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Abstract. This article details the formal verification of a 2-line C pro-
gram that computes the number of solutions to the n-queens problem.
The formal proof of (an abstraction of) the C code is performed us-
ing the Why3 tool to generate the verification conditions and several
provers (Alt-Ergo, CVC3, Coq) to discharge them. The main purpose of
this article is to illustrate the use of Why3 in verifying an algorithmically
complex program.

1 Introduction

Even the shortest program can be a challenge for formal verification. This paper
exemplifies this claim with the following 2-line C program:

t(a,b,c){int d=0,e=a&~b&~c,f=1;if(a)for(f=0;d=(e-=d)&-e;f+=t(a-d,(b+d)*2,(

c+d)/2));return f;}main(q){scanf("%d",&q);printf("%d\n",t(~(~0<<q),0,0));}

This rather obfuscated code was found on a web page gathering C signature
programs1 and was apparently authored by Marcel van Kervinc. This is a stan-
dalone C program that reads an integer n from standard input and prints another
integer f(n) on standard output. If n is smaller than the machine word size in
bits (typically 32), then f(n) appears to be the number of solutions to the well-
known n-queens problem, that is the number of ways that n queens can be put
on a n× n chessboard so that they do not attack each other. More surprisingly,
this is a very efficient program to compute this number.

As a case study for Why3, a tool the author of this paper is co-developing [4],
we consider verifying this program formally. Since Why3 is not addressing C
programs, we make an abstraction of the algorithm above. Our goal is then a
mechanically-assisted proof that this algorithm terminates and indeed computes
the expected number. This is highly challenging, due to the algorithmic com-
plexity of this program. The main contribution of this paper is to demonstrate
the ability of our tool to tackle the wide range of verification issues involved in
such a proof. In particular, it shows the relevance of using both automated and

? This work is partly supported by the ANR project U3CAT (ANR-08-SEGI-021) and
the Open-DO project Hi-Lite.

1 http://www.iwriteiam.nl/SigProgC.html



interactive theorem provers within the same framework. Additionally, this paper
provides a nice benchmark for people developing tools for the verification of C
programs; they may consider refining our proof into a proof of the C code above.

This paper is organized as follows. Section 2 “unobfuscates” the program,
explaining the algorithm and its data. Section 3 briefly introduces Why3, a tool
which takes annotated code as input and produces verification conditions in the
native syntax of several existing provers. Section 4 details the verification process,
namely the logical annotations inserted in the program and the methods used
to discharge the resulting verification conditions. We conclude with a discussion
in Section 5. Annotated source code and proofs are available online at http:

//why3.lri.fr/queens/. Proofs can be replayed in a batch mode.

2 Unobfuscation

Before we enter the formal verification process, we first explain this obfuscated
C program. The code is divided into a recursive function t, which takes three
integers as arguments and returns an integer, and a main function which reads
an integer from standard input, calls function t and prints the result on standard
output. With added type declarations and a bit of indentation, function t reads
as follows:

int t(int a, int b, int c) {

int d=0,e=a&~b&~c,f=1;

if(a) for(f=0; d=(e-=d)&-e; f+=t(a-d,(b+d)*2,(c+d)/2));

return f;

}

The assignment d=(e-=d)&-e does not strictly conform with ANSI C standard,
because it assumes that the inner assignment e-=d is performed before evaluating
-e. This is not guaranteed and the compiler may freely choose between both
possible evaluation strategies. It is easy to turn the code in legal C: since d is
initialized to 0, we can safely move assignment e-=d to the end of the loop body.
Then we do not need the initialization d=0 anymore2. The second modification
we make is to replace the main function with a queens function from int to int,
since we are only interested in the integer function and not in input-outputs. We
end up with the code given in Fig. 1. Our goal is to show that queens(n) is
indeed the number of solutions to the n-queens problem.

