e.g. provers supporting the SMT-LIB V2 format [3]). In
order to translate if-then-else constructs to traditional first-order language,
Why3 lifts them to the level of formulas and rewrites them as conjunctions of
two implications.

3 Theories

Why3 input is organized as a list of theories. A theory is a list of declarations.
Declarations introduce new types, functions and predicates, state axioms, lem-
mas and goals. These declarations can be directly written in the theory or taken
from existing theories.

Figure 1 contains an example of Why3 input text, containing four theories.
We start with a theory Order of partial order, declaring an abstract type t
and an abstract binary predicate (<=). The next theory, List, declares a new

theory Order

type t

predicate (<=) t t

axiom le_refl : forall x : t. x <= x

axiom le_asym : forall x y : t. x <= y -> y <= x -> x = y

axiom le_trans: forall x y z : t. x <= y -> y <= z -> x <= z

end

theory List

type list ’a = Nil | Cons ’a (list ’a)

predicate mem (x: ’a) (l: list ’a) = match l with

| Nil -> false

| Cons y r -> x = y \/ mem x r

end

end

theory SortedList

use import List

clone import Order as O

inductive sorted (l : list t) =

| sorted_nil :

sorted Nil

| sorted_one :

forall x:t. sorted (Cons x Nil)

| sorted_two :

forall x y : t, l : list t.

x <= y -> sorted (Cons y l) -> sorted (Cons x (Cons y l))

lemma sorted_mem:

forall x: t, l: list t. sorted (Cons x l) ->

forall y: t. mem y l -> x <= y

end

theory SortedIntList

use import int.Int

use import List

clone import SortedList with type O.t = int, predicate O.(<=) = (<=)

goal sorted123: sorted (Cons 1 (Cons 2 (Cons 3 Nil)))

end

Fig. 1. Example of Why3 text.

algebraic type of polymorphic lists, list ’a, together with a recursively defined
predicate of membership.

Now we want to construct a theory SortedList of ordered lists. We want
to reuse the definition of polymorphic lists given in theory List, as well as the
axioms from Order. The use import List command indicates that this new
theory may refer to symbols from theory List. These symbols are accessible
in a qualified form, such as List.list or List.Cons. The import qualifier ad-
ditionally allows us to use them without qualification. Then we clone theory
Order. This is pretty much equivalent to copy-pasting every declaration from
Order to SortedList. Finally, we introduce an inductive predicate sorted and
state as a lemma that the head of a sorted list is smaller or equal to all subsequent
elements.

Notice an important difference between use and clone. If we use a theory,
say List, twice (directly or indirectly), there is no duplication: there is still
only one type of lists and a unique pair of constructors. On the contrary, when
we clone a theory, we create a local copy of every cloned declaration, and the
newly created symbols, despite having the same names, are different from their
originals.

Now, we can instantiate theory SortedList to any ordered type, without
having to retype the definition of sorted. Let us build a theory SortedIntList
for sorted lists of integers. We first import the theory of integers int.Int from
Why3’s standard library — the prefix int indicates the file in the standard library
containing theory Int. The next declaration clones SortedList (i.e. copies its
declarations) substituting type int for type O.t of SortedList and the default
order on integers for predicate O.(<=). Why3 controls that the result of cloning is
well-typed. Notice that, when we instantiate an abstract symbol, its declaration
is not copied from the theory being cloned. Thus, we do not create a second
declaration of type int in SortedIntList.

Why should we clone theory Order in SortedList if we make no instanti-
ation? Couldn’t we write use import Order as O instead? The answer is no.
When we use a theory, we mean to share its symbols and declarations with
other places where this theory is used. On the other hand, when we clone a
theory, we obtain a fresh, local copy of its declarations. Therefore, when cloning
a theory, we can only instantiate the symbols declared locally in this theory, not
the symbols imported with use. Therefore, we create a local copy of Order in
SortedList to be able to instantiate t and (<=) later.

The mechanism of cloning bears some resemblance to modules and functors of
ML-like languages. Unlike those languages, Why3 makes no distinction between
modules and module signatures, modules and functors. Any Why3 theory can
be use’d directly or instantiated in any of its abstract symbols.

