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Model Che
king 16371. Introdu
tionModel 
he
king is an automati
 te
hnique for verifying 
orre
tness properties ofsafety-
riti
al rea
tive systems. This method has been su

essfully applied to �ndsubtle errors in 
omplex industrial designs su
h as sequential 
ir
uits, 
ommuni
a-tion proto
ols and digital 
ontrollers [Browne, Clarke and Dill 1985, Clarke, Emer-son and Sistla 1986, Clarke, Long and M
Millan 1991, Bur
h, Clarke, Dill, Longand M
Millan 1994℄. It is expe
ted that besides 
lassi
al quality assuran
e mea-sures su
h as stati
 analysis and testing, model 
he
king will be
ome a standardpro
edure in the design of rea
tive systems.A rea
tive system [Harel and Pnueli 1985, Manna and Pnueli 1992, Manna andPnueli 1995℄ 
onsists of several 
omponents whi
h are designed to intera
t with oneanother and with the system's environment. In 
ontrast to fun
tional (or trans-formational) systems, in whi
h the semanti
s is given as a fun
tion from input tooutput values, a rea
tive system is spe
i�ed by its temporal properties. A (tempo-ral) property is a set of desired behaviors in time; the system satis�es the propertyif ea
h exe
ution of the system belongs to this set. From a logi
al viewpoint, thesystem is des
ribed by a semanti
al (Kripke-)model , and a property is des
ribed bya logi
al formula. Arguing about system 
orre
tness, therefore, amounts to deter-mining the truth of formulas in models.In order to be able to perform su
h a veri�
ation, one needs a modelling languagein whi
h the system 
an be des
ribed, a spe
i�
ation language for the formulationof properties, and a dedu
tive 
al
ulus or algorithm for the veri�
ation pro
ess.Usually, the system to be veri�ed is modeled as a (�nite) state transition graph,and the properties are formulated in an appropriate propositional temporal logi
.An eÆ
ient sear
h pro
edure is then used to determine whether or not the statetransition graph satis�es the temporal formulas. When model 
he
king was �rstdeveloped in 1981 [Clarke and Emerson 1981, Emerson and Clarke 1982, Quielle andSifakis 1981℄, it was only possible to handle 
on
urrent systems with a few thousandstates. In the last few years, however, the size of the 
on
urrent systems that 
anbe handled has in
reased dramati
ally. By using sophisti
ated data stru
tures andheuristi
 sear
h pro
edures, it is now possible to 
he
k systems many orders ofmagnitude larger [Bur
h, Clarke, M
Millan, Dill and Hwang 1992℄.Mu
h of the su

ess of model 
he
king is due to the fa
t that it is a fully au-tomati
 veri�
ation method. Intera
tive methods are more general but harder touse; automati
 methods have a limited range but are more likely to be a

epted.In intera
tive veri�
ation, the user provides the overall proof strategy; the ma
hineaugments this by� 
he
king the 
orre
tness of ea
h step,� maintaining a list of assumptions and subgoals,� applying the rules and substitutions whi
h the user indi
ates, and by� sear
hing for appli
able transformation rules and assumptions.Sophisti
ated tools are also able to prove 
ertain lemmas automati
ally, usually byapplying a heuristi
 sear
h. Although there has been 
onsiderable resear
h on the



1638 Edmund M. Clarke and Bernd-Holger S
hlingloffuse of theorem provers, term rewriting systems and proof 
he
kers for veri�
ation,these te
hniques are time 
onsuming and often require a great deal of manualintervention. Moreover, sin
e most intera
tive provers are designed for unde
idablelanguages (e.g., �rst or higher order logi
), the proof pro
ess 
an never be 
ompletelyautomati
. User intera
tion is required, e.g., to �nd loop invariants or indu
tivehypotheses, and only an experien
ed user 
an perform a nontrivial proof.On the other hand, with model 
he
king all the user has to provide is a modelof the system and a formulation of the property to be proven. The veri�
ation toolwill either terminate with an answer indi
ating that the model satis�es the formulaor show why the formula fails to hold in the model. These 
ounterexamples areparti
ularly helpful in lo
ating errors in the model or system.With the 
ompletely automati
 approa
h it may be ne
essary for the model 
he
k-ing algorithm to traverse all rea
hable states of the system. This is only possible ifthe state spa
e is �nite. Whereas other automated dedu
tion methods may be ableto handle some in�nite-state problems, model 
he
king usually is 
onstrained to a�nite abstra
tion. In fa
t, model 
he
king algorithms 
an be regarded as de
isionpro
edures for temporal properties of �nite-state rea
tive systems. However, manyinteresting systems like sequential 
ir
uits or network proto
ols are �nite state.Moreover, in the design of safety 
riti
al systems it is often possible to separate the(�nite state) 
ontrol stru
ture from the (in�nite state) data stru
ture of a givenmodule. Finally, in many 
ases it is possible to abstra
t an in�nite domain into anappropriate �nite one, su
h that \interesting" properties are preserved. In an `aposteriori' veri�
ation, some e�orts may be ne
essary to 
onstru
t su
h an abstra
-tion from a given program. In a stru
tured software development pro
ess, however,the abstra
t system often arises naturally during an early design phase.A main impediment of the fully automati
 approa
h is the state explosion: ifany state of the system is uniquely des
ribed by n state bits, then there are 2npossible states the system 
an be in. At the present time, the number of states that
an be represented expli
itly (e.g., by lists or hash tables) is approximately 106.In [Bur
h, Clarke, M
Millan, Dill and Hwang 1992, M
Millan 1993℄, binary de
i-sion diagrams (BDDs) were used to represent state spa
es symboli
ally. With thiste
hnique, models with several hundred state bits and more than 10100 rea
hablestates 
an be 
he
ked. Be
ause of this and other te
hni
al advan
es in the availabletools it is now possible to verify rea
tive systems of realisti
 industrial 
omplex-ity, and a number of major 
ompanies in
luding Intel, Motorola, ATT, Fujitsu andSiemens have started using symboli
 model 
he
kers to verify a
tual designs.We now des
ribe a 
on
rete example of a nontrivial appli
ation, where model
he
king has been used to improve a proposed international standard. Considerthe 
a
he 
oheren
e proto
ol des
ribed in the draft IEEE Futurebus+ stan-dard [IEEE 1994℄. This proto
ol is required to insure 
oheren
e: 
onsisten
y of datain hierar
hi
al systems 
omposed of many pro
essors and 
a
hes inter
onne
ted bymultiple bus segments. Su
h proto
ols are notoriously 
omplex and, therefore, quitediÆ
ult to debug. The Futurebus+ proto
ol maintains 
oheren
e by having the in-dividual 
a
hes observe all bus transa
tions. In order to in
rease performan
e, the



Model Che
king 1639proto
ol allows transa
tions to be split. That is, the 
ompletion of a transa
tion maybe delayed and the bus freed. Then, it is possible to servi
e lo
al requests while theremote request is being pro
essed. At some later time, an expli
it response is issuedto 
omplete the transa
tion. Consider a sample 
on�guration with two pro
essorsP1 and P2 a

essing data from a 
ommon memory via a single bus (see Fig. 1 onpage 1640). Initially, neither pro
essor has a 
opy of the data in its 
a
he; they aresaid to be in the invalid state. Pro
essor P1 issues a read shared request to obtaina readable 
opy of the data from memory. P2 may observe this transa
tion and alsoobtain a readable 
opy, su
h that at the end of the transa
tion, both 
a
hes 
ontaina shared unmodified 
opy of the data. Next, if P1 de
ides to modify the data, the
opy held by P2 must be eliminated in order to maintain 
oheren
e. Therefore, P1issues an invalidate transa
tion on the bus. When P2 noti
es this transa
tion,it purges the data from its 
a
he. After exe
uting the invalidate-transa
tion, P1now has an ex
lusive 
opy of the data.The standard spe
i�es the possible states of the 
a
he data within ea
h pro
essorand how this state is updated during ea
h possible transa
tion. It 
onsists of roughly300 so-
alled attributes, whi
h are essentially boolean variables together with somerules for setting and 
learing them. In the automated veri�
ation of the Futurebus+proto
ol des
ribed in [Clarke, Grumberg, Hiraishi, Jha, Long, M
Millan and Ness1993℄, these attributes were transformed into the input language of the SMV model
he
ker [M
Millan 1993℄. For example, the following SMV 
ode fragment indi
ateshow the 
a
he state is updated when the 
a
he issues a read shared transa
tion:next(state) :=
ase CMD=read_shared:
ase state=invalid:
ase !SR & !TF: ex
lusive_unmodified;!SR : shared_unmodified;1 : invalid;esa
;...esa
;...esa
;If the transa
tion is not split (!SR), then the data will be supplied to the 
a
he.Either no other 
a
hes will read the data (!TF), in whi
h 
ase the 
a
he obtainsan ex
lusive unmodified 
opy, or some other 
a
he also obtains the data, andeveryone obtains shared unmodified 
opies. If the transa
tion is split, the 
a
hedata remains in the invalid state.The model for the 
a
he 
oheren
e proto
ol 
onsists of approximately 2300 linesof SMV 
ode (not 
ounting 
omments). The model is highly nondeterministi
, bothto redu
e the 
omplexity of veri�
ation by hiding details, and to 
over alloweddesign 
hoi
es. This model is 
ompiled into an internal BDD representation by theSMV program. Corre
tness properties are formulated in the temporal logi
 CTL.For example, 
a
he 
onsisten
y is des
ribed by requiring that if two 
a
hes have
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opies of a 
a
he line, then they agree on the data in that line:AG (P1.readable & P2.readable -> P1.data = P2.data)This formula is evaluated automati
ally on the BDD representation of the model.SMV �nds that it is not valid and exhibits a s
enario whi
h 
ould lead to the error:initially, both 
a
hes are invalid. Pro
essor P1 obtains an ex
lusive unmodified
opy of the data (say, data1) as des
ribed above and the data of P2 is invalid (seeFig. 1). Then, P2 issues a read modified, whi
h P1 splits for invalidation. That is,the memory supplies a 
opy of the data to P2, and P1 postpones the invalidation of
a
he data until lo
al a
tions are 
ompleted. Still having an ex
lusive unmodified
opy of data1, P1 now modi�es the data (say, into data2) and transitions toex
lusive modified. At this point, P1 and P2 are in
onsistent. This bug 
an be�xed by requiring P1 to go to the shared unmodified state when it splits theread modified transa
tion for invalidation.
data1
exclusive

data1

invalid

P1

P2

BUS
data1

shared_unmod

data1
shared_unmod

data1

invalidate

data1 data2

invalid

read_shared
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invalidexclusive
data2

invalid

invalid

read_modifiedFigure 1: Error s
enario in the Futurebus+ proto
olGiven a formal model of a system to be veri�ed, and a formulation of the proper-ties the system should satisfy, there are three possible results whi
h an automatedmodel 
he
ker 
an produ
e:1. either it �nds a proof for the formula in the model and outputs \veri�ed", or2. it 
onstru
ts a refutation, i.e., an exe
ution of the (model of the) system whi
hdissatis�es the (formulation of the) property, or3. the 
omplexity of the veri�
ation pro
edure ex
eeds the given memory limit ortime bound.If there is not suÆ
ient spa
e or time, in some 
ases it is possible to use bigger andfaster ma
hines for veri�
ation. Alternatively, one 
an use a 
oarser abstra
tion ofthe system and its properties. The third possibility is to employ heuristi
s whi
himprove the performan
e of the veri�er. Some of these heuristi
s are dis
ussed inSe
tions 10 and 11.In some sense it is more interesting to get a refutation than to get a proof. Witha refutation, one 
an de
ide whether it is due to the modelling and formulation, orwhether this undesired sequen
e of events 
ould indeed happen in reality. In theformer 
ase, the unrealisti
 behavior 
an be eliminated by additional assumptionson the model or formula. In the latter 
ase, one has found a bug, and the systemand model 
an be 
hanged appropriately. One of the major advantages of the fully



Model Che
king 1641automati
 approa
h is that there is almost no additional overhead for the newveri�
ation of the 
hanged system.If the model 
he
ker is able to prove all spe
i�ed formulas for the given model,then the veri�
ation is su

essfully 
ompleted. However, there 
an never be anyguarantee that a system whi
h has been veri�ed by a 
omputer tool will fun
tion
orre
tly in reality. Even if we 
ould assume that the veri�er's hard- and softwareis 
orre
t (whi
h we 
an not), there is a fundamental sour
e of ina

ura
y involved.Veri�
ation proves theorems about models of systems and formulations of proper-ties, not about physi
al systems and desired behavior; we 
an never know to whatextent our models and formulations re
e
t physi
al reality and intuitions. It is notpossible to guarantee that a physi
al system will behave 
orre
tly in unexpe
ted(i.e., unmodeled) situations. It would be unreasonable, however, to reje
t formalmethods be
ause they 
annot o�er su
h guarantees. Civil engineering 
an neverprove that a 
ertain building will not 
ollapse. Nevertheless it uses mathemati
almodels to 
al
ulate loads and wall thi
knesses and so on. Similarly, we 
an neverprove that our model adequately represents the reality. Therefore we 
an neverprove that a system will fun
tion as planned. Nevertheless, 
ompared to 
urrentpra
ti
e, the use of formal methods 
an signi�
antly de
rease the amount of errorsin 
omplex software systems. A temporal logi
 spe
i�
ation adds redundan
y to thedesign by restating an intended property in a (di�erent) 
on
ise formalism. Com-puter aided veri�
ation 
an help to lo
ate errors and to in
rease reliability of thesesystems. In the future, formal veri�
ation by model 
he
king will augment 
lassi
alsoftware design tools su
h as stru
tured analysis, 
ode review and testing.In this survey, we give a tutorial on the theoreti
al foundations and te
hniquesused in model 
he
king. Starting with elementary material on propositional tem-poral logi
s and automata we derive basi
 model 
he
king algorithms from 
om-pleteness results and tableau de
ision pro
edures. Then we dis
uss appli
ations andte
hniques for eÆ
ient implementation of these algorithms. We extend the resultsto more expressive logi
s and models. Finally, we dis
uss some open problems andfuture resear
h dire
tions in the area. At the end of this 
hapter, the reader 
an�nd a list of all symbols and notations and an index of topi
s.2. Logi
al Languages, ExpressivenessOne of the major 
on
erns of philosophi
al logi
 is to �nd an appropriate languagefor the formalization of natural language reasoning. The �rst and probably mostsu

essful of these languages is �rst order logi
. Almost all mathemati
al state-ments and proofs 
an be formulated in this language. However, 
ertain 
on
eptsimportant for 
omputer s
ien
e like well-foundedness and transitive 
losure requiremore expressive languages.Temporal logi
 was invented to formalize natural language senten
es about eventsin time, whi
h use temporal adverbs like \eventually" and \
onstantly". Temporallogi
s have proved to be useful for spe
ifying 
on
urrent systems, be
ause they 
andes
ribe the ordering of events without introdu
ing time expli
itly. There have been
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hlingloffmany variants of temporal logi
 proposed in the literature. Temporal logi
s 
an be
lassi�ed as� state- or transition- (interval-) based, depending on whether the formulatedproperties involve one or more referen
e points,� linear or bran
hing time, depending on the intuition of time as a sequen
e oras a tree of events,� star-free or regular, depending on the formal languages whi
h 
an be de�nedby formulas of the logi
, and� propositional or �rst-order, depending on the 
ardinality of the nontemporaldomains.In prin
iple, these 
lassi�
ations are orthogonal; in pra
ti
e, however, only 
er-tain 
ombinations are widely used. In this survey, we 
on
entrate on propositionalmodal logi
, linear temporal logi
, 
omputation tree logi
, and �xpoint 
al
ulus.Restri
tions and extensions of these logi
s are introdu
ed whenever appropriate.2.1. Propositional and First Order Logi
We assume a set P = fp; q; p1; :::g of (atomi
) propositions whi
h 
an be eithertrue or false. 1 For example, the proposition sta
k is empty denotes the fa
t that\the sta
k is empty". The propositional logi
 PL is built from P with the followingsyntax: PL ::= P j ? j (PL! PL)That is,� Every p2 P is a well-formed formula of propositional logi
,� ? is a well-formed formula (\the falsum"),� if ' and  are well-formed formulae, then so is ('!  ), and� nothing else is a formula.P is a parameter of the logi
; the spe
ial 
ase P = fg is allowed. Other 
onne
tives
an be de�ned as usual: :' , (' ! ?), > , :?, (' _  ) , (:' !  ),('^ ) , :(:'_: ), and ('$  ) , (('!  )^( ! ')). The pre
eden
e ofthese operators is �xed by (:;^;_;!;$), and parentheses are omitted in formulaswhenever appropriate. Atomi
 propositions and negated propositions are 
alledliterals .An interpretation I for the propositions is a fun
tion assigning a truth value fromftrue; falseg to every proposition. (For example, the proposition sta
k is emptyis interpreted di�erently on a farm, in a library, or in front of a 
omputer ter-minal.) A propositional model M , (U; I) 
onsists of the �xed binary domainU , ftrue; falseg and an interpretation for P . (Later on, we will 
onsider logi
s1A list of synta
ti
 
ategories and other symbols is given in the appendix.
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king 1643over arbitrary nonbinary domains.) The most basi
 semanti
al notion is the valida-tion relation j= between a modelM and a formula '. It is de�ned by the following
lauses.� M j= p i� I(p) = true,� M =j= ?, and� M j= ('!  ) i� M j= ' implies M j=  .That is, M j= (' !  ) i� M =j= ' or M j=  . If M j= ', then we say that Mvalidates ', or, equivalently, ' is valid in M.Propositional logi
 is not well-suited to formalize statements about events intime. Even though the interpretation of a statement 
an be �xed, its truth valuemay vary in time. This 
annot be expressed dire
tly in PL.To express su
h temporal dependen
ies, �rst order logi
 
an be used. The set Pis rede�ned to be a set of monadi
 predi
ates . That is, ea
h p 2 P is augmentedwith an additional parameter denoting time, for example, sta
k is empty(t).For sake of simpli
ity, we do not in
lude fun
tion symbols (or 
onstants) in the�rst-order language. Assume in addition to the set P of unary predi
ates a �xedset R , fR; a; b; :::g of a

essibility relations , and let R+ , R[ f�; <; =g. Fur-thermore, let T be a set of �rst-order variables T , ft; t0; :::g for points in time(whi
h is assumed to be in�nite unless stated otherwise).FOL ::= P(T ) j ? j (FOL! FOL) j R+(T ; T ) j 9T FOLWhen writing formulas, we often use in�x notation for relational terms: t1Rt2 ,R(t1; t2). The notation 8t ' is an abbreviation for :9t :', the string x > y standsfor y < x, and x � y for (x < y _ x = y), et
.To assign a truth value to a formula 
ontaining (free) variables, we assume thatwe are given a nonempty universe U of points in time, and that the interpretationI assigns to every proposition p 2 P a subset of points I(p) � U , and to everyrelation symbol R 2 R a binary relation I(R) � U � U . For the spe
ial relationsigns =, �, and < we require that I(=) , f(w;w) j w 2 Ug is the equality relation,I(�) , SfI(R) j R 2 Rg is the transition relation, and I(<) is the transitive
losure of I(�), the rea
hability relation. A variable valuation v assigns to anyvariable t 2 T a point w 2 U . A �rst-order model M , (U; I;v) 
onsists of auniverse U , an interpretation I, and a variable valuation v. As in the propositional
ase, we de�ne when a formula holds in a model:� M j= p(t) i� v(t) 2 I(p);� M =j= ?, and� M j= ('!  ) i� M j= ' implies M j=  ;� M j= R(t0; t1) i� (v(t0);v(t1)) 2 I(R);� M j= 9t ' i� (U; I;v0) j= ' for some v0 whi
h di�ers from v at most in t.This language is rather expressive: 
onsider the following example formulas.
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hlingloff(1) (sta
k is empty(t0)! 9t1(put(t0; t1) ^ :sta
k is empty(t1)))If sta
k is empty, then it is possible to perform a put su
h that notsta
k is empty holds.(2) 8t1((t0 � t1 ^ req(t1))! 9t2(t1 < t2 ^ a
k(t2)))Every request is eventually a
knowledged.(3) 8t1((t0 � t1 ^ req(t1))! 9t2((t1 < t2 ^ a
k(t2)) ^8t3((t1 < t3 ^ t3 < t2)! req(t3))))No request is withdrawn before it is a
knowledged.2.2. Multimodal and Temporal Logi
First order logi
 has been 
riti
ized by theoreti
al linguists for not being intu-itive. Ex
ept from text in mathemati
al books, one 
an hardly �nd English sen-ten
es whi
h expli
itly use variables to refer to obje
ts. Natural language state-ments use modal adverbs like \possibly" and \ne
essarily" to refer to an alterna-tive state of a�airs. Temporal phrases in natural language use the adverbs \even-tually" and \
onstantly" (or \sometime" and \always") to refer to future pointsin time. Modal logi
 was invented to formalize these modal and temporal adverbs[Lewis 1912, Prior 1957, Prior 1967℄. The idea is to suppress �rst-order variablest 2 T ; propositions p 2 P are nullary again. In modal logi
s, the meaning of aproposition like sta
k is empty is intended to be \the sta
k is empty now". Thus,in a temporal interpretation, every formula des
ribes a 
ertain state of a�airs at agiven point.To be able to des
ribe properties depending on the relations between points, inmultimodal logi
 for every R 2 R a new operator hRi' is introdu
ed. The meaningof hRi' is \possibly '", i.e., \there exists some t a

essible via R su
h that ' holdsat t". Dually, [R℄' , : hRi :' means \ne
essarily '"; \for all t a

essible via R,it is the 
ase that ' holds at t".ML ::= P j ? j (ML!ML) j hRiML:Intuitively, the above example (1) 
ould be written(sta
k is empty! hputi :sta
k is empty):Assume again that U is a nonempty set of points in time (or \possible worlds").An interpretation I for multimodal logi
 assigns to every p 2 P and R 2 R a subsetI(p) � U and a relation I(R) � U �U , respe
tively. The tuple F , (U; I) is 
alleda frame for P and R. A (Kripke-) model (introdu
ed in [Kripke 1963, Kripke 1975℄)M , (U; I; w0) for multimodal logi
 
onsists of a frame (U; I) and a 
urrent pointw0 2 U . If M = (U; I; w0), we say that M is based on the frame F = (U; I). Thus,a Kripke model for multimodal logi
 is similar to a �rst order model, where thevariable valuation v is repla
ed by a single designated point w0.Note that our notion of frame and model is somewhat di�erent from the tradi-tional use of these terms, where a frame denotes the tuple (U; fI(R) j R 2 Rg),
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king 1645and a model is the triple (U; fI(R) j R 2 Rg; fI(p) j p 2 Pg). Histori
ally,atomi
 propositions have been regarded as being \variable" in a formula, thusfI(p) j p 2 Pg is a separate valuation for these variables. In this paper, a proposi-tion denotes a �xed predi
ate, hen
e its meaning is given by the interpretation. Ina later se
tion we introdu
e a separate synta
ti
 
ategory of proposition variables,whi
h 
an be evaluated di�erently in ea
h 
ontext.Validity of a modal formula in a Kripke model M , (U; I; w0) is de�ned asfollows.� M j= p i� w0 2 I(p);� M =j= ?, and� M j= ('!  ) i� M j= ' implies M j=  .� M j= hRi' i� there exists w1 2 U with (w0; w1) 2 I(R) and (U; I; w1) j= '.We write w j= ' instead of (U; I; w) j= ' whenever the frame (U; I) is given. Aformula ' is universally valid (or frame-valid) in (U; I), if for all w 2 U it holdsthat w j= '.As de�ned above, � is interpreted as the transition relation, i.e., the union ofall a

essibility relations, < is interpreted as the transitive 
losure of �, and � asthe re
exive transitive 
losure (the rea
hability relation). For these spe
ial relations�2 f�; <;=;�g, we hen
eforth simply write v � w instead of (v; w) 2 I(�). Weintrodu
e the spe
ial operators X, F+ and F�:� w0 j= X' i� there exists w1 2 U su
h that w0 � w1 and w1 j= ',� w0 j= F+' i� there exists w1 2 U su
h that w0 < w1 and w1 j= ', and� w0 j= F�' i� there exists w1 2 U su
h that w0 � w1 and w1 j= '.For the dual operators, we use the symbols X ' , :X:', and G+' , :F+:',and G�' , :F�:'. Traditionally, X, F, and G have been used to indi
ate neXttime, Future andGlobal operators2. Alternatively, F+ andG+ are 
alled sometime-and always-operators. X is referred to as weak next- operator.Here are some histori
al remarks on the use of these operators. In the 1950's and1960's, proof theory and model theory of modal logi
 was developed ([Res
her andUrquhart 1971, Hughes and Cresswell 1977℄ are histori
al, and [Bla
kburn, de Rijkeand Venema 2000℄ is a modern textbook on this topi
). Its appli
ability to 
omputers
ien
e was dis
overed in the 1970's: [Burstall 1974℄ suggested a modal logi
 builtupon F+ and G+ to des
ribe program properties. [Kr�oger 1978℄ suggested to useboth X and F+ for program veri�
ation. [Pnueli 1977℄ used a similar system forparallel programs. [Gabbay, Pnueli, Shelah and Stavi 1980℄ extended temporal logi
for program spe
i�
ation by the binary 
onne
tive until (explained below). Theframework was further elaborated in [Pnueli 1981, Manna and Pnueli 1981, Mannaand Pnueli 1982b, Manna and Pnueli 1982a, Pnueli 1984, Harel and Pnueli 1985,2A note on notation: with the above 
onvention, the X, X, F+, F�, G+ and G� operators 
ouldbe written as h�i, [�℄, h<i, h�i, [<℄ and [�℄, respe
tively. In the literature, some authors use thesymbols �, Æ, 3, and 2. An index of the notations used in this 
hapter is given in the appendix.
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hlingloffManna and Pnueli 1987, Manna and Pnueli 1989℄. The 
ombination of hRi- and F+-operators originates from dynami
 logi
 [Salwi
ki 1970, Pratt 1976℄ (for an overviewon dynami
 logi
s, see [Harel 1984, Kozen and Tiuryn 1990℄).Intuitively, X' indi
ates that ' holds at some point a

essible via a single tran-sition, F+' spe
i�es that ' must hold in some point whi
h 
an be rea
hed by anonempty sequen
e of transitions, and F�' means that ' holds at some rea
hablepoint (possibly now). Dually, X ' holds if all su

essors satisfy ', and G�' andG+' determine that all rea
hable points (ex
ept maybe the 
urrent point) mustvalidate '. With these operators, example (2) 
ould be writtenG�(req! F+a
k):From the de�nition, w0 j= X ' i� w1 j= ' for all w1 2 U su
h that w0 � w1.Similarly, w0 j= G+' i� w1 j= ' for all w1 2 U su
h that w0 < w1. A pointw 2 U is 
alled terminal, if fw0 j w � w0g = fg. A terminal point represents a �nalstate of a terminating 
omputation. Terminal points satisfy allX - andG+-formulasva
uously: if w0 has no a

essible su

essors, then w0 j= X ' and w0 j= G+' forany formula '.The di�eren
e between F+ and F� is that in the latter \the future in
ludes thepresent". Using the X operator, F+ and F� 
an be mutually de�ned: 
learly, theformula (F�' $ ' _ F+') is valid. Therefore, the F�-operator 
an be expressedby F+. Using the equivalen
e (F+'$ XF�'), ea
h o

urren
e of the operator F+in a formula 
an be repla
ed by F� and X, with only a linear in
rease in formulalength. It is not possible to de�ne the F+-operator by F� alone (without X):2.1. Lemma. Without X, the operator F+ is stri
tly more expressive than F�.Proof: Consider two models M1 and M2, where U1 , U2 , fwg, I1(�) ,fg, I2(�) , f(w;w)g and I1(p) = I2(p) for all p 2 P . Then M1 =j= F+> andM2 j= F+>. However, w j= F�' i� w j= ' in both M1 and M2. Therefore, forall formulas ' whi
h involve only propositions, boolean operators and F� it holdsthat M1 j= ' i� M2 j= '. (The formal proof of this statement is omitted; it isa straightforward indu
tion on the 
onstru
tion of su
h formulas.) Hen
e, there isno formula ' 
onsisting only of propositions, boolean operators and F� su
h thatfor all models M it holds that M j= ' i� M j= F+>. In other words, F+> is notexpressible in this language. 2A similar proof shows that modal operators 
annot express statements aboutintervals. For example, there is no formula equivalent to example (3) of the above.To remedy this la
k of expressiveness, [Kamp 1968℄ introdu
ed a binary operator('U+ ) meaning \' holds until  holds". We use the term temporal logi
 to referto any modal logi
 whi
h 
ontains some sort of until-operator. In 
omputer s
ien
e,this operator was �rst used by [Gabbay et al. 1980℄ to 
lassify important propertiesof 
on
urrent programs. The semanti
s of U+ is de�ned as follows:� w0 j= ('U+ ) i� there exists w1 2 U with w0 < w1 and w1 j=  , and for allw2 2 U with w0 < w2 and w2 < w1, we have w2 j= '.
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king 1647This situation is illustrated by the following pi
ture.- - - - - - -' ' '  . . .As an example, the above formula (3) 
an be expressed with an until-operator asG�(req! (reqU+a
k)):Various other operators 
an be de�ned via U+. Sometime-operator and nexttimeoperators (for dis
rete �) are obtained as follows:� X'$ (?U+')� F+'$ (>U+')The proof of these equivalen
es is immediate from the de�nition: w0 j= (?U+ )i� there exists w1 2 U with w0 < w1 and w1 j=  , and for all w2 2 U withw0 < w2 < w1 it holds that w2 j= ?, whi
h is impossible. In other words, w0 < w1,but there is no w2 that satis�es w0 < w2 and w2 < w1. Therefore w1 must be animmediate su

essor of w0, i.e., w0 � w1. Consequently, w0 j= X'. The se
ondequivalen
e is obtained in a similar way.The re
exive until -operator is de�ned as ('U� ) , ( _ ' ^ ('U+ )).- - - - - - -' ' ' '  . . .As above, F�'$ (>U�') and ('U+ )$ X('U� ). Without X it is not possibleto de�ne U+ or F+ from U�. Hen
e, X 
annot be de�ned by U�.The unless or weak until -operator is de�ned as('W+ ) , :(: U+:(' _  )):Whereas ('U+ ) requires that  eventually holds, ('W+ ) is also true if  isnever and ' always true. Intuitively, ('W+ ) says that ' holds at least up tothe next point where  holds. This 
an be seen as follows: assume that w0 j=:(: U+:(' _  )). By de�nition, it is not the 
ase that for some w1 > w0 bothw1 j= :(' _  ) and w2 j= : for all w0 < w2 < w1. Thus, for all w1 > w0 it holdsthat w1 j= (' _  ), or w2 j=  for some w0 < w2 < w1. In other words, if w1 > w0then either w1 j= ' or there is some w0 < w2 � w1 su
h that w2 j=  . Therefore,if w2 =j=  for all w0 < w2 � w1, i.e. if w1 is before the next point where  holds,then w1 j= '.Note that by de�nition ('W+?) = :(>U+:') = G+'. Some texts de�ne theunless operator by (('U+ )_G+'). In natural models, whi
h 
onsist of a sequen
eof points, these two de�nitions are equivalent:2.2. Lemma. For natural models, ('W+ )$ (('U+ ) _G+').Proof: We must show that for all models M whi
h are sequen
es, the followingholds: (i) M j= (('W+ ) ! (('U+ ) _ G+')), (ii) M j= (G+' ! ('W+ ))
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hlingloffand (iii) M j= (('U+ ) ! ('W+ )). For (i), assume that w0 j= ('W+ ) andw0 =j= G+'. Then w1 =j= ' for some w1 > w0. A

ording to above, there is somew0 < w2 � w1 su
h that w2 j=  . Sin
e the model is assumed to be a sequen
e, it iswell-founded. Therefore there must be a smallest w2 with this property; i.e. w0 <w2 � w1, w2 j=  , and w3 =j=  for all w0 < w3 < w2. Again, a

ording tothe above, if w0 < w3 < w2 then w3 j= '. Therefore w0 j= ('U+ ). Formula(ii) follows immediately from the de�nition: if w0 j= G+', then w1 j= ' for allw1 > w0. Therefore, it is not the 
ase that some w1 > w0 exists whi
h satis�esw1 j= :(' _  ). This implies w0 =j= (: U+:(' _  )), i.e., w0 j= ('W+ ). Forimpli
ation (iii), we need the property that the model is linear: if w0 j= ('U+ ),then there exists w1 > w0 su
h that w1 j=  and w2 j= ' for all w0 < w2 < w1.Assume any point w > w0. Then w < w1 or w � w1. In the �rst 
ase, w j= '. Inthe se
ond 
ase, there exists w0 = w1 su
h that w0 j=  . Thus, for all w > w0 itholds that w j= ', or there exists w0 < w0 � w su
h that w0 j=  . This shows thatw0 j= ('W+ ). 2This equivalen
e does not hold for dense time: for example, if (U;�) is isomorphi
to the rationals and I( ) , f1=n j n 2 Ng, then 8t1 > 09t2 > 0 (t2 < t1 ^  (t2)),hen
e 0 j= (?W+'). Moreover, 0 =j= X> and 0 j= F+>, hen
e 0 =j= ((?U+ ) _G+?). For more information on other models of time, see [van Benthem 1991,Gabbay, Hodkinson and Reynolds 1994℄. An immediate 
onsequen
e of Lemma 2.2is that in natural models the operator U+ is de�nable by W+ and F+:('U+ )$ (('W+ ) ^ F+ ):With �rst order logi
, it is possible to use reverse relations: x > y i� y < x. In[Li
htenstein, Pnueli and Zu
k 1985℄, the authors argue that the ability to refer tothe past 
an fa
ilitate program spe
i�
ations. The temporal past or sin
e- operatorU� is de�ned with the following semanti
s:� w0 j= ('U� ) i� there exists w1 2 U with w1 < w0 and w1 j=  , and for allw2 2 U with w1 < w2 and w2 < w0, we have w2 j= '.The syntax of linear temporal logi
 (LTL) is de�ned as follows:LTL ::= P j ? j (LTL ! LTL) j (LTLU+LTL) j (LTLU�LTL):We write F�' and G�' for (>U�') and :F�:', respe
tively. Intuitively, theseoperators refer to \sometime in the past" and \always in the past". Moreover, F�'and G�' are abbreviations for (F�' _ ' _ F+') and :F�:', respe
tively.2.3. Expressive Completeness of Temporal Logi
How 
an �rst order and temporal logi
 be 
ompared? Temporal logi
 
an be re-garded as a 
ertain fragment of �rst order logi
; this is explained more formallybelow. In 
ontrast to modal or temporal logi
s, FOL formulas 
an mention several
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king 1649referen
e points (free variables). To be able to 
ompare the expressiveness of bothtype of logi
s, we restri
t FOL to formulas with at most one free variable.The above semanti
s indu
es a translation \FOL" from modal or temporal to�rst order logi
, where FOL(') has exa
tly one free variable t0.� FOL(p) , p(t0)� FOL(?) , (t0 6= t0)� FOL(('!  )) , (FOL(')! FOL( ))� FOL(hRi') , 9t0(t0Rt0 ^ FOL(')ft0 := t0g)� FOL(X') , 9t0(t0 � t0 ^ FOL(')ft0 := t0g)� FOL(F+') , 9t0(t0 < t0 ^ FOL(')ft0 := t0g)� FOL(F�') , 9t0(t0 � t0 ^ FOL(')ft0 := t0g)� FOL(('U+ )) ,9t0(t0 < t0 ^ FOL( )ft0 := t0g ^ 8t00(t0 < t00 < t0 ! FOL(')ft0 := t00g)).� FOL(('U� )) ,9t0(t0 < t0 ^ FOL( )ft0 := t0g ^ 8t00(t0 < t00 < t0 ! FOL(')ft0 := t00g)).This translation is sometimes 
alled the standard translation[Bla
kburn et al. 2000℄.In the translation of hRi', ..., ('U+ ), the symbols t0 and t00 denote arbitraryvariables whi
h do not o

ur in FOL(') or FOL( ). The formula FOL( )ft0 := t0gdenotes the formula FOL( ), where every (free) o

urren
e of the variable t0 isrepla
ed by the variable whi
h is denoted by t0. The following example demonstratesthe standard translation.FOL(((:a
kU�req)U+a
k))= 9t1(t0 < t1 ^ a
k(t1) ^ 8t2(t0 < t2 < t1 ! FOL((:a
kU� req))ft0 := t2g))= 9t1(t0 < t1 ^ a
k(t1) ^ 8t2(t0 < t2 < t1 !9t3(t3 < t2 ^ req(t3) ^ 8t4(t3 < t4 < t2 ! :a
k(t4))))).The standard translation of a modal or temporal formula is a �rst-order for-mula with exa
tly one free variable t0. Corre
tness of the standard translation 
anformally be stated as follows:2.3. Fa
t. For every ' 2 ML or LTL there exists a �rst order formula FOL(')su
h that for every frame (U; I), point w0 2 U and valuation v for whi
h v(t0) = w0it holds that (U; I; w0) j= ' i� (U; I;v) j= FOL(').Hen
e, FOL is at least as expressive as LTL. A logi
 is 
alled expressively 
omplete(or de�nitionally 
omplete), if there exists also a translation in the other dire
tion:given any �rst-order formula with exa
tly one free variable, does an equivalenttemporal formula exist?For the translation of any given temporal formula into �rst order logi
 only threevariables (say, t0, t1 and t2) are really needed. Other variables 
an be reused; forexample, the above FOL(((:a
kU� req)U+ a
k)) is equivalent to9t1(t0 < t1 ^ a
k(t1) ^ 8t2(t0 < t2 < t1 !
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hlingloff9t0(t0 < t2 ^ req(t0) ^ 8t1(t0 < t1 < t2 ! :a
k(t1))))).Similarly, modal logi
 
an be translated into the so-
alled guarded fragment of �rst-order logi
, whi
h allows only two variables. In the �rst-order 
lause for ('U+ )three variables are needed. This is the reason why the until-operator is not de�nablein modal logi
. Likewise, LTL 
annot express any property whi
h \inherently"uses four variables. For example, the statement \there are three di�erent 
onne
tedpoints rea
hable from the 
urrent point" is not expressible in temporal logi
.9t1; t2; t3(t0 < t1 ^ t0 < t2 ^ t0 < t3 ^ t1 < t2 ^ t1 < t3 ^ t2 < t3)If < is irre
exive, then a minimal model satisfying this formula is e.g. the following:
t0 t1 t2t3