Let us now explain the algorithm and its data. This is a backtracking algo-
rithm which fills the rows of the chessboard one at a time. More precisely, each
call to t enumerates all possible positions for a queen on the current row inside
the for loop and, for each of them, recursively calls t to fill the remaining rows.
The number of solutions is accumulated in f and returned. The key idea is to
use integers as sets or, equivalently, as bit vectors: i belongs to the “set” x if and
only if the i-th bit of x is set. According to this trick, program variables a, b, c,

2 This even reduces the size of the original code.



int t(int a, int b, int c) {

int d, e=a&~b&~c, f=1;

if (a)

for (f=0; d=e&-e; e-=d)

f += t(a-d,(b+d)*2,(c+d)/2));

return f;

}

int queens(int n) {

return t(~(~0<<n),0,0);

}

Fig. 1. Unobfuscated C code.

int t(set a, set b, set c)
f ← 1
if a 6= ∅

e ← (a \ b) \ c
f ← 0
while e 6= ∅

d ← min elt(e)
f ← f + t(a \ {d}, succ(b ∪ {d}), pred(c ∪ {d}))
e ← e \ {d}

return f

int queens(int n)
return t({0, 1, . . . , n− 1}, ∅, ∅)

Fig. 2. Abstract version of the code using sets.

d and e are seen as subsets of {0, 1, . . . , n − 1}. Then almost all computations
in this program are to be understood as set operations. Some of them are clear:
a&~b&~c computes the set a \ b \ c, the test if(a) checks whether a is empty,
etc. Others are more subtle. For instance, e&-e computes the smallest element
of e (and returns the corresponding singleton set). This is a nice property of the
two’s complement arithmetic; see for instance [14, 10] for an explanation3. Then
the result d can be removed from set a using subtraction a-d since the bit of
d that is set is also set in a; similarly, d is added to sets b and c using a mere
addition since the corresponding bit is not set in b and c. Another trick is the
computation of the set {0, 1, . . . , n−1} as ~(~0<<n). Finally, multiplication by 2
(resp. division by 2) is used to add 1 (resp. subtract 1) to each element of a set;
from now on, we use succ and pred to denote those two set operations. We can
now write a more abstract version of the code that only deals with finite sets. It
is given in Fig. 2. Note that n, f , and returned values of t and queens are still
integers.

It is now easier to explain the algorithm. Set a contains the columns not yet
assigned to a queen, i.e. candidate positions for the queen to be set on the current

3 This trick is used in Patricia trees [11] implementations.
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c = 000010012, c = {0, 3} a&~b&~c = 100001002, a \ b \ c = {2, 7}

Fig. 3. Interpretation of variables a, b, and c as sets.

row. Initially, a contains all possible positions, that is a = {0, 1, . . . , n−1}. If we
have found one solution, a becomes empty, then we return 1. Otherwise, we have
to consider all possible positions on the current row. Sets b and c respectively
contain the positions to be avoided because they are on an ascending (resp.
descending) diagonal of a queen on previous rows. Thus e = a \ b \ c precisely
contains the positions to be considered for the current row. They are all examined
one at a time by repeatedly removing the smallest element from e, which is set
to d. Then next rows are considered by a recursive call to t with a, b and c being
updated according to the choice of column d for the current row: d is removed
from the set of possible columns (a\{d}), added to the set of ascending diagonals
which is shifted (succ(b ∪ {d}), and similarly added to the set of descending
diagonals which is shifted the other way (pred(c ∪ {d})). The values of a, b and
c are illustrated in Fig. 3 for n = 8 on a configuration where 3 rows are already
set (columns are numbered from right to left, starting from 0).

3 Overview of Why3

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC3 Z3 etc.

Why3 is a set of tools for program verifica-
tion. Basically, it is composed of two parts,
which are depicted to the right: a logical lan-
guage called Why with an infrastructure to
translate it to existing theorem provers; and
a programming language called WhyML with
a verification condition generator.

The logic of Why3 is a polymorphic first-
order logic with algebraic data types and in-
ductive predicates [5]. Logical declarations are
organized in small units called theories. In
the following, we use two such theories from



01 let rec t (a b c: set int) =

02 if not (is empty a) then begin

03 let e = ref (diff (diff a b) c) in

04 let f = ref 0 in

05 while not (is empty !e) do

06 let d = min elt !e in

07 f := !f + t (remove d a) (succ (add d b)) (pred (add d c));

08 e := remove d !e

09 done;

10 !f

11 end else

12 1

13

14 let queens (q: int) =

15 t (below q) empty empty

Fig. 4. Why3 code for the program in Fig. 2.