4 Proof Tasks

The principal activity of Why3 can be described as processing of proof tasks. A
proof task is basically a sequent: a list of declarations that ends with a goal. A

theory

end

theory

end

theory

end

goal goal goal

Z3

Z3 driver

trans1 trans2

Fig. 2. Task flow in Why3.

proof task is flat: it does not contains any use or clone anymore. Why3 starts
by extracting a set of proof tasks from a given theory.

Suppose we want to send a proof task to a particular prover, say Z3 [13].
Not only is the input syntax of Z3 different from Why3’s syntax, there are also
significant differences in the logic of the two systems. For instance, Z3 does
not support polymorphism or inductive predicates. We need to apply a series
of transformations that will gradually translate Why3’s logic into the prover’s
logic. This series of transformations is controlled by a configuration file, called a
driver, associated to any prover supported by Why3. The task flow from theories
to provers is illustrated in Figure 2.

Figure 3 contains a simplified driver for Z3. In the driver, we specify a pretty-
printer corresponding to the prover’s input format (smtv2 here). We also give
regular expressions to interpret the prover output. Next we enumerate the trans-
formations to be applied to a proof task before it can be sent to the pretty-printer.
For instance, inline trivial expands “simple” definitions, such as

predicate (>=) (x y : t) = y <= x

In the current implementation, we call a definition simple whenever it is non-
recursive, right linear and does not contain variables at depth more than one.
This might change in future versions of Why3. Transformation eliminate_
algebraic_smt encodes algebraic data types and pattern-matching expressions
in terms of uninterpreted type and function symbols [24]. Finally, encoding smt
eliminates polymorphic types from the proof task, converting it to an equivalent
monomorphic many-sorted sequent [9]. For description of other transformations,
we refer the reader to Why3’s manual [8]. Finally, to take into account built-in
theories of Z3, we specify the correspondence between Why3 symbols and Z3
interpreted symbols. For instance, integer addition (defined in theory int.Int)
corresponds to the built-in operation + of Z3. Also, we can omit all axioms which
are already known to Z3.

printer "smtv2"

filename "%f-%t-%g.smt"

valid "^unsat"

invalid "^sat"

unknown "^\\(unknown\\|Fail\\)" "Unknown"

time "why3cpulimit time : %s s"

transformation "inline_trivial"

transformation "eliminate_builtin"

transformation "eliminate_definition"

transformation "eliminate_inductive"

transformation "eliminate_algebraic_smt"

transformation "simplify_formula"

transformation "discriminate"

transformation "encoding_smt"

prelude "(set-logic AUFNIRA)"

theory BuiltIn

syntax type int "Int"

syntax type real "Real"

syntax predicate (=) "(= %1 %2)"

end

theory int.Int

prelude ";;; this is a prelude for Z3 integer arithmetic"

syntax function zero "0"

syntax function one "1"

syntax function (+) "(+ %1 %2)"

syntax function (-) "(- %1 %2)"

syntax function (*) "(* %1 %2)"

syntax function (-_) "(- %1)"

syntax predicate (<=) "(<= %1 %2)"

syntax predicate (<) "(< %1 %2)"

syntax predicate (>=) "(>= %1 %2)"

syntax predicate (>) "(> %1 %2)"

remove prop CommutativeGroup.Comm.Comm

remove prop CommutativeGroup.Assoc.Assoc

remove prop CommutativeGroup.Unit_def

remove prop CommutativeGroup.Inv_def

(* etc. *)

end

Fig. 3. Driver for Z3.

Users can develop pretty-printers and transformations of their own, dynami-
cally linked to Why3 as plug-ins. They are registered under unique names, which
can be subsequently referred to in drivers. As a consequence, a user can easily
add support for a new prover or tweak the interface to an existing one. For ex-
ample, along with the driver in Figure 3, we provide an alternative driver for
Z3 with support for built-in theory of arrays. To avoid writing the same driver
rules several times, common parts can be put in separate files and included in
drivers.

5 Architecture

Why3 is implemented as a OCaml programming library. Every functionality
(term construction, parsing, proof task transformations, prover calls, etc.) is
given in a form of an API. We took a defensive approach in designing this API:
Why3 does not allow constructing an ill-formed or ill-typed term, or to use a non-
declared symbol in a theory or a proof task. A special effort is made to share
the common sub-terms and sub-tasks, and to memoize the intermediate results
of transformations on these sub-tasks. In this way, we avoid a lot of redundant
work since, in the most common case where proof tasks originate from the same
theory, they share the most of their premises.