�-R?U�In 
ase that < is a linear order (antisymmetri
 and total) this is equivalent to9t1(t0 < t1 ^ 9t2(t1 < t2 ^ 9t3(t2 < t3)))in whi
h we 
an rename t3 by t0 to get the equivalent9t1(t0 < t1 ^ 9t2(t1 < t2 ^ 9t0(t2 < t0)))whi
h in turn 
an be expressed temporally as F+F+F+>.Therefore, attention is restri
ted to 
ertain 
lasses of stru
tures, like 
ompletelinear orders, or �nitely-bran
hing trees, et
. A natural model 
onsists of a �nite orin�nite sequen
e of points. Formally, a natural model M , (U; I; w0) is a Kripke-model with only one a

essibility relation, su
h that (U;�) is isomorphi
 to thenatural numbers or an initial segment of the natural numbers3, where � is theusual su

essor relation.2.4. Theorem (Kamp, Gabbay). Temporal logi
 is expressively 
omplete for nat-ural models.The original proof of this theorem in [Kamp 1968, pp. 39{94℄ is extremely 
om-pli
ated. The proof given below follows [Gabbay 1989℄ and uses a 
ertain property
alled separation. Call a temporal formula3Some textbooks restri
t attention to in�nite models. Terminating 
omputations are then mod-elled with an idle loop. In this survey, we use both �nite and in�nite 
omputation sequen
es.
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king 1651� pure future, if it is of form ('U+ ), where in both ' and  no U�-operatoro

urs, and� pure past, if it is of form ('U� ), where in both ' and  no U+-operatoro

urs, and� pure present, if it 
ontains no U+ or U�-operators.A future formula is a boolean 
ombination of pure future and pure present formulas,i.e., one whi
h does not 
ontain any U�-operators. Similarly, a past formula doesnot 
ontain any U+. A formula is separated if it is a boolean 
ombination of futureand past formulas. A logi
 has the separation property (for a given 
lass of models),if for every formula there exists a separated formula whi
h is equivalent for allmodels under 
onsideration.2.5. Lemma. The separation property implies expressive 
ompleteness.Proof: This lemma is proven by indu
tion on the stru
ture of FOL-formulas. Forthe proof, we assume that LTL has the separation property for natural models.That is, for ea
h linear temporal formula there exists an equivalent formula whi
his separated. We show that any �rst order formula '(t0) whi
h has exa
tly one freevariable t0 
an be translated into a temporal formula LTL('). It suÆ
es to 
onsider�rst order logi
 whereR+ , f<;=g: in natural models, there is a single a

essibilityrelation, and every atomi
 subformula t � t0 
an be equivalently repla
ed by (t < t0^:9t00(t < t00 ^ t00 < t0)). Furthermore, the s
ope of quanti�
ation 
an be minimizedsu
h that no sub-formula ' , 9t  
ontains a proposition p(t0) where t0 is free in '.For example, 9t1(t1 > t0^p(t0)^p(t1)) 
an be rewritten as p(t0)^9t1(t1 > t0^p(t1)).The translation of p(t0) is p. It is not ne
essary to give a translation for formulasp(t1) or t0 � t1, sin
e they involve other free variables than t0. The translationof a boolean 
onne
tive of sub-formulas is the boolean 
onne
tive of the transla-tion of the sub-formulas. The only remaining 
ase are formulas ' , 9t1  (t0; t1).Sin
e the s
ope of the quanti�er 9t1 is minimal, ' does not 
ontain any propositionp(t0). That is,  (t0; t1) is a boolean 
ombination of formulas p(t1), t0 � t1, and'0 , 9t2  0(t0; t1; t2). Repla
e every sub-formula t0 < t by a new unary proposi-tion future(t), repla
e every sub-formula t0 = t by a new unary present(t), andrepla
e every t < t0 by past(t). That is, ' now does not 
ontain any t0, and thusea
h '0 is a formula with exa
tly one free variable t1. Sin
e the nesting depth ofexistential quanti�ers in ea
h '0 is smaller than that of ', we 
an apply the indu
-tion hypothesis to get temporal formulae LTL('0). Reinserting these into  andrepla
ing p(t1) in  by p, and q(t1) by q for q 2 ffuture; present; pastg givesthe temporal formula LTL( ). To translate ' , 9t1  we separate the temporalformula (F�LTL( ) _ LTL( ) _ F+LTL( )). The resulting formula is a boolean
ombination of pure future, pure past and pure present formulas. Repla
e in thisformula every future inside a pure future formula by >, every other future by?. Similarly, repla
e every past inside a pure past formula by >, and every otherpast by ?. Finally, repla
e every present inside a pure present formula by >, everyother present by ?. The resulting formula is the required translation LTL(').Given any natural model M , (U; I; w0) for ', de�ne I(future) , fw j w >
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hlingloffw0g, I(present) , fw0g and I(past) , fw j w < w0g. Then every step in theabove translation preserves validity in M. Therefore, M j= ' i� M j= LTL('). 2To illustrate this 
onstru
tion, let us �nd the temporal equivalent of ' , 9t1(t0 <t1 ^ p(t1) ^ 8t2(t0 < t2 < t1 ! q(t2))). (We already know that the out
ome shouldbe (qU+ p).) The �rst repla
ement results in 9t1 , where  , (future(t1)^p(t1)^:9t2(future(t2)^t2 < t1^:q(t2))). The formula '0(t1) = 9t2(t2 < t1^future(t2)^:q(t2))) indu
tively translates to LTL('0) = F�(future ^ :q) = :G�(future!q). Thus LTL( ) = (future ^ p ^ G�(future ! q)). To obtain LTL(9t1 ) wehave to separate F�LTL( ) = F+LTL( ) _ LTL( ) _ F�LTL( ). SeparatingF+LTL( ) = F+(future^p^G�(future! q)) givesG�(future! q)^(future!q) ^ ((future ! q)U+(future ^ p)) (see below). The disjun
ts F�LTL( ) =F�(future^ p^G�(future! q)) and LTL( ) = (future^ p^G�(future! q))are already separated. To obtain LTL('), we now repla
e every future inside a purepast or pure present formula by ? and every future inside a pure future formulaby >. Then G�(future ! q) ^ (future ! q) redu
es to >, and ((future !q)U+(future ^ p)) redu
es to (qU+ p). The disjun
ts F�LTL( ) and LTL( )redu
e to ?. Therefore, F�LTL( ) redu
es to (qU+ p), whi
h is the expe
ted resultfor LTL( ).In the above, we used the following equivalen
e to separate a nested o

urren
eof future- and past- operators:j= F+(' ^G� )$ G� ^  ^ ( U+')Proof: The left side of this formula states that sometimes in the future, ' andalways in the past  holds. In other words, there is some w1 > w0 su
h that ' holdsat w1, and for all w2 < w1, the formula  holds at w2. In a natural model, ea
h su
hw2 must be in the past (w2 < w0), present (w2 = w0) or future (w0 < w2 < w1)of the 
urrent point w0. Therefore, for ea
h w2 < w0, the formula  holds, and holds at w0, and there is some w1 > w0 su
h that ' holds at w1, and for allw0 < w2 < w1, the formula  holds at w2. This is stated by the right side of theformula. 2A more 
onvenient way to show the 
orre
tness of su
h formulas than by seman-ti
al reasoning is by an automated proof pro
edure. In Se
tion 7, we will show thatLTL is de
idable. There are several automated provers freely available. In fa
t, theabove formula is 
he
ked by the STeP system within millise
onds.To show expressive 
ompleteness, it remains to prove the following:2.6. Lemma. LTL has the separation property for natural models.Proof: Consider the 
ase of a non-separated formula ' , ('1U+'2), whi
h
ontains a dire
t subformula  , ( 1U� 2) (i.e.,  is a boolean 
omponent of'1 and/or '2, and does not o

ur elsewhere in '1 or '2). We write '>i and'?i for 'if := >g and 'if := ?g, respe
tively. By propositional reasoning,



Model Che
king 1653'1 $ (( _ '?1 ) ^ (: _ '>1 )) and '2 $ (( ^ '>1 ) ^ (: _ '?2 )). Therefore, ' isequivalent to ((( _ '?1 ) ^ (: _ '>1 ))U+(( ^ '>2 ) _ (: ^ '?2 ))). By temporalreasoning, this in turn is equivalent to ((( _'?1 )U+( ^'>2 )) _ (( _'?1 )U+(: ^'?2 ))) ^ (((: _ '>1 )U+( ^ '>2 )) _ ((: _ '>1 )U+(: ^ '?2 ))).For ea
h of the four boolean 
omponents of this formula, an equivalent separatedformula is given in Fig. 2. Though these formulas are hard to read and diÆ
ultto prove manually, their validity 
an be easily 
he
ked by an automated theoremprover. Intuitively, they are generalizations of the example given above. With theseparating 
lauses, ' 
an be rewritten su
h that  is not in the s
ope of any U+.Sin
e the formulas of Fig. 2 still hold if U+ and U� are inter
hanged, ea
h('1U�'2) 
ontaining a dire
t subformula  , ( 1U+ 2) 
an be rewritten su
hthat  does not o

ur in the s
ope of a U�. The general 
ase of several di�erentpasttime-subformulas nested within future-subformulas and vi
e versa 
an be han-dled by repeated appli
ation of these transformations. Formally, the 
laim followsby indu
tion on the nesting depth and number of U� sub-formulas within U+ andvi
e versa. 2Sin
e in the separation step of this 
onstru
tion subformulas may be dupli
ated,the resulting LTL formula 
an be nonelementary larger than the original FOLformula.(i) (h( 1U� 2) _ '1iU+h( 1U� 2) ^ '2i)$( 1U+'2) ^ h 2 _  1 ^ ( 1U� 2)i_(h 1 _  2 _ :(: 2U+:'1)iU+h 2 ^ ( 1U+'2)i)^(:(: 2U+:'1) _ h 2 _  1 ^ ( 1U� 2)i)(ii) (h( 1U� 2) _ '1iU+h:( 1U� 2) ^ '2i)$(h'1 ^ : 2iU+'2) ^ h(: 2 ^ (: 1 _ :( 1U� 2)))i_(h 1 _  2 _ ('1U+h'2 _ '1 ^  2i)iU+h: 1 ^ : 2 ^ (h'1 ^ : 2iU+'2)i)^('1U+h'1 ^  2i) _ h 2 _  1 ^ ( 1U� 2)i(iii) (h:( 1U� 2) _ '1iU+h( 1U� 2) ^ '2i)$(h'1 ^  1iU+'2) ^ h 2 _  1 ^ ( 1U� 2)i_(h: 2 _ ('1U+h'2 _ '1 ^ : 1 ^ : 2i)iU+h 2 ^ (h'1 ^  1iU+'2)i)^(['1U+h'1 ^ : 1 ^ : 2i℄ _ [: 2 ^ h: 1 _ :( 1U� 2)i℄)(iv) (h:( 1U� 2) _ '1iU+h:( 1U� 2) ^ '2i)$(:( 1U+:'1) _ h: 2 ^ (: 1 _ :( 1U� 2))i)^(:(h 1 _  2 _ :(: 2U+'2)iU+h 2 ^ ( 1U+:'1)i)_((: 2U+'2) ^ h: 2 ^ (: 1 _ :( 1U� 2))i))^(F+[: 1 ^ : 2 ^ (: 2U+'2)℄ _ [(: 2U+'2) ^ (: 2 ^ h: 1 _ :( 1U+ 2)i)℄)Figure 2: Separation 
lauses for LTL
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hlingloff3. Se
ond Order Languages3.1. Linear and Bran
hing Time Logi
sAs we have seen, linear temporal logi
 is expressively 
omplete for natural mod-els. The same result (with minor modi�
ations) 
an be proved for �nitely bran
h-ing trees [S
hlinglo� 1992a, S
hlinglo� 1992b℄, and for 
ertain partially orderedstru
tures [Thiagarajan and Walukiewi
z 1997℄. In 
omputer s
ien
e, the possi-ble exe
utions of a program 
an be modelled as a set of exe
ution sequen
es.Alternatively, it 
an be modelled as a unique exe
ution tree, where bran
hes de-note nondeterministi
 de
isions. This view is adopted in bran
hing time temporallogi
 [Lamport 1980, Ben-Ari, Manna and Pnueli 1983, Emerson and Halpern 1986℄.Statements about 
orre
tness of program 
an involve assertions about all maximalpaths in a tree. A path in a model is a (�nite or in�nite) nonempty sequen
e ofpoints � = (w0; w1; :::), where for ea
h i with 0 � i < j�j there exists an Ri 2 Rsu
h that (wi; wi+1) 2 I(Ri). A path is maximal, if ea
h of its points whi
h has asu

essor in the model also has a su

essor in the path. In other words, a maximalpath is either in�nite, or its �nal point wn is terminal (there is no w su
h thatwn � w). Computation tree logi
 (CTL) [Clarke and Emerson 1981, Emerson andClarke 1982℄ has the following syntax:CTL ::= P j ? j (CTL! CTL) j E(CTLU+CTL) j A(CTLU+CTL):CTL is interpreted on tree models . A tree is de�ned as usual: it has a single rootw0, and every node wn 
an be rea
hed from w0 by exa
tly one �nite path. Thetransitive 
losure \<" of the su

essor relation \�" then denotes the usual tree-order: (w1; w2) 2 I(<) i� w1 is on the (unique) path from the root w0 up to w2.� w0 j= E('U+ ) i� there exists w1 > w0 su
h that w1 j=  , and for allw2 2 U , if w0 < w2 < w1 then w2 j= '.� w0 j= A('U+ ) i� for all maximal paths p from w0 there exists w1 > w0on path p su
h that w1 j=  , and for all w0 < w2 < w1, w2 j= '.Thus, the EU+-operator is de�ned similar to the LTL until-operator. However, theintended models for CTL are trees, whereas LTL usually is interpreted on naturalmodels. In CTL weak and derived operators 
an also be de�ned as abbreviations.However, in bran
hing time, there are two variants of ea
h derived operator.EX , E(?U+ ), AX , A(?U+ ),EX  , :AX: , AX  , :EX: ,EF+ , E(>U+ ), AF+ ,A(>U+ ),EG+ , :AF+: , AG+ , :EF+: ,E('U� ) , ( _ ' ^ E('U+ )), A('U� ) , ( _ ' ^A('U+ )),EF� , ( _ EF+ ), AF� , ( _AF+ ),EG� , ( ^ EG+ ), AG� , ( ^AG+ ),
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king 1655E('W+ ) , :A(: U+:(' _  )), A('W+ ) , :E(: U+:(' _  )).Informally, EX means that some su

essor node satis�es  , and AX  holdsif all su

essors are  . In a terminal point, AX? is valid, but AX? not: ifw0 has no su

essors, then the only maximal path p from w0 is the one-elementsequen
e � = (w0). On this unique path � there is no w1 > w0, therefore ea
hformula A('U+ ) and E('U+ ) must be invalid. As a spe
ial 
ase, in su
h apoint EX> is not valid, but EX > and EX? are valid. In a nonterminal point,(EX' $ EX ') and (AX' $ AX '). Thus, if we restri
t attention to modelswithout terminal points, these operators 
oin
ide. The operators AX and EX 
anbe expressed by EX and AX (with at most linear in
rease of formula length)via (AX' $ AX ' ^ EX>) and (EX ' $ EX' _AX ?), that is, (EX ' $(EX> ! EX')). Thus, all CTL nexttime-operators 
an be expressed in termsof EX.The formula EF� means that some node in the 
omputation tree satis�es  ,andAF� spe
i�es that  must hold somewhere along every maximal 
omputationpath. Dually, AG� means that every node in the (sub-) tree satis�es  , whereasEG� indi
ates that  is globally valid along some path.
E('U+ ) A('U� ) EX AX In the above pi
ture, nodes satisfying ' are shown solid (or as a shaded area),whereas  nodes are indi
ated by a 
ir
le.The operator AU+ 
an be expressed by EU+ and AF+. This 
hara
terization issimilar to the de�nition of the unless-operator in linear temporal logi
, 
f. page 1648:A('U+ )$ (A('W+ ) ^AF+ ) = (:E(: U+:(' _  )) ^AF+ ):Therefore, it is suÆ
ient to 
onsider only the two basi
 operators EU+ and AF+ informal proofs and algorithms. Similarly, the formula E('W+ ) 
an be repla
ed by(E('U+ ) _ EG+'). However, there is no negation-free \dual" 
hara
terizationof AW+ and EU+.We now give some examples of CTL formulas. The following properties are typ-i
al 
orre
tness requirements that might arise in the veri�
ation of a �nite state
on
urrent program.| EF+(started^ :ready): it is possible to get to a state where started holdsbut ready does not hold.| AG�(req! AF+ a
k): if a request o

urs, then it will be eventually a
knowl-edged
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hlingloff| AG� AF� sta
k is empty: the proposition sta
k is empty holds in�nitelyoften on every 
omputation path| AG� EF� restart: from any state it is possible to get to a restart state.For many CTL formulas it is possible to formulate similar 
orre
tness properties inLTL. Possibility properties like the last one mentioned above 
an not be formulatedin LTL. On the other hand, 
ertain fairness properties 
annot be formulated inCTL.How 
an we 
ompare the expressivity ofCTL with (the future fragment of) LTL?Dire
t 
omparison is diÆ
ult, sin
e models are di�erent: on natural models, whi
hare spe
ial tree models with bran
hing degree one, AU+ and EU+-operators 
oin-
ide. On tree models with higher bran
hing degree, LTL obviously 
annot expressA('U+ ).Therefore, one 
onsiders LTL and CTL on (nonlinear, non-tree) Kripke-models(U; I; w0). In 
ontrast to natural or tree models, Kripke-models 
an 
ontain re
exivepoints, loops or even dense relations. We 
all an LTL future formula sequen
e-validin a Kripke-model M, if it is valid in all natural models ((w0; w1; :::); I; w0) whi
hare generated fromM, that is, for all maximal paths w0; w1; :::) in U starting fromw0. (A formal de�nition of this notion will be given in Se
tion 4.) Similarly, a CTL-formula is 
alled tree-valid in a Kripke-model, if it is valid in the root of the uniquemaximal tree generated from it.With this de�nition, the expressivity of LTL and CTL 
an be 
ompared. Itturns out that on Kripke models, neither of both is stri
tly more expressive thanthe other one. For example, the LTL formula ' , F+G+ p is not expressible inCTL (it is not the same property as AF+AG+ p). That is, there is no CTL-formula  su
h that  is tree-valid in exa
tly the same Kripke-models in whi
h' is sequen
e-valid. Similarly, AG+EF+ p is not expressible in LTL (it is notthe same as G+F+ p). For more information on the expressiveness of linear versusbran
hing time see [Emerson and Lei 1985, Emerson and Halpern 1986, Clarke andDraghi
es
u 1988, Emerson 1990℄.On Kripke-models, the logi
 CTL� (see [Emerson and Lei 1985, Emerson andHalpern 1986℄) subsumes CTL and LTL by separating path quanti�
ation (E)from temporal quanti�
ation (U+). Thus it is possible to write e.g. EG�F� p. Thelogi
 CTL� is stri
tly more expressive than both CTL and LTL. On binary trees,the expressiveness of CTL� 
an be 
ompared to �rst order logi
 with additional(se
ond order) quanti�
ation on paths. For more information on the expressivenessand 
omplexity of various sublogi
s of CTL�, see [Emerson 1990℄.3.2. Propositionally Quanti�ed Logi
sQuanti�
ation over maximal paths is not a �rst-order notion. It is 
lear that fornatural models, whi
h 
onsist of exa
tly one maximal path, this quanti�er is notvery useful. However, even for natural models, there might be other types of se
ond-order quanti�
ation whi
h 
ould be interesting. Wolper remarked that \temporallogi
 
an be more expressive"[Wolper 1982, Wolper 1983℄. In temporal or �rst-
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king 1657order logi
, it is not possible to spe
ify that a 
ertain proposition p holds on everyse
ond point of an exe
ution sequen
e, without 
onstraining the values of p inintermediate points. Formally, for a natural model where U = (w0; w1; :::), de�nethe new operator G2n bywi j=G2n ' i� wi+2n j= ' for all n � 0We will show that this operator 
an not be expressed in LTL or FOL. First, notethat the following operators are not equivalent to G2n '.G2nLTL ' , ' ^G�('! XX ')(G2nFOL ')(t0) , '(t0) ^ 8t � t0('(t) ! 8t1; t2(t � t1 � t2 ! '(t2)))These formulas de�ne a stronger property than required: they imply that if ' holdsin two adja
ent states, it must hold always. Therefore, j= (G2nLTL ' ! G2n '). Thereverse impli
ation does not hold: there are models satisfyingG2n ' but notG2nLTL 'or G2nFOL '(t0), respe
tively.3.1. Theorem (Wolper). Let p be any atomi
 proposition. There is no LTL-formula ' su
h that j= '$ G2n p.Proof: Consider the following sequen
e (M0;M1;M2; :::) of models. For ea
hi � 0, de�ne Mi , (Ui; Ii; wi0), where (Ui;�) is isomorphi
 to the integers:Ui , (:::; wi�2; wi�1; wi0; wi1; wi2; :::). Furthermore, de�ne Ii(q) , Uinwii for all q 2 P .That is, win j= q i� i 6= n for all atomi
 propositions q. Sin
e (Ui; Ii; wi0) is isomor-phi
 to (Ui+1; Ii+1; wi+11 ), we have wi0 j= ' i� wi+11 j= ' for all formulas '. As a
onsequen
e, wi0 j= ' i� wi+10 j= X'.In the next step, we prove that any LTL formula will almost always be true oralmost always be false in the sequen
e (Mi): for any ' 2 LTL there exists an isu
h that for all j � i it holds thatMi j= ' i�Mj j= '. This is proved by indu
tionon the stru
ture of LTL formulas. The only interesting 
ase is given by the until-
onne
tives. We prove the 
ase of ('U� ). For this 
ase, the indu
tion hypothesisguarantees that there is an i su
h that for all j � i, both wj0 j= ' i� wj+10 j= ' (*)and wj0 j=  i� wj+10 j=  (**). We have to show that wj0 j= ('U� ) i� wj+10 j=('U� ). From the above 
onsequen
e, wj0 j= ('U� ) i� wj+10 j= X('U� ) (***).The following re
ursive 
hara
terization is valid: j= ('U� )$ ( _'^X('U� )).In parti
ular, this implies j= ( ! ('U� )) (y), j= (: ! (('U� ) $ (' ^X('U� )))) (yy), and j= (: ! (('U� )! ')) (y y y).If wj0 j=  , then wj0 j= ('U� ) by (y). In this 
ase, by (**), wj+10 j=  , hen
ealso wj+10 j= ('U� ) by (y). Therefore, if wj0 j=  , then wj0 j= ('U� ) i� wj+10 j=('U� ). Now we 
onsider the 
ase that wj0 =j=  . By (y y y), wj0 j= ('U� ) i�wj0 j= ' and wj0 j= ('U� ). By (*) and (***), this in turn holds i� wj+10 j= ' andwj+10 j= X('U� ). By (yy), this is the 
ase i� wj+10 j= ('U� ).To 
omplete the proof, we now show that this eventual stability property doesnot hold for formulas whi
h in
lude the G2n operator. It is not hard to see thatMi j= G2n p i� i is odd: re
all that wii =j= p. Thus, if i is even, then for n , i=2
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hlingloffwe have wi0+2n =j= p, whi
h means wi0 =j= G2n p. If i is odd, however, then for alln � 0, wi0+2n j= p, and thus wi0 j= G2n p. Hen
e, we have shown that for everyLTL formula ' there is a model Mi su
h that Mi =j= ('$ G2n p). 2The above proof shows that theG2n operator 
annot be de�ned in the basi
 tem-poral or �rst order language. However, it 
an be de�ned if additional propositionsare allowed. To assert that G2n ' holds, it suÆ
es to provide a \new" propositionq (not o

urring in ') su
h that G2nLTL q holds, and that ' is valid wherever q isvalid. This puts an additional 
onstraint on the \auxiliary variable" q, whi
h 
anbe 
onsidered as an \implementation detail" in the 
ontext of '. If we disregardthe value of q, then the models satisfying (G2nLTL q ^G�(q ! ')) are exa
tly thosesatisfying G2n '. That is, for any model M su
h that M j= (G2nLTL q ^G�(q! '))it holds that M j= G2n ', and for every model M su
h that M j= G2n ' it holdsthat M0 j= (G2nLTL q ^G�(q! ')), where M0 di�ers from M only in the fa
t thatI(q) = fw0; w2; w4; :::g. Logi
ally, this proje
tion operation amounts to existentialquanti�
ation on temporal propositions or sets of points:G2n '$ 9q(G2nLTL q ^G�(q ! '))(G2n ')(t0)$ 9q((G2nFOL q)(t0) ^ 8t � t0(q(t)! '(t))))The language used in the �rst of these formulas is 
alled quanti�ed temporal logi
qTL [Sistla 1983℄, the language of the se
ond item is monadi
 se
ond order logi
MSOL.qTL ::= P j Q j ? j (qTL! qTL) j(qTLU+qTL) j (qTLU�qTL) j 9Q qTL:MSOL ::= P(T ) j Q(T ) j ? j (MSOL!MSOL)jR+(T ; T ) j 9T MSOL j 9Q MSOLTo de�ne this syntax, we used another synta
ti
 
ategory Q = fq; q0; :::g ofproposition variables . Any valuation in a model v assigns a set v(q) � U to ea
h ofthese (se
ond order) variables. The formula 9q ' is valid in a model M = (U; I;v)if it is valid in some model M0 = (U; I;v0) whi
h di�ers from M at most in thevaluation of the proposition variable q 2 Q.It is easy to lift the expressive 
ompleteness theorem 2.4 to se
ond order.3.2. Lemma. On natural models, qTL has the same expressiveness as MSOL.Proof: In the proof of Theorem 2.4, it was shown how to 
onstru
t the translationLTL(') of a �rst order formula '. For any MSOL formula there is an equiva-lent prenex formula of the form �q1�q2:::�qn , where  is a �rst order formulaand ea
h � is a se
ond order quanti�er. Thus, de�ning MSOL(�q1�q2:::�qn ) by�q1�q2:::�qn LTL( ) gives a translation from MSOL into qTL. 2
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king 16593.3. Lemma. On natural models, the U+-operator in qTL is de�nable by the oper-ators G� and X: ('U+ )$ 8q(G�(X( _ ' ^ q)! q)! q):Proof: Sin
e this lemma is used several times in subsequent se
tions, we give adetailed proof. For one dire
tion, assume that ('U+ ) is valid in M , (U; I; w0).To prove that M j= 8q(G�(X( _ ' ^ q) ! q) ! q), let I 0(q) be an arbitraryset of points, and show that (U; I 0; w0) j= (G�(X( _ ' ^ q) ! q) ! q). In otherwords, from the assumption w0 j= G�(X( _ ' ^ q) ! q) we have to show thatw0 j= q. In any natural model satisfying w0 j= ('U+ ), there are w1, ..., wn 2 Usu
h that wi � wi+1 for all 0 � i < n, and '(wi) for all 0 < i < n, and wn j=  .If w0 j= G�(X( _ ' ^ q) ! q), then wi j= (X( _ ' ^ q) ! q) for all i � 0.Hen
e, wi j= (X ! q) and wi j= (X(' ^ q) ! q) for all i � 0. From wn j=  itfollows that wn�1 j= X . Sin
e wn�1 j= (X ! q), we have wn�1 j= q. Thereforewn�1 j= (' ^ q), and wn�2 j= X(' ^ q). Sin
e wn�2 j= (X(' ^ q) ! q), it followsthat wn�2 j= q. Continuing indu
tively, we �nd that wi j= q for all 0 � i < n.Therefore, w0 j= q.For the other dire
tion, assume that w0 j= 8q(G�(X( _ ' ^ q) ! q) ! q)and show that w0 j= ('U+ ). First, we show that there must be some w > w0satisfying w j=  . Assume for 
ontradi
tion that this is not the 
ase. Choose I(q) ,fw j not w � w0g. In natural models, this is the set fw j w < w0g. It follows that(i) w j= q for all w su
h that not w � w0, (ii) w0 =j= q, and (iii) w =j= q for allw > w0. We show that (*): w j= (X( _ ' ^ q) ! q) for all w 2 U . A

ordingto the 
ontradi
tion assumption, w =j=  for all w > w0. With (iii), it follows thatw =j= ( _ ' ^ q) for all w > w0. Hen
e, w =j= X( _ ' ^ q) for all w � w0. As a
onsequen
e, (*) holds for all w � w0. If not w � w0, then (*) is an immediate
onsequen
e of (i). From (*), we infer that w0 j= G�(X( _'^ q)! q). Therefore,w0 j= q, whi
h is a 
ontradi
tion to (ii).Let w1; :::; wn be a set of points su
h that wi � wi+1 for all 0 � i < n, and wn isthe smallest point satisfying  (i.e., wn j=  and wi j= : for all w0 < wi < wn).If n = 1, we are done: in this 
ase w0 j= X , whi
h implies that w0 j= ('U+ ).If n > 1, to prove w0 j= ('U+ ) we additionally have to show that wi j= ' forany 0 < i < n. Substitution of q with :q in the assumption yields the followingequivalent version: w0 j= 8q(q ! F�(q ^ X( _ ' ^ :q))). Choose I(q) , fw jw0 � w < wig. It follows that w0 j= F�(q ^X( _ ' ^ :q)). That is, there is somew 2 U su
h that w j= (q ^X( _'^:q)). Sin
e n is minimal, there is no w 2 I(q)whi
h satis�es w j= X . Therefore, it follows that there is a w � w0 su
h thatw j= (q ^X(' ^ :q)). Sin
e wi�1 is the only point with wi�1 j= (q ^X:q) we 
an
on
lude that wi�1 j= X', i.e., wi j= '. 2As a sideline we remark that this proof does not make essential use of the \past-
omponent" of theG�-operator; in fa
t, the same proof holds verbatim if we repla
eG� byG� and F� by F�. Thus, a 
orollary to Lemma 3.3 is ('U+ )$ 8q(G�(X( _' ^ q) ! q) ! q): (Sin
e F+ is somewhat more spe
i�
 than F� this 
ould be
onsidered as a somehow weaker result.)
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hlingloffThe 
hara
terization of the U+-operator with se
ond order quanti�
ation is aspe
ial 
ase of the general s
heme 8q(G�(� ! q) ! q), where � , X( _ ' ^ q).Dually, the operator ('W+ ) , :(: U+:(' _  )) is 
hara
terized by('W+ ) $ :8q(G�(X(:(' _  ) _ (: ^ q))! q)! q)$ 9q(:q ^G�(X((: ^ :') _ (: ^ q))! q))$ 9q(:q ^G�(:q ! :X(: ^ (:' _ q))))$ 9q(:q ^G�(:q ! X( _ (' ^ :q))))$ 9q(q ^G�(q ! X( _ ' ^ q)))This is an instan
e of the dual s
heme 9q(q ^G�(q ! �)) with � ,X( _ ' ^ q).For 
omplexity reasons, it is not always advisable to allow quanti�ers on arbi-trary subsets of the universe U . Therefore, we introdu
e �xpoint quanti�
ation:quanti�
ation on sets whi
h follows these s
hemes. This results in the propositional�-
al
ulus �TL [Emerson and Clarke 1980, Pratt 1981, Kozen 1983, Kozen andParikh 1983℄:�TL ::= P j Q j ? j (�TL! �TL) j hRi �TL j �Q �TL:The semanti
s of �TL 
an be de�ned by a translation into MSOL.� MSOL(') is de�ned as in FOL('), for the 
ases p 2 P , ?, ( 1 !  2), andhRi � MSOL(q) , q(t0), if q 2 Q� MSOL(�q ') , 9q(q(t0) ^ 8t(q(t)!MSOL(')ft0 := tg)).Re
all that 'ft0 := tg denotes the formula whi
h is formed from ' by repla
ingevery free o

urren
e of t0 by t. Similarly, 'fq :=  g denotes the formula whi
hresults from ' by repla
ing every free o

urren
e of q with  . The formula �q ' isshort for :�q :('fq := :qg). Thus, the translation of �q ' evaluates to�MSOL(�q ')= :9q(:q(t0) ^ 8t(:q(t)! :MSOL(')ft0 := tg))= 8q(q(t0) _ :8t(:q(t)! :MSOL(')ft0 := tg))= 8q(8t(MSOL(')ft0 := tg ! q(t))! q(t0)):In this 
hapter, we use � as basi
 operator and � as a de�ned operator, sin
ethe semanti
s of � is a restri
ted existential quanti�
ation on sets of points, and� is a restri
ted universal se
ond order quanti�er. However, ('U+ ), whi
h isde�ned by an existential �rst order 
lause, is often asso
iated with a �-formula:when interpreting �TL on natural models, we use the operator X for the uniquediamond operator hRi. With this notation, Lemma 3.3 
an be reformulated asfollows.3.4. Corollary. For any natural model M,M j= ('U+ ) i� M j= �q X( _ ' ^ q)Proof: With Lemma 3.3, the equivalen
e follows almost immediately from thede�nitions.