Why3’s standard library: integers and finite sets of integers. The latter provides
a type set int and several operations: a constant empty for the empty set;
functions add, remove, diff, min elt, cardinal, and below (below n is the set
{0, 1, . . . , n − 1}); a predicate is empty. Operations succ and pred are miss-
ing from this library and we need to introduce them. First, we declare them as
follows:

function succ (set int) : set int

function pred (set int) : set int

Then we axiomatize them as follows:

axiom succ def:

∀ s: set int, i: int. mem i (succ s) ↔ i ≥ 1 ∧ mem (i-1) s

axiom pred def:

∀ s: set int, i: int. mem i (pred s) ↔ i ≥ 0 ∧ mem (i+1) s

Why3 provides a way to show the consistency of these axioms (by providing a
definition in Coq); however, we haven’t done it.

On top of this logic, Why3 provides a programming language, WhyML, with
a verification condition generator. This is a first-order language with an ML-
flavored syntax. It provides the usual constructs of imperative programming
(while loop, sequence, exceptions) as well as several constructs of ML (pattern
matching, local functions, polymorphism). All symbols from the logic (types,
functions, predicates) can be used in programs. Mutable data types can also be
introduced, by means of record types with mutable fields. This includes poly-
morphic references, which are part of Why3’s standard library. A reference r to
a value of type τ has type ref τ , is created with function ref, is accessed with
!r, and assigned with r := e. Why3 code for the program in Fig. 2 is given in
Fig. 4.



Programs are annotated using pre- and postconditions, loop invariants, and
variants to ensure termination. Verification conditions are computed using a
weakest precondition calculus and then passed to the back-end of Why3 to be
sent to theorem provers.

4 Verification

We focus here on the verification of the code in Fig. 4. (The verification of the
original C code in Fig. 1 is discussed at the end of this paper.) We need to prove
three properties regarding this code: it does not fail, it terminates, and it indeed
computes the number of solutions to the n-queens problem. The first property
is immediate since there is no division, no array access, or any similar operation
that could fail. We will consider termination later, as part of the verification
process (Sec. 4.2). Let us first focus on the specification.

4.1 Specification

We need to express that the value returned by a call to queens n is indeed the
number of solutions to the n-queens problem. As we have seen, the program is
building solutions one by one. Thus we have to prove that it finds all solutions,
only solutions and that it does not find the same solution twice. There is a major
difficulty here: the program is not storing anything, not even the current solution
being built. How can we state properties about the solutions being found?
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One solution is to use ghost code, that is additional code
not participating in the computation of the final result but
potentially accessing the program data. This ghost code will
fill an array with all solutions. One solution is represented by
an array of n integers. Each cell gives the column assigned to
the queen on the corresponding row. For instance, the array
5 2 4 6 0 3 1 7 corresponds to the solution of the 8-queens
problem displayed to the right. Rows are numbered from top to bottom and
columns from right to left — the latter follows the usual convention of displaying
least significant bits to the right, as in Fig. 3. Arrays used in ghost code do not
really have to be “true” arrays: there is need neither for efficiency, nor for array
bound checking. Thus we can model such arrays using purely applicative maps
from Why3’s standard library. Thus we simply define

type solution = map int int

We introduce a global variable col to record the current solution under con-
struction, as well as a global variable k to record the next row to be filled:

val col: ref solution (* solution under construction *)

val k : ref int (* next row in the current solution *)

The set of all solutions found so far is recorded into another array. It has type

type solutions = map int solution



and is declared as a global variable sol, together with another global variable s
holding the next empty slot in sol:

val sol: ref solutions (* all solutions *)

val s : ref int (* next slot for a solution *)

If solutions are stored in sol starting from index 0, then s is also the total
number of solutions found so far.