The tools we provide in Why3 distribution are built on top of this com-
mon library. We anticipate other projects to make use of this library. For in-
stance, integrating automated theorem provers in an interactive proof assistant
can be naturally done by linking with Why3 (assuming we trust the prover an-
swers). Another way of using Why3 is to supply new parsers, transformations,
or pretty-printers in the form of dynamically loadable plug-ins. As an example,
we distribute a parser for the TPTP format, allowing us to test Why3 on a vast
collection of theorem proving problems [28].

We package three main tools with Why3:

– a simple command-line interface why3, to launch a selected prover on a set
of goals in a given file;

– an interactive graphical user-interface why3ide;
– a tool why3bench to benchmark different automated provers (or different

configurations of the same prover) on large sets of problems. It is also useful
to compare axiomatizations or transformations.

A screenshot of the Why3 GUI is shown in Figure 4. On the left side we see
the available provers. We can apply some transformations to a proof task before
sending it to the prover; for example, split a goal or unfold a definition in it.
The goal in theory SortedIntList is quite simple and Alt-Ergo [7] proves it in
an instant. The lemma sorted mem in theory SortedList is, on the other hand,
more difficult for automated prover since it requires induction. We thus resort to
an interactive proof assistant, namely Coq, to discharge this proof task. Using
the “Edit” button, the user can launch a Coq IDE to edit a proof script. After

Fig. 4. Why3 GUI screenshot.

the editing session is finished, Why3 GUI rechecks that the saved proof script is
accepted by Coq.

Why3 GUI saves the state of a proof session in a database file. A user can
modify the initial Why3 file and then return to GUI and replay the previous
proof session. For all proof tasks that have not been automatically discharged in
this way, the user has to reconstruct the proof. In the future, we plan to extend
Why3 GUI to a full-fledged IDE.

6 Related Work and Perspectives

We presented Why3, a language for specification and a tool to translate it into
proof obligations for various interactive and automated theorem provers. Why3
improves upon the former Why 2 platform both in terms of expressiveness,
architecture, extensibility (see the manual [8] for an exhaustive list of changes).
The Why3 platform can be used by itself, as some kind of standalone “meta”
theorem prover, but the main purpose of Why3 is to be used as an intermediate

language. For instance, we are currently designing a plug-in for the Coq proof
assistant, to extract the first-order part of Coq goals and pass them to automated
theorem provers. At the moment, Why3 does not attempt to analyze the output
of an automated prover (neither proofs nor counterexamples). A short term
perspective would be to translate counterexamples back to Why3 language. This
requires not only to parse the output of a particular prover, but also to reverse
the effect of various task transformations of Why3. In a long term perspective,
we would like to augment the confidence in prover results by producing Coq or
Isabelle certificates, in the spirit of Isabelle’s Sledgehammer [22].

At the same time, we are re-implementing a verification condition generator
for a programming language, WhyML, annotated with Why3 pre/post-conditions.
(Interested readers are invited to visit our gallery of verified programs at http:
//proval.lri.fr/gallery/why3.en.html.) We also plan to use WhyML as an
intermediate language for program verification, in the spirit of the former Why
platform [14] or Boogie [1]. This is one of the two principal approaches to program
verification, where a general-purpose programming language is equipped with a
specification language and then possibly translated to the intermediate language
of a VCGen. This is the case of VCC [12], Spec# [2], Dafny [19], Chalice [20],
ESC/Java2 [11], Krakatoa [21], Frama-C [15]. The other principal approach uses
a deep embedding of a programming language and its semantics in the logic of
a general-purpose proof assistant. This is the case of SunRise [16], KIV [26],
Isabelle/Simpl [27], KeY [5], Ynot [23], etc.

While the latter approach benefits from rich specification languages, one can
argue that these languages are not close enough to the programming language
constructs, creating another entry barrier for a new user. Additionally, proofs
are typically performed in an interactive way, since underlying environments do
not offer as much automation as state-of-the-art theorem provers (although the
Sledgehammer effort strives to fill this gap). On the other hand, the former ap-
proach, which Why3 belongs to, offers more automation but poorer specification
languages. We believe that Why3 features presented in this paper (inductive
predicates, algebraic data types, theories) help to alleviate this drawback. We
intend to promote these constructions to existing specification languages, such
as ACSL [4] or JML [10].