Model Che
king 1661MSOL(�qX( _ ' ^ q))= 8q(8t(MSOL(X( _ ' ^ q))ft0 := tg ! q(t))! q(t0))=MSOL(8q(G�(X( _ ' ^ q)! q)! q))$ FOL(('U+ )) (a

ording to Lemma 3.3) 2Corollary 3.4 does not hold for more general Kripke models. In natural models,other operators 
an be 
hara
terized by similar �TL formulas:M j= F+ i� M j= �q X( _ q)M j= ('W+ ) i� M j= �q X( _ ' ^ q)M j= G� i� M j= �q ( ^X q)M j= ('U� ) i� M j= �q ( _ ' ^X q)Similarly, on tree models allCTL operators 
an be de�ned by �TL formulas. Thesame holds for most other programming logi
s whi
h 
an be found in the literature.A formal justi�
ation of this statement will be given below in Theorem 5.10.For 
ertain formulas, an alternative semanti
al des
ription of the � and � quanti-�ers in terms of greatest and least �xed points 
an be given. A fun
tion f : 2U ! 2Uis 
alled monotoni
, if P � Q implies that f(P ) � f(Q). A set Q � U is 
alled a�xed point of f , if Q = f(Q).Let gfp(f) = SfQ j Q � f(Q)g and lfp(f) = TfQ j f(Q) � Qg. The Knaster-Tarski �xpoint theorem [Tarski 1955℄ states that if f is monotoni
, then gfp(f) andlfp(f) are the greatest and least �xed point of f .3.5. Theorem (Knaster-Tarski). Let f : 2U ! 2U be monotoni
. Then(a) gfp(f) = f(gfp(f)) and lfp(f) = f(lfp(f)), and(b) If Q = f(Q), then Q � gfp(f) and lfp(f) � Q.Proof: Sin
e gfp and lfp are dual, it suÆ
es to prove the theorem for gfp.If Q = f(Q), then Q � f(Q). If Q � f(Q), then Q 2 fQ j Q � f(Q)g, thatis, Q � SfQ j Q � f(Q)g = gfp(f). This proves (b). Furthermore, sin
e f ismonotoni
, it implies that f(Q) � f(gfp(f)). Hen
e for ea
h Q, if Q � f(Q) thenQ � f(gfp(f)) by transitivity of set in
lusion. Sin
e ea
h individual Q is a subset off(gfp(f)), this means that SfQ j Q � f(Q)g � f(gfp(f)), i.e., gfp(f) � f(gfp(f)).This is one part of (a). Now, we use this result to infer the 
onverse in
lusion of (a):sin
e f is monotoni
, f(gfp(f)) � f(f(gfp(f))). Thus, f(gfp(f)) 2 fQ j Q � f(Q)g,whi
h means f(gfp(f)) � SfQ j Q � f(Q)g. Therefore, f(gfp(f)) � gfp(f). 2In fa
t, this proof shows that the se
ond part of the theorem 
an be strengthened.3.6. Corollary. If f : 2U ! 2U is monotoni
, then� Q � f(Q) implies Q � gfp(f), and� f(Q) � Q implies lfp(f) � Q.For a more detailed dis
ussion of other �xpoint theorems, see [Davey and Priestley1990, Gunter and S
ott 1990℄.
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hlingloffIn a frame F = (U; I), any formula ' de�nes a set 'F � U of points in theuniverse, namely 'F , fw j (U; I; w) j= 'g. Likewise, a formula ' with a freeproposition variable q de�nes a fun
tion 'Fq : U ! U from sets of points to sets ofpoints (a predi
ate transformer): if Q � U , then 'Fq (Q) , fw j (U; I 0; w) j= 'g,where I 0 di�ers from I only in I 0(q) , Q.3.7. Lemma. (�q ')F = gfp('Fq ) and (�q ')F = lfp('Fq ).Proof: A

ording to the de�nitions, w 2 gfp('Fq ) i� w 2 SfQ j Q � 'Fq (Q)g,that is, if there is some Q � U su
h that w 2 Q and Q � 'Fq (Q). In MSOLthis 
ondition 
an be denoted as w j= 9q(q(t0) ^ 8t(q(t) ! MSOL(')ft0 := tg)).This 
lause is exa
tly the semanti
al translation MSOL(�q '; thus w 2 gfp('Fq )i� w j= �q '. For lfp('Fq ), the dual proof holds. 2We say that a formula ' is monotoni
 in q, if the 
orresponding predi
ate trans-former 'Fq is monotoni
. In other words, ' is monotoni
 in q i� ( 1 !  2) j=('fq :=  1g ! 'fq :=  2g) holds. ' is monotoni
, if for ea
h sub-formula �q  ,the formula  is monotoni
 in q. Call an o

urren
e of a proposition variable q ina formula ' positive or negative, if it is under an even or odd number of negations.Formally, this notion is de�ned re
ursively: q is positive in the formula q. An o
-
urren
e of q in the formula (' !  ) is positive, if it is a negative o

urren
e in' or a positive o

urren
e in  , and negative, if it is a positive o

urren
e in ' ora negative o

urren
e in  . An o

urren
e of q in hRi' and �q0 ' is positive ornegative, if it is positive or negative in ', respe
tively. A formula ' is 
alled positivein q, if every free o

urren
e of q in ' is positive. It is positive, if ea
h sub-formula�q  is positive in q.3.8. Lemma. If ' is positive in q, then 'Fq is a monotoni
 predi
ate transformer.Proof: This statement 
an be proved by indu
tion on the stru
ture of '. The in-du
tion basis, namely formulas whi
h are atomi
 propositions, proposition variablesor boolean 
onstants, is immediate. For the indu
tive step, assume that P � Q.If (' !  ) is positive in q, then  must be positive and ' must be negative in q.Therefore, :' is positive in q. The indu
tion hypothesis is that  Fq (P ) �  Fq (Q)and :'Fq (P ) � :'Fq (Q). From this we 
an infer that 'Fq (Q) � 'Fq (P ). There-fore, if 'Fq (P ) �  Fq (P ) then 'Fq (Q) �  Fq (Q). This follows from 'Fq (Q) �'Fq (P ) �  Fq (P ) �  Fq (Q). In other words, (' !  )Fq (P ) � (' !  )Fq (Q).For the 
ase hRi', the indu
tion hypothesis is that 'Fq (P ) � 'Fq (Q). Then,fw j 9w0(w;w0) 2 I(R)^w0 2 'Fq (P )g � fw j 9w0(w;w0) 2 I(R)^w0 2 'Fq (Q)g. Inother words, (hRi')Fq (P ) � (hRi')Fq (Q). Similarly, for formulas �q0', where q andq0 are di�erent variables, the indu
tion hypothesis is that 'Fq;q0 (P;X) � 'Fq;q0(Q;X)for all X . Therefore, X � (')Fq;q0 (P;X) implies X � (')Fq;q0 (Q;X) for all X . Con-sequently, fw j for some X; w 2 X and X � 'Fq;q0(P;X)g � fw j for some X; w 2X and X � 'Fq;q0(Q;X)g. A

ording to the de�nition, this is the semanti
s of



Model Che
king 1663(�q0')Fq (P ) � (�q0')Fq (Q). The last 
ase is �q'. Sin
e this formula has no freeo

urren
e of variable q, its denotation (�q')Fq is a 
onstant fun
tion. Trivially,
onstant fun
tions are monotoni
. 2The 
onverse of this statement does not hold in general. In parti
ular, [Ajtaiand Gurevi
h 1987℄ shows that there is a formula whi
h is monotoni
 on all �nitestru
tures but has no positive equivalent.3.9. Corollary. If ' is positive, then� j= (�q '$ 'fq := �q 'g) and j= (�q '$ 'fq := �q 'g).� If (U; I) j= (� $ 'fq := �g) then both (U; I) j= (� ! �q ') and (U; I) j=(�q '! �).� (U; I) j= (�! 'fq := �g) implies (U; I) j= (�! �q '), and(U; I) j= ('fq := �g ! �) implies (U; I) j= (�q '! �)Proof: If ' is positive in q, then 'Fq is monotoni
 a

ording to Lemma 3.8. The-orem 3.5 asserts that gfp('Fq ) = 'Fq (gfp('Fq )). In the notation of Lemma 3.7, thismeans (�q ')F = 'Fq ((�q ')F ). Moreover, 'Fq ((�q ')F ) = ('qfq := �q 'g)F .Therefore, M j= (�q ' $ 'qfq := �q 'g). The other statements are shownsimilarly. 2A

ording to Corollary 3.4, ('U+ ) and ('W+ ) in natural models are leastand greatest �xed points of X( _'^ q) and X( _'^ q), respe
tively. Therefore,the following re
ursion and indu
tion axioms hold:� j= ('U+ )$ X( _ ' ^ ('U+ )) and j= ('W+ )$ X( _ ' ^ ('W+ )).� (U; I) j= (X( _ ' ^ �)! �) implies (U; I) j= (('U+ )! �), and(U; I) j= (�! X( _ ' ^ �)) implies (U; I) j= (�! ('W+ )).In parti
ular, for F+, G+, F� and G�, we have� j= (F+ )$ X( _ F+ ) and j= (G+')$ X(' ^G+').� j= (F� )$ ( _XF� ) and j= (G�')$ (' ^XG�').� (U; I) j= (X( _ �)! �) implies (U; I) j= ((F+ )! �), and(U; I) j= (�! X(' ^ �)) implies (U; I) j= (�! G+').� (U; I) j= (( _X�)! �) implies (U; I) j= ((F� )! �), and(U; I) j= (�! (' ^X �)) implies (U; I) j= (�! G�').As we have shown, positive �TL formulas denote greatest or least �xed pointsof predi
ate transformers. For nonmonotoni
 formulas, the existen
e of �xed pointsis not granted. For example, there is no Q � U satisfying Q = U n Q; thus, thereis no �xed point of (:q)Fq . However, the MSOL semanti
s of �q :q is 9q(q(t0) ^8t(q(t) ! :q(t))), whi
h is equivalent to the well-de�ned value ?. On generalKripke-models, positive �TL is stri
tly weaker in expressiveness than unrestri
ted�TL. Even unrestri
ted �TL 
an, in turn, express fewer properties of Kripke modelsthan monadi
 se
ond order logi
:
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hlingloff3.10. Lemma. Consider the 
lass of all Kripke models.(a) There is no positive �TL formula whi
h is equivalent to �q(hRi :q).(b) There is no �TL formula whi
h is equivalent to 8tp(t)Proof: For (a), 
onsider ' , �q(hRi :q). Then MSOL(') = 9q(q(t0) ^ 8t(q(t)!9t0(tRt0^:q(t0)))). This formula is equivalent to the �rst order 
ondition 9t(t0Rt^t0 6= t): in one dire
tion, if there is some q su
h that w 2 I(q) and w j= 8t(q(t) !9t0(tRt0^:q(t0))), then there must be a point rea
hable from w whi
h is not in I(q),i.e., di�erent from w. For the reverse impli
ation, assume that w j= 9t(t0Rt^t0 6= t)and let I(q) , fwg. Then w j= q(t0) and w j= 8t(q(t) ! 9t0(tRt0 ^ :q(t0))).Therefore, w j= '.There is no positive formula whi
h 
an express this property: 
onsider the frameF , (U; I), where U , fw0; w1g, I(R) , f(w0; w0); (w0; w1); (w1; w1)g and I(p) =fg for all p 2 P . Then w0 j= ' and w1 =j= '. For ea
h positive formula  , however, itholds that w0 j=  i� w1 j=  . To prove this, we show by indu
tion on the stru
tureof  that  F = fg or  F = U . For propositional formulas, this is immediate; the
ase hRi follows from the de�nition of F . The only remaining 
ase are formulas�q . A

ording to the indu
tion hypothesis, either ( fq := >g)F = fg or ( fq :=>g)F = U . In the �rst 
ase, from the fa
t that (�q )F � >F and monotoni
ity of  we infer that ( fq := �q g)F � ( fq := >g)F = fg. The �rst part of Theorem 3.5implies that (�q )F � ( fq := �q g)F ; therefore, (�q )F = fg. In the se
ond 
ase,U = >F = ( fq := >g)F . With the se
ond part of Theorem 3.5, it follows that>F � (�q )F , i.e., (�q )F = U .Statement (b) holds sin
e the truth of �TL formulas is preserved under disjointunions of models, whereas ' , 8tp(t) 
an be invalidated by adding an isolatedpoint w with w =j= p. Formally, 
onsider the models M0 , (U0; I; w0) and M1 ,(U1; I; w0), where U0 , fw0g, U1 , fw0; wg, I(R) , fg and I(p) , I(q) , fw0g.Then M0 j= ' and M1 =j= ', whereas for ea
h �TL formula  it holds thatM0 j= ' i� M1 j= '. As above, the only interesting 
ase is �q . If M0 j= �q then w0 j=  , whi
h implies M1 j= �q . In the other dire
tion, M1 j= �q impliesthat either M1 j=  or M01 , (U1; I1; w0) j=  , where I1(q) = U1. In the �rst
ase, M0 j= �q follows dire
tly. In the se
ond 
ase, M1 j=  fq := >g, whi
himplies M0 j=  fq := >g by the indu
tion hypothesis. From this, it follows thatM0 j= �q . 2If the model is 
onne
ted (that is, 8w;w0(w < w0 _ w = w0 _ w > w0)), thenevery point is rea
hable from the 
urrent point. In this 
ase, the operator G� (theuniversal modality) 
an repla
e the �rst-order universal quanti�er: M j= 8tp(t) i�M j= G�p. In this 
ase,M j= �q ' i� M j= 9q(q ^G�(q ! '));M j= �q ' i� M j= 8q(G�('! q)! q):Hen
e, on 
onne
ted models (and, in parti
ular, on natural models) �TL is at mostas expressive as qTL (andMSOL). Sin
e �TL does not 
ontain any past-operators,there is no �TL formula whi
h is equivalent to F�>. Subsequently, however, we will



Model Che
king 1665show that for initial validity in natural models a translation from qTL (orMSOL)into positive �TL exists. Sin
e the proof uses !-regular languages and !-automata,it is postponed to subse
tion 3.4.3.3. !-automata and !-languagesGiven a (�nite or in�nite) natural model M , (U; I; w0), the interpretation Ide�nes a mapping I : P ! 2U from propositions into subsets of the universe.De�ne a labelling fun
tion L : U ! 2P byp 2 L(w) i� w 2 I(p)That is, L(w) , fp j w 2 I(p)g is the label of point w 2 U . If U = (w0; w1; w2; :::),then the sequen
e � = (L(w0);L(w1);L(w2); :::) is 
alled the !-word ofM over thealphabet � , 2P . A set of !-words is 
alled an !-language.Let F , (U; I) be the frame of a natural model. Formula ' is initially validin F , if (U; I; w0) j= ', where w0 is the unique initial point of U (whi
h has noprede
essors). For any su
h frame F it holds that ' is universally valid i� G�' isinitially valid, and ' is initially valid i� (G�?! ') is universally valid.We say that a linear-time logi
 formula de�nes the set of all natural frames inwhi
h it is initially valid. Thus every su
h formula de�nes the !-language given bythese frames. We now show that in order to de�ne languages by formulas it suf-�
es to restri
t attention to the future fragment of temporal logi
. The separationLemma 2.6 states that any LTL-formula 
an be separated into a boolean 
ombi-nation of pure future, pure present and pure past formulas. It 
an be extended toqTL:3.11. Lemma. qTL has the separation property on natural models.Proof: Note that the formula 9q(' _  ) $ (9q ' _ 9q  ) is valid. Moreover, if'1,...,'n are pure past,  1,..., m are pure present and �1,...,�l are pure future, then9q(V'i ^V j ^V�k) is equivalent to (9qV'i ^ 9qV j ^ 9qV�k). Informally,this 
an be seen as follows: 9q(' ^  ) ! (9q' ^ 9q ) is a tautology. In the otherdire
tion, assume that the past-formulas '1,...,'n are valid in the model (U; I; w0)where I(q) , Q1, the present-formulas  j are valid with I(q) , Q2, and the future-formulas �k are valid if I(q) , Q3, then the 
onjun
tion of past, present and futurepart is valid if I(q) , (fw j w < w0g \Q1) [ (w0 \Q2) [ (fw j w > w0g \Q3).Now assume that ' , 9q , and show that there is an equivalent separatedformula. The indu
tion hypothesis is that for  there exists an equivalent formula 0 whi
h is a boolean 
ombination of pure future, past and present formulas. Let 00 , WV('i ^  j ^ �k) be  0 in disjun
tive normal form, where all 'i are purepast,  j pure present and �k pure future. Applying the above formulas we see that9q 00 $ WV(9q'i ^9q j ^9q�k). This formula is separated and equivalent to '.2
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hlingloff3.12. Lemma. For any LTL or qTL formula ' there exists an LTL or qTL futureformula (without U�-operators) de�ning the same language.Proof: Given a separated formula ', let '+ be the formula ' where every sub-formula ('U� ) is repla
ed by ?. Then ' is initially valid in any natural modelM i�  + is initially valid in M. Thus ' and '+ de�ne the same language. 2Languages 
an also be de�ned by (!-)regular expressions and by �nite (!-) au-tomata.The language of (!-)regular expression is de�ned similar to the language of usualregular expressions, with an additional operation denoting in�nite repetition of asubexpression.� Every letter from the alphabet is an !-regular expression.� If � and � are !-regular expressions, then so are ", (�+ �), (�;�) and �+.� If � is an !-regular expression, then so is �! .Every !-regular expression de�nes an !-language: the letter a � P de�nes f(a)g,i.e., a one-word language (one-element set) 
onsisting of a one-letter word (one-element sequen
e). " denotes the empty language, and (� + �), (�;�) and �+denote union, sequential 
omposition and �nite iteration of languages. �! denotesthe language of all words 
onsisting of an in�nite 
on
atenation of words from �.A language is 
alled !-regular if it 
an be de�ned by an !-regular expression.We use boolean terms over P to denote (unions of) letters. For example, if P =fp1; p2g then (:p1^p2) denotes the letter fp2g, and (:p1_p2) denotes fg+fp2g+fp1,p2g.As an example for an !-regular expression, 
onsider (:p1)! + (>+; p2)!. Thisexpression de�nes the set of all in�nite words (�0; �1; �2; :::) su
h that either for alli it holds that p1 62 �i, or for in�nitely many i it holds that p2 2 �i. That is, itde�nes the set of natural models M su
h that M j= G�(:p1 ^ X>) _ G�F+ p2.Sin
e this formula implies G�X>, ea
h of its natural models must be in�nite.An !-automaton or fair transition system over the alphabet � = 2P is de�ned likea usual (nondeterministi
) automaton with an additional re
urren
e set (\fairness
onstraint"); it is a tuple (S;�; S0; Sa

; Sre
), where� S is a set of states,� � � S � �� S is the transition relation,� S0 � S is the set of initial states,� Sa

 � S is the set of a

epting states (for �nite words), and� Sre
 � S is the set of re
urring states (for in�nite words).A B�u
hi-automaton is a �nite !-automaton, that is, a fair transition system wherethe set S of states is �nite. A transition system (or labelled transition system) isa fair transition system where Sa

 = Sre
 = S. A weakly fair transition system isan !-automaton where Sre
 = S and Sa

 = fs j 8a; s0(s; a; s0) =2 �g. That is, ina weakly fair transition system all states are re
urring, and states are a

epting i�
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king 1667they are terminal. Usually, when talking about labelled and weakly fair transitionsystems, we omit the redundant 
omponents Sa

 and Sre
.A (�nite or in�nite) nonempty word � , (�0; �1; :::) is a

epted by an automaton(S;�; S0; Sa

; Sre
), if there is a fun
tion � assigning to any i < j�j a state �(�i) 2 Sof the automaton su
h that� �(0) 2 S0,� For all 0 � i < n, (�(i); �i; �(i+ 1)) 2 �, and� (�(n); �n; s) 2 � for some s 2 Sa

, if � is �nite with last letter wn, and� inf(�) \ Sre
 6= fg, if � is in�nite, where inf(�) is the set of states that appearin�nitely often in the range of �. That is, at least one re
urring state must besele
ted in�nitely often.For alternative a

eptan
e 
onditions, see [Thomas 1990℄4. We say that an automa-ton a

epts a natural model M, if it a

epts the !-word of M. The language of atransition system 
onsists of all paths through the transition graph; this languageis pre�x-
losed (for any word in the language, all of its pre�xes are also 
ontained).The language de�ned by a weakly fair transition system 
onsists of all maximalpaths through the graph.
-p1

-p1

T

T p2

TFigure 3: A B�u
hi automaton a

epting (:p1)! + (>+; p2)!As an example of a B�u
hi-automaton, 
onsider Figure 3. This automaton a

epts(i.e., de�nes) exa
tly the same language as the example !-regular expression above.In general, for any !-regular expression we 
an 
onstru
t su
h a B�u
hi-automatonand vi
e versa; B�u
hi-automata 
an de�ne all and only !-regular languages.3.13. Lemma. !-regular expressions and B�u
hi-automata are of equal expressivepower.Proof: The proof of this statement is similar as for automata on �nite words: forone dire
tion, we have to show that the B�u
hi a

eptan
e 
ondition 
an be 
aptured4In the literature, a fairness 
onstraint in a transition systems is sometimes de�ned to be aset of pairs (s; e), where s 2 S is a state and e 2 � is an edge. It imposes the 
ondition thatif s appears in�nitely often, then e must be taken in�nitely often in ea
h a

epted word. It 
anbe shown that for our purposes these de�nitions are equivalent. See [Anu
hitanukul 1995℄ for therelationships and translations between these two notions for various a

eptan
e 
onditions.
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hlingloffby an appropriate regular expression. Let L(si; sj) be a regular expression for thelanguage of �nite nonempty words sending an automaton from state si into statesj . Then the !-regular expression asso
iated with any B�u
hi-automaton is�fL(s0; s) j s0 2 S0; s 2 Sa

g+�fL(s0; s);L(s; s)! j s0 2 S0; s 2 Sre
gFor the other dire
tion it must be shown that B�u
hi-automata are 
losed undersingle letters, the empty language, union, 
on
atenation, and �nite and in�niterepetition. All of these 
onstru
tions are straightforward extensions of the appro-priate 
onstru
tions for automata on �nite words [Hop
roft and Ullman 1979℄. 2The automaton resulting from this proof is highly nondeterministi
. An automa-ton is 
alled deterministi
, if its transition relation is a fun
tion � : S��! S. Forea
h nondeterministi
 �nite automaton on �nite words an equivalent deterministi
one is given by the well known powerset 
onstru
tion of Rabin and S
ott [Hop
roftand Ullman 1979℄. The same holds for �nite transition systems. In 
ontrast, for non-deterministi
 B�u
hi-automata it is not always possible to 
onstru
t an equivalentdeterministi
 one. For example, 
onsider the language L of all words 
ontaining only�nitely many p. This language is de�ned by the formula F�G+:p or the !-regularexpression (>+ + (>+;:p!)). However, there is no deterministi
 B�u
hi-automatonde�ning L: Assume for 
ontradi
tion that L is the language of A. Then A musta

ept (�; (:p)!) for any �nite word �. In parti
ular, from any rea
hable statesome re
urring state is rea
hed by a �nite number of :p-transitions. Let m be themaximum of these numbers. Therefore, in the run of A on the word (p; (:p)m)!in�nitely often re
urring states are visited. Thus, this word also is a

epted by A.This is a 
ontradi
tion, sin
e it is not in L.3.4. Automata and Logi
sB�u
hi [B�u
hi 1962℄ showed that his automata are 
losed under 
omplement; this isa highly nontrivial proof. The best known 
onstru
tion for 
omplementing B�u
hi-automata was given in [Safra 1988℄; it involves an exponential blowup of the numberof states of the automaton. More pre
isely, if A has n states, then it 
an be shownthat the smallest automaton a

epting the 
omplement language of A in generalhas O(2n logn) states. For more information on the 
omplementation problem forB�u
hi automata, see [Sistla, Vardi and Wolper 1987, Thomas 1990℄.Closure under 
omplement 
an be used to show that B�u
hi-automata are at leastas expressive as qTL.3.14. Lemma. For every qTL formula there is a B�u
hi-automaton de�ning thesame language.Proof: A

ording to Lemma 3.12 it suÆ
es to give a translation for formulas with-outU�. An automaton for the proposition p 2 P is given by the trivial two-state ma-
hine (fs0; sa

g;�; fs0g; fsa

g; fg), where (s0; a; sa

) 2 � i� p 2 a. An automaton
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king 1669for ? is one whi
h never a

epts. From an automaton for ', an automaton for X'and F+' 
an be built by an appropriate pre�xing with a single step or loop on theinitial states. A

ording to the remark following Lemma 3.3, U+ 
an be expressedwith X, F+ and se
ond order quanti�
ation. Impli
ations ('!  ) 
an be written as(:' _  ) and thus be redu
ed to unions and 
omplements. Finally, existential se
-ond order quanti�
ation amounts to the proje
tion of the automaton onto a smalleralphabet: given an automaton A = (S;�; S0; Sa

; Sre
) over the alphabet 2(P[Q)whi
h a

epts the models of ', the automaton A0(S;�0; S0; Sa

; Sre
) a

epts allmodels of 9q ', where (si; a; sj) 2 �0 i� (si; anfqg; sj) 2 � or (si; a[fqg; sj) 2 �0.2In parti
ular, sin
e LTL is a sublanguage of qTL, for every LTL formula thereexists a 
orresponding B�u
hi-automaton. In Se
tion 7, we will des
ribe a tableauxde
ision pro
edure, whi
h 
an be seen as an eÆ
ient algorithm to 
onstru
t a B�u
hi-automaton from a formula. Other aspe
ts of the 
onne
tions between temporallogi
s, monadi
 logi
s and automata 
an be found in [Thomas 1999℄.We now show that !-regular expressions are at most as expressive as �TL:3.15. Lemma. For every !-regular expression there exists a �TL-formula des
rib-ing the same language.Proof: The proof asso
iates with every !-regular expression ' a �TL-formula�TLq(') with at most one free proposition variable q indi
ating the end of thesequen
e.� �TLq(P ) , (Vp2P p ^Vp62P :p ^ q), if P 2 2P� �TLq(�) , ?� �TLq('+  ) , (�TLq(') _ �TLq( ))� �TLq('; ) , �TLq(')fq := X�TLq( )g� �TLq('+) , �q1 (�TLq(')fq := q _X q1g)� �TLq('!) , �q1 (�TLq(')fq := X q1g)If ' de�nes a language of in�nite strings, then �TLq(') does not 
ontain any freeo

urren
e of q. However, if ' de�nes a language of �nite strings, then �TLq(')
ontains the free proposition variable q denoting the �nal point. A �nite string is
hara
terized by the fa
t that in its last point the formulaX? holds. Therefore, the�TL-formula 
orresponding to an !-regular expression ' is de�ned as �TL(') ,�TLq(')fq := X ?g. It 
an be shown that �TL(') de�nes the same language asthe !-regular expression '. 2As an example, 
onsider the expression (:p1)! + (>+; p2)!.�TL((:p1)! + (>+; p2)!)= �q1 (�TL(:p1)fq := X q1g) _ �q2(�TL(>+; p2)fq := X q2g)= �q1 ((:p1 ^ q)fq := X q1g) _ �q2((�TL(>+)fq := X�TL(p2)g)fq := X q2g)= �q1 (:p1 ^X q1)_�q2(�q3(> ^ q)fq := q _X q3gfq := X(p2 ^ q)gfq := X q2g)
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hlingloff= �q1 (:p1 ^X q1) _ �q2(�q3(X(p2 ^ q) _X q3)fq := X q2g)= �q1 (:p1 ^X q1) _ �q2(�q3X(p2 ^X q2 _ q3))$ �q1 (:p1 ^X> ^X q1) _ �q2(�q3X(p2 _ q3) ^X q2)= G�(:p1 ^X>) _G�F+p2This lemma 
loses the 
ir
le in the expressiveness results of se
ond order languages.3.16. Theorem (B�u
hi, Wolper, Sistla). To de�ne !-languages, the following for-malisms are of equal expressive power:i. �TLii. qTLiii. MSOLiv. B�u
hi-automatav. !-regular expressionsProof: For every �TL-formula there exists an equivalent qTL-formula by de�ni-tion; on natural models qTL is equal in expressiveness to MSOL by Lemma 3.2;a

ording to Lemma 3.14, for every qTL (or MSOL) formula there is a B�u
hi-automaton de�ning the set of its models; by Lemma 3.13, B�u
hi-automata areequivalent to !-regular expressions; and these in turn 
an be des
ribed by �TL-formulas as shown in Lemma 3.15. 2Similar results 
an be proved about logi
s with past operators on integer mod-els (bi-in�nite words) and two-way automata, and about bran
hing time log-i
s (�TL=qTL on tree models) and tree automata (� � S � 2P � (R � S)n)(see [Niwinsky 1988, Thomas 1990, S
hlinglo� 1992b℄).4. Model Transformations and PropertiesAs we have seen, linear temporal formulas and !-automata both 
an be used todes
ribe sets of in�nite sequen
es. The pra
ti
al di�eren
e is, that logi
 tends tobe more \des
riptive", spe
ifying what a system should do, whereas automata tendto be more \ma
hine-oriented", indi
ating how it should be done. Logi
al formulasare \global", they are interpreted on the whole stru
ture, whereas automata are\lo
al", des
ribing single states and transitions.Therefore, traditionally automata or related models are used to give an abstra
ta

ount of the system to be veri�ed, whereas formulas are used to spe
ify proper-ties of these systems. But, sin
e it is possible to translate between automata andformulas and ba
k, this 
hoi
e is a matter of 
omplexity, of available algorithmsand of taste. We 
ould equally well de�ne both system and properties in temporallogi
; in this 
ase we would have to prove an impli
ation formula (Se
tion 7 willexplain how to do this). Another alternative is that both the implementation andthe spe
i�
ation are given as automata, where the latter is more \abstra
t" thanthe former. Then we have to prove that one 
an simulate the other.