Using these four ghost variables, we can instrument the program with ghost
code to record the solutions. First, we surround the recursive call to f (line 7)
with code to record the value d for row k and to update k:

(* ghost *) col := !col[!k ← d];

(* ghost *) incr k;

f := !f + t (remove d a) (succ (add d b)) (pred (add d c));

(* ghost *) decr k;

Function incr (resp. decr) is a shortcut to increase (resp. decrease) an integer
reference. Second, when a solution is found, we record it into sol and increase
s by one, just before returning 1 (line 12):

else begin

(* ghost *) sol := !sol[!s ← !col];

(* ghost *) incr s;

1

end

So far we have instrumented the code to record the solutions it finds. We
still have to define what a solution is and to use this definition to specify the
code. From now on, it is convenient to introduce the number n of queens as a
parameter:

function n : int

This is not a limitation: a suitable precondition to function queens will say that
its argument q is equal to n (and we don’t even have callers). An alternative
would be to pass n as a parameter everywhere, but we prefer avoiding it for
greater clarity. To define what a solution is, we first define the notion of partial
solution, up to row k (excluded):

predicate partial solution (k: int) (s: solution) =

∀ i: int. 0 ≤ i < k →
0 ≤ s[i] < n ∧
(∀ j: int. 0 ≤ j < i →

s[i] 6= s[j] ∧ s[i]-s[j] 6= i-j ∧ s[i]-s[j] 6= j-i)

Note that we avoid the use of the absolute value function: we do so to relieve the
automated theorem provers from resorting to the definition (typically an axiom).
The notion of solution is derived immediately, by instantiating k with n:

predicate solution (s: solution) = partial solution n s

To prove the absence of duplicate solutions, it is convenient to equip the set of
solutions with a total order. It is naturally given by the code: since elements of e
are processed in increasing order, by repeated use of function min elt, solutions
are found in lexicographic order.



0 4 7 5 2 6 1 3
0 5 7 2 6 3 1 4
0 6 3 5 7 1 4 2
0 6 4 7 1 3 5 2
1 3 5 7 2 0 6 4

...

For instance, the first five solutions for n = 8 are displayed to
the right. To define the lexicographic order, we first define the
property for two arrays to have a common prefix of length i:

predicate eq prefix (t u: map int α) (i: int) =

∀ k: int. 0 ≤ k < i → t[k] = u[k]

We make this a polymorphic predicate, to reuse it on both
solutions and arrays of solutions. Then it is easy to define the
lexicographic order over solutions:

predicate lt sol (s1 s2: solution) =

∃ i: int. 0 ≤ i < n ∧ eq prefix s1 s2 i ∧ s1[i] < s2[i]

Finally, we introduce two convenient shortcuts for the forthcoming specifications.
Equality of two solutions is defined using eq prefix:

predicate eq sol (t u: solution) = eq prefix t u n

The property for an array of solutions s to be sorted in increasing order between
index a included and index b excluded is defined in an obvious way:

predicate sorted (s: solutions) (a b: int) =

∀ i j: int. a ≤ i < j < b → lt sol s[i] s[j]

This completes the set of definitions needed to specify the code’s behavior. The
full specification for function queens (lines 14–15) is the following4:

let queens (q: int) =

{ 0 ≤ q = n ∧ !s = 0 ∧ !k = 0 }
t (below q) empty empty

{ result = !s ∧ sorted !sol 0 !s ∧
∀ u: solution.

solution u ↔ (∃ i:int. 0 ≤ i < result ∧ eq sol u !sol[i]) }

(S)

The precondition requires both s and k to be initially equal to zero. The postcon-
dition states that the returned value is equal to the number of solutions stored
in array sol, that is !s. Additionally, it states that array sol is sorted and that
an array u is a solution if and only if it appears in sol.

At this point, the reader should be convinced that specification (S) is indeed
expressing that this program is computing the number of solutions to the n-
queens problem. This is slightly subtle, since the absence of duplicated solutions
is not immediate: it is only a provable consequence of sol being sorted. Our
proof includes this property as a lemma.

4.2 Correctness Proof

We now have to prove that function queens terminates and obeys specification
(S) above. As a warm-up, let us prove termination first.

4 The code with all annotations is given in the appendix.



Termination. Termination reduces to that of function t. This involves proving
its termination as a recursive function, as well as proving the termination of
the while loop it contains. The termination of the while loop (lines 5–9) is
immediate, since the cardinality of e is decreased by one at each step of the
loop. We give the loop a variant accordingly:

while not (is empty !e) do variant { cardinal !e } ... (V1)

The proof is immediate. Regarding the termination of recursive calls, there is
also an obvious variant, namely the cardinality of a. It is indeed decreased by
one at each recursive call. We give this variant for function t as follows:

let rec t (a b c: set int) variant { cardinal a } = ... (V2)

The proof is not immediate, however. Indeed, for the cardinality to decrease, we
have to prove that d is an element of a. Within the loop, we only know for sure
that d is an element of e. Thus we need a loop invariant to maintain that e is
included in a. This could be the following:

while not (is empty !e) do invariant { subset !e a } ...