References

1. M. Barnett, R. DeLine, B. Jacobs, B.-Y. E. Chang, and K. R. M. Leino. Boogie:
A Modular Reusable Verifier for Object-Oriented Programs. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal Methods for
Components and Objects: 4th International Symposium, volume 4111 of Lecture
Notes in Computer Science, pages 364–387, 2005.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices (CASSIS’04), volume 3362 of Lecture Notes in Computer Science,
pages 49–69. Springer, 2004.

3. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories (Edinburgh, England), 2010.

4. P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL:
ANSI/ISO C Specification Language, version 1.4, 2009. http://frama-c.cea.fr/
acsl.html.

5. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of Lecture Notes in Computer Science.
Springer, 2007.

6. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

7. F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and A. Mebsout.
The Alt-Ergo automated theorem prover, 2008. http://alt-ergo.lri.fr/.

8. F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. The Why3 platform. LRI,
CNRS & Univ. Paris-Sud & INRIA Saclay, version 0.64 edition, Feb. 2011. http:

//why3.lri.fr/.

9. F. Bobot and A. Paskevich. Expressing Polymorphic Types in a Many-Sorted
Language, 2011. Preliminary report. http://hal.inria.fr/inria-00591414/.

10. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer (STTT), 7(3):212–232, June
2005.

11. D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, CASSIS, volume
3362 of Lecture Notes in Computer Science, pages 108–128. Springer, 2004.

12. M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. VCC: Contract-
based modular verification of concurrent C. In 31st International Conference on
Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Com-
panion Volume, pages 429–430. IEEE Comp. Soc. Press, 2009.

13. L. de Moura and N. Bjørner. Z3, an efficient SMT solver. http://research.

microsoft.com/projects/z3/.

14. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In W. Damm and H. Hermanns, editors, 19th Interna-
tional Conference on Computer Aided Verification, volume 4590 of Lecture Notes
in Computer Science, pages 173–177, Berlin, Germany, July 2007. Springer.

15. The Frama-C platform for static analysis of C programs, 2008. http://www.

frama-c.cea.fr/.

16. P. V. Homeier and D. F. Martin. A mechanically verified verification condition
generator. The Computer Journal, 38(2):131–141, July 1995.

17. The ISABELLE system. http://isabelle.in.tum.de/.

18. G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. Commun. ACM, 53(6):107–115, June 2010.

19. K. R. M. Leino. Dafny: An Automatic Program Verifier for Functional Correctness.
In Springer, editor, LPAR-16, volume 6355, pages 348–370, 2010.

20. K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with
Chalice. In A. Aldini, G. Barthe, and R. Gorrieri, editors, Foundations of Security
Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures, volume 5705
of Lecture Notes in Computer Science, pages 195–222. Springer, 2009.

21. C. Marché. The Krakatoa tool for deductive verification of Java programs. Winter
School on Object-Oriented Verification, Viinistu, Estonia, Jan. 2009. http://

krakatoa.lri.fr/ws/.
22. J. Meng, C. Quigley, and L. C. Paulson. Automation for interactive proof: first

prototype. Inf. Comput., 204(10):1575–1596, 2006.
23. A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: Rea-

soning with the awkward squad. In Proceedings of ICFP’08, 2008.
24. A. Paskevich. Algebraic types and pattern matching in the logical language of

the Why verification platform (version 2). Technical Report 7128, INRIA, 2010.
http://hal.inria.fr/inria-00439232/en/.

25. The PVS system. http://pvs.csl.sri.com/.
26. W. Reif, G. Schnellhorn, and K. Stenzel. Proving system correctness with KIV 3.0.

In W. McCune, editor, 14th International Conference on Automated Deduction,
Lecture Notes in Computer Science, pages 69–72, Townsville, North Queensland,
Australia, july 1997. Springer.

27. N. Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, Technische Universität München, 2006.

28. G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In A. Bundy,
editor, Proc. 12th Conference on Automated Deduction CADE, Nancy/France,
pages 252–266. Springer-Verlag, 1994.