Model Che
king 1671In the next se
tions, we des
ribe various transformations between models su
h assimulations and re�nements, and investigate the preservation of logi
al propertiesunder these transformations.4.1. Models, Automata and Transition SystemsThe previous se
tion related !-automata and linear temporal formulas via the !-language a

epted by the automaton and the set of natural models in whi
h the for-mula is initially valid. There is, however, a more dire
t 
onne
tion on the stru
turallevel. Let M = (U; I; w0) be a Kripke-model with predi
ates from P and a

essi-bility relations from R. Consider the alphabet � = 2P �R, and let � = (�0�1�2:::)be an !-word, where �i = (ai; Ri). We say that � is generated by M if there existsa mapping � from indi
es of letters of � into points of U , su
h that� �(0) = w0,� if �(i) = w, then ai = L(w),� if �(i) = w and �(i+ 1) = w0, then (w;w0) 2 I(Ri), and� if � is �nite with last letter �n, and �(n) = w, then w is terminal (i.e., there isno w0 su
h that w � w0).(Re
all that L(w) , fp j p 2 I(w)g is the label of point w.) The fourth 
onditionguarantees that generated words represent maximal paths in the model5. De�nethe language generated by M to be the set of all !-words generated by M. Withthese de�nitions, Kripke-models 
an be regarded as weakly fair transition systemsfor the alphabet � = 2P � R. (Re
all that in a weakly fair transition system allstates are re
urring, and all terminal states are a

epting.)4.1. Lemma. For any Kripke-model M = (U; I; w0) there exists a weakly fair tran-sition system MA = (S;�; S0), su
h that the language generated by M is equal tothe language a

epted by MA.Proof: To prove this lemma, there are several alternative 
onstru
tions. One pos-sibility is to de�ne S , U [fstopg, where stop is a spe
ial a

epting state for �nitepaths. Furthermore, S0 , fw0g, and (w; (P;R); s) 2 � i� w 2 U , L(w) = P , andeither (w; s) 2 I(R) or w is terminal and s = stop. Then, MA a

epts exa
tly theset of all natural models whi
h are generated by M. 2Thus, models 
an be seen as automata. Likewise, formulas 
an be seen as au-tomata: in the previous se
tion we observed that for every LTL formula there existsan equivalent B�u
hi-automaton. Sin
e this proof is 
onstru
tive, it yields a methodto obtain su
h an automaton. However, a mu
h more 
on
ise way of 
onstru
tingit is the tableau 
onstru
tion sket
hed in Se
tion 7 below.5Some texts omit this 
ondition, with the 
onsequen
e that all pre�xes of a generated word arealso generated. Other authors impose the even stronger 
ondition that all generated words mustbe in�nite; this implies that all points in a model should be nonterminal.
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hlingloffLet ' be an LTL-formula, and M be a Kripke-model with a single a

essibilityrelation. Then ' is sequen
e-valid in M i� the language generated by M (i.e., thelanguage a

epted by the weakly fair transition system MA for M) is a subset ofthe language a

epted by the B�u
hi-automaton M' for '. That is,M j= ' i� L(MA) � L(M'):The latter 
ondition is equivalent to L(MA)\L(M') = fg, or L(MA�M:') = fg.Here, M1 �M2 denotes the produ
t of !-automata, where the produ
t automa-ton M1 �M2 a

epts an in�nite word � i� ea
h 
omponent automaton a

epts�. Formally, if Mi , (Si;�i; Si;0; Si;a

; Si;re
) for i = 1; 2, then M1 � M2 ,(S;�; S0; Sa

; Sre
), where� S , S1 � S2 � f1; 2g,� ((s1; s2; i); a; (s01; s02; j)) 2 � i� (s1; a; s01) 2 �1, (s2; a; s02) 2 �2, and i = j, ori = 1 and s1 2 S1;re
 and j = 2, or i = 2 and s2 2 S2;re
 and j = 1.� S0 , S1;0 � S2;0 � f1g,� Sa

 , S1;a

 � S2;a

 � f0; 1g,� Sre
 , S1;re
 � S2;re
 � f2g,Intuitively, the de�nition of Sre
 enfor
es that in an in�nite run of M1 �M2 botha state from S1;re
 and a state from S2;re
 must be visited in�nitely often. Withthis 
onstru
tion, model 
he
king of LTL sequen
e-validity in �nite models redu
esto the nonemptyness problem of B�u
hi-automata: a feasible way to 
he
k whetherM j= ' is to 
onstru
t the B�u
hi-automata MA for the model and M:' for:', and to 
he
k whether the language of the produ
t automaton MA �M:' isempty. This approa
h is implemented in the SPIN and COSPAN model 
he
kingtools [Holzmann 1991, Kurshan 1994℄.If both system M and property ' are given as automata, then \spe
i�
ation"' 
an be regarded as a \more abstra
t version" of the \implementation" M. Wewrite MI j= MS if L(MI) � L(MS), i.e., if (the language of) MI is a subset of(the language of) MS . A property ' is de�ned to be just any !-language ' � �!,where � = 2P �R.4.2. Theorem. Let M1 and M2 be B�u
hi-automata. Then� M1 j=M2 i� for all properties ', if M2 j= ' then M1 j= '.� M1 j=M2 i� for all !-regular ', if M2 j= ' then M1 j= '.Proof: One dire
tion is immediate by transitivity of the subset relation: ifL(M1) � L(M2) and L(M2) � L('), then L(M1) � L('). The other dire
-tion follows from instantiating ' with L(M2) and, in the strong form, from thefa
t that the B�u
hi-automaton M2 de�nes a regular language. 2This theorem 
an help to redu
e the 
omplexity of 
he
king whether a modelsatis�es a formula. In order to prove M1 j= ', it 
an be helpful to look for a\small" model M2 su
h that M1 j=M2 and M2 j= '.
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king 16734.2. Safety and Liveness PropertiesA similar 
hara
terization result as the above 4.2 holds for �nite transition systemsand a spe
ial 
lass of !-languages 
alled safety-properties . For natural models Mand M0, let M[::i℄ be the model 
onsisting of the �rst i points of M, and MÆM0be the 
on
atenation of the two models M and M0. (If M is in�nite, then de�neMÆM0 ,M.)� ' is a safety property, i� for every natural model M,M j= ' if 8i9M0 : M[::i℄ ÆM0 j= 'This de�nition is from [Alpern and S
hneider 1985℄. An !-language ' is a safetyproperty if for every model not satisfying ' there is a �nite pre�x M[::i℄ whi
h
an not be 
ompleted by any 
ontinuation M0 su
h that M[::i℄ Æ M0 j= '. Inother words, for every model dissatisfying ' something \bad" must have happenedafter some �nite number of steps whi
h 
annot be remedied by any future goodbehavior. Hen
e, in Lamport's popular 
hara
terization, safety properties expressthat \something bad never happens" [Lamport 1983℄.� ' is a liveness property , i� for every natural model M,8i9M0 : M[::i℄ ÆM0 j= 'A liveness property ', on the other hand, 
an never be refuted by observing onlya �nite pre�x of some run. It holds, if and only if every �nite sequen
e 
an be
ompleted to a model satisfying ', hen
e ' states that \something good eventuallyhappens". Noti
e, however, that in 
ontrast to the \bad thing" referred to above,the o

urren
e of the \good thing" does not have to be observable in any �xed timeinterval. Thus, liveness failures 
annot be dete
ted by testing.Without proof we state some fa
ts about safety and liveness from [Alpern andS
hneider 1985℄:4.3. Theorem. (Properties of safety and liveness)� Safety properties are 
losed under �nite unions and arbitrary interse
tions.� Liveness properties are 
losed under arbitrary unions, but not under interse
-tions.� > is the only property whi
h is both a safety and a liveness property.� For any property ' there exists a safety property 'S and a liveness property 'Lsu
h that ' = ('S \ 'L).The last of these fa
ts is known as the de
omposition theorem and 
an be proved bytopologi
al arguments. The safety-part of a property ' is the topologi
al 
losure of', that is, the least safety property 
ontaining '. As an example, on natural modelsthe LTL-formula (pU+ q) is equivalent to ((pW+q) ^ F+ q), where the languagede�ned by (pW+ q) is a safety property and the language de�ned by F+ q is a
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hlingloffliveness property. Similarly, total 
orre
tness statements about programs 
an bede
omposed into invarian
e (safety) and termination (liveness).We now give a synta
ti
al 
hara
terization of LTL safety properties.4.4. Theorem. Every temporal formula built from literals with ?, >, ^, _ andW+ de�nes a safety property.Proof: The proof is by indu
tion on the stru
ture of the formula. The only inter-esting 
ase is ('W+ ). Assume that any model M falsifying both ' and  hasa �nite pre�x M[::i℄ su
h that any extension of M[::i℄ falsi�es these formulas. IfM =j= ('W+ ), then there is a wj > w0 su
h that wj j= (:' ^ : ), and wk j= : for w0 < wk < wj . Therefore, in any model M[::j+i℄ ÆM0, the formula ('W+ )must be invalid. 2An alternative 
hara
terization of safety in linear temporal logi
 is with past-operators. Any LTL formula G� , where  is a past formula, de�nes a safetyproperty. Moreover, any LTL-de�nable safety property 
an be de�ned by a formulaof this form [Li
htenstein et al. 1985℄.A binary relation � � U � U is 
alled image �nite, if for any x 2 U the setfy 2 U j (x; y) 2 �g is �nite. In parti
ular, any �nite relation is image �nite. We
all a transition system (S;�; S0) �nitary , if S0 is �nite and � is image �nite. Of
ourse, any �nite transition system is �nitary. Intuitively, �nitary transition systemsallow only \�nite nondeterminism". The following statement extends Theorem 4.4to �nitary transition systems:4.5. Theorem. Any �nitary transition system de�nes a safety property.Proof: Consider the language L of a �nitary transition system. We have to showthat for every sequen
e �, if 8i9�0 : �[::i℄ Æ �0 2 L then � 2 L. In other words,assume that any �nite pre�x of � 
an be extended to a string in L and show� 2 L. If � is �nite, then it is a �nite pre�x of itself; thus there exists some �0su
h that � Æ�0 2 L. Sin
e every state of a transition system is a

epting, it followsthat � 2 L. If � is in�nite, 
onsider the following 
omputation tree: ea
h node ismarked by (s; �[::i℄), where s is a state of the transition system and �[::i℄ is a �nitepre�x of �. The root is marked (s; ()), where s is any state. For any initial states0 2 S0 of the transition system there is a 
hild of the root in the 
omputationtree whi
h is marked (s0; �0), where �0 = �[::0℄ is the �rst letter of �. Given a nodemarked (s; �[::i�1℄) (where i > 0), for any s0 su
h that (s; �i�1; s0) 2 � there isa 
hild node in the tree marked (s0; (�0; :::; �i)). Thus there exists a node marked(s; �[::i℄) i� there is a path from some initial state to state s whi
h is labelled by(�0; :::; �i�1). Sin
e S0 is �nite and � is image �nite, the 
omputation tree is �nitelybran
hing. Sin
e every pre�x of � 
an be extended to a string whi
h is a

eptedby the transition system, the tree 
ontains in�nitely many nodes. Thus, by K�onig'slemma from elementary set theory, it must 
ontain an in�nite bran
h. Therefore,
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king 1675there is a path in the transition system labelled by �. Sin
e all states in a transitionsystem are re
urring, it a

epts �. 2
M: 	� ?� ??

. . .
Figure 4: A non-�nitary Kripke-modelWithout the �nitary restri
tion, Lemma 4.5 does not hold: 
onsider the in�nitetransition systemM of Figure 4. It shows a tree, su
h that for every natural numberi a path of length i starts from the root. This transition system de�nes the set of all�nite strings (F�X?), whi
h is not a safety property. Similarly, the same language
an be de�ned by an image �nite transition system with in�nitely many startingstates. In parti
ular, Lemma 4.5 implies that any �nite transition system de�nesan !-regular safety property. A weaker inverse statement also holds:4.6. Lemma. For every !-regular safety property there is a �nite transition systemde�ning this property.Proof: Assume that a B�u
hi-automaton de�ning a 
ertain safety property ' isgiven. We transform this automaton into a suitable normal form. First, any nona
-
epting state s 
an either de
lared to be a

epting or deleted, depending on whetheran a

epting state is rea
hable from s or not: sin
e safety properties are pre�x-
losedlanguages, if there is an a

epted path whi
h passes through nona

epting states,then there must be an equivalent path passing only through a

epting states. Sim-ilarly, nona

epting SCCs 
an be deleted: these are nontrivial strongly 
onne
ted
omponents in the automaton whi
h do not 
ontain a re
urring state. Sin
e ' is asafety property, for any a

epted path � passing through states in a nona

eptingSCC there must be an equivalent path whi
h avoids this SCC. Otherwise, assumethat � = �1 Æ �2, where �1 leads into the nona

epting SCC. Consider the (nona
-
epted) path �1 Æ �! whi
h passes in�nitely often through the nodes of this nona
-
epting SCC. Any �nite pre�x �1 Æ�n of this path 
an be extended to the a

eptedpath �1Æ�nÆ�2; hen
e the whole path would have to be a

epted. After the deletionof nona

epting SCCs, ea
h nontrivial SCC 
ontains a re
urring state. Therefore,
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hlingloffthe automaton a

epts all �nite and in�nite paths through its state graph. Con-sider the transition system with the same state set and transition relation, whereall states are a

epting and re
urring. The language of this transition system is thesame as that of the (redu
ed) automaton. 2For LTL safety properties ', a deterministi
 transition systemM' 
orrespondingto ' 
an be obtained dire
tly by a tableau pro
edure; see se
tion 7.Given a �nite Kripke model M and an !-regular safety property ', 
he
kingwhether M sequen
e-validates ' is espe
ially easy. Let MA be the weakly fairtransition system 
orresponding to M a

ording to Lemma 4.1, and let M' be adeterministi
 �nite transition system de�ning the same language as '. As above,M j= ' i� L(MA) � L(M'). Language 
ontainment 
an be de
ided by exe
utingMA (program) and M' (spe
i�
ation) in parallel and 
he
king that for everystep in MA the 
orresponding step in M' exists. This approa
h is also used inspe
i�
ation-based testing, where a number of test runs � 2 L(MA) is 
he
kedwhether they 
onform to the spe
i�
ation, that is, � 2 L(M'). The test runsare either determined by the system under test, or sele
ted by the spe
i�
ationa

ording to some 
overage strategy.Safety properties 
an be used to 
hara
terize language 
ontainment for �nitarytransition systems just as !-regular properties for B�u
hi-automata (
f. Fa
t 4.2).For �nitary transition systems, it is suÆ
ient to 
he
k whether M2 j= ' impliesM1 j= ' for all safety properties ' in order to establish M1 j=M2:4.7. Theorem. Let M1 and M2 be �nitary transition systems. Then M1 j=M2i� for all safety properties ', if M2 j= ' then M1 j= '.Proof: Assume that M1 j= M2, and that M1 =j= '. Then there exists a word �a

epted byM1 su
h that � =2 '. Sin
e L(M1) � L(M2), this 
ounter model is alsoin the language of M2, hen
e M2 =j= '. For the other dire
tion, sin
e the set of allnatural models generated from a �nitary transition system is a safety property andby the fa
t that M2 j=M2 the assumption immediately redu
es to M1 j=M2. 24.3. Simulation RelationsThe above 
hara
terization results 
on
entrate on 
ontainment between the !-languages generated by models and (linear time) formulas. However, there are tworeasons to 
onsider also weaker preorders between models than 
ontainment: �rstly,for large nondeterministi
 transition systems language 
ontainment may not be easyto 
he
k. Se
ondly, sometimes it is desirable to formulate properties whi
h dependon the stru
ture of the system under 
onsideration rather than on its behavior. Su
hproperties may not be preserved even for systems generating the same language.For example, 
onsider the two models M1 and M2 of Figure 5 over P = fg andR = fa; b; 
g.
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king 1677M1: ?a	b R
 M2: 	a Ra?b ?
Figure 5: Two sequen
e-equivalent but bran
hing-inequivalent Kripke-modelsClearly, L(M1) = L(M2), and therefore M1 j= M2. That is, if we observesequen
es of transitions, then every possible behavior of M1 is also a possiblebehavior of M2. However, if we observe not only transitions whi
h are taken, butalso transitions whi
h 
ould be taken, then the behavior of M1 and M2 di�ers:if \possible 
ontinuations" are indi
ated by small light bulbs, then in the �rstsystem after performing a both the b and 
 lights will be lit, whereas in the se
ondsystem only one of both is on. Formally, for every LTL-formula  it holds that  is sequen
e-valid in M1 i�  is sequen
e-valid in M2. For ' , [a℄([b℄? _ [
℄?), itholds that M2 j= ', but M1 6j= '.Given two modelsM1 = (U1; I1; w1) andM2 = (U2; I2; w2), we say thatM1 is asubmodel of M2 (denoted by M1 vM2), if U1 � U2, I1 = I2 # U1 (the restri
tionof I2 to U2), and w1 = w2. Intuitively, a submodel 
onsists of some parts of theoriginal model. In the proof of Lemma 4.6 we 
onstru
ted a spe
ial submodel whi
hpreserves all exe
ution sequen
es. Generally, all temporal properties are preservedwhen a model is repla
ed by the generated submodel , i.e., the submodel 
onsistingof all points rea
hable from the 
urrent point. However, usually properties are notpreserved when a model is repla
ed by an arbitrary submodel. Instead of simplyomitting parts of a model, it is better to 
ollapse several points into a single point.For any two models M1 = (U1; I1; w1) and M2 = (U2; I2; w2), a relation H �U1 � U2 is 
alled a simulation relation between M1 and M2 if� (w1; w2) 2 H ,� For all p 2 P , u 2 U1, and v 2 U2, if (u; v) 2 H then u 2 I1(p) i� v 2 I2(p).� For all u and v su
h that (u; v) 2 H and all R and u0 su
h that (u; u0) 2 I1(R)there is a v0 with the property that (v; v0) 2 I2(R) and (u0; v0) 2 H .Figure 6 illustrates the third 
ondition.We say that M1 is simulated by M2, or M2 simulates M1 (denoted by M1 !�M2), if there exists a simulation relation H between M1 and M2. Simulationrelates a model M1 to an abstra
tion M2 of the model M1. It guarantees thatevery behavior of the model is also a possible behavior of the abstra
tion. However,sin
e a point in the abstra
t model usually represents a set of points in the originalmodel, the abstra
tion might have behaviors that have no 
ounterpart in the originalmodel. Thus, the term \simulation" is used as in \the PC simulates a gameboy" or\this program simulates the development of ba
teria 
ultures".
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ondition for u and v4.8. Fa
t. !� is a preorder on the 
lass of all models.Proof: The proof of re
exivity is immediate. For transitivity, note that the rela-tional produ
t of two simulation relations is again a simulation relation. 2If M1 vM2, then M1 !�M2. Moreover, if M1 !�M2, then M1 j=M2: if M2
an simulate M1, then for every maximal run � generated by M1 there exists a
orresponding �0 2 M2.A model is 
alled deterministi
, if for every w 2 U and R 2 R there is at mostone w0 2 U su
h that (w;w0) 2 I(R). (This de�nition is somewhat weaker thanthe de�nition of deterministi
 automata on page 1668.) For deterministi
 M2 alsothe 
onverse holds: M1 j= M2 i� M1 !� M2. This is true be
ause for any wordthere is at most one path through a deterministi
 transition system. Deterministi
models and properties are an important spe
ial 
ase. Whereas for many problemsin nondeterministi
 transition systems an exponential sear
h via ba
ktra
king isused, in the deterministi
 
ase the same problems 
an be solved with polynomial
omplexity.4.9. Lemma. Let H be a simulation relation between M1 = (U1; I1; w1) and M2 =(U2; I2; w2), and (w01; w02) 2 H. Then (U1; I1; w01)!� (U2; I2; w02).Proof: The proof is immediate from the de�nition of simulation relations. 2A modal box formula is a formula not involving any diamond operator. Morepre
isely, literals (propositions and negated propositions) and ?;> are modal boxformulas, and if ' and  are modal box formulas, then ('^ ), ('_ ) and [R℄' aremodal box formulas. Similar to Lemmas 4.2 and 4.6, the following lemma relatessimulations between models and preservation of modal box formulas:4.10. Lemma. Let M1 = (U1; I1; w1) and M2 = (U2; I2; w2) be Kripke-models.M1 !�M2 implies that for all modal box formulas ', if M2 j= ' then M1 j= '.
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king 1679Proof: The proof is by indu
tion on '. The base 
ases ?;> are trivial. For p 2 P ,the assumption (w1; w2) 2 H implies w1 2 I1(p) i� w2 2 I2(p). For boolean opera-tors ^, _, the statement is an immediate 
onsequen
e of the indu
tion hypothesis.Finally, if w1 =j= [R℄', then there is a w01 2 U1 su
h that (w1; w01) 2 I1(R) andw01 =j= '. Sin
e M1 !� M2, there is a w02 2 U2 su
h that (w2; w02) 2 I2(R) and(w01; w02) 2 H . Lemma 4.9 asserts that (U1; I1; w01)!� (U2; I2; w02). A

ording to theindu
tion hypothesis, w02 =j= '. Therefore, w2 =j= [R℄', whi
h was to be proved. 2This lemma makes it possible to 
he
k safety in the abstra
ted (small) modelM2rather than in the original (large) model M1: if M1 violates a modal box formula,then this violation will also o

ur in M2.The above statement 
an be extended to more expressive logi
s. The logi
ACTL [Long 1993, Clarke, Grumberg and Long 1994a, Clarke, Long and M
Millan1989, Josko 1993, Dams, Grumberg and Gerth 1994℄ is \CTL without E quanti-�er". That is, literals and >;? are ACTL formulas, and if ' and  are ACTLformulas, then (' ^  ), (' _  ), A('U+ ) and A('W+ ) are ACTL formulas,where A('W+ ) , :E(: U+:(' _  )).4.11. Theorem. Let M1 and M2 be Kripke-models and ' be an ACTL formula.If M1 !�M2 and M2 j= ', then M1 j= '.Proof: Intuitively, this theorem is true be
ause formulas in ACTL des
ribe prop-erties that are valid in all paths of a model. They 
annot express the existen
e of aspe
i�
 path in the model. If M1 !�M2, then every behavior of M1 is a behaviorof M2. Thus every formula of ACTL that is valid in M2 must also be valid inM1.Formally, the theorem is proved by indu
tion on the stru
ture of '. Again, theonly interesting 
ases are AU+ and AW+. We show the 
ase of ' , A(�U+ ).Note that :A(�U+ )$ (E(: U+:(�_ ))_EG+: ) (
f. page 1655). Assumethat M1 !�M2 and M1 =j= ', and show that M2 =j= '. If w1 =j= A(�U+ ), thenin M1 there is either a �nite sequen
e of nodes w11 , w21 , ..., wn1 , su
h that wi1 =j=  for 0 < i < n, and wn1 =j= (� _  ), or a maximal path w11 , w21 , w31 , ..., su
h thatwi1 =j=  for all i > 0. Similar to the above, the indu
tion hypothesis proves that a
orresponding �nite or in�nite sequen
e w12 , w22 , ..., wn2 or w12 , w22 , w32 , ..., exists,su
h that wi2 =j=  for 0 < i < n, and wn2 =j= (� _  ), or wi2 =j=  for all i > 0. Thusw2 =j= A(�U+ ). 2In general the 
onverse of the above lemma and theorem are not valid. Essentially,this is due to the same reason why Lemma 4.5 fails to hold for non-�nitary transitionsystem: 
onsider the 
ounterexample of Figure 7.Both models have in�nitely many bran
hes from the root, one bran
h of lengthone, one bran
h of length two, one bran
h of length three, and so on. M1 has anadditional bran
h of in�nite length. These two models 
annot be distinguished byany modal formula:4.12. Lemma. For any ' 2ML it holds that M1 j= ' i� M2 j= '
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M1:

w1	 � ?� ??
... R R R . . .

M2:
w2	 � ?� ??
. . .

Figure 7: Two modally indistinguishable modelsProof: The statement is proved by indu
tion on '. The 
ru
ial 
ase is ' = hRi ,M1 j= ', and the su

essor w01 of w1 for whi
h w01 j=  is on the additional in�nitebran
h of M1. Choose any bran
h of M2 of length at least n, where n is thenumber of modal operators in '. Denote the i-th point on the in�nite bran
h ofM1 and on the 
hosen bran
h of M2 by wi1 and wi2, respe
tively (where w01 = w1and w02 = w2). Then for all i � n and all sub-formulas �i of ' with at most (n� i)modal operators it holds that wi1 j= �i i� wi2 j= �i. This is proved by subindu
tionon n � i: if n � i = 0, then it holds by de�nition of the models. If n � i > 0 andwi+11 j= �i+1 i� wi+12 j= �i+1, then wi1 j= hRi �i+1 i� wi2 j= hRi �i+1. Espe
ially, sin
e' has n modal operators, w01 j= ' i� w02 j= '. 2In parti
ular, Lemma 4.12 implies that for every modal box formula ', ifM2 j= 'then M1 j= '. Yet, M2 does not simulate M1: assume a simulation relation Hmapping the �rst node w of the in�nite path of M1 to any node w0 of any �nitepath in M2. Then H must map the su

essor of w to the su

essor of w0, thesu

essor of the su

essor of w to the su

essor of the su

essor of w0, and so on.There are �nitely many su

essors from w0, but in�nitely many su

essors from w.Thus, after a �nite number of steps, there will be nodes u 2M1 and v 2M2 su
hthat (u; v) 2 H , and u has a su

essor in M1, but v has no su

essor in M2.This is a somewhat 
ontrived 
ounterexample. In \many" 
ases, the 
onverse willhold. Re
all that a model is 
alled image �nite, if every point has only �nitely manysu

essors.
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king 16814.13. Theorem. LetM1 andM2 be image �nite Kripke-models. Then M1 !�M2i� for all modal box formulas ', if M2 j= ' then M1 j= '.Proof: Assume that all modal box formulas holding in M2 , (U2; I2; w2) arealso valid forM1 , (U1; I1; w1), and 
onstru
t a simulation between M1 and M2.De�ne H by (u; v) 2 H i� for all modal box formulas ', if v j= ' then u j= '. Then(w1; w2) 2 H by de�nition, and (u; v) 2 H implies L1(u) = L2(v), sin
e literals aremodal box formulas. Assume (u; v) 2 H and (u; u0) 2 I1(R). We have to show thatthere is a v0 su
h that (v; v0) 2 I2(R) and for all modal box formulas ', if u0 =j= 'then v0 =j= '. Assume for 
ontradi
tion that for ea
h v0 with (v; v0) 2 I2(R) thereis a 'v0 su
h that u0 =j= 'v0 and v0 j= 'v0 . Sin
e M2 is image �nite, W'v0 existsand is a modal box formula. Moreover, for all su
h v0, we have v0 j= W'v0 , whi
hmeans v j= [R℄W'v0 . This implies u j= [R℄W'v0 and therefore u0 j= W'v0 . This isa 
ontradi
tion to the assumption that u0 =j= 'v0 for all 'v0 . 2We already mentioned that the above theorems 
an be used to redu
e the 
om-plexity of model 
he
king. To prove thatM1 j= ', it 
an help to �nd an appropriateabstra
tion M2, and to prove M1 !� M2 and M2 j= '. For more information,see [Bensalem, Bouajani, Loiseaux and Sifakis 1992℄.Extremely eÆ
ient algorithms are known to 
he
k language in
lusion for deter-ministi
 �nite automata [Hop
roft and Ullman 1979℄. These algorithms 
an be usedto 
he
k the simulation preorder for deterministi
 models. For nondeterministi
 �-nite modelsM1 = (U1; I1; w1) andM2 = (U2; I2; w2), to 
he
k whetherM1 !�M2we de�ne a sequen
e of relations H0, H1, . . . on U1 � U2 as follows:� (u; v) 2 H0 i� for all p 2 P it holds that u 2 I1(p) i� v 2 I2(p)� (u; v) 2 Hn+1 i� (u; v) 2 Hn and for all R and u0 2 U1 su
h that (u; u0) 2 I1(R)there is a v0 with the property that (v; v0) 2 I2(R) and (u0; v0) 2 Hn.The interse
tion H� of all Hn is the largest simulation relation betweenM1 andM2. That is, M1 !� M2 i� (w1; w2) 2 H�. Algorithmi
ally, if Hn = Hn�1, thenH� , Hn and the 
onstru
tion terminates. In other words, we 
onstru
t the greatest�xed point of the one-step simulation relation. Sin
e the stru
tures are �nite, thereare only �nitely many di�erent Hn. Thus, termination is guaranteed. In Figure 8,R(u) denotes the set fu0 j (u; u0) 2 I(R)g, and j1 is the �rst 
omponent of a tuple.In the next se
tion, a more elaborate implementation of a similar algorithm forsymmetri
 simulation relations is given, whi
h is based on partition re�nement.5. Equivalen
e redu
tionsIn this se
tion, we 
onsider symmetri
 preorders, i.e., equivalen
es, and equivalen
etransformations between models. There are various possibilities for de�ning equiv-alen
es on models. For any preorder � from the pre
eding se
tion, an equivalen
e
an be de�ned by M1 'M2 i� M1 �M2 and M2 �M1. In this way, the equiv-alen
e indu
ed by the submodel ordering v is isomorphism. For M1 j= M2, the
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edure Sim 
he
k (Model (U1; I1; w1), Model (U2; I2; w2)) =Hnew := f(u; v) j u 2 U1; v 2 U2; L1(u) = L2(v)grepeatHold := Hnew; Hnew := fgfor all (u; v) 2 Hold doadd := >; for all R 2 R doif not R(u) � �(R(u)�R(v)) \Hold�j1 then add := ?if add then Hnew := Hnew [ f(u; v)guntil Hnew = Hold;if (w1; w2) 2 Hnewthen print(\(U1; I1; w1) is simulated by (U2; I2; w2)")else print(\There is no simulation between (U1; I1; w1) and (U2; I2; w2)");Figure 8: Algorithm for simulation 
he
kingsymmetri
 version is equality of the generated languages. Other model equivalen
esare introdu
ed by equivalen
e with respe
t to logi
al formulas, and by symmetri
simulations.5.1. Bisimulations (p-morphisms)A 
lassi
al notion from modal logi
 is p-morphism [Segerberg 1968℄, [Segerberg1971, p37℄ or bisimulation [Milner 1980, Park 1981℄. A bisimulation is a relation $�between the universes of two Kripke-models (U1; I1; w1) and (U2; I2; w2) su
h that� w1 $� w2,� If u$� v, then u 2 I1(p) i� v 2 I2(p)� If u$� v and (u; u0) 2 I1(R), then there exists v0 su
h that (v; v0) 2 I2(R) andu0 $� v0.� If u$� v and (v; v0) 2 I2(R), then there exists u0 su
h that (u; u0) 2 I1(R) andu0 $� v0.Two Kripke-modelsM1 and M2 are bisimilar (denoted by M1 $�M2), if thereexists a bisimulation between them. Figure 9 shows some examples of bisimilarmodels.This example demonstrates the following statements:5.1. Fa
t.� Ea
h model is bisimilar to one where dupli
ate states (whi
h have the sameinput and output) are removed,� Ea
h model is bisimilar to its unfolding, and
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king 1683-	a 6b RaRb 6a 	b -	a 6bI bRb ?a �a -?a 6b
- - - - - - - -a a a ab b b . . .Figure 9: Bisimilar models� Ea
h model is bisimilar to its rea
hable part.IfM1 $�M2, thenM1 !�M2 andM2 !�M1; the other dire
tion of this statementis not ne
essarily true. For example, ea
h of the models in Figure 10 simulates theother one, but they are not bisimilar.- ?a	a Rb - ?a Ra	a Rb ?aFigure 10: Not-bisimilar modelsAnother important equivalen
e relation between models is that of being indistin-guishable by formulas of a 
ertain logi
. We say that the models M1 and M2 areequivalent with respe
t to the logi
 L (M1 �L M2) if for all well formed formulasof L it holds that M1 j= ' i� M2 j= '. The relation �FOL is 
alled elementaryequivalen
e. Bisimulation relations are pre
isely those equivalen
es whi
h preserveall modal formulas:5.2. Lemma. Bisimilar models are modally equivalent: if M1 $� M2, thenM1 �ML M2The proof is by indu
tion on the stru
ture of ', analogous to the proof ofLemma 4.10.Hen
e, it is \safe" to substitute a model by a bisimilar one in a stru
tured softwaredevelopment pro
ess: all multimodal formulas whi
h are valid for the original modelwill remain valid for the substituted model. The 
onverse of this lemma againrequires image �niteness:
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hlingloff5.3. Theorem (Segerberg71). Image �nite models are modally equivalent i� theyare bisimilar: if M1 and M2 are image �nite, then M1 $�M2 i� M1 �ML M2Again, the proof is similar to the proof of Theorem 4.13 in the previous se
tion.The only di�eren
e is that bisimulation is a symmetri
 relation.In general, this theorem does not hold for more expressive logi
s. For �niteKripke-models, however, it 
an be lifted even to logi
s like positive �TL. Givenany formula ' whi
h is positive in q, and a natural number n, we de�ne �0q ' , >,and �n+1q ' , 'fq := �nq 'g. That is, �nq ' , 'fq := 'gfq := 'g � � � fq := >g.5.4. Lemma. Let M , (U; I; w) be a �nite model, where jU j = n, and let ' be amonotoni
 �TL formula. Then M j= �q ' i� M j= �nq 'Proof: One dire
tion of this lemma follows from the fa
t that �q ' denotes a �xedpoint, i.e., (�q ' ! 'fq := �q 'g). Sin
e ' is monotoni
, this implies ('fq :=�q 'g ! 'fq := 'fq := �q 'gg). By 
hain reasoning, (�q ' ! 'fq := 'fq :=�q 'gg). By indu
tion, (�q ' ! 'fq := 'gfq := 'g:::fq := �q 'g). Again, sin
e 'is monotoni
 in q, it holds that ('fq := �q 'g ! 'fq := >g), thus (�q '! �nq ')is valid.For the other dire
tion, let F , (U; I) be the frame on whi
h M is based.Consider the sequen
e ((�nq ')F )n�0 of sets of points. Clearly, (�0q ')F =>F = U � (�1q ')F . Sin
e 'Fq is monotoni
 (
f. Fa
t 3.8), (�1q ')F ='Fq ((�0q ')F ) � 'Fq ((�1q ')F ) = (�2q ')F . Continuing this argument, we 
on-
lude that ((�nq ')F )n�0 is a des
ending 
hain of sets. There are two possibil-ities: either there exists an i < jU j su
h that (�iq ')F = (�i+1q ')F , hen
e(�iq ')F = (�nq ')F , or (�nq ')F = f g. In either 
ase, the sequen
e stabilizes afterat most jU j steps: (�nq ')F = (�n+1q ')F . As a 
onsequen
e, (�nq '! �n+1q ')is universally valid in F .Now assume that M =j= �q ', and show that M =j= �nq '. A