However, we will later need a more accurate invariant, which states that e re-
mains included in its initial value, that is diff (diff a b) c. Thus we favor
the following invariant:

while not (is empty !e) do

invariant { subset !e (diff (diff a b) c) } ...
(I1)

Remaining Annotations. To prove that function queens satisfies specification
(S) above, we have to give function t a suitable specification as well. Obviously,
this is a generalization of specification (S). Let us start with the precondition
for t. First, variable k must contain a valid row number and s should be non-
negative:

{ 0 ≤ !k ∧ !k + cardinal a = n ∧ !s ≥ 0 ∧ ... } (P1)

Second, sets a, b, and c must contain elements that are consistent with the
contents of array col:

{ ...

(∀ i: int. mem i a ↔
(0 ≤ i < n ∧ ∀ j: int. 0 ≤ j < !k → !col[j] 6= i)) ∧

(∀ i: int. i ≥ 0 → not (mem i b) ↔
(∀ j: int. 0 ≤ j < !k → !col[j] 6= i + j - !k)) ∧

(∀ i: int. i ≥ 0 → not (mem i c) ↔
(∀ j: int. 0 ≤ j < !k → !col[j] 6= i + !k - j)) ∧ ... }

(P2)

Finally, array col must contain a partial solution up to row k excluded:

{ ... partial solution !k !col } (P3)

This completes the precondition for function t. Let us consider now its postcon-
dition. First, it says that s must not decrease and that k must not be modified:

{ result = !s - old !s ≥ 0 ∧ !k = old !k ∧ ... } (Q1)



Then it says that all solutions found in this run of t, that is between the initial
and final values of s, must be sorted in increasing order:

{ ... sorted !sol (old !s) !s ∧ ... } (Q2)

Additionally, these new solutions must be exactly the solutions extending the
first k rows of array col:

{ ...

(∀ u: solution.

solution u ∧ eq prefix !col u !k ↔
∃ i: int. old !s ≤ i < !s ∧ eq sol u !sol[i]) ∧ ... }

(Q3)

Finally, the first k rows of col must not be modified, and so are the solutions
that were contained in sol prior to the call to t:

{ ... eq prefix (old !col) !col !k ∧
eq prefix (old !sol) !sol (old !s) } (Q4)

With such pre- and postcondition for function t, function queens can be proved
correct easily (verification conditions are discharged automatically).

The last step in the specification process is to come up with a loop invariant
for function t (lines 5–9). It should be strong enough to establish postconditions
(Q1)–(Q4). We already came up with invariant (I1) to ensure termination. To
ensure postcondition (Q1), there is an obvious invariant regarding s and k:

{ ... !f = !s - at !s ’L ≥ 0 ∧ !k = at !k ’L ∧ ... } (I2)

Notation at !s ’L is used to refer to the value of s at the program point
designated by label ’L. This label is introduced before the while keyword at
line 5 (this label appears in the code given in the appendix).

One key property to ensure that solutions are found in increasing order for
lt sol is that we traverse elements of e in increasing order, by repeated extrac-
tion of its minimum element. This must be turned into a loop invariant. It states
that elements of e already considered are all smaller than elements of e yet to
be considered:

{ ...

(∀ i j: int.

mem i (diff (at !e ’L) !e) → mem j !e → i < j) ∧ ... }
(I3)

Additionally, we must maintain that solutions found in this run of t, that is
between the initial value of s and its current value, are sorted in increasing
order:

{ ... sorted !sol (at !s ’L) !s ∧ ... } (I4)

We also have to maintain property (P3), since array col is modified by recursive
calls to t:

{ ... partial solution !k !col ∧ ... } (I5)

The most complex part of the loop invariant is surely the following, which is
needed to ensure postcondition (Q3). It states that the solutions found so far in
this run of function t are exactly those extending the first k rows of col with
an element of e already processed:



{ ...