ording to thede�nition on page 1660, (U; I; w) =j= �q ' means that for all Q � U su
h thatw 2 Q there exists a v 2 Q su
h that (U; I 0; v) =j= ', where I 0(q) = Q. (*) LetQ = (�nq ')F . If w =2 Q, then (U; I; w) =j= �nq ' and we are done. If w 2 Q,then by (*) for some v it holds that (U; I; v) j= �nq ', and (U; I 0; v) =j= ', whereI 0(q) = (�nq ')F . In other words, (U; I 0; v) =j= 'fq := �nq 'g, whi
h means that(U; I; v) =j= �n+1'. Sin
e (U; I; v) j= (�nq '! �n+1q '), this is a 
ontradi
tion. 2This lemma is important for model 
he
king of �TL on �nite Kripke models.Moreover, it allows to prove the following result.5.5. Theorem. Finite models are monotoni
 �TL-equivalent i� they are bisimilar:if M1 and M2 are �nite, then M1 $�M2 i� M1 ��TL M2Proof: Trivially, �nite models are also image �nite. Any two models whi
h areequivalent with respe
t to monotoni
 �TL are modally equivalent, sin
e modal logi
is a sublanguage of �TL. Hen
e as an immediate 
onsequen
e of Theorem 5.3, anytwo �nite models whi
h are �TL equivalent are bisimilar.
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king 1685For the other dire
tion, assume that M1 j= ' and M2 6j= ', where ' is amonotoni
 �TL-formula. Let n , max(jU1j; jU2j), and 'n be ' where every sub-formula �q  is repla
ed by �nq  . As a 
onsequen
e of Lemma 5.4, Mi j= ' i�Mi j= 'n for i = 1; 2. Therefore,M1 j= 'n andM2 6j= 'n. Sin
e 'n is a multimodalformula,M1 and M2 are modally inequivalent. Theorem 5.3 implies that M1 andM2 are not bisimilar. 25.6. Corollary. Any two �nite Kripke-models whi
h 
an be distinguished by amonotoni
 �TL-formula 
an also be distinguished by a multimodal formula: if M1and M2 are �nite, then M1 ��TL M2 i� M1 �ML M2[Browne, Clarke and Grumberg 1988℄ proved that if two �nite models 
an be dis-tinguished by a formula of the logi
 CTL�, then they 
an be distinguished by aCTL formula. Every CTL� formula has a positive �TL equivalent [Dam 1994℄(on tree models, CTL� 
an be translated into monadi
 se
ond order logi
, whi
his of the same expressiveness as �TL). Therefore this result 
an be obtained as a
onsequen
e of the above.5.2. Distinguishing Power and Ehrenfeu
ht-Fra��ss�e GamesThe previous theorems showed that logi
s with di�erent expressiveness 
an havethe same distinguishing 
apabilities. We wish to formalize these notions. A logi
 L2is said to be at least as expressive as L1 (or L1 is at most as expressive as L2) i�for any formula '1 2 L1 there exists a formula '2 2 L2 su
h that for all modelsMwe have M j= '1 i� M j= '2. L1 and L2 have the same expressive power if L1 isat least as expressive as L2 and L2 is at least as expressive as L1. In other words,two logi
s have the same expressive power i� for any formula of one logi
 there isan equivalent formula from the other logi
. For example, Theorem 2.4 states thaton natural models, FOL and LTL have the same expressive power.Logi
 L2 is at least as distinguishing as L1 (or L1 is at most as distinguishing asL2) if any two models whi
h are inequivalent with respe
t to L1 are also inequiva-lent with respe
t to L2. That is, L2 at least as distinguishing as L1 i�M1 �L2 M2implies M1 �L1 M2. L1 and L2 have the same distinguishing power if L1 is atmost as distinguishing as L2 and L2 is at most as distinguishing as L1. In otherwords, L1 and L2 have the same distinguishing power i� for all models M1 andM2 it holds that M1 �L1 M2 i� M1 �L2 M2.Expressiveness is a �ner equivalen
e relation on the 
lass of all logi
s than dis-tinguishability:5.7. Fa
t. If L1 is at most as expressive as L2, then it is at most as distinguishing.If L1 and L2 have the same expressive power, then they have the same distinguish-ing power (but not vi
e versa).Proof: Assume that for any formula '1 2 L1 there exists an equivalent formula'2 2 L2. Assume further two models M1 and M2 whi
h are inequivalent with
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t to L1, that is, for some '1 2 L1 we have M1 j= '1 and M2 =j= '1 or vi
eversa. A

ording to the �rst assumption there exists '2 2 L2 equivalent to '1.Therefore M1 j= '2 and M2 =j= '2 or vi
e versa, whi
h means that M1 and M2are inequivalent with respe
t to L2. The se
ond statement follows by symmetry. Asexample of logi
s with equal distinguishing power but di�erent expressive power,
onsider multimodal logi
 and positive �TL. 2For any formula ', we say that ' is preserved under bisimulations, if for all modelsM1 $�M2 it holds thatM1 j= ' i�M2 j= '. A logi
 L is bisimulation invariant, ifall well-formed formulas of L are preserved under bisimulations. Lemma 5.2 showsthat multimodal logi
 is bisimulation invariant. In other words, if a property 
anbe de�ned by a multimodal formula, then it is preserved under bisimulations. Thesame holds for more expressive logi
s like monotoni
 �TL:5.8. Lemma. �TL is bisimulation invariant: if M1 $� M2, then for any positive�TL formula ' it holds that M1 j= ' i� M2 j= '.In his thesis, van Benthem investigated the reverse dire
tion, and gave a 
on-ne
tion between bisimulations, �rst order and modal expressiveness (see [vanBenthem 1983℄). He showed that for �rst order formulas, bisimulation invarian
eimplies multimodal de�nability:5.9. Theorem (Expressive 
ompleteness of ML). For any �rst order formula '(with one free variable) whi
h is preserved under bisimulations there exists an equiv-alent multimodal formula.Thus, exa
tly those �rst order formulas whi
h are preserved under bisimulations
an be translated into modal logi
. [Janin and Walukiewi
z 1996℄ extended thistheorem for se
ond order formulas and �TL, whi
h is a 
onverse to Lemma 5.8:5.10. Theorem (Expressive 
ompleteness of �TL). Let ' be any MSOL prop-erty. Then ' is preserved under bisimulations i� ' is de�nable by a positive �TLformula.In parti
ular, this result implies that every logi
 whi
h is bisimulation invariant andhas a semanti
al translation into MSOL 
an be also translated into mTL. As a
orollary, many propositional logi
s of programs (CTL�, PDL, ...) whi
h have beensuggested 
an be translated into the �-
al
ulus.Segerberg's theorem 5.3 relates modal equivalen
e to bisimilarity. Bisimilarity
an also be de�ned in terms of a so-
alled Ehrenfeu
ht-Fra��ss�e game [Fra��ss�e 1954,Ehrenfeu
ht 1961℄: there are two players, Ann and Bob. They play on a board onwhi
h two Kripke-models are drawn. Ann's goal is to show that these models arenot bisimilar, whereas Bob's goal is to show that they are bisimilar. (So, this is notreally a fair game, sin
e the out
ome is predetermined by the shape of the board.)Ea
h player has an unlimited amount of pebbles whi
h are numbered 
onse
u-tively: a0; a1; a2; ::: and b0; b1; b2; :::. To start the game, ea
h player pla
es his �rst
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king 1687pebble a0, b0 on the 
urrent point of one of the models. If the 
urrent points havea di�erent label, Bob has lost immediately.Thus, round 0 
onsists of pla
ing a0 and b0 on the board. Similarly, round j
onsists of the pla
ement of aj and bj : Ann 
hooses any point w0 on one of themodels on whi
h some pebble (say, ai or bi for i < j) had been pla
ed previously,and puts her next pebble aj on some point w1 whi
h is an R-su

essor of w0. Bobthen lo
ates the ith pebble (that is, bi or ai, respe
tively) on the other model, sayin point w00. He looks for a point w01 su
h that w00Rw01, and w1 and w10 have thesame label. If he 
an't �nd su
h a point he has lost and the game ends; otherwisehe 
hooses any su
h point and puts his next pebble bj on it.If the game 
ontinues forever, then Bob has won. Ann 
an for
e a win within nrounds, if she 
an pla
e her pebble in su
h a way that Bob immediately loses thegame, or if she 
an 
hoose a point su
h that for ea
h possible answer of Bob she
an for
e a win within n� 1 rounds. Ann has a winning strategy if there is some nsu
h that she 
an for
e a win within n rounds. Bob has winning strategy i� Anndoes not have one; i.e., if in ea
h round and for ea
h possible move of Ann there isa response by Bob to 
ontinue the game.Ehrenfeu
ht-Fra��ss�e games are a 
onvenient way to imagine bisimulations.5.11. Theorem. Ann has a winning strategy in this game i� the two models arenot bisimilar; i.e., Bob has a winning strategy i� they are bisimilar.Proof: From Bob's winning strategy, it is easy to 
onstru
t a bisimulation be-tween the two models: wi $� w0i i� Bob would have 
hosen wi or w0i as a reply toAnn's 
hoosing w0i or wi, respe
tively. For the other dire
tion, every bisimulationdetermines a winning strategy for Bob: he just replies by 
hoosing any point whi
his related to the point 
hosen by Ann via the bisimulation relation. 2It is easy to modify the rules of the game su
h that it 
aptures the equivalen
eof two models with respe
t to other logi
al languages. For example, in a game forMSOL we allow both Ann and Bob in any move to pla
e an arbitrary set of pebbleson one of the models on the board. Then the two models 
an be distinguished bya monadi
 se
ond order formula i� Ann has a winning strategy.5.3. Auto-bisimulations and the Paige/Tarjan AlgorithmIn this subse
tion we show how to minimize a given Kripke-model with respe
t tobisimulation equivalen
e. Note that our de�nitions did not ex
lude bisimulationsfrom a model to itself (auto-bisimulations); i.e., some points in a model 
an berelated by a bisimulation to other points in the same model.5.12. Lemma. The union of any number of auto-bisimulations on a model is againan auto-bisimulation.Proof: This follows dire
tly from the de�nition of bisimulation relations. 2
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exive transitive symmet-ri
 
losure of any auto-bisimulation is again an auto-bisimulation. Hen
e, for anyauto-bisimulation $� there is a largest equivalen
e relation � 
ontaining it ($���)whi
h is again an auto-bisimulation. And, the largest auto-bisimulation must be anequivalen
e relation on the set of points of a model.Given any model M , (U; I; w0), and any equivalen
e relation � on U . De�nethe quotient of M with respe
t to � to be the modelM� , (U�; I�; w�0 ), where U�is the set of equivalen
e 
lasses of U with respe
t to �, w�0 is the equivalen
e 
lass ofw0, w� 2 I�(p) if there is some w 2 w� su
h that w 2 I(p), and (w�1 ; w�2 ) 2 I�(R)if there are w1 2 w�1 and w2 2 w�2 su
h that (w1; w2) 2 I(R).5.13. Lemma. If the equivalen
e relation � is an auto-bisimulation, then M $�M�.Proof: De�ne u $� v� i� u � v. That is, ea
h point in the original model ismapped to its equivalen
e 
lass in the quotient model. We have to show that forthis relation the four 
onditions de�ning a bisimulation (
f. page 1682) hold. Forthe initial point, w0 $� w�0 holds be
ause w0 � w0. Sin
e � is a bisimulation,u � v implies that L(u) = L(v). Thus if u $� v� then u 2 I(p) i� v� 2 I�(p).Furthermore, if (u1; u2) 2 I(R) and u1 $� v�1 , then by de�nition (u�1 ; u�2 ) 2 I�(R)and u1 � v1. Therefore, u�1 = v�1 , i.e., (v�1 ; u�2 ) 2 I�(R). For the last 
ondition,assume that (v�1 ; v�2 ) 2 I�(R) and v�1 $� u1. Then there exist w1 and w2 su
h thatw1 � v1, w2 � v2 and (w1; w2) 2 I(R). From v�1 $� u1 we infer u1 � v1 and thusu1 � w1. Sin
e � is a bisimulation, there exists a u2 � w2 su
h that (u1; u2) 2 I(R).From u2 � w2 and w2 � v2 we 
on
lude that u2 � v2, i.e., u2 $� v�2 . 2The quotient of a model with respe
t to its largest auto-bisimulation 
an beregarded as a minimal representation of this model. In �nite models, this minimalrepresentation 
an be 
onstru
ted very eÆ
iently.For any set of points P � U , let hRiP , fw j 9w0 2 P; (w;w0) 2 I(R)g. Givenany partition of U into equivalen
e 
lasses, 
all a 
omponent w� uniform, if forall p 2 P it holds that w� � I(p) or w� \ I(p) = fg. That is, w� is uniform ifL(w1) = L(w2) for all w1; w2 2 w�. A 
omponent w� is 
alled stable with respe
tto P , if for all R either w� � hRiP or w� \ hRiP = fg. The partition is 
alledstable, if all 
omponents are uniform and stable with respe
t to all 
omponents.5.14. Theorem. The 
oarsest stable partition is the largest auto-bisimulation.Proof: First, we show that any stable partition is an auto-bisimulation. Trivially,w0 � w0. Sin
e u� is uniform, u � v implies L(u) = L(v). If (u; u0) 2 I(R), thenu� � hRi u0�, be
ause u� is stable with respe
t to u0�. In other words, u� � fw j9w0 � u0; (w;w0) 2 I(R)g. Therefore, if u � v, then there is a v0 � u0 su
h that(v; v0) 2 I(R). The symmetri
 
ondition is proved symmetri
ally. Vi
e versa, everyauto-bisimulation de�nes a stable partition: to show that u� is stable with respe
t tov�, assume that u1 � u2 2 u�. Sin
e � is a bisimulation, for every (u1; u01) 2 I(R)
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king 1689and u01 2 v� there must be a u02 � u01 2 v� su
h that (u2; u02) 2 I(R). Therefore,u� � hRi v� or u� \ hRi v� = fg. If � is the 
oarsest stable partition, then for anyauto-bisimulation $� it holds that $� � �. Assuming for 
ontradi
tion that u, vand $� exist su
h that u$� v and not u � v, a

ording to Lemma 5.12 the union of$� and � would be a stable partition 
oarser than �. 2The following algorithm 
an be used to 
onstru
t the 
oarsest stable partition:| Start with the trivial partition 
onsisting of only one 
omponent| Repeat{ Choose a 
omponent w�0 and a proposition p 2 P ;{ Split w�0 into w�0 \ I(p) and w�0 n I(p)or{ Choose 
omponents w�0 and w�1 , and a relation R 2 R;{ Split w�0 into w�0 \ hRiw�1 and w�0 n hRiw�1until no new 
omponents 
an be obtained that wayThe Paige-Tarjan algorithm [Paige and Tarjan 1987℄ given in Figure 11 is asophisti
ated implementation of this idea; it maintains two partitions: a 
oarserone, C, and a �ner one, F . All 
omponents in F are stable with respe
t to any
omponent in C. The nondeterministi
 
hoi
e in the above repeat-loop is repla
edby a systemati
 split of the �ner partition with respe
t to all 
omponents of the
oarser partition. Initially, C is the trivial partition and F is the split of C w.r.t. allp 2 P and R 2 R. Then, a w� 2 C is split into w�1 2 F and w�2 , w� n w�1 . Anyw�0 2 F is split into four parts: First, it is split with respe
t to hRiw�1 , and thenagain with respe
t to hRiw�2 .In this split of w�0 , either the last or the �rst three parts must be empty: sin
ew�0 is stable with respe
t to C, either w�0 � hRiw� or w�0 \ hRiw� = fg for allR. If w�0 � hRiw�, then (w�0 n hRiw�1 ) n hRiw�2 = fg. If w�0 \ hRiw� = fg, thenboth w�0 \ hRiw�1 = fg and w�0 \ hRiw�2 = fg: sin
e w� = w�1 [ w�2 , it holds thathRiw� = hRiw�1 [ hRiw�2 .The overall 
omplexity of the algorithm is O(m � logn), where n is the numberof points in the original model, and m is the number of points (partitions) in theresult.6. CompletenessLogi
ians are interested in logi
al truths, i.e., in the set of formulas whi
h are validin all models of the logi
. How does it help to know about the set of all validformulas when we want to �nd out whether a parti
ular formula ' holds for agiven model or theory? The answer is to en
ode the model or theory as a set ofassumptions � and 
he
k whether the formula in question follows from �.In fa
t, a logi
 
an be de�ned to be any set of well-formed formulas whi
h is
losed under provable 
onsequen
e; and a theory is a set of well-formed formulaswhi
h is 
losed under semanti
al 
onsequen
e.Thus there are three notions of 
onsequen
e involved here:
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tion Bisimulation minimize (Model (U; I; v)) : Model =C := ffUgg, F := ffUggfor all p 2 P and w� 2 F doF := (F n fw�g) [ fw� \ I(p); w� n I(p)g;for all R 2 R and w� 2 F doF := (F n fw�g) [ fw� \ hRifUg; w� n hRifUgg;while C 6= F do
hoose w� 2 C n F and w�1 2 F su
h that w�1 � w�w�2 := w� n w�1 ; C := (C n fw�g) [ fw�1 ; w�2 g;for all R 2 R and w�0 2 F doF := F n fw�0 g[f(w�0 \ hRiw�1 ) \ hRiw�2 , (w�0 \ hRiw�1 ) n hRiw�2 ,(w�0 n hRiw�1 ) \ hRiw�2 , (w�0 n hRiw�1 ) n hRiw�2 gend;return (F; I�; v�)Figure 11: Paige-Tarjan algorithm for bisimulation minimization� � jj� ' if ' follows from �,i.e. if any model in whi
h all formulas from � are valid also validates ',� � ` ' if ' 
an be proved from �,i.e. if there is a proof of ' whi
h uses only assumptions from �, and� (�! ') if ' is implied by �.This is a statement of the obje
t language whi
h is only de�ned if � is a singleformula. To be liberal, we 
an identify a �nite set of formulas � , f'1; :::; 'ngwith the 
onjun
tion �̂ , ('1 ^ ::: ^ 'n).Note that � jj� ' is di�erent from M j= '. The notations jj� ' and ` ' are shortfor fg jj� ' and fg ` ', respe
tively.Of 
ourse, the semanti
al notion of validity sometimes is restri
ted to 
ertain
lasses of models, e.g., to those satisfying 
ertain axioms, or to natural or treemodels.Also, the algorithmi
 notion of provability sometimes is parameterized by a 
er-tain proof-system. In this se
tion, we will use Hilbert-style proof-systems, 
onsistingof a set of axioms and derivation rules . Although su
h proof systems are not verypra
ti
al, often they 
an illustrate the prin
iples underlying 
ompleteness proofs.Usually, axioms and derivation rules 
ontain proposition variables q 2 Q and asubstitution rule allowing 
onsistent repla
ement of proposition variables with for-mulas. Con
eptually, proposition variables are not the same as propositions, thoughmany authors do not distinguish between these synta
ti
 
ategories. A free propo-sition variable in an axiom 
an be thought of more or less as if it were universallyquanti�ed.
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king 1691To 
ompli
ate things even more, there are two notions of validity of a formula:lo
al validity (U; I; w0) j= ' (in a model, where the evaluation point is given), anduniversal validity (U; I) j= ' in a frame (U; I). Traditionally, fo
us has been on
omplete axiom systems for universal validity rather than for the lo
al version;proofs are mu
h simpler. Thus, in this se
tion we are interested in formulas whi
hare valid in all models at all points.One of the major 
on
erns after de�ning a logi
al language and its models isto �nd an adequate proof-system for the logi
, i.e. one whi
h is both sound and
omplete. That is, for any � and ',� if � ` ', then � jj� ' (Soundness), and� if � jj� ', then � ` ' (Completeness).It is obvious that any proof system should be sound: we don't want to be able to\prove" false statements. Usually is very easy to prove soundness. We just have toshow that the axioms are valid, and that all formulas whi
h 
an be dedu
ed fromvalid formulas by the derivation rules are valid. Completeness is often mu
h harderto show, if not impossible. However, it is important to strive for 
ompleteness.Firstly, we would like to make sure that any spe
i�
ation whi
h is satis�ed bya program 
an be proved from the program axioms, provided the spe
i�
ationis expressible in the logi
. Se
ondly, and more important, in many 
ases de
isionalgorithms for automated veri�
ation 
an be obtained from the 
ompleteness proofsor vi
e versa.6.1. Dedu
tions in Multimodal Logi
To illustrate the basi
 idea, we start with a simple dedu
tive system for multimodallogi
. A number of similar proofs 
an be found in [Burgess 1984℄. We use thefollowing axioms and rules:(taut) propositional tautologies(MP) p; (p! q) ` q(N) q ` [R℄ q(K) ` ([R℄(p! q)! ([R℄ p! [R℄ q))Sin
e this axiom system is based on the [R℄-operator rather than the hRi-operator,we identify hRi' with : [R℄:'.To prove � ` ' we have to give a derivation of ' from the assumptions �, i.e.,a sequen
e of formulas su
h that the last element of this sequen
e is ', and everyelement of this sequen
e is either from �, or a substitution instan
e of an axiom,or the substitution instan
e of the 
onsequen
e of a rule, where all premisses of therule for this substitution appear already in the derivation.As an example, let us assume (p! q) and derive some 
onsequen
es:1. (p! q) (assumption)2. [R℄(p! q) (1, N)3. ([R℄(p! q)! ([R℄ p! [R℄q)) (K)4. ([R℄ p! [R℄q) (2, 3, MP)
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hlingloff5. (:q! :p) (1, taut)6. ([R℄:q! [R℄:p) (5, as in 1-4)7. (: [R℄:p! : [R℄:q) (6, taut)8. (hRi p! hRi q) (7, hRi' , : [R℄:')Lines (4) and (8) form the basis for an indu
tive proof of the following repla
ementand monotoni
ity rules:(repl) (p$ q) ` ('(p)$ '(q)), and(mon) (p! q) ` ('(p)! '(q)), where '(q) is positive in q.(mon) is a synta
ti
al analog of Lemma 3.8. The requirement that '(q) is positivein q means that every o

urren
e of q is under an even number of negation signs(
f. the de�nition on Page 1662). For example, [R℄ q, hRi q, and (q ^ [R℄(q _ hRi q))are positive in q.6.1. Theorem (Soundness of ML axiom system). If � ` ' then � jj� '.Proof: Soundness of (taut) and (MP) is immediate. (N) is the so 
alled ne
es-sitation rule. Its validity depends on the universal interpretation of validity: f someformula is valid in every point of a model, it is valid in every point whi
h is theR-su

essor of some other point in that model. (K) is the 
lassi
al Kripke-axiomwhi
h holds for all normal modal logi
s. If in all a

essible points p holds, and inall a

essible points (p! q) holds, then in all a

essible points q must hold. 2The 
lassi
al way to prove this theorem is the so{
alled Henkin-Hasenj�ager 
on-stru
tion. A set 	 of formulas is 
onsistent with �, if there is no �nite subsetf 1; :::;  ng � 	 su
h that � ` ( 1 ^ ::: ^  n ! ?). Given a set � of assumptionsand a formula ' whi
h is 
onsistent with �, we will 
onstru
t a model in whi
h �is universally valid and ' is lo
ally valid. Call a set w of formulas maximal, if forany formula  , either  or : is in w.6.2. Lemma (Lindenbaum's extension lemma). For any formula ' whi
h is 
onsis-tent with � there exists a maximal 
onsistent set w0 su
h that ' 2 w0 and � � w0Proof: Start with � [ f'g; for every formula  a

ording to a �xed enumerationadd either  or : to w, whi
hever is 
onsistent with the set 
onstru
ted so far.2The 
anoni
al model for � is (U; I; w), where� U is the set of maximal 
onsistent sets whi
h in
lude �,� I(R) , f(w0; w1) j q 2 w1 implies hRi q 2 w0g, and� I(p) , fw0 j p 2 w0g, and� w is any element from U su
h that ' 2 w.The following result is sometimes 
alled the \truth" lemma. Intuitively, it statesthat any point in the 
anoni
al model 
ontains exa
tly those formulas whi
h aresatis�ed by this point.
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king 16936.3. Lemma (Truth lemma). Let ' be any formula and w be a maximal 
onsistentset in the 
anoni
al model. Then ' 2 w i� (U; I; w) j= '.Proof: The proof is by indu
tion on the stru
ture of '. In the indu
tive step,there is one interesting 
ase. We must show that hRi' 2 w0 i� (U; I; w0) j= hRi'.We �rst prove that (U; I; w0) j= hRi' implies hRi' 2 w0. Sin
e w0 j= hRi', thereexists a w1 su
h that w0Rw1 and w1 j= '. By de�nition of R, we have hRi q 2 w0 forall q 2 w1. Sin
e w1 j= ', the indu
tion hypothesis implies ' 2 w1. Consequently,hRi' 2 w0.For the other dire
tion, assume that hRi' 2 w0. We have to show that thereexists a maximal 
onsistent set w1 su
h that (w0; w1) 2 I(R) and ' 2 w1. Firstobserve that the formula ` ((hRi' ^ [R℄ )! hRi(' ^  )) is derivable:1. [R℄( ! :')! ([R℄ ! [R℄:') (K)2. (: [R℄:' ^ [R℄ )! : [R℄( ! :')) (1, taut)3. (hRi' ^ [R℄ )! hRi(' ^  ) (2, repl, taut)Re
all that [R℄' is a synta
ti
al abbreviation of : hRi :'. In line 3., we repla
ed::' by ' and :( ! :') by ('^ ). This derivation 
an be generalized to obtain` ((hRi' ^ [R℄ 1 ^ � � � ^ [R℄ n)! hRi(' ^  1 ^ � � � n))Be
ause of this result, the set f'g [ f j [R℄ 2 w0g must be 
onsistent with�. Otherwise, by the de�nition of 
onsisten
y on page 1692, there would exista �nite set f 1; :::;  ng of formulas su
h that [R℄ i 2 w0 for all 1 � i � n, and('^ 1^� � � n ! ?) must be derivable from �. Sin
e ` (hRi? ! ?), we would have� ` (hRi('^ 1 ^ � � � n)! ?). Therefore, � ` ((hRi'^ [R℄ 1 ^ � � � [R℄ n)! ?).Sin
e fhRi'; [R℄ 1; :::; [R℄ ng � w0, the set w0 would be in
onsistent with �,whi
h is a 
ontradi
tion.Sin
e f'g [ f j [R℄ 2 w0g is 
onsistent with �, there exists some maximal
onsistent extension w1 of this set. Moreover, if  2 w1, then [R℄: 
an not be in w0(otherwise, both  and : would be in w1). Sin
e w0 is maximal,  2 w1 implies: [R℄: = hRi 2 w0. From the de�nition of I(R), it follows that (w0; w1) 2I(R). Sin
e ' 2 w1, the indu
tion hypothesis gives (U; I; w1) j= '. Together with(w0; w1) 2 I(R) we have (U; I; w0) j= hRi', whi
h was to be shown. 26.4. Lemma (Satis�ability of 
onsistent formulas). Every multimodal formula '
onsistent with � is satis�able in some model validating �.Proof: Sin
e for the 
anoni
al model (U; I; w) it holds that � � w and ' 2 w,Lemma 6.3 asserts that (U; I; w) j= � and (U; I; w) j= '. Thus every 
onsistentformula is satis�ed in its 
anoni
al model. 26.5. Theorem (Completeness). The dedu
tive system for ML is 
omplete:If � jj� ' then � ` '.
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an assume � to be 
onsistent with itself: if� is in
onsistent, then � ` ' holds trivially. If � jj� ', then no model in whi
h � isuniversally valid 
ontains a point whi
h satis�es f:'g; therefore with 6.4 it followsthat f:'g is in
onsistent with �, hen
e � ` (:'! ?), whi
h is � ` '. 2We now show how this proof 
an be extended for natural models. Re
all thata model is 
alled deterministi
, if all a

essibility relations R 2 R are univalent :for any given point w there is at most one R-su

essor of w. The following axiomdes
ribes this property.(U) ` (hRi q ! [R℄ q)Soundness of this axiom in deterministi
 models is immediate: if there is any R-su

essor satisfying q, then all R-su

essors must satisfy q. In the 
ompletenessproof, axiom U for
es the 
anoni
al model to be deterministi
: for every w0 2 U ofthe 
anoni
al model and every R 2 R there 
an be at most one w1 with (w0; w1) 2I(R). To see why this is true, assume for 
ontradi
tion that (w0; w1) 2 I(R) and(w0; w01) 2 I(R). If w1 6= w01, then there must be a formula  su
h that  2 w1 and: 2 w01. Therefore hRi 2 w0 and hRi : 2 w0. This is a 
ontradi
tion to the
onsisten
y of w0: from axiom U it follows that if hRi 2 w0, then : hRi : 2 w0,sin
e maximal 
onsistent sets are 
losed under modus ponens. Thus, hRi : 62 w0.Therefore, we have shown6.6. Theorem. (U) is sound and 
omplete for deterministi
 models.There are a number of other axioms whi
h impose spe
i�
 
onditions on the
anoni
al model. To investigate su
h 
onne
tions is the topi
 of 
orresponden
etheory , see [van Benthem 1984℄. Corresponden
es between modal axioms and rela-tion algebrai
 expressions 
an be found in [S
hlinglo� and Heinle 1997℄. (Su
h anexpression is built from basi
 relation symbols with union, 
omplement, 
on
ate-nation, and transitive 
losure.)As an example for the use of axiom (U) in veri�
ation, we provef(on! hRi :on ^ [S℄?); (:on! hSi on ^ hRi :on)g ` [R℄ hSi [S℄?:The assumptions 
an be seen as des
ribing the a
tions of a semaphore with twostates, on and :on, whi
h 
an be set with an S-operation when it is not on, and 
anbe reset with an R-operation at any time. The semaphore 
annot be set when it isin state on. We want to show that after a reset it is possible to set the semaphoreon
e and only on
e; that is, for all points rea
hable with an R operation there existsan S su

essor from whi
h no further S operation is possible.1. on! hRi :on ^ [S℄? (assuumption)2. :on! hSi on ^ hRi :on (assumption)3. on! hRi :on (1, taut)4. :on! hRi :on (2, taut)5. hRi :on (3, 4, taut)
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king 16956. hRi :on! [R℄:on (U)7. [R℄:on (5, 6, MP)8. :on! hSi on (2, taut)9. [R℄:on! [R℄ hSi on (8, mon)10. [R℄ hSi on (7, 9, MP)11. on! [S℄? (1, taut)12. [R℄ hSi on! [R℄ hSi [S℄? (11, mon)13. [R℄ hSi [S℄? (10, 12, MP)As we see, even in su
h simple examples it 
an be quite diÆ
ult to �nd a Hilbert-style proof \by hand"; therefore it is important to develop automati
 proof methods.Algorithms for this purpose are the topi
 of Se
tion 7.Consider the 
ase that the logi
 
ontains only one a

essibility relation (R =fRg). Then ea
h path through a deterministi
 
anoni
al model forms a naturalmodel: let the formula ' be 
onsistent with all substitution instan
es of the ax-iom (U). Consider a sequen
e � , (w0; w1; w2; :::) of points in the (deterministi
)
anoni
al model for ' su
h that ' 2 w0 and wiRwi+1 for all i. Obviously, � is anatural model whi
h initially satis�es '. Therefore, with axiom (U) ea
h 
onsis-tent formula is satis�able in a natural model; in other words, (U) is 
omplete formonomodal logi
 in natural models. The same holds if we require univalen
e of thetransition relation �, SR:(N) q ` X q(K) ` (X(p! q)! (X p! X q))(U) ` (X q ! X q)Together with (taut) and (MP), these axioms are sound and 
omplete for theX-operator in natural models.6.2. Transitive Closure OperatorsA major di�eren
e between temporal and modal logi
 is that temporal logi
 hasoperators for the transitive 
losure of the transition relation. In order to motivatethe dis
ussion in the 
ompleteness proofs for CTL and LTL, in this subse
tion weextend the above 
ompleteness proof to handle su
h operators. For simpli
ity, we�rst give the proof for the logi
 with operators X (or, equivalently EX) for thetransition relation and F� (or EF�) for its re
exive transitive 
losure (plus derivedoperators X ' , :X:', G�' , :F�:', et
.). The ne
essary generalizations forCTL and LTL are indi
ated at the end of this subse
tion.Close inspe
tion of the semanti
s of F� reveals a fundamental problem, 
om-pared to the 
ompleteness proof given above. Consider the set � , fp; Xp, XXp,XXXp, ... g. Then 
learly � jj� G�'. However, � =̀ G�', sin
e every proof ofG�'from � 
an use only a limited number of premisses (proofs are �nite sequen
es).But there does not exist a �nite subset �0 � � su
h that the statement �0 ` G�'holds.
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ompleteness proof fails. For an arbitrary set �, it may not bepossible to 
onstru
t a maximal 
onsistent extension, sin
e we 
an not apply anaxiom to show the 
onsisten
y of an in�nite set of premisses.When dealing with se
ond order 
on
epts like transitive 
losure we have to limitourselves to a weaker form of 
ompleteness. An axiom system is 
alled weakly 
om-plete, if � jj� ' implies � ` ' for all �nite �.In �rst order logi
, the dedu
tion theorem makes it possible to dis
ard any �niteset of assumptions:  jj� ' i� jj� (8 ! '), where 8 is the universal 
losure of  .In temporal logi
, a similar dedu
tion theorem holds:6.7. Theorem (Dedu
tion theorem).  jj� ' i� jj� (G� ! '):Therefore, to prove weak 
ompleteness it is suÆ
ient to prove that jj� ' implies` '. We use the following axiom system (in addition to modus ponens (MP) andpropositional tautologies (taut)):(N) q ` X q(K) ` (X(p! q)! (X p! X q))(Re
) ` (G� q ! (q ^XG� q))(Ind) (p! (q ^X p)) ` (p! G� q)Dually, the last axiom and rule 
an be written as(Re
) ` ((q _XF� q)! F� q)(Ind) ((q _X p)! p) ` (F� q ! p)(N) and (K) are \nexttime-versions" of the respe
tive modal rule and axiom givenabove. In this subse
tion, we prove 
ompleteness for general Kripke stru
tures (witha possibly nondeterministi
 a

essibility relation), thus there is no need for thetemporal version of (U). Axiom (Re
) and rule (Ind) are sometimes attributedto Segerberg. They re
e
t the de�nition of the transitive 
losure as the minimaltransitive relation whi
h in
ludes all a

essibility relations. (Re
) is the re
ursionaxiom whi
h 
an be used to unfold a G�-operator (
f. Subse
tion 3.2, Page 1663):G�'! (' ^X(' ^X(' ^ :::))):(Ind) is the indu
tion rule whi
h 
an be used to dedu
e a property G�' from aninvariant  , i.e., from a formula  for whi
h ( ! X  ) and ( ! ') are derivable.6.8. Lemma. (Re
) and (Ind) are sound: ` ' implies j= '.For the soundness of (Re
), observe that w j= G� q means that for all u � w itholds that u j= q. Thus w j= q, and for all v � w and u � v we have u j= q, whi
hmeans w j= XG�'.For the soundness of (Ind), assume that (p ! (q ^X p)) is universally valid ina frame F , (U; I), that is, for any w 2 U , if w j= p, then w j= q and v j= p for allv � w. Assume further that w0 j= p, and show that w j= q for all w � w0. We show



Model Che
king 1697that w j= p for all w � w0. From this the 
laim follows sin
e w j= p implies w j= q.The proof is by indu
tion on the length of the shortest path between w0 and w. Ifthis length is zero, then w0 = w, and there is nothing to show. For the indu
tivestep, assume that the shortest path from w0 to w has n + 1 elements. Then thereexists a prede
essor w0 � w su
h that w0 � w0, and the shortest path between w0and w0 has n elements. From the indu
tion hypothesis, w0 j= p. Sin
e w0 � w, itfollows that w j= p. 2Next, we show that these axioms are 
omplete for transitive 
losure. Up to thetruth lemma, the proof is almost the same as for modal logi
. But, we only use�nite maximal 
onsistent sets: we start with a single (�nite) 
onsistent formula 'for whi
h we have to 
onstru
t a model. The set ESF (') of extended sub-formulasof ' (sometimes also 
alled Fis
her-Ladner 
losure, [Fis
her and Ladner 1979℄) isthe following set of formulas:� '1 and '2 are extended sub-formulas of ('1 ! '2),(thus ' is an extended sub-formula of :')� ' is an extended sub-formula of X',� ' and XF�' are extended sub-formulas of F�',� ' is an extended sub-formula of ', and� every extended sub-formula of an extended sub-formula of ' is an extendedsub-formula of '.For any given ', the set ESF (') is �nite. A 
onsistent set of formulas is 
alled�nitely maximal , if it is maximal with respe
t to ESF ('); that is, for every extendedsub-formula  of ', either  or : is in the �nitely maximal 
onsistent set.As in the in�nite 
ase, for any 
onsistent formula ' there exists at least one
onsistent set w0 whi
h is �nitely maximal with respe
t to ESF (') su
h that' 2 w0. Consider the following �nite 
anoni
al model (U; I; w):� U is the set of �nitely maximal 
onsistent sets,� I(�) , f(w0; w1) j :X q 2 w0 implies :q 2 w1g, and� I(p) , fw0 j p 2 w0g, and� w is any element from U su
h that ' 2 w.Compare this with the 
anoni
al model for modal logi
 on Page 1692. Similar as inLemma 6.3, for any extended sub-formula ' and �nitely maximal 
onsistent set w,the following statement holds:6.9. Lemma (Truth lemma for transitive 
losure operators). w j= ' i� ' 2 w.From this truth lemma, 
ompleteness follows exa
tly as in the multimodal 
ase.Proof: The proof is by indu
tion on '. The 
ase ' = X is proven almostexa
tly as in the 
ompleteness proof for modal logi
. If (U; I; w0) j= X , thenthere exists a w1 su
h that w0 � w1 and w1 j=  . Assuming for 
ontradi
tion thatX =2 w0, we have :X 2 w0, sin
e the set of extended sub-formulas is 
losedunder (single) negation. From the de�nition of I(�) we 
an infer that : 2 w1, i.e., =2 w1. A

ording to the indu
tion hypothesis, w1 =j=  , whi
h is a 
ontradi
tion.In the other dire
tion, assume that X 2 w0, and let w1 be any �nitely maximal
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onsistent extension of f g [ f:� j :X � 2 w0g. Sin
e  2 w1, the indu
tionhypothesis gives (U; I; w1) j=  . A

ording to the de�nition of I(�) it holds thatw0 � w1. Therefore (U; I; w0) j= X .Thus, it remains to show that F� 2 w0 i� (U; I; w0) j= F� . For one dire
tion,assume that F� =2 w0. We have to prove that w0 =j= F� . In other words, if w0 � wnthen it has to be shown that wn =j=  . Note that w0 � wn i� there is a �nite path(w0; w1; :::; wn) su
h that wi � wi+1 for all i < n. We show by indu
tion on nthat :F� 2 wn, hen
e F� =2 wn. For n = 0, there is nothing to show. Forn > 0, the indu
tion hypothesis guarantees that F� =2 wn�1, i.e., :F� 2 wn�1.Both XF� and :XF� are extended sub-formulas of F�', therefore one of themmust be in wn�1. From axiom (Re
), the formula (:F� ! :XF� ) 
an bederived. Consequently, :XF� 2 wn�1. Thus by the de�nition of I(�), we have:F� 2 wn. Now we show that wn =j=  . Sin
e axiom (Re
) derives (:F� ! : )and :F� 2 wn, the assumption  2 wn would 
ontradi
t the 
onsisten
y of wn.Therefore,  =2 wn. A

ording to the indu
tion hypothesis, wn =j=  .Now we prove that F� 2 w0 implies w0 j= F� . For any �nitely maximal
onsistent set w and any (�nite) set W of su
h sets, let ŵ , Vf j  2 wg, and�W , Wfŵ j w 2 Wg. Furthermore, let Xw , fw0 j w � w0g. An important step isto prove (�) ` (ŵ ! X �Xw)Sin
e ` ((X  1 ^ X  2) ! X( 1 ^  2)), we 
an infer ` (VfX  ig ! XVf ig).Therefore, ` (ŵ ! XVf:q j :X q 2 wg). Sin
e U is the set of all �nitely maximal
onsistent sets, ` �U 
an be proven by propositional reasoning: for ea
h ' and p,it is valid that ' ` ((' ^ p) _ (' ^ :p). Sin
e �U is the disjun
tion of all possible
onjun
tion of positive and negative literals from P , it is derivable from this formula.Therefore, ` (ŵ ! X �U). Together, this gives ` (ŵ ! X( �U ^Vf:q j :X q 2 wg)).Consequently, ` (ŵ ! XWfû ^ Vf:q j :X q 2 wg j u 2 Ug). If w0 , u [ f:q j:X q 2 wg is in
onsistent, then ` (ŵ0 ! ?). If w0 is 
onsistent, then w � w0a

ording to the de�nition of I(�), i.e., w0 2 Xw. Therefore, ` (ŵ ! XWfŵ0 jw0 2 Xwg), whi
h proves (�).Sin
e there are only �nitely many extended sub-formulas, the universe U is �nite.Let W , fw0; w1; :::; wng be the set fw0 2 U j w0 � w0g. From (�), it follows that `(Wfŵ j w 2Wg ! WfX �Xw j w 2 Wg). Furthermore, ` (WfX �Xwg ! XWf �Xwg).Sin
e fXw j w 2Wg �W , it holds that ` (WfX̂w j w 2 Wg ! �W ). Therefore,(��) ` ( �W ! X �W )Assume that w0 =j= F� and show that F� =2 w0. From the assumption, w =j=  forall w 2 W . As above, the indu
tion hypothesis implies that  =2 w for all w 2 W ,i.e., : 2 w. Consequently, (ŵ ! : ) for all w 2 W , whi
h implies ` ( �W ! : ).Together with (��) we have ` ( �W ! (: ^X �W )). Thus, by (Ind), ` ( �W ! G�: ).Sin
e w0 2 W , it holds that ` (ŵ0 ! �W ). Therefore, ` (ŵ0 ! :F� ). Sin
e w0 is
onsistent, F� =2 w0. 26.10. Lemma. ((N), (K), (Re
), (Ind)) is 
omplete: if j= ' then ` '.
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king 1699Proof: The theorem follows from Lemma 6.9 similar as Theorem 6.5 follows fromLemma 6.3 for multimodal logi
. 2This 
ompleteness proof 
an easily be extended to CTL [Emerson and Halpern1985℄. The following axiom system (in addition to propositional logi
) is sound and
omplete:(N) q ` AX q(K) ` (AX(p! q)! (AX p! AX q))(Re
EU+) ` (EX(q2 _ q1 ^ E(q1U+ q2))! E(q1U+ q2))(Re
AU+) ` (AX(q2 _ q1 ^A(q1U+ q2))! A(q1U+ q2))(IndEU+) (EX(q2 _ q1 ^ p)! p) ` (E(q1U+ q2)! p)(IndAU+) (AX(q2 _ q1 ^ p)! p) ` (A(q1U+ q2)! p)For LTL, proving 
ompleteness for natural models is more intri
ate, sin
e wehave to 
onstru
t a natural model from the 
anoni
al model. The axiom systemfor the future fragment uses suitable versions of (N), (K), (Re
), (Ind) and(U). For LTL with past operators, additional axioms are ne
essary whi
h des
ribethe relation between U+ and U�. Several elaborate proofs 
an be found in theliterature [Prior 1957, Gabbay et al. 1980, Burgess 1984, Li
htenstein et al. 1985,Kr�oger 1987℄.A sound and 
omplete proof system for qTL was des
ribed in [Kesten and Pnueli1995℄. We just brie
y indi
ate how the above axioms 
an be extended for �TL:(Re
�) ` (�q '! 'fq := �q 'g)(Ind�) (p! 'fq := pg) ` (p! �q ')An equivalent formulation whi
h is based on the least �xpoint operator is(Re
�) ` ('fq := �q 'g ! �q ')(Ind�) ('fq := pg ! p) ` (�q '! p)All re
ursion and indu
tion axioms above 
an be obtained as spe
ial 
ases ofthese very general axioms. For their soundness, we refer to the Knaster-Tarski�xpoint properties in Corollary 3.9. The 
ompleteness proof 
an be adapted toshow 
ompleteness for a 
ertain sub
lass of positive �TL formulas, the a
onjun
-tive ones [Kozen 1983℄. This restri
tion enfor
es that if �r  1 and �s  2 are sub-formulas of �q  ea
h 
ontaining an o

urren
e of the same variable q, then no twoo

urren
es of variables r and s are 
onjun
tively related.The problem of 
ompleteness of these axioms for all �TL formulas was solvedin [Walukiewi
z 1995℄. It 
an be shown that for any formula there exists an equiv-alent a
onjun
tive formula. Thereby it suÆ
es to derive this a
onjun
tive formulafrom the axioms in order to prove any given formula.In these proofs, there is a pattern whi
h will frequently reappear in subsequentse
tions. An invarian
e is a negative o

urren
e of a least �xpoint operator, or apositive o

urren
e of a greatest �xpoint operator (e.g., G�, W+, �). Dually, an
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.) is a positive o

urren
e of a least �xpoint operator,or a negative o

urren
es of greatest �xpoint operator. In the 
ompleteness proof,invarian
es are unfolded via the re
ursion axiom, whereas eventualities are ful�lledusing the re
ursion axiom.7. De
ision Pro
eduresIn this se
tion we derive de
ision pro
edures for some of the logi
s introdu
ed above.As shown by B�u
hi and Rabin [B�u
hi 1962, Rabin 1969℄, monadi
 se
ond orderlogi
 on natural and tree models is de
idable. Therefore, all logi
s whi
h have avalidity-preserving standard translation into MSOL or SnS (se
ond order logi
 ofn su

essors) are de
idable. However, this proof does not yield eÆ
ient de
isionalgorithms. In this se
tion, we will develop su
h algorithms from the 
ompletenessproofs of the previous se
tion. Given a set of assumptions � and a formula ', wewant to de
ide whether � ` ' or not. By 
ompleteness, � ` ' i� � jj� '. Eventhough multimodal logi
 is 
omplete, for arbitrary sets � of assumptions and agiven formula ' it is not de
idable whether � jj� '. Therefore, we restri
t attentionto �nite sets of assumptions. Hen
e we need an algorithm whi
h, given a formula 'and a �nite set of assumptions �, de
ides whether there is a model whi
h globallyvalidates � su
h that ' is satis�ed in the initial point.If su
h a model exists, then often the size of the 
anoni
al model for � and '
an be bounded by a fun
tion of the length of the formulas �̂ and ' (\�nite modelproperty"). Therefore, many propositional modal and temporal logi
s are de
idable:it is suÆ
ient to 
he
k all models up to a 
ertain size whether they are appropriate.However, this is not pra
ti
al. In this se
tion, we show how to 
onstru
t a modele�e
tively.There are two main appra
hes. \Global" algorithms start with the largest possiblemodel and shrink it to an appropriate size. \Lo
al" algorithms start with a minimalmodel whi
h is extended until it is a model for the formula. For te
hni
al reasons,global algorithms seem to be more adequate for the bran
hing time approa
h, andlo
al algorithms seem to be better suited for linear temporal logi
s.7.1. De
iding Bran
hing Time Logi
sTo de
ide whether a given multimodal formula ' is satis�able with assumptions�, we try in a systemati
 way to 
onstru
t the 
anoni
al model for � jj� '. Inthe universe of this model, points are maximal 
onsistent sets of formulas. Sin
e weassume that the set � of assumptions is �nite, it is suÆ
ient to 
onsider maximalitywith respe
t to all sub-formulas of �̂ and '. In the following, we assume that ' and� are given and write SF for the (�nite) set of all of these sub-formulas. We usesubsets of SF to represent maximal sets of sub-formulas. That is, a set w � SFrepresents the maximal set f j  2 wg [ f: j  =2 wg. A set w � SF ofsubformulas is 
alled propositionally 
onsistent, if
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king 1701� ? 62 w, and� if ( 1 !  2) 2 SF , then ( 1 !  2) 2 w i�  1 2 w implies  2 2 w.That is, ( 1 !  2) 2 w i�  1 =2 w or  2 2 w. Expanding the de�nitions it 
an beshown that� if : 2 SF , then : 2 w i�  =2 w,� if ( 1 ^  2) 2 SF , then ( 1 ^  2) 2 w i�  1 2 w and  2 2 w, and� if ( 1 _  2) 2 SF , then ( 1 _  2) 2 w i�  1 2 w or  2 2 w.Any propositionally 
onsistent set is \
onsistent for propositional logi
": if we 
on-sistently repla
e any modal formula in w by a new proposition, then the resultingset of formulas is satis�able in propositional logi
. A satisfying interpretation isgiven by I(p) , true i� p 2 w.To 
onstru
t the 
anoni
al model of a 
onsistent formula, let the universe Uinitially be the set of propositionally 
onsistent sets of sub-formulas whi
h 
ontainall assumptions. That is, U , fw � SF j � � wg. The obvious 
hoi
e for I(p) thenis fw j p 2 wg. The initial interpretation of any hRi operator is the universal relationU � U . The de
ision pro
edure iteratively deletes `bad ar
s' and `bad points' untilstabilization is rea
hed. Bad ar
s are pairs (w0; w1) 2 I(R) su
h that w0 
ontains[R℄ but it is not the 
ase that  2 w1. More pre
isely, an ar
 (w0; w1) is bad if forsome sub-formula hRi it holds that hRi =2 w0 and  2 w1. Bad points w0 
ontaina formula hRi , but there does not (or no longer) exist a tuple (w0; w1) 2 I(R)with  2 w1. If upon termination there is a point w whi
h was not deleted su
hthat ' 2 w, it returns \satis�able", else it returns \unsatis�able".7.1. Lemma. The modal logi
 de
ision pro
edure is sound: ' is satis�able in somemodel whi
h universally validates � i� the pro
edure returns \satis�able".Proof: For one dire
tion, let M = (U; I; w0) be the result of the above deletionpro
edure. That is, assume thatM does not 
ontain a bad ar
 or bad point, and thatw0 2 U is some point with ' 2 w0. We show that (U; I) j= � and (U; I; w0) j= '.Similar to the truth Lemma 6.3, for every w 2 U and every  2 SF it holds that( 2 w) i� (U; I; w) j=  . This is shown by indu
tion on the stru
ture of  : foratomi
 propositions and boolean 
ombinations of formulas the statement is just a
onsequen
e of the respe
tive de�nitions. For modal subformulas, it follows fromthe deletion rules in the de
ision pro
edure: if [R℄ 2 w, then for all w0 2 U su
hthat (w;w0) 2 I(R) it must be the 
ase that  2 w0. This holds sin
e M doesnot 
ontain any bad ar
s. By the indu
tion hypothesis, w0 j=  , and thereforew j= [R℄ . If hRi 2 w, then there is some w0 2 U su
h that (w;w0) 2 I(R) and 2 w0. This holds sin
e M does not 
ontain any bad points. As above, it followsthat w j= hRi . Thus, the assumption ' 2 w0 implies that w0 j= '. Moreover,sin
e every w 2 U 
ontains � we have shown that ' is satis�able in a model whi
hglobally validates �.For the other dire
tion, assume that for some (�nite or in�nite) model M =(U; I; w0) it holds that w0 j= ', and w j= 	̂ for all w 2 U . We have to show thatthe above pro
edure terminates su

essfully. For any w 2 U , let w� , f 2 SF j
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e SF is �nite, there are only �nitely many su
h w�. Let the �ltrationof M be M� , (U�; I�; w�0 ), where� U� , fw j w = u� for some u 2 Ug,� (w1; w2) 2 I�(R) i� there are u1; u2 2 U su
h that w1 = u�1 and w2 = u�2 and(u1; u2) 2 I(R),� w 2 I�(p) i� p 2 w, and� w�0 = f 2 SF j w0 j=  g.Clearly,M� is a submodel of the initial model of our de
ision algorithm. Moreover,no point or ar
 of M� is ever removed by the de
ision pro
edure. Therefore, thealgorithm terminates with a nonempty result. Sin
e w0 j= ', it holds that ' 2 w�0 .2Sin
e the de
ision algorithm iterates over all of the points and sub-formulas, thereare two ways to implement it. First, we 
an implement it by a sear
h of all pointsusing nested iteration for all sub-formulas of this point. The se
ond te
hnique is touse a bottom up sear
h of all sub-formulas, where we 
he
k all points and ar
s to seewhether they are `bad' with respe
t to this formula. In both 
ases, it is importantto repeat the sear
h after some deletions have taken pla
e, until stabilization isrea
hed. A pseudo-
ode des
ription is given in Fig. 12. Re
all that R(w) denotesthe set of su

essors of point w with respe
t to relation R. Furthermore, for any setof points U and formula  , let U denote fw 2 U j  2 wg.Depending on the data stru
tures used for the representation of sets, it maynot be ne
essary to implement set operations by a traversal of all elements of theset. For example, all set operations whi
h are used in the 
omment lines of thepseudo-
ode 
an be implemented dire
tly with a BDD representation for U and Ras des
ribed in Se
tion 10.In a 
on
rete implementation of this algorithm, there is a tradeo� between 
om-putation time and spa
e: for any sub-formula  , ( 1 !  2) and any point w,it 
an be determined whether  2 w by de
iding whether  1 =2 w or  2 2 w.Hen
e, it is not ne
essary to represent a propositionally 
onsistent set by the set ofsub-formulas it 
onsists of; boolean 
ombinations of sub-formulas 
an be omitted.A point then is represented by� the set of sub-formulas whi
h are atomi
 propositions, and� the set of sub-formulas whi
h are of the kind hRi .If we use this representation, then we may have to 
al
ulate the value of boolean
ombinations of formulas from their 
onstituent parts. This value is needed in orderto determine whether the representation of a point is propositionally 
onsistent withthe assumptions.We now show how to extend this algorithm to transitive 
losure operators. There
ursion axiom for the F�-operator 
an be written as follows: (
f. page 1696):(Re
) ` (:F� q ! :q ^X :F� q)This axiom indi
ates that if F� =2 w0, then  =2 w0 and for all w1 su
h thatw0 � w1 it should hold that F� =2 w1. Thus, in the model all points for whi
hF� =2 w0 and  2 w0 have to be deleted. Similarly, `bad ar
s' (w0; w1) are thosefor whi
h F� =2 w0 and F� 2 w1.
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king 1703pro
edure ML sat (Formula ', Formulaset �) ==� Input � and ', determine if ' satis�able with global assumptions � �=U := fw � SF j � � w; ? =2 wg;=� delete propositionally in
onsistent points �=for all  = ( 1 !  2) 2 SF do= � U := U \ ((U n U 1) [ (U \ U 2) [ (U 1 n U n U 2)) � =for all w 2 U doif ( 2 w ^  1 2 w ^  2 =2 w) _ ( =2 w ^ ( 1 =2 w _  2 2 w))then U := U n fwg;R := U � U ;repeat until stabilizationfor all  = hRi 1 2 SF do=� delete bad ar
s �== � R := R \ ((U � U) [ (U � (U n U 1))) � =for all (w0; w1) 2 R doif w0 =2 U _ w1 =2 U _ ( =2 w0 ^  1 2 w1)then R := R n f(w0; w1)g;=� delete bad points �== � U := (U n U ) [ (U \ fw j (R(w) \ U 1) 6= fgg) � =for all w 2 U doif ( 2 w ^ 8w0 2 R(w) ( 1 =2 w0)) then U := U n fwg;if U' = fgthen print(', \is not satis�able with assumptions", �)else print(', \and the assumptions", �, \are sati�able in", U')Figure 12: Modal logi
 de
ision algorithmIn modal logi
, a `bad point' was de�ned to be one whi
h 
ontains hRi , but noR-su

essor 
ontains  . For transitive 
losure operators, however, it is not suÆ
ientto delete all points w0 for whi
h F� 2 w0,  =2 w0 and no su

essor 
ontains F� .There might be a 
losed loop of points all of whi
h 
ontain F� , but no point
ontaining  is rea
hable from the loop. A point is bad, if it 
ontains F� , butdoes not ful�ll this eventuality, i.e., no rea
hable point wn 
ontains  . To 
he
kthis 
ondition, we need another iteration: for ea
h sub-formula of the form F� we iteratively mark all points whi
h 
an rea
h a point 
ontaining  . We initiallymark all points whi
h 
ontain  . We then 
ontinue to mark all points whi
h havea marked su

essor. After stabilization all formulas F� in unmarked points areunsatis�ed and the respe
tive points 
an be deleted. The algorithm, whi
h is anextension of the algorithm in Figure 12, is given in Figure 13. For a 
orre
tnessproof and an extension to CTL, see [Emerson and Sistla 1984, Emerson 1990℄
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hlinglofffor all  = F� 1 2 SF do=� delete bad `ar
s' �=U := U n fw j  =2 w0 ^  1 2 w0g;R := R n f(w0; w1) j  =2 w0 ^  2 w1g;=� mark all points whi
h 
an rea
h  1 �=New := fw0 j 9w1 2 U : (w0; w1) 2 R ^  1 2 w1g;Marked := New ;repeatNew := fw0 j 9w1 2 New : (w0; w1) 2 Rgn Marked ;Marked := Marked [ New ;until New=fg;=� delete bad points �=U := U n fw j  1 2 w ^ w =2 Markedg;Figure 13: marking algorithm for transitive 
losure7.2. Satis�ability Algorithms for Natural ModelsThe bran
hing time de
ision pro
edures des
ribed in the previous subse
tion 
on-stru
t a \most general" model for any satis�able formula. For any sub-formula, allpropositionally 
onsistent sets are traversed. The number of propositionally 
onsis-tent sets of sub-formulas is exponential in the length of the formula; therefore, withan expli
it representation of sets these algorithms are limited to \small" formulas.Natural models for linear time logi
s are sequen
es of points. Ea
h point deter-mines a propositionally 
onsistent set of sub-formulas, namely the set of those sub-formulas whi
h are valid in this point. Often, the number of di�erent propositionally
onsistent sets determined by a spe
i�
 linear-time model is small, 
ompared to thenumber of all propositionally 
onsistent sets. Thus, in the de
ision pro
edure it 
anbe more appropriate to build a model in
rementally:� Start with some initial point, and� iteratively 
hoose the next point for the 
onstru
ted sequen
e.In this way, only those propositionally 
onsistent sets have to be stored whi
h a
tu-ally appear in the model. Of 
ourse, in the worst 
ase all propositionally 
onsistentsets will be traversed; however, we 
an expe
t a better average-
ase behavior.This pro
edure involves a nondeterministi
 
hoi
e. Therefore, it is implementedusing ba
ktra
king sear
h. Similar to the presentation in the previous subse
tion,we �rst give an algorithm for modal logi
 before 
onsidering operators whi
h involvere
ursion. Sin
e we are aiming at natural models, we use deterministi
 monomodallogi
, that is, modal logi
 with a single a

essibility relation R for whi
h axiom Uis required (
f. page 1691).We want to de
ide whether a formula ' is satis�able in a natural model glob-
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king 1705ally validating the assumptions �. We start with the set W of all propositionally
onsistent extensions of � [ f'g. That is, w 2W i�� ' 2 w,� � � w,� ? =2 w, and� for all sub-formulas  = ( 1 !  2) it holds that  2 w i�  1 2 w implies 2 2 w.We 
hoose some w0 2 W and try to 
onstru
t a model with w0 as initial point.At level i in the 
onstru
tion, we are given a propositionally 
onsistent set wi. If itdoes not 
ontain any formula hRi , we are �nished. In this 
ase, we have found a�nite model of length i with �nal point wi. Otherwise, we 
onstru
t the setwRi , f j hRi 2 wig [ f: j : hRi 2 wig [ �We refer to f j hRi 2 wig as the positive future obligations and to f: j: hRi 2 wig as the negative future obligations of wi. Thus, wRi is the set of allfuture obligations of wi (with respe
t to R), plus the global assumptions. We thenbuild the set S of all propositionally 
onsistent extensions of wRi . Sin
e there are only�nitely many subformulas of (�̂^'), the set S is �nite. If wRi is not propositionally
onsistent, then S = fg. In this 
ase, we ba
ktra
k to level i� 1 (or report failure,if i = 0). Otherwise, we 
hoose some wi+1 2 S as su

essor of wi and 
ontinue adin�nitum. If we hit upon a point whi
h is already 
ontained in the 
onstru
ted sub-model w0:::wi, then the in�nite 
y
li
 model w0:::wi(wi+1:::wi)! initially satis�es 'and globally satis�es �. Sin
e there are only �nitely many maximal propositionally
onsistent sets, the 
onstru
tion must terminate. A pseudo
ode des
ription of thisalgorithm is given in Figure 14.pro
edure ML sat lin (Formula ', Formulaset �) =W := fw � SF j ' 2 w;� � w;w propositionally 
onsistent g;Sta
k := fg;for all w 2W do depth first sear
h(w);print(', \is unsatis�able with assumptions", �);pro
edure depth first sear
h (w) =if w 2 Sta
k then print(';�, \satis�able by", Sta
k); exit;push(w, Sta
k);pos := f 2 SF j hRi 2 wg; neg := f 2 SF j hRi =2 wg;if pos= fg then print(';�, \satis�able by", Sta
k); exit;S := fw � SF j pos� w;w\ neg= fg;� � w;w prop. 
onsistent g;for all w0 2 S do depth first sear
h(w0);pop(Sta
k);Figure 14: Modal logi
 de
ision algorithm for linear modelsIn this algorithm, there is some redundant 
al
ulation.
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hlingloff� Firstly, whenever we ba
ktra
k from a point, there 
annot be a su

essful 
on-tinuation from this point. Therefore, we 
an add all points whi
h are poppedfrom the sta
k to a list M . If pro
edure depth �rst sear
h is 
alled with anargument whi
h is 
ontained in M , it 
an ba
ktra
k immediately.� Se
ondly, we already noted that it is not ne
essary to represent a propositionally
onsistent set by an enumeration of all sub-formulas it 
onsists of. It is suÆ
ientto mark for every proposition variable and for every sub-formula starting withan hRi-operator whether they are 
ontained in the maximal 
onsistent set.� Thirdly, in the 
al
ulation of the set S of possible su

essors of a point, it issuÆ
ient to 
onsider propositionally 
onsistent sets whi
h are subsets of (pos [neg [�). That is, for sub-formulas  of ' whi
h are neither future obligations ofw nor sub-formulas of global assumptions from �, it is not ne
essary to �x theirvalue in the su

essor w0. Both possible extensions, where  2 w0 or  =2 w0, arepropositionally 
onsistent and will lead to the same result. This improvement
an be implemented for example by using a three-valued 
hara
teristi
 fun
tionfor sub-formulas and propositionally 
onsistent sets (
ontained, not 
ontained,don't 
are) in the representation of points.In Figure 15 we give a set of tableau rules for monomodal logi
 on deterministi
models. The tableau rules 
an be seen as an impli
it formulation of the algorithmin Figure 14, where the above improvements are in
luded by de�nition. Similartableau rules for modal logi
s 
an be found in [Fitting 1983℄ and for temporallogi
s in [Wolper 1985℄.(!) �; ( 1 !  2)�;: 1 �;  2 (: !) �;:( 1 !  2)�;  1;: 2(?1) �;  ;: � (?2) �;?� (>) �;:?�(hRi) �; hRi'1; :::; hRi'n;: hRi 1; :::;: hRi m�; '1; :::; 'n;: 1; :::;: m ([R℄) �Figure 15: Tableau rules for monomodal logi
 on deterministi
 modelsIn these rules, � denotes any set of formulas, and � is the set of global assump-tions. The double line in rules (hRi) and ([R℄) indi
ates a transition from one pointin the 
onstru
ted model to the next, and the star indi
ates that a bran
h is 
losed.Ea
h tableau rule allows to derive zero, one or two sets of formulas from any set offormulas. Additional regulations are:� Rule (!) 
an only be applied if  2 6= ?.� Rules (hRi) and ([R℄) 
an only be applied if no other rule is appli
able.� Rule (hRi) 
an only be applied if no other hRi' or : hRi is in �.
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king 1707� Rule ([R℄) 
an only be applied if no hRi' is in �.A tableau is a �nite tree of sets of formulas su
h that� The root of the tableau is � [ f'g, and� The 
hildren of ea
h node are 
onstru
ted a

ording to some tableau rule.A leaf is 
alled 
losed , if it 
onsists of the symbol �. It is 
alled open, if it 
onsistsof a subset of formulas of some other node on the path from the root to this leaf.(In parti
ular, if rule (hRi) regenerates the root, the new leaf is open. Also, anyempty node 
onstru
ted by rule ([R℄) is open). A tableau is 
ompleted, if any leafis 
losed or open. A 
ompleted tableau is su

essful, if it 
ontains an open leaf.There is a strong 
onne
tion between the tableau method and the lo
al satis-�ability algorithm sket
hed above. The propositional tableau rules systemati
allygenerate all ne
essary propositionally maximal 
onsistent extensions of a given setof formulas, and the modal rules �x the stru
ture of the a

essibility relation(s) inthe generated model graph.For any given root, there are several di�erent tableaus, sin
e we did not spe
ifyany order in whi
h the rules have to be applied. Nevertheless all these tableaus areequivalent: if there is some su

essful tableau for ' and �, then every 
ompletedtableau for it is su

essful.7.2. Theorem. ' is satis�able with assumptions � i� � [ f'g has a su

essfultableau.Proof: For one dire
tion, assume that there is some natural model M ,((w0; w1; w2; :::); I; w0), where w0 j= ' and wi j= � for every i > 0, and showthat there is a 
ompleted tableau for ' and � with an open leaf. Equivalently,assume that any 
ompleted tableau for ' and � is given, and show that it 
ontainsan open leaf. We 
onstru
t a sequen
e of tableau nodes ni, and asso
iate with anyni a point w(ni) in the model. As an invariant of this 
onstru
tion, we show thatfor all formulas  2 ni it holds that w(ni) j=  .Initially n0 is the root of the tableau, with w(n0) , w0. Sin
e w0 j= ' andw0 j= �, the invariant is satis�ed. Given any tableau node ni with w(ni) = wj , no
losing rules 
an be appli
able, be
ause this would 
ontradi
t the invariant. Assumethe 
hild ni+1 of ni is 
onstru
ted by rule (: !) or (>). Then w(ni+1) , wj , andthe invariant is preserved. If two 
hildren of ni are 
onstru
ted by rule (!), then anyone of them is 
hosen whi
h preserves the invariant, and again w(ni+1) , wj . If nihas a 
hild obtained by rule (hRi), then w(ni+1) , wj+1. The spe
i�
 formulationof the rule guarantees that the invariant is preserved. Sin
e the tableau is �nite,and we 
an never apply one of the 
losing rules, we must hit an open leaf sooner orlater.For the other dire
tion, we have to show that from any 
ompleted tableau withopen leafs we 
an 
onstru
t a model. The 
onstru
tion is similar to above. We
onsider the unfolding of the tableau. This is the tree arising from the repeatedsubstitution of any open leaf with the subtableau rooted at the node subsuming
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hlingloffthis open leaf. In parti
ular, an empty node generated by rule ([R℄) 
an be repla
edwith any node on the path from the root to this node. If the tableau 
ontains openleaves, then the unfolding 
ontains in�nite paths. In the unfolding, 
all any nodewhose 
hild is 
onstru
ted by rule (hRi) or ([R℄) a pre-state. It 
an be shown thatthe sequen
e of pre-states of any in�nite path from the root 
onstitutes an in�nitemodel. 2As an example for the tableau 
onstru
tion, 
onsider the semaphore frompage 1694. A linear time modelling of the transitions is given by� , f(on! r ^ hRi :on); (:on! r ^ hRi :on _ s ^ hRi on); :(r ^ s)g:Here, r and s denote the semaphore-operations \reset" and \set", respe
tively. Weprove that after a reset the semaphore 
an be set only on
e:' , (r! [R℄(s! [R℄(s! ?))):To show that � jj� ', we 
onstru
t the tableau with root � , � [ f:'g and showthat it is 
losed. The tableau is given in Figure 16.In this tableau, we omitted boolean de
ompositions. All leaves are 
losed be
ausethey 
ontain both r and s. This is a 
ontradi
tion to the assumption :(r ^ s)expressing that only one a
tion is performed at a time.Tableaus for LTLWe now extend these methods to linear time temporal logi
. For simpli
ity, werestri
t attention to the operators X and F�. The algorithms are similar to themodal logi
 
ase des
ribed above. To de
ide whether a formula ' is satis�ablein a natural model, we apply the same depth-�rst sear
h algorithm as sket
hedin Figure 14, where X repla
es hRi, and extended sub-formulas (ESF ) are usedinstead of subformulas (SF ). (Re
all that both  and XF� are extended sub-formulas of F� .)There are two further modi�
ations. Firstly, assume we are given a sub-formulaF� and a node w su
h that one of the following holds.� F� 2 w and  =2 w and XF� =2 w, or� F� =2 w, and  2 w or XF� 2 w.In this 
ase, we 
an dis
ard node w. Even though it may be propositionally 
onsis-tent, it does not respe
t the re
ursion axiom` F� $  _XF� :Thus, this node 
annot appear as a point in the model.Se
ondly, when the depth-�rst-sear
h �nds a node w whi
h is already on thesta
k, it would be preliminary to report a su

ess. Consider the set of nodes w ,w0; w1; :::; wn, whi
h are on the path from w to w. It 
ould be the 
ase that thereis some sub-formula F� , su
h that ea
h node 
ontains both F� and XF� , butnone of them 
ontains  . That is, the eventuality ' is required but not ful�lled in
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�; r; '1 (where '1 , hRi(s ^ hRi s))on; r; hRi :on; '1�; :on; s; hRi sr; s; : : :� :on; s; hRi s; hRi on�; s; ons; on; r; hRi :on�
:on; r; hRi :on; '1�; :on; s; hRi s� � � :on; s; hRi on; r; '1�

Figure 16: Tableau for � and (r! [R℄(s! [R℄(s! ?))):
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hlingloffw0; :::; wn. The ful�llment of F�' is \postponed forever" from ea
h wi to the nextin a 
y
li
 manner.However, we 
annot dis
ard w0; w1; :::; wn, be
ause they might 
ontribute to asatisfying model. Consider the following situation:w0?w1?w2	w3p Rw4q
Æ O

We assume that all nodes in this pi
ture 
ontain F� p and F� q. The only node 
on-taining p is w3, and the only node 
ontaining q is w4. When the ba
ktra
king sear
hen
ounters w1 as 
hild of w3, it �nds that in the loop w1; w2; w3 the proposition qis required but not ful�lled. Thus it ba
ktra
ks to w2 and �nds w4 as se
ond 
hild.This time, in the loop w0; w1; w2; w4 the proposition p is required but not ful�lled.However, both p and q are satis�ed in the model (w0; w1; w2; w3; w1; w2; w4)! .Thus, when the depth-�rst-sear
h �nds a ba
kward ar
, it has to sear
h thestrongly 
onne
ted 
omponent of nodes of the 
urrent node. A strongly 
onne
ted
omponent (SCC) is a set W of points su
h that for all w1; w2 2 W , if w1 6= w2,then there is a path from w1 to w2 and ba
k. An SCC W is 
alled terminal, if forall w 2 W , w0 =2 W , it is not the 
ase that w � w0. It is 
alled self-ful�lling, ifall required formulas are ful�lled, i.e., if for any w 2 W and ('1U+'2) 2 w thereexists a w0 2 W su
h that '2 2 w0. For the de
ision algorithm, the depth-�rst-sear
h graph has to be partitioned into strongly 
onne
ted 
omponents. The givenformula is satis�able i� a self-ful�lling SCC is rea
hable from some initial node.We postpone the algorithmi
 formulation of this partitioning to the next se
tion,where the same algorithm is given in the 
ontext of model 
he
king. Instead, wesket
h the ne
essary modi�
ations in the tableau 
onstru
tion. As additional rulesto those of Figure 15, we add:(F�) �;F� �;  �;XF� (:F�) �;:F� �;: ;:XF� To deal with unful�lled eventuality formulas, a ba
kward loop 
an only be re-garded as open, if for any F� whi
h o

urs in any wi in the loop, there is a wj inthe loop su
h that  2 wj (loop 
ondition). If the loop 
ondition is not met, the
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king 1711unfolding of the tableau has to 
ontinue until all nodes of the SCC are 
ontainedin the loop. In this 
ase, the respe
tive bran
hes are 
losed.As an example for the loop 
ondition, we show transitivity of �:` (F�F� p! F� p)The root of the tableau is marked with the negation of this formula, i.e. with F�F�pand :F�p. F�F� p; :F�pF�p; :F�p� XF�F�p; :F�pXF�F�p; :p; :XF�pF�F�p; :F�p��The leaf marked (�) 
loses be
ause it is 
ontradi
tory. The leaf (��) 
loses be
auseit is subsumed by the root above, and the SCC to whi
h it belongs 
ontains theunful�lled eventuality F�F�p.There is a 
lose 
onne
tion between tableaus for temporal logi
s and !-automata.The pre-states in the tableau (i.e., nodes immediately above a double line) 
anbe seen as states of a generalized B�u
hi-automaton. The set of open leafs arethe a

epting states, and the re
urring states are determined as follows: for anysub-formula ' , F� it must hold that ' is in�nitely often not 
ontained inan a

epting run, or  is 
ontained in�nitely often. This 
an be formulatedas generalized B�u
hi-a

eptan
e 
ondition on the states [Clarke, Grumberg andHamagu
hi 1997℄. The formula then is satis�able i� the language of the 
orre-sponding automaton is nonempty, and it is valid i� this language is �! (the set ofall �nite and in�nite strings over �). Therefore, the de
ision problem for LTL
an be regarded as an instan
e of the language problem of generalized B�u
hiautomata [Wolper 1985, Emerson 1985, Vardi and Wolper 1986, Kurshan 1994℄.In [Vardi 1995℄ other embeddings of tableau-based satis�ability pro
edures for tem-poral logi
s into de
ision algorithms for !-automata, based on alternating automata,are des
ribed.8. Basi
 Model Che
king AlgorithmsIn this se
tion, we will show how the most 
ommonly used model 
he
king pro
e-dures 
an be obtained from the above de
ision pro
edures.Given a model M and a formula ', the model 
he
king problem is to de
idewhetherM j= '. In prin
iple, this 
an be done by en
odingM as a set of assump-tions (\premisses" or \program axioms") �, and de
iding whether � ` '. However,some experiments will qui
kly 
onvin
e the reader that a na��ve approa
h of doing



1712 Edmund M. Clarke and Bernd-Holger S
hlingloffso is doomed to failure. Usually, the program axioms all have a very spe
ial form,su
h as(state i ! (X su

 i1 _ � � � _X su

 in))in a linear time modelling, or(state i ! (ha1i su

 i1 ^ � � � ^ hani su

 in))in a bran
hing time approa
h. The de
ision pro
edure in general 
an not takeadvantage of this spe
ial form of the assumptions and will in every step breakdown all assumptions to its basi
 propositional 
omponents. This results in a veryineÆ
ient behavior; usually only very small systems 
an be veri�ed and debuggedthat way.Therefore, model 
he
king algorithms avoid the en
oding of the models as a set ofprogram axioms; they use the models dire
tly instead. Model 
he
king determineswhether a given spe
i�
ation formula is satis�ed in a given Kripke-model, i.e.,whether a tree or natural model satisfying the formula 
an be generated from it.There are two variants of this task, depending on whether the initial or universalde�nition of satisfa
tion of a formula in a model is used. In the usual de�nition, aKripke-model M , (U; I; w0) is given, whi
h 
onsists of universe U , a

essibilityrelation(s) de�ned by I, and 
urrent point w0 2 U , and we have to 
he
k whetherthe formula ' is satis�ed: (U; I; w0) j= '. In the universal de�nition, we are givena frame F , (U; I) 
onsisting of universe and interpretation, and want to knowwhether the formula is satis�ed in all models based on this frame: (U; I) j= ' i�for all w0 2 U it holds that (U; I; w0) j= '. Equivalently, we want to know whether'F = U , where 'F , fw 2 U j w j= 'g is the set of points satisfying '.Of 
ourse, any algorithm whi
h 
al
ulates 'F 
an also be used to de
ide whether(U; I; w0) j= ' holds: w0 j= ' i� w0 2 'F . Vi
e versa, if we have an eÆ
ientalgorithm to de
ide whether w0 j= ', we 
an 
al
ulate 'F by an iteration on allstates.The model 
he
king problem has two parameters: modelM and formula '. Algo-rithms whi
h iterate on the stru
ture of ' and in ea
h step traverse the whole ofMare sometimes 
alled global . Algorithms whi
h iteratively extend the 
he
ked partof M and in ea
h step determine the truth of ea
h sub-formula of ' are sometimes
alled lo
al. Although the theoreti
al worst-time 
omplexity is not in
uen
ed bythis 
hoi
e, the average 
ase behavior may di�er signi�
antly.In prin
iple, the three axes (bran
hing/linear, universal/initial, global/lo
al) areindependent. In pra
ti
e, however, for bran
hing time logi
s mostly global algo-rithms for universal validity are used, whereas for linear time logi
s lo
al algorithmsfor initial validity have been suggested.8.1. Global Bran
hing Time Model Che
kingGiven a Kripke frame F = (U; I) and a multimodal formula ', the set 'F , fw 2U j w j= 'g of points validating ' 
an be 
al
ulated by a re
ursive des
ent on thestru
ture of ':
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king 1713� If p is an atomi
 proposition, then pF , I(p).� ?F , fg.� ('!  )F , (U n 'F ) [  F .� (hRi )F , fw 2 U j 9w0 2  F ; (w;w0) 2 I(R)g.This algorithm seems to be just a trivial reformulation of the semanti
al de�nitionfor the logi
al operators. However, there are some important observations.� Firstly, (hRi )F 
an be 
al
ulated from  F in two ways: we 
an 
he
k for ea
hw 2 U , whether the interse
tion of  F and R(w) is nonempty. Alternatively,we 
an 
al
ulate SfR�1(w0) j w0 2  Fg, where R�1(w0) , fw j (w;w0) 2I(R)g is the inverse image of point w under the relation R. This inverse image
al
ulation 
an be a

omplished by a traversal of all ar
s (w;w0) 2 I(R): ifw0 2  F , then w 2 (hRi )F .� Se
ondly, to avoid re
al
ulation of 
ommon subformulas, we use a table, wherefor ea
h sub-formula  the set  F is stored. The size of  F 
an be of the sameorder of magnitude as jU j. Thus, we need an eÆ
ient data stru
ture for largesets of points.� Thirdly, the overall 
omplexity of this algorithm is linear in the number ofdi�erent sub-formulas and in the size of the model. However, even for in�nitemodels whi
h are given by some symboli
 des
ription, e.g., Petri nets or Turingma
hines, some model 
he
king problems 
an be de
idable [Andersen 1994,Gurov, Berezin and Kapron 1996, Burkart and Esparza 1997℄. In su
h 
ases, F 
an be of in�nite size, and must be represented by a symboli
 des
riptionas well.Similar to the above modal logi
 pro
edure, the CTL model 
he
king algorithmpro
eeds by marking ea
h point with the set of sub-formulas whi
h are valid forthis point. Suppose we have already marked the set of points satisfying  1 andthe points satisfying  2. To label the set of points satisfying ' , E( 2U+ 1) or' , A( 2U+ 1), we use the �xpoint unfoldingsE( 2U+ 1)$ EX( 1 _  2 ^ E( 2U+ 1))A( 2U+ 1)$ AX( 1 _  2 ^A( 2U+ 1))For ' , E( 2U+ 1), we label all points with ' whi
h have a su

essor that islabelled with  1, or with  2 and also '. This pro
ess is repeated until stabilizationis rea
hed. For ' , A( 2U+ 1), note that AX� $ (EX> ^AX �). Thus, welabel all points with ' whi
h have at least one su

essor, and for whi
h all su

essorsare labelled with  1, or with  2 and also '. Again, this pro
ess must be repeateduntil no new points 
an be marked. The pro
edure is 
omparable to the markingalgorithm in Figure 13. A re
ursive formulation of this algorithm is given in Fig. 17.Sin
e the Kripke-model has a �nite number of points, ea
h repeat in the al-gorithm stabilizes after at most jU j passes. In the worst 
ase, ea
h pass sear
hesthe whole model (jU j2 transitions), hen
e the 
omplexity is linear in the number ofdi�erent sub-formulas, and 
ubi
 in jU j.
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hlingloffpro
edure CTL 
he
k (Model (U; I; w0), Formula ') =if w0 2 eval(')then print(\' is satis�ed at w0 in (U; I)")else print(\' not satis�ed at w0 in (U; I)");fun
tion eval (Formula '): Pointset =
ase ' ofp : return I(p);? : return fg;( 1 !  2) : return Un eval( 1) [ eval( 2);E( 2U+ 1) : E1 := eval( 1); E2 := eval( 2); E := fg;repeat until stabilizationE := E [ fw j (su

(w) \ (E1 [ (E2 \ E))) 6= fgg;return E;A( 2U+ 1) : E1 := eval( 1); E2 := eval( 2); E := fg;repeat until stabilizationE := E [ fw j fg 6= su

(w) � E1 [ (E2 \ E)g;return E;fun
tion su

 (Point w): Pointset = return fw0 j (w;w0) 2 I(�)g;Figure 17: na��ve CTL model 
he
king algorithmThis bound 
an be improved if the sear
h is organized better. In [Clarke, Emersonand Sistla 1986℄, an algorithm is given whi
h is linear in the size of the model aswell. For the EF+-operator, the problem of marking all points for whi
h EF+'holds, given the set of point satisfying ', is equivalent to the inverse rea
habilityproblem: given a set of points, mark all points from whi
h any �nite path leadsinto the given set. Assuming that for any two points we 
an de
ide in 
onstanttime whether they are 
onne
ted by an ar
, this 
an be done with time 
omplexityquadrati
 in the number of points.fun
tion rea
h (Pointset Target): Pointset =Sour
e := fg; Sear
h := Target ;while Sear
h 6= fg doSear
h := pred (Sear
h) n Sour
e;Sour
e := Sour
e [ Sear
henddo;return Sour
e;fun
tion pred (Point w): Pointset = return fw0 j (w0; w) 2 I(�)g;Figure 18: Inverse rea
hability 
al
ulation
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king 1715The algorithm given in Fig. 18 
al
ulates the set Sour
e of all points from whi
hany point in given set Target is rea
hable. In this algorithm, every point entersthe set Sear
h in the while loop at most on
e. Moreover, all set operations 
an beperformed in time linear in the size of these sets, i.e., in the number of points; thusthe overall 
omplexity is quadrati
 in jU j or linear in the size of the Kripke-model.For the EU+-operator, this idea 
an be re�ned to give an evaluation pro
edureof linear 
omplexity. The AU+-operator 
an be expressed byA( 2U+ 1)$ :(E(: 1U+(:( 1 ^  2)) _ EG+: 1)Thus, we only need a pro
edure marking all points for whi
h EG+' holds. This
an be done as follows:� restri
t the model to those states satisfying '� �nd the maximal strongly 
onne
ted 
omponents in the restri
tion� mark all points in the original model from whi
h a nontrivial SCC or a pointwithout su

essors 
an be rea
hed by a path in the restri
ted model.These operations 
an be a

omplished with time 
omplexity whi
h is quadrati
 inU . Thus, the overall 
omplexity of CTL model 
he
king is linear in the size of theformula and in the size of the model.Fairness ConstraintsSome automated model 
he
kers for CTL (for example, SMV [M
Millan 1993℄ andSVE [Dingel and Filkorn 1995℄) allow to spe
ify a set of 
onstraints � together withthe Kripke-model. These 
onstraints are assumed to hold in the whole model; i.e.,they restri
t the model to those parts where they are valid. This use of 
onstraints issomewhat di�erent from the assumptions in the previous se
tions, whi
h were usedto 
onstrain the set of possible models. For example, an !-automaton 
an be re-garded as a Kripke-model, together with global eventuality and fairness 
onstraints(a

epting and re
urring states). Constraints 
an be formulated in the same lan-guage in whi
h the formula to be 
he
ked is spe
i�ed; however, \mixed" approa
heshave been suggested [Josko 1993℄, where e.g. the 
onstraints are des
ribed in LTLand the property is des
ribed in CTL.As an example for the use of su
h 
onstraints, often the path-quanti�ers A andE are restri
ted to fair paths. Simple fairness 
onstraints are of form F+ , where  is a boolean 
ombination of propositions. For example, the 
ondition F+> spe
i�esthat ea
h run must be in�nite. As another example for a simple fairness 
onstraint,we might want to restri
t our attention to exe
ution sequen
es in whi
h every
omponent is always eventually s
heduled. Streett fairness 
onstraints are of form(G+F+ 1 ! G+F+ 2) and are useful to restri
t attention to strongly fair s
hed-ulers: if a 
omponent in�nitely often requests a resour
e, it will be granted in�nitelyoften. Histori
ally, di�erent fairness 
onstraints were dis
ussed in [Lehmann, Pnueliand Stavi 1981, Quielle and Sifakis 1982℄. A 
omprehensive treatment of fairness
on
epts and proofs is given in [Fran
ez 1986℄.
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hlingloffThe above algorithm 
an be modi�ed to deal with su
h fairness 
onstraints bybuilding the tableau of the LTL-assumption and 
he
king the CTL-formula on theprodu
t of Kripke-model and tableau. The 
omplexity in
reases by a fa
tor whi
hdepends on the type of LTL-formulas in the assumption. For more information,see [Emerson and Lei 1986, Kupferman and Vardi 1996, Emerson, Jutla and Sistla1993, Clarke, Grumberg and Long 1993℄.8.2. Lo
al Linear Time Model Che
kingFor a given Kripke-modelM = (U; I; w0) and CTL-formula ', the relationM j= 'holds i� the maximal tree generated fromM at w0 satis�es '. For linear time logi
s,M j= ' is interpreted by sequen
e-validity. That is, we want to 
he
k whether everymaximal sequen
e generated from M at w0 satis�es '. Equivalently, we have tode
ide whether :' is satis�able in some natural model generated fromM. In somesense, this is a more 
omplex question than the one for bran
hing time, be
ause awhole set of natural models has to be 
he
ked. Hen
e, we 
annot simply mark apoint in the Kripke-model with the set of linear-time formulas whi
h are valid forthis point: for example, F+ 
an be valid for one of the generated sequen
es, andnot valid for another one.We �rst 
onsider sequen
e-validity of modal logi
 with a single a

essibility re-lation R. Given a Kripke-model M = (U; I; w0) and a modal formula ', we wantto determine whether there is a maximal sequen
e generated from M at w0 whi
hsatis�es ' in w0. This is done by a depth-�rst-sear
h in the produ
t of the set ofpropositionally maximal 
onsistent sets of sub-formulas and the set of points in themodel.Formally, an atom � is any pair (w;m), where w 2 U is a point, and m � SF (')is a propositionally 
onsistent set of sub-formulas. An atom is admissible, if w andm agree on the interpretation of propositions. That is, if p 2 SF ('), then p 2 m i�w 2 I(p).An initial atom is any admissible atom � = (w0;m0), where w0 is the 
urrentpoint of M, and ' 2 m0. We de�ne a relation XR between admissible atoms:XR((w;m); (w0 ;m0)) holds i� the following 
onditions are met:1. (w;w0) 2 I(R),2. if hRi 2 SF (') and  2 m0, then hRi 2 m,3. if hRi 2 m, then  2 m0, and4. some hRi 2 m.The �rst 
ondition re
e
ts the fa
t that the steps in the generated sequen
e arepredetermined by the Kripke-model. The se
ond 
ondition is imposed by the se-manti
s of the hRi-operator. The third 
ondition is a reformulations of the axiom(U) and the 
orresponding tableau rule (hRi) on page 1706. The fourth 
ondition
orresponds to the tableau rule ([R℄); it allows the generated sequen
e to be �nitewhen no hRi is 
ontained in a node.Now we 
an 
onstru
t a forest of atoms as follows:� initial nodes are all initial atoms
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king 1717� any node � has as 
hildren all �0 su
h that XR(�; �0)Sin
e for any �nite Kripke-model there are only �nitely many atoms, ea
h bran
hin this forest 
an be made �nite by appropriate ba
kward ar
s. As in the tableaude�nition, a leaf is 
alled open, if it has no hRi formulas in its �rst 
omponent (m);otherwise, it is 
losed.An a

epting path through the resulting stru
ture starts with any initial nodeand is either in�nite or ends with an open leaf. Any a

epting path is a sequen
egenerated from the Kripke-model whi
h satis�es the given formula :', therebyforming a 
ounterexample to the spe
i�
ation '.To implement the sear
h for an a

epting path, we perform a depth-�rst sear
hwith ba
ktra
king from the set of initial atoms to all of its su

essors. In order tobe able to terminate loops in this sear
h, we have to store all atoms whi
h wereen
ountered previously. Though there are several possibilities to represent su
h aset of atoms, the method of 
hoi
e seems to be to employ a hash table. It is notne
essary to use all 
omponents of m as hash indi
es, sin
e the value of propositionsis determined by w, and boolean 
ombinations of formulas 
an be re
overed fromtheir 
onstituent parts. Therefore, it is suÆ
ient to store only the value of hRi-subformulas.In general, sin
e we are only looking for some 
ounter-model, we 
an terminatethe sear
h if a 
ounter-model is found. Although in the worst 
ase (if no 
ounter-model exists) the whole forest must be sear
hed, it is possible to �nd errors veryqui
kly by an appropriate ordering of the depth-�rst sear
h su

essors.In the depth-�rst sear
h, we have to remove 
losed atoms from the list of possibleloop points. A better way is to mark these nodes as 
losed while ba
ktra
king;then the sear
h will not re
urse again if su
h an atom reappears. Also all otherimprovements mentioned on page 1706 
an be used for this algorithm.Extensions for LTLWe have seen that the lo
al model 
he
king algorithm for modal logi
 is almostthe same algorithm as the lo
al tableau de
ision pro
edure. Similarly, the lo
almodel 
he
king for LTL is very 
lose to its respe
tive satis�ability algorithm. Forsimpli
ity, in this subse
tion we restri
t attention to the future fragment of LTL.In the de�nition of XR((w;m); (w0 ;m0)), we repla
e hRi by X and require inaddition5. if F� 2 SF (') then F� 2 m i�  2 m or XF� 2 mThis requirement 
orresponds to the re
ursion axiom ` F� $  _XF� . As inthe 
ase of modal logi
, we try to thread an a

epting path through the graph ofatoms whi
h arises from this de�nition. However, we 
an only a

ept those pathsin whi
h all eventualities F� are ful�lled. Sin
e we 
an not guarantee that severaleventualities are simultaneously ful�lled in some single loop, we have to 
al
ulatethe strongly 
onne
ted 
omponents of the re
exive transitive 
losure ofXR. An SCCW of atoms is 
alled self-ful�lling, if for any F� in some � 2 W there exists some�0 2 W with  2 �0. Any atom whi
h does not 
ontain positive future obligationsX is a trivial SCC, be
ause it is a terminal node in the atom graph. Su
h a node
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hlingloffforms a self-ful�lling SCC, be
ause the above 
ondition (5.) guarantees that for anyF� 2 �, also  2 �. The given formula ' is satis�able in M i� there exists aself-ful�lling SCC whi
h is rea
hable from some initial atom. In this 
ase, a naturalmodel for ' generated by M is given by any sequen
e of atoms from an initialatom whi
h ends in a terminal atom or in�nitely often passes through all atoms ofa self-ful�lling SCC.For U+-operators, ea
h positive o

urren
e ( 1U+ 2) in some � 2 W is aneventuality whi
h has to be ful�lled at some point; thus the SCC W is de�ned tobe self-ful�lling, if it is nontrivial and for any ( 1U+ 2) in some � 2 W there existssome �0 2W with  2 2 �0, or it is trivial and does not 
ontain any ( 1U+ 2).To 
onstru
t maximal SCCs, two di�erent algorithms have been suggested(see,e.g. [Aho, Hop
roft and Ullman 1974℄). For model 
he
king, Tarjan's algo-rithm [Tarjan 1972℄ is parti
ularly well-suited, sin
e it enumerates the strong 
om-ponents of a graph during the ba
ktra
k from the depth-�rst sear
h. If a maximalSCC W is found, all required and ful�lled eventualities in all nodes of W 
an be
olle
ted. W is self-ful�lling if all required eventualities are ful�lled. Thus model
he
king 
an be performed \on-the-
y" during the enumeration of the rea
hableatoms of the model. An appropriate depth{�rst{sear
h LTL model 
he
king algo-rithm is given in 19.In this algorithm, the fun
tion 
hildren 
onstru
ts for a given atom � the setof all possible su

essor atoms a

ording to the transition relation of the Kripke-model and to the �xed point de�nition of the until-operator. One way to implementthis fun
tion is to represent atoms by bitstrings whi
h 
ontain one bit for ea
hproposition p2 P and one bit for ea
h sub-formula ( 2U+ 1) 2 SF ('). New atomsare in
luded into a hash table, whi
h 
ontains one bitstring for ea
h atom. For ea
hentry into the hash table, the fun
tion 
hildren returns a list of pointers to the hashtable. For more information on bitstate hashing te
hniques and state spa
e 
a
hing,see [Cour
oubetis, Vardi, Wolper and Yannakakis 1992, Holzmann 1995, Godefroid,Holzmann and Pirottin 1995℄.The pro
edure depth first sear
h realizes Tarjan's algorithm and the testwhether an SCC is self-ful�lling. It re
ursively builds all atoms rea
hable froma given atom �. When the pro
edure ba
ktra
ks, � is the root of a maximal SCC i�there are no atoms � in the subtree below � su
h that � is also in the subtree of �.In this 
ase, the maximal SCC 
ontaining � 
onsists of all nodes in the subtree be-low �, and this maximal SCC 
an be 
he
ked for a

eptan
e. table is implementedas a hash table from atoms to natural numbers. table[�℄ 
ontains� UNDEFINED, as long as atom � has not o

urred,� the depth-�rst-number of �, when � is �rst en
ountered,� the depth{�rst{number of the �rst en
ountered atom belonging to the samestrongly 
onne
ted 
omponent as �, after return from the re
ursive 
all, and� MAXNAT (any value for whi
h min(n, MAXNAT) is always n), after the max-imal strong 
omponent 
ontaining � has been analyzed.To 
he
k whether an SCC is self-ful�lling, during its enumeration two sets are built:required 
ontains the union of all eventualities whi
h are required, and ful�lled
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king 1719pro
edure LTL 
he
k (Model M, Formula ') =Nat depth �rst 
ount := 0; =� number of re
ursive 
all �=Atomset sta
k := fg; =� Sta
k of sear
hed atoms �=Natarray table; =� Hashtable from atoms to natural numbers �=Atomset init := f� j � is an initial atom of M and 'g;for all � 2 init do depth first sear
h(�);print(\' is not satis�able in M");pro
edure depth first sear
h (Atom �) =if (table [�℄ = UNDEFINED) then =� � is a new atom �=Nat dfnumber := depth �rst 
ount ; =� save 
urrent 
ount �=depth �rst 
ount := depth �rst 
ount+1;table[�℄ := dfnumber ; =� initialize with 
urrent depth �=push(sta
k, �);Atomset su

 := 
hildren(�);for all (� 2 su

) dodepth first sear
h(�);table[�℄ := min(table[�℄, table[�℄); =� � above �? �=if (table[�℄ = dfnumber) then =� � is the root of an SCC �=Formulaset required := fg, ful�lled := fg;repeat� := pop(sta
k);table[�℄ := MAXNAT;required := required [ f 1 j ( 2U+ 1) 2 �g;ful�lled := ful�lled [ f j  2 �guntil (� = �); =� all elements of SCC are popped �=if required � ful�lled =� SCC is self-ful�lling �=then print(\' satis�able in M"); exit;fun
tion 
hildren (Atom (w;m)) : Atomset =if f( 2U+ 1) 2 mg = fg then return fg =�no future obligations�=else return f(w0;m0) j w � w0;( 2U+ 1) 2 m i�  1 2 m0 or  2 2 m0 and ( 2U+ 2) 2 m0gFigure 19: Depth{�rst{sear
h LTL model 
he
king algorithm
ontains the union of all eventualities whi
h are ful�lled in the atoms of this SCC.The SCC is self-ful�lling if required�ful�lled.The main program 
alls depth first sear
h for all initial atoms, where for aninitial atom (w0;m0)1. w0 is the 
urrent point of M, and2. m0 � SF (') is any propositionally 
onsistent set su
h that ' 2 m0.If during the 
onstru
tion of the atom graph a maximal self-ful�lling SCC is found,
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hlingloffthe algorithm reports su

ess; if the whole graph is sear
hed without su

ess weknow that the formula is not satis�able, and the program terminates with thisresult.This algorithm is exponential in the number of U+-formulas, be
ause every setof su
h sub-formulas determines a propositionally 
onsistent set. It is linear in thesize of the Kripke-model. In general, it 
an be shown that the problem of LTL-model 
he
king (in
luding past-operators) is PSPACE-
omplete in the size of theformula and NLOGSPACE in the size of the model (see [Sistla and Clarke 1986,Li
htenstein and Pnueli 1985℄). The exponential 
omplexity in the length of theformula usually is not very problemati
, be
ause spe
i�
ation formulas tend to berather short. The linear 
omplexity in the size of the model is a more serious limitingfa
tor, sin
e in the worst 
ase (i.e., if the formula is unsatis�able) all atoms haveto be traversed. Current te
hnology limits the appli
ability of su
h algorithms tomodels with approximately 105�106 rea
hable atoms. In Se
tion 11 we will dis
ussapproa
hes whi
h try to over
ome this limit.8.3. Model Che
king for Propositional �-Cal
ulusBoth the lo
al and the global model 
he
king algorithms 
an be easily adapted to�TL. Global model 
he
king for CTL unfolds the �xpoint de�nition of the AU+and EU+ operators. If we restri
t our attention to 
ontinuous �TL-formulas (seebelow), then this idea 
an be used to obtain a global model 
he
king algorithmfor these formulas. Moreover, as we will dis
uss in Se
tion 10, this algorithm 
anbe eÆ
iently implemented using BDDs (see [Bur
h, Clarke, M
Millan, Dill andHwang 1992℄).A

ording to the Knaster-Tarski theorem proved in Se
tion 3.2,(U; I; w) j= �q ' i� w 2[fQ j Q � 'Ffq := Qgg(U; I; w) j= �q ' i� w 2\fQ j 'Ffq := Qg � QgA fun
tion f : 2U ! 2U is 
alled union-
ontinuous, if f(Si2Ifxig) = Si2I f(xi)for any index set I . If the fun
tional de�ned by ' is union-
ontinuous, then the�xpoints 
an be obtained as �q ' = limi!!'i(>)�q ' = limi!!'i(?)If U is �nite, then every monotoni
 fun
tion is union-
ontinuous. Moreover, a

ord-ing to Lemma 5.4, on �nite models it is suÆ
ient to 
onsider the limit up to the
ardinality of the universe: �q ' = limi�jUj'i(>)�q ' = limi�jUj'i(?)
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king 1721fun
tion eval (Formula '): Pointset =
ase ' ofp : return I(p); =� interpretation of proposition p �=q : return v(q); =� valuation of proposition variable q �=? : return fg;( 1 !  2) : return Un eval( 1) [ eval( 2);hRi : return R�1( eval( ));�q( ) : H := U ;repeat until stabilizationH := eval( fq := Hg);return H ;�q( ) : H := fg;repeat until stabilizationH := eval( fq := Hg);return H ;Figure 20: na��ve global bran
hing time �TL model 
he
king algorithmConsequently, for �nite domains model 
he
king of positive �TL 
an be performedby extending the na��ve global algorithm. The result is depi
ted in Figure 20.Sin
e every repeat in this algorithm 
an iterate up to jU j times, the 
omplexityis of order j'j � jU jqd('), where qd(') is the depth of nesting of �xpoint operators in'. This high 
omplexity is due to the fa
t that the 
omputation of any inner �xedpoint formula has to be restarted from s
rat
h for every new iteration of an en
losing�xed point operator. For example, 
onsider the CTL-formula EF�(p1 ^ EF�p2).�TL(EF�(p1 ^ EF� p2)) = �q1(X q1 _ (p1 ^ �q2(X q2 _ p2))):This formula is alternation-free: in the inner �xed point formula �q2(X q2 _ p2)there is no o