(∀ u: solution.

solution u ∧ eq prefix !col u !k ∧
mem u[!k] (diff (at !e ’L) !e)

↔
∃ i: int. (at !s ’L) ≤ i < !s ∧ eq sol u !sol[i]) ∧ ... }

(I6)

Finally, we complete the loop invariant with an invariance property for col and
sol similar to (Q4):

{ ... eq prefix (at !col ’L) !col !k ∧
eq prefix (at !sol ’L) !sol (at !s ’L) } (I7)

This completes the specification for function t. Fully annotated code is given
in the appendix. We end up with 46 lines of annotations (not including the
preliminary definitions and axiomatizations!) for 2 lines of code. This huge ratio
should be considered as extreme: we are proving a very complex property of a
smart algorithm.

Mechanical Proof. The proof is performed using the SMT solvers Alt-Ergo [3]
and CVC3 [1], and the Coq proof assistant [13, 2]. Running Why3 on the resulting
annotated source code produces 41 verification conditions for function t and
2 for function queens. The latter are automatically discharged by CVC3. As
expected, verification conditions for t are more difficult to prove. Only 35 of
them are discharged automatically, either by Alt-Ergo or CVC3. The remaining
6 verification conditions are discharged manually, using the Coq proof assistant.
They are the following:

– precondition (P2) for the recursive call to t (3 goals, corresponding to the 3
right to left implications);

– preservation of invariant (I3);
– preservation of invariant (I4);
– postcondition (Q3) (left to right implication).

The Coq proof scripts amount to 142 lines of tactics and represent a few hours
of work. It is important to point out that these Coq proofs only involve steps
that could, in principle, be performed by SMT solvers as well (case analysis,
Presburger arithmetic, definition expansion, rewriting, quantifier instantiation).

Beside verification conditions, our proof also contains two lemmas: one for the
absence of duplicate solutions (see end of Section 4.1) and one technical lemma
regarding partial solution. They are respectively discharged by CVC3 and
Alt-Ergo.

5 Discussion

We have presented the formal verification of an extremely short but also ex-
tremely complex program using Why3. Beyond being a nice specification exer-
cise, it was the opportunity to introduce program verification using Why3 and



to illustrate several key features such as user axiomatizations or combined use of
interactive and automated theorem provers. We conclude this paper with several
discussions.

Originality. The verification competition organized during VSTTE 2010 [9]
already included a problem related to the n-queens problem. It was simpler,
though, since the code to be verified only had to check the existence of at least
one solution (and to return one, if any).

Ghost code. This case study is yet another example of where ghost code is
useful in verification [12]. In this particular case, the program is enumerating
the solutions to a problem, but does not store any of them, not even the current
one. Thus we enriched the code with new statements so that a rich specification
is possible. There is currently no support for ghost code in Why3; we plan to add
this feature in the future. In particular, this will include a check that (1) ghost
code is not modifying the program data, and (2) the program is not accessing
the ghost data. In this proof, we have only performed this verification manually.

Verification of the original C code. We have not verified the original C
code, only its abstraction into WhyML. Regarding the code structure, this is
not really an issue, since all C features involved (recursive function, while loop,
mutable variables) are available in WhyML as well. Regarding the code data,
on the contrary, our proof did not consider the use of integers as bit vectors; we
used sets instead. Our purpose was to focus on the specification of the algorithm.

Now that we have come up with a suitable specification, we could refine
our proof into a proof of the original C code. A possible route is to introduce
a function symbol, say bits, that turns an integer into the set of 1-bits in
its two’s complement representation. Then we can mechanically translate all the
annotations, replacing a with bits a, b with bits b, and so on. The only change
in the annotations is likely to be an extra precondition stating that the upper bits
of c are zeros (otherwise, ones could be erroneously introduced by the divisions
by two). The proof then requires extra lemmas to justify the tricks used in the
code. For instance, a lemma will show that, under suitable conditions on x, we
have bits (x & -x) = singleton (min elt (bits x)). A bit vector library
with two’s complement interpretations is currently under development in Why3;
we consider refining our proof along the lines we just sketched in a future work.
Last, translating the resulting proof into a verification tool for C programs, such
as VCC [6] or Frama-C [8], should be straightforward. It would be interesting to
see which level of proof automation can be achieved.

Overflows. There are two kinds of integer overflows in this program, depending
on the use of integers as bit vectors or as counters. Regarding integers used as
bit vectors, we can easily cope with the boundedness of integers by imposing



the precondition n ≤ size where size stands for the machine word size5. The
program is performing overflows as soon as n > size/2 since b may contain bits
which will overflow due to the repetitive multiplications by 2. These are harmless
overflows, but any suitable model should allow them.

Yet there is another source of integer overflows, in variable f and the returned
value6. And it is more difficult to cope with. Even unsigned, 32-bit integers are
not large enough to hold the number of solutions to the n-queens problem as
soon as n ≥ 19, the number of solutions for n = 19 being 4,968,057,848. Even
if we use 64-bit integers for the result, we would need to limit n accordingly
(most likely with n ≤ 28) and then to prove the absence of overflow. But this
would in turn require to know the number of solutions, which is precisely what
we are trying to compute. An upper bound for the number of solutions would be
enough, but there is no good one (and even if it would exist, this would require
to be proved). One workaround would be to make the code detect overflows,
and fail in such a case. Then our proof can be seen as a proof of the following
statement: “if there is no overflow, then the returned value is indeed the number
of solutions”. Another workaround would be to perform the computation using
arbitrary precision integers, which would be faithful to the proof we have made.
But this would slow the computation; considering that a record attempt already
requires dozens of years of total CPU time, we can hardly afford slowing it.
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2. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment. Springer-Verlag, 2004.
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A Annotated Source Code

This is the annotated source code for the program in Fig. 4.

let rec t (a b c : set int) variant { cardinal a } =

{ 0 ≤ !k ∧ !k + cardinal a = n ∧ !s ≥ 0 ∧
(∀ i: int. mem i a ↔
(0≤i<n ∧ ∀ j: int. 0 ≤ j < !k → !col[j] 6= i)) ∧

(∀ i: int. i≥0 → not (mem i b) ↔
(∀ j: int. 0 ≤ j < !k → !col[j] 6= i + j - !k)) ∧

(∀ i: int. i≥0 → not (mem i c) ↔
(∀ j: int. 0 ≤ j < !k → !col[j] 6= i + !k - j)) ∧

partial solution !k !col }
if not (is empty a) then begin

let e = ref (diff (diff a b) c) in

let f = ref 0 in

’L:while not (is empty !e) do

invariant {



!f = !s - at !s ’L ≥ 0 ∧ !k = at !k ’L ∧
subset !e (diff (diff a b) c) ∧
partial solution !k !col ∧
sorted !sol (at !s ’L) !s ∧
(∀ i j: int. mem i (diff (at !e ’L) !e) → mem j !e → i < j) ∧
(∀ u: solution.

(solution u ∧ eq prefix !col u !k ∧ mem u[!k] (diff (at !e ’L) !e))

↔
(∃ i: int. (at !s ’L) ≤ i < !s ∧ eq sol u !sol[i])) ∧
eq prefix (at !col ’L) !col (at !k ’L) ∧
eq prefix (at !sol ’L) !sol (at !s ’L) }

variant { cardinal !e }
let d = min elt !e in

(* ghost *) col := !col[!k ← d];

(* ghost *) incr k;

f := !f + t (remove d a) (succ (add d b)) (pred (add d c));

(* ghost *) decr k;

e := remove d !e

done;

!f

end else begin

(* ghost *) sol := !sol[!s ← !col];

(* ghost *) incr s;

1

end

{ result = !s - old !s ≥ 0 ∧ !k = old !k ∧
sorted !sol (old !s) !s ∧
(∀ u: solution.

((solution u ∧ eq prefix !col u !k) ↔
(∃ i: int. old !s ≤ i < !s ∧ eq sol u !sol[i]))) ∧

eq prefix (old !col) !col !k ∧
eq prefix (old !sol) !sol (old !s) }

let queens (q: int) =

{ 0 ≤ q = n ∧ !s = 0 ∧ !k = 0 }
t (below q) empty empty

{ result = !s ∧ sorted !sol 0 !s ∧
∀ u: solution.

solution u ↔ (∃ i: int. 0 ≤ i < result ∧ eq sol u !sol[i]) }