urren
e of q1. Therefore, in the evaluation of �q1, this formula hasa 
onstant value. For su
h formulas, model 
he
king 
an be done with linear time
omplexity [Emerson et al. 1993, Cleaveland and Ste�en 1993℄. In 
ontrast, 
onsiderthe �TL formula �q1(p1 ^ �q2(X q1 _X q2 _ p2)):Here the inner formula �q2(X q1 _X q2 _p2) is re-evaluated for every new iterationof q1. That is, if  (q1; q2) , (X q1 _X q2 _ p2)F and '(q1) , (p1 ^ �q2 (q1; q2))F ,we 
al
ulate �q1'(q1) by iterating'0 , ?, 0;0 , ? 0;1 ,  ('0;  0;0) = (X? _X? _ p2), 0;2 ,  ('0;  0;1) = (X? _X �X? _ p2� _ p2),
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hlingloff 0;3 ,  ('0;  0;2) = (X? _X �X? _X(X? _ p2) _ p2� _ p2),... 0;n+1 ,  ('0;  0;n) = �q2(X? _X q2 _ p2), if  0;n+1 =  0;n,'1 , '('0) = (p1 ^ �q2(X? _X q2 _ p2)) = (p1 ^  0;n), 1;0 , ? 1;1 ,  ('1;  1;0) = (X �p1 ^ �q2(X? _X q2 _ p2)� _X? _ p2), 1;2 ,  ('1;  1;1) = (X'1 _X 1;1 _ p2),...and so on. A more sophisti
ated algorithm was given in [Emerson and Lei 1986℄.Ea
h sequen
e �q1:::�qn or �q1:::�qn of nested �xpoints of the same type 
an be
al
ulated by a single loop. Sin
e  is monotoni
, and '0 � '1, we have  0;n �  1;n.To 
ompute a least �xed point, it is suÆ
ient to start with any value below theresult. Therefore,  1;0 
an be initialized with  0;n instead of ?. Generally, whenrestarting the 
omputation of an inner �xed point of the same type, we 
an usethe last approximation result as a starting value. Thus, the value of this inner�xed point 
an in
rease at most jU j times. The overall 
omplexity of this improvedalgorithm is (j'j�jU j)ad('), where ad(') is the alternation depth of di�erent �xpointoperators in '.In [Long, Browne, Clarke, Jha and Marrero 1994℄ the authors observe that bystoring even more intermediate values, the time 
omplexity for evaluating �xpointformulas 
an be redu
ed to O(jU jbad=2
+1). It 
an be shown that the 
omplexity ofmodel 
he
king �TL is in NP \ 
o-NP; however, no lower bound is known to date.For more information, see [Berezin, Clarke, Jha and Marrero 1996℄.For the lo
al version, there have been a number of algorithms proposed in the lit-erature [Winskel 1991, Cleaveland 1990, Brad�eld and Stirling 1991, Stirling 1991℄.We give a sket
h of the tableau method from [Stirling and Walker 1991℄, whi
hillustrates the basi
 ideas. The algorithm explores only a (small) part of the modelby depth-�rst sear
h. Ea
h node in the tableau is marked by a sequen
e �; w j=  ,where w 2 U is a point in the model,  is a sub-formula of the given formula and �is a de�nition list. This is a sequen
e of de
larations (q1 =  1; :::; qn =  n), wherethe proposition variables qi are pairwise disjoint and  i uses at most variables fromq1; :::; qi�1. For simpli
ity, we use _, ^, hRi, [R℄, � and � as basi
 operators andassume that negations only o

ur in literals. Furthermore, we assume that in theformula to be 
he
ked ea
h � and � quanti�
ation binds a di�erent propositionvariable.Sin
e in [Stirling and Walker 1991℄ the �-
al
ulus is interpreted on bran
hingstru
tures, the tableau rules given in Figure 21 are nondeterministi
. Any nodemarked �; w j= ( 1^ 2) has two 
hildren, where one is marked �; w j=  1 and theother �; w j=  2. For a node marked �; w j= ( 1 _ 2) there is only one 
hild nodewhi
h is either marked �; w j=  1 or �; w j=  2. Thus, for a given point w andformula ', there are several nonequivalent 
ompleted tableaus; w j= ' i� some of
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king 1723these tableaus is su

essful. A tableau is su

essful, if ea
h leaf is su

essful. To turnthe tableau method into a 
on
rete model 
he
king algorithm, we have to performa depth-�rst sear
h through all possible tableaus.(_i) �; w j= ( 1 _  2)�; w j=  i (i 2 f1; 2g) (^) �; w j= ( 1 ^  2)�; w j=  1 �; w j=  2(hRi) �; w j= hRi �; w0 j=  ([R℄) �; w j= [R℄ �; w1 j=  � � � �; wn j=  (�) �; w j= �q �0; w j=  (�) �; w j= �q �0; w j=  (PVar) �; w j= q�; w j=  Figure 21: Tableau rules for bran
hing time �TLThe additional regulations for the tableau rules in Figure 21 are:� Rule (hRi) 
an only be applied if w0 2 R(w).� In rule ([R℄), it must hold that R(w) = fw1; :::; wng.� In rule (�) and (�), �0 , � [ fq =  g.� Rule (PVar) 
an only be applied if (q =  ) 2 �, and there is no an
estor nodewhi
h is labelled �0; w j=  (with the same w and  ).Intuitively, to 
he
k whether �q holds in point w, we re
ord that q must beinterpreted as a �xpoint of  (q), and 
he
k whether  holds in w. Whenever we hitupon the proposition variable q in the further de
omposition of  (q), we 
an unfoldthis o

urren
e to  . However, to guarantee that the unfolding terminates, ea
hproposition variable may be unfolded at most on
e in every bran
h of the tableauand every point of the model. Thus, for �nite models ea
h tableau is �nite.A tableau is maximal, if there is no leaf for whi
h any rule is appli
able. In amaximal tableau, a leaf �; w j=  is 
alled su

essful, if�  = p 2 P and w 2 I(p), or  = :p and w =2 I(p),�  = q 2 Q, q =2 �, w 2 v(q), or  = :q, q =2 �, w =2 v(q), or�  = [R℄ 0 and R(w) = fg (Rule ([R℄) produ
es no 
hildren),�  = q 2 Q and q was in
luded in � by rule (�).In other words, a maximal tableau is not su

essful if it 
ontains some unsu

ess-ful leaf �; w j=  whi
h satis�es�  = p 2 P and w =2 I(p), or  = :p and w 2 I(p),�  = q 2 Q, q =2 �, w =2 v(q), or  = :q, q =2 �, w 2 v(q), or�  = hRi 0 and R(w) = fg (Rule (hRi) not appli
able),�  = q 2 Q and q was in
luded in � by rule (�).
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ompleteness of the tableau de
isionmethod is stated in the following theorem, a proof of whi
h 
an be found in [Stirlingand Walker 1991℄.8.1. Theorem. w 2 'F i� there exists a su

essful tableau with root fg; w j= '.More eÆ
ient lo
al model 
he
king algorithms for fragments of �TL 
an be foundin [Cleaveland and Ste�en 1993, Bhat and Cleaveland 1996℄.A somewhat di�erent approa
h for model 
he
king of �-
al
ulus was suggested in[Mader 1992℄. It is based on Gauss-elimination: proving a formula in this approa
his similar to solving a system of linear inequalities.9. Modelling of Rea
tive SystemsUp to now, we assumed that a system is given as a single Kripke-model. However,real-life systems usually are 
omposed of a number of smaller sub
omponents. Evenif the target system is a single sequential ma
hine, it is often advantageous to modelit as a set of pro
esses running in parallel:� usually the fun
tionality suggests a 
ertain de
omposition into modules; se-quentialization is not the primary issue in the design;� 
ertain sub
omponents (e.g. hardware 
omponents) a
tually are independentof the rest of the system and, therefore, 
on
eptually parallel,� the environment 
an be seen as a pro
ess running in parallel to the system;� software-reusability and obje
t-oriented design require modularity.9.1. Parallel Programming ParadigmsHen
e, we have to 
onsider systems of parallel pro
esses, that is, pro
esses whi
hare exe
uted during the same time period, and the syn
hronization between thesepro
esses. We distinguish between two main paradigms of parallel systems: dis-tributed systems, where the sub
omponents are seen as spatially apart from ea
hother, and 
on
urrent systems, where the sub
omponents use 
ommon resour
essu
h as pro
essor time or memory 
ells.Message Passing vs. Shared VariablesConsequently, there are two main paradigms for syn
hronization between parallelpro
esses: via message passing (for distributed systems), and via shared variables(for 
on
urrent systems).Of 
ourse, there is no 
lear distin
tion between distributed and 
on
urrent pro-grams. It is not possible to formalize the 
on
ept of being spatially apart, sin
e thisis dependent on one's own point of view: from the United States, all 
omputers ina lo
al area network in Europe 
an be regarded as a single system. From the pro-
essor's viewpoint, a hard disk 
ontroller 
an be regarded as a remote subsystem.
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king 1725On the other side, every 
omponent of a distributed system shares some resour
ewith some other 
omponent; if it were totally unrelated it would not make sense toregard it as being part of one system.Consequently, from a 
ertain point of view, passing a message between pro
essA and B 
an be seen as pro
ess A writing into a shared variable whi
h is read byB. On the other side, writing a shared variable 
an be seen as sending to all otherpro
esses whi
h might use this variable the message that its value has 
hanged.In fa
t, this transition from the message passing paradigm to an implementationvia shared variables o

urs in every network 
ontroller; and the transition fromthe shared variables paradigm to an implementation via message passing o

urs inevery distributed 
a
he.However, di�erent paradigms produ
e di�erent te
hniques; many parallel pro-gramming languages and many veri�
ation systems support only one of these twoparadigms.Syn
hronous vs. Asyn
hronous SystemsAnother issue is the modelling of a pro
ess exe
ution in time. In dis
rete pro
essesa 
omputation 
onsists of a sequen
e of steps, whereas in 
ontinuous systems thevalue of state parameters 
hanges gradually as time passes. Hybrid systems 
ombinedis
rete and 
ontinuous 
omponents. Usually, the model of time whi
h is used inveri�
ation is determined by the type of system under 
onsideration.For parallel systems of dis
rete pro
esses, there are various ways to model theirexe
ution. Syn
hronous pro
essing is 
hara
terized by the fa
t that in ea
h step, ev-ery parallel 
omponent advan
es. For example, a 
ir
uit in whi
h ea
h gate swit
hesat the pulse of a global 
lo
k 
an be seen as a syn
hronous system. In 
ontrast, in anasyn
hronous exe
ution in ea
h step an arbitrary (nonempty) subset of all 
ompo-nents pro
eeds. For example, a set of agents working independently and syn
hroniz-ing via mailboxes is a typi
al asyn
hronous system. With syn
hronous pro
essing,the transition relation of the system is the 
onjun
tion of the transition relationsof the 
omponents, with asyn
hronous pro
essing it is the disjun
tion.If ea
h pro
ess 
an perform an \idle" step at any time (\stutter"), then syn-
hronous and asyn
hronous pro
essing 
oin
ides. Both syn
hronous and asyn-
hronous exe
utions 
an be implemented by interleaving , where in ea
h step atmost one pro
ess is a
tive. A typi
al example is a set of threads in a time-sharingoperating system on a mono-pro
essor ma
hine. With interleaving exe
ution, usu-ally some fairness 
onstraints are imposed on the s
heduling to ensure that allpro
esses 
an progress.Related to the exe
ution mode is the mode of intera
tion between parallel 
om-ponents. With syn
hronous 
ommuni
ation, ea
h 
omponent wishing to intera
tis blo
ked until all partners it requires are willing to parti
ipate in the 
ommu-ni
ation. The information is then broad
ast to all 
ommuni
ation partners. Withasyn
hronous 
ommuni
ation ea
h pro
ess de
ides whether it wants to wait at a
ertain point or not; usually some kind of bu�ering me
hanism is used for messageswhi
h are not needed immediately.



1726 Edmund M. Clarke and Bernd-Holger S
hlingloffSyn
hronous 
ommuni
ation 
an be seen as a spe
ial 
ase of asyn
hronous 
om-muni
ation where the length of ea
h bu�er queue is limited to one, and ea
h pro
essde
ides to wait after writing into or before reading from that queue until the queueis empty or full again, respe
tively.Vi
e versa, a bu�er 
an be seen as a separate pro
ess in a syn
hronous systemwhi
h is always willing to 
ommuni
ate with other pro
esses. If the size of thebu�er is unbounded, the system is not �nite state. Even if their size is bounded,the bu�ers 
an be the biggest part of the modelling of an asyn
hronously 
ommu-ni
ating system.9.2. Some Con
rete Formalisms for Finite State SystemsRe
all that a (labelled) transition system is a tuple (�; S;�; S0), where� � is a nonempty �nite alphabet,� S is a nonempty �nite set of states,� � � S � �� S is the transition relation, and� S0 � S is the set of initial states.A parallel transition system is a tuple T = (T1; :::; Tn) of transition systems, su
hthat Si \ Sj = fg, for i < j. The global transition system T asso
iated with aparallel transition system (T1; :::; Tn) is de�ned by T = (�; S;�; S0), where� � = S�i� S = S1 � � � � � Sn� S0 = S10 � � � � � Sn0, and� ((s1; :::; sn); a; (s01; :::; s0n)) 2 � i� for all Ti| if a 2 �i, then (si; a; s0i) 2 �i, and| if a 62 �i, then si = s0iThus, in a parallel transition system syn
hronization between 
omponents is by the
ommon alphabet. The size of the state spa
e of the global transition system is theprodu
t of the sizes of all parallel 
omponents.An elementary Petri net is a tuple N = (P; T; F; s0), where� P is a �nite set of pla
es,� T is a �nite set of transitions (P \ T = fg),� F � (P � T ) [ (T � P ) is the 
ow relation, and� m0 � P is the initial marking of the net.A marking m of the net is any subset of P . By �t , fp j (p; t) 2 Fg and t� ,fp j (t; p) 2 Fg we denote the preset and the postset of transition t, respe
tively. Atransition t is enabled at marking m if �t � m (all its input pla
es are o

upied atm) and t� \m � �t (all its output pla
es are empty at m, or they are also inputpla
es). Markingm0 is the result of �ring transition t from markingm, if t is enabledat m and m0 = (mn�t)[ t�. In 
ontrast to 
ondition-event Petri nets [Reisig 1998℄,where ea
h pla
e 
an be o

upied by an arbitrary number of tokens, elementaryPetri nets inherently are �nite-state.
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king 1727For every elementary Petri net there is an asso
iated transition system: the al-phabet is the set of transitions, the state set is the set of markings, the initial stateis the initial marking, and (m; t;m0) 2 � i� m0 is the result of �ring t from m. Thenumber of states of this transition system is exponential in the number of pla
es ofthe net. Alternatively, for any elementary Petri net we 
an obtain a parallel tran-sition system of the same order of magnitude: for ea
h pla
e p in the net there isa transition system with two states p1 and p0, denoting the fa
t that p is o

upiedor empty, respe
tively. For ea
h t 2 T , we let (p1; t; p0) 2 � i� p 2 �t n t� and(p0; t; p1) 2 � i� p 2 t � n � t. Furthermore, (p1; t; p1) 2 � i� p 2 �t \ t�. The lan-guage of the global transition system asso
iated with this parallel transition systemis the set of �ring sequen
es of the net. Vi
e versa, every parallel transition system
an be formulated as an elementary Petri net of the same order of magnitude. The
onstru
tion is straightforward.A shared variables program is a tuple (V;D; T; s0), where� V = (v1; :::; vn) is a set of program variables ,� D = D1�� � ��Dn) is the state spa
e, where ea
h Di = fdi1; :::; dimig is a �nitedomain for variable vi,� T � D �D is a transition relation, and� s0 = (d11; :::; dn1) is the initial state.A state of a shared variables program is a tuple (d1; :::; dn), where ea
h di 2 Di.Thus the number of states in a shared variables program is the produ
t of the sizeof all domains. The transition relation T 
an be de�ned by a propositional formula'T with the set of atomi
 proposition P = f(x = y) j x; y 2 (V [ V 0 [ SDi)g,where V 0 = fv01; :::; v0ng. If s = (d1; :::; dn) and s0 = (d01; :::; d0n), then (s; s0) 2 T i�I j= 'T , where I(vi) = di and I(v0i) = d0i.Using relational semanti
s, a shared variables program 
an be obtained for almostall other models for 
on
urren
y. Therefore, shared variable programs are widelyused to model rea
tive systems.9.3. Example Appli
ationsA Combinatorial GameAs a �rst example, we des
ribe the use of model 
he
king in a 
ombinatorial sear
h.Although this example is not very typi
al for real appli
ations, it 
an demonstratethe 
apabilities and limits of present te
hnology. A well-known puzzle from 1870by the Ameri
an Sam Loyd 
onsists of a h � v grid in whi
h there are (h � v) � 1numbered tiles and one blank spa
e. A move 
onsists in moving any tile into theposition of the blank. The goal is to a
hieve a 
ertain predetermined order on thetiles.
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2This puzzle 
an be des
ribed by a shared variables program as follows. For ea
htile there is a program variable whi
h notes its horizontal and verti
al position.Furthermore, there is a program variable move indi
ating whether the next movewill be a shift up, down, left or right of the blank spa
e. If the move would bring itout of the borders, nothing is 
hanged; otherwise, its position is swapped with therespe
tive adja
ent tile.MODULE mainDEFINE v := 3; h := 3;VAR move: u,d,l,r;hpos: array 0..(h*v-1) of 1..h;vpos: array 0..(h*v-1) of 1..v;ASSIGNnext(hpos[0℄) := 
ase(move=l) & !(hpos[0℄=1) : hpos[0℄ - 1;(move=r) & !(hpos[0℄=h) : hpos[0℄ + 1;1: hpos[0℄; esa
;next(vpos[0℄) := 
ase(move=u) & !(vpos[0℄=1) : vpos[0℄ - 1;(move=d) & !(vpos[0℄=v) : vpos[0℄ + 1;1: vpos[0℄; esa
;for all i:next(hpos[i℄) := 
ase(move=l) & !(hpos[0℄=1) & vpos[i℄=vpos[0℄ & hpos[i℄=hpos[0℄+1 |(move=r) & !(hpos[0℄=h) & vpos[i℄=vpos[0℄ & hpos[i℄=hpos[0℄-1 : hpos[0℄;1: hpos[i℄; esa
;next(vpos[i℄) := 
ase(move=u) & !(vpos[0℄=1) & hpos[i℄=hpos[0℄ & vpos[i℄=vpos[0℄-1 |(move=d) & !(vpos[0℄=v) & hpos[i℄=hpos[0℄ & vpos[i℄=vpos[0℄+1 : vpos[0℄;1: vpos[i℄; esa
;init(vpos[i℄) := i div h + 1; init(hpos[i℄) := i mod h + 1;DEFINE goal := Vi(vpos[i℄ = v - (i div h) & hpos[i℄ = h - (i mod h))SPEC !EF goal Figure 22: SMV Code for Loyds PuzzleThe SMV 
ode 
orresponding to this des
ription6 is shown in Figure 22. Forh = 3 and v = 3, the internal representation of the transition relation takes about3KB. There are 4 � (h � v)! = 1:4 � 106 states, of whi
h 50% are rea
hable from any6In the a
tual SMV 
ode, variable array bounds or indi
es, e.g., vpos[i℄, are not allowed andhave to be repla
ed by the respe
tive 
onstant values vpos[1℄,vpos[2℄,...
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king 1729initial state. The spe
i�
ation 
laims that a 
ertain �nal state is not rea
hable; themodel 
he
ker 
ontradi
ts this 
laim by showing a sequen
e of moves (rrddlluur-rddlluurrddlluurrdd) whi
h gives a solution to the puzzle. The solution is foundwithin a 
ouple of minutes on a 32 MB Pentium 133.For h = 4, v = 3, there are approximately 109 rea
hable states. Although thesymboli
 model 
he
ker dete
ts rather qui
kly that some solution must exist, for the
onstru
tion of a 
on
rete solution sequen
e the state spa
e has to be partitionedinto strongly 
onne
ted 
omponents. This requires several days of CPU time andapproximately 1GB RAM on a Spar
 Ultra. For model 
he
king appli
ations, virtualmemory is not very useful; if the representation of the rea
hable state spa
e ex
eedsthe available main memory, then 
onstant swapping o

urs. To �nd a solution forh = 4, v = 4 by exhaustive state spa
e exploration seems to be beyond the limits ofpresent te
hnology. In [Edelkamp and Re�el 1998℄, a 
ombination of model 
he
kingand heuristi
 sear
h is used to automati
ally 
onstru
t solutions to this and other
ombinatorial games.A Sequential Cir
uitOur se
ond example is from hardware veri�
ation. We 
onsider a shift register forinterfa
ing a parallel data bus. The register is from the 74x95 TTL family and isdes
ribed in [Nowi
ki and Adam 1990℄. It is used to ex
hange data between thebus and a serial devi
e. It thus a
ts as parallel-serial 
onverter and vi
e versa. Afun
tional diagram of the register is given in Figure 23.The register has a mode 
ontrol input m
 to 
hoose between parallel or seriala

ess mode. For ea
h mode, there is a 
orresponding input 
lo
k (p
 and s
).Parallel loading is performed if m
 is high and a p
 
lo
k pulse arrives. In this 
ase,data is read from the bus into the asso
iated 
ip-
ops. The data appears at the Qoutputs at the pulse of the p
 
lo
k.For serial loading, mode 
ontrol should be low. Data is input serially with everyti
k of the s
 
lo
k. At ea
h pulse the state of all 
ip-
ops is transferred one stageto the right. After n 
y
les, the data is positioned at the parallel output and 
anbe sent to the bus by an o
 
ommand. A right shift o

urs if the serial input inp isheld low. By a sequen
e of n right shifts, data whi
h has been obtained in parallelfrom the bus 
an be written serially to the out port.The register is implemented with SR-bistables whi
h have the following 
hara
-teristi
 fun
tion. If both inputs are low, the bistable keeps its state. The output QS R Q'0 0 Q1 0 10 1 01 1 -is set if input S is high, and reset if input R is high. If both S and R are high, then Q
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Figure 23: A shift register for data bus interfa
ingis unde�ned. This 
an be modelled by a nondeterministi
 internal 
hoi
e betweenhigh and low output. The lat
h is triggered by a negative edge of the 
lo
k pulse.That is, a 
hange of output o

urs only at the time instant when the 
lo
k linegoes from high to low. If the value of the 
lo
k line is part of the state spa
e, thenthe 
lo
k value would be low in every new state. For an a

urate state-based model(e.g., of an asyn
hronous 
ir
uit), we would have to in
lude timing information ofall gates. However, if the 
lo
k is only used as trigger, an event based modelling ismore adequate: the high-to-low 
hange of the 
lo
k line is 
onsidered as an evento

urren
e. In ea
h state, this event may or may not o

ur. To prevent exe
utionsin whi
h the input or output 
lo
ks are inde�nitely blo
ked, we require in�nitelymany input and output 
lo
k ti
ks in every in�nite run.The model is just a representation of the 
ir
uit's truth table, where the outputsare a boolean fun
tion of inputs and lat
h states. It 
an be derived automati
allyfrom any standard hardware des
ription language; in fa
t, several model 
he
kerssupport su
h front-end translations. Corre
tness of parallel and sequential input isexpressed by the following formulas, where n is the width of the data bus:AG�(m
 ^ p
! n_i=1(bus[i℄$ A((o
! AX bus[i℄)U+i
)))
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king 1731MODULE mainVAR Q, bus: array 1..n of boolean; -- n SR-lat
hes, n databitsinp, m
, p
, s
, o
: boolean; -- input linesDEFINE out := Q[1℄; i
 := ((m
 & p
) | (!m
 & s
));A[i℄ := m
 & p
 & bus[i℄; B[i℄ := !m
 & Q[i + 1℄;R[i℄ := !(A[i℄ | B[i℄); S[i℄ := !R[i℄;ASSIGN next(Q[i℄) := 
ase i
: 
ase!S[i℄ & !R[i℄: Q[i℄; --holdS[i℄ & !R[i℄: 1; --set!S[i℄ & R[i℄: 0; --resetS[i℄ & R[i℄: f0,1g; esa
; --undef!i
: Q[i℄; esa
; -- un
hanged if no inputnext(bus[i℄) := 
ase o
: Q[i℄; !o
: f0, 1g; esa
;FAIRNESS i
 FAIRNESS o
Figure 24: Model of shift registerAG�(:m
 ^ s
! n_i=2(Q[i℄$ A(Q[i-1℄U+ i
)))Intuitively, these formulas assure that data whi
h is input into the register re-mains there until a new input o

urs. If the mode 
ontrol is set to parallel andthere is a ti
k of the parallel 
lo
k, then the data whi
h is 
urrently on bus i willbe delivered at ea
h ti
k of the output 
lo
k, until a new input o

urs. If the mode
ontrol is set to serial, and there is a ti
k of the serial 
lo
k, then the lat
hes willremain stable until the next input.The SMV model 
he
ker 
an verify these formulas for a bus width of 32 bit inless than a se
ond. Similar formulas 
an be used to verify that after a sequen
e ofn sequential load operations, the 
orre
t data word will be put onto the bus on asubsequent output pulse.If the 
onne
tion stru
ture of wires within the 
ir
uit is \well-behaved", thenautomati
 veri�
ation is su

essful even on mu
h bigger 
ir
uits. A 
ir
uit is \well-behaved" if there exists an ordering of all wires su
h that the value of a wire onlydepends on the value of wires whi
h are 
lose in the ordering. For a formal de�nitionof this 
ondition see [M
Millan 1993℄. A large number of 
ir
uits with hundreds ofstorage pla
es have been veri�ed automati
ally in this way.A Communi
ation Proto
olThe third example is a set of 
ommuni
ating pro
esses within the operating systemof a Siemens 
ellular phone. In this system, there are a number of basi
 pro
esses
ommuni
ating with one another by priority messages. Ea
h of the pro
esses imple-ments a �nite state ma
hine, whi
h is des
ribed by a set of SDL diagrams. Basi
ally,a pro
ess waits in a 
ertain state until it re
eives a message from some other pro
ess.It then performs some spe
i�ed operations, sends a number of messages to othermessages, and transitions to another state. Figure 25 shows part of the transition
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hlingloffgraph of a pro
ess and the 
orresponding SDL diagram. The displayed part is usedto implement the following quote from the GSM international standard.\Initially the mobile station looks for a 
ell whi
h satis�es the suitability 
on-straints by 
he
king 
ells in des
ending order of re
eived signal strength. If a suit-able 
ell is found, the mobile station 
amps on it and performs any registrationne
essary."A property to be veri�ed is that the system never deadlo
ks:AG�EF�initThat is, no sequen
e of user a
tions 
an bring the phone into a state from whereit 
annot be reset. Sin
e the number of mer
handised units is expe
ted to be veryhigh, 
orre
tness is an important design issue. In this parti
ular example, a numberof potential problems in the design 
ould be identi�ed by model 
he
king beforethe a
tual implementation took pla
e [S
hlinglo� 1997℄.In the model to be 
he
ked, there are �ve basi
 pro
esses, plus the operatingsystem kernel. There are approximately 50 di�erent types of messages whi
h 
an besent by the pro
esses, and ea
h pro
ess has between 10 and 20 states. The operatingsystem is responsible for the s
heduling of pro
esses a

ording to a priority s
heme,and for the storage and delivery of messages. Therefore, it has to maintain a bu�er,in whi
h for ea
h pro
ess all messages are kept. The size of these bu�ers turnsout to be the most important parameter in the veri�
ation. Basi
ally, ea
h bu�erslot 
ould be �lled with every message; thus a 
ombinatorial explosion similar tothe one in our �rst example 
an o

ur. However, a bu�er over
ow almost 
ertainlyindi
ates an error in the implementation; for example, if some high-priority pro
esskeeps resending the same message, it will eventually �ll up any bounded bu�er. Inthe modelled system, a total number of 15-20 bu�er slots was suÆ
ient; a fairnessassumption is used to sele
t only those 
omputations in whi
h no bu�er over
owo

urs. Moreover, the bu�er 
ontents usually follows a regular pattern, therefore theabove mentioned state explosion is avoided. In pra
ti
al appli
ations, an exponentialgrowth in the number of rea
hable states almost 
ertainly indi
ates an error. Forbu�ers in whi
h all messages have the same priority, the transition relation of abounded bu�er 
an be de�ned by the transition table in Figure 26.In the right half of this table, an empty entry means that the respe
tive programvariable is set by the environment. An input value of nil in i indi
ates that there isno message to be sent; in this 
ase the next value of i is determined by the sender.If this pro
ess has put a non-nil value x into i, then this value is appended to thebu�er, and i is reset to nil. The last line indi
ates a bu�er over
ow: if a messageis to be sent with the message bu�er already �lled, i remains stable. Thus, theformula AG�(i 6= nil ! X(i = nil)) 
an be used to determine whether a bu�erover
ow 
an o

ur. If the output variable o is nil and there is a message to deliver,it is 
opied into o. When the operating system delivers a message y from o, it resetso to nil.The 
ontent of the bu�er b is given as a sequen
e hx1; :::; x�i of messages, where hidenotes the empty bu�er. There are various possibilities to model su
h sequen
es.In Figure 27 we show a modelling whi
h uses n program variables b1; :::; bn, su
h
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Cell_Selection:
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Figure 25: Transition graph and SDL diagram
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hlingloffi b o i0 b0 o0nil hi nil hi nilx hi nil nil hi xnil hx1; :::; x�i nil hx1; :::; x��1i x�x hx1; :::; x�i nil nil hx; x1; :::; x��1i x�nil hi y hix hi y nil hxinil hx1; :::; x�i y hx1; :::; x�ix hx1; :::; x�i y (� < n) nil hx; x1; :::; x�ix hx1; :::; xni y x hx1; :::; xniFigure 26: Transition relation of a bounded bu�erthat b1 
ontains the front element of the message queue, and in
oming messagesare appended into the smallest b� whi
h is empty (
ontains nil as value).next(b[j℄) := 
ase(i=nil) & !(o=nil) : b[j℄;(i=nil) & (o=nil) : b[j+1℄;!(i=nil) & !(o=nil) : if !(b[j-1℄=nil) & b[j℄=nil then ielse b[j℄ fi;!(i=nil) & (o=nil) : if b[j℄=nil then nilelse if b[j+1℄=nil then ielse b[j+1℄ fi fi; esa
;Figure 27: Model of bounded bu�erIn this modelling, we rely on the fa
t that whenever bj = nil, then for all k � j,also bk = nil. This assumption only holds for the rea
hable states of a bu�er whi
his initially empty; there are many transitions from illegal, i.e., non rea
hable statesto other illegal states in this model. In an expli
it representation of the transitionrelation, one should try to avoid these redundant entries. Below, we dis
uss symboli
representations with BDDs. With su
h a representation, even though the size ofthe transition relation is mu
h bigger than the transition relation restri
ted to therea
hable states, its representation is mu
h smaller. Sin
e the value of ea
h bu�erslot depends only on its immediate neighbors, in fa
t the size of the representation islinear in the (�xed) number and width of the bu�er slots. For modelling unboundedqueues, eÆ
ient data stru
tures are dis
ussed in [Boigelot and Godefroid 1996,Godefroid and Long 1996℄.
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king 173510. Symboli
 Model Che
kingModel 
he
king methods derive a great deal of their su

ess from the eÆ
ien
y ofthe data stru
tures that are used. A propositional formula 
an be regarded as aboolean fun
tion, mapping an interpretation of the propositions into ftrue; falseg.Sin
e very powerful te
hniques exist for manipulation of su
h fun
tions, it makessense to represent temporal and predi
ate logi
 formulas as well as frames in termsof boolean fun
tions. The general idea is to en
ode ea
h domain element by aboolean sequen
e. Predi
ates and relations are then represented by their 
hara
-teristi
 fun
tions. Temporal operators are interpreted algorithmi
ally a

ording totheir �xpoint de�nitions.For any shared variables program, we 
an obtain an equivalent shared variablesprogram whi
h uses only binary domains of the form D = f0; 1gn. To do so, we usean arbitrary binary en
oding of domain Di and introdu
e for any program variablevi over domain Di new binary program variables vi1; :::; vik, where k = dlog2(jDij)e.This en
oding is 
omparable to the implementation of arbitrary data types ondigital 
omputers, where ea
h bit 
an take only two values.If all program variables V = fv1; :::; vng of a shared variables program are over abinary domain, then any propositional formula ' over P = fv1; :::; vng des
ribes aset of states of the program, namely the set of all propositional models (interpre-tations) whi
h validate the formula. Here we assume the substitution 0 for falseand 1 for true. Vi
e versa, for any set of states there is a propositional formulades
ribing this set. However, this formula is not uniquely determined; the problemof �nding a shortest formula des
ribing a given set of states is 
o-NP-hard.The transition relation of a shared variables program with binary program vari-ables V = fv1; :::; vng 
an be represented as an ordinary propositional formula overP = fv1; :::; vn; v01; :::; v0ng. If the transition relation is given as a propositional for-mula with equalities, we repla
e 0 by ?, and 1 by >, and (v = v0) by (v $ v0)7.For example, the formulav1 = 0! ((v01 = 1) ^ (v02 = v2) ^ (v03 6= v3))in this notation be
omes:v1 ! (v01 ^ (v02 $ v2) ^ :(v03 $ v3))For a shared variables program with n program variables over binary domains thesize of the state spa
e is 2n. Therefore e.g. the state spa
e of a bu�er of length10 with values between 1 and 1000 is 2100 ' 1030. The rea
hable state spa
e isa subset of this state spa
e, whi
h 
an be of the same order of magnitude. Thetransition relation for this bu�er 
onsists of pairs of states and therefore has a sizeof approximately 1060.To perform global model 
he
king on systems of this or bigger size, we need aneÆ
ient representation of large sets.7Re
all that ? and > are propositional formulas, false and true are truth values and 0 and 1are domain elements.
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hlingloff10.1. Binary De
ision DiagramsClearly, a set 
ould be represented by a table of boolean values. Containment of anelement in su
h a set 
ould then be 
al
ulated by sele
ting the appropriate elementfrom the table. Another possible representation of a set is the expli
it enumerationof its elements, e.g., as a list or array. However, these representations 
an be ratherwasteful, sin
e they pay no respe
t to the internal stru
ture of the set. For example,given the domainD = f0; 1; :::; 15g, the expli
it enumeration of the set \all numberswhi
h are even or bigger than 11" isS = f0; 2; 4; 6; 8; 10; 12; 13; 14; 15gThe bitstring representation isS = (1010101010101111):These representations take O(jDj � dlog2(jDj)e) memory bits. Bitstrings provideextremely eÆ
ient (
onstant-time) a

ess. In model 
he
king appli
ations, however,the spa
e used by the data is usually more important than the exe
ution time. So,it is desirable to have a 
on
ise data stru
ture for representing large sets whi
h stillpermits eÆ
ient a

ess to the elements.Given a binary en
oding ~v = v1v2v3v4 of the domain D, the above expli
itenumeration isS = f0000; 0010; 0100; 0110; 1000; 1010; 1100; 1101; 1110; 1111gThis des
ription 
orresponds to a propositional formula in disjun
tive normal form.A mu
h more su

in
t representation of the same set 
an be given by the formulaS = f~v j v4 = 0 _ v1 = 1 ^ v2 = 1gUsually it is hard to �nd a minimal propositional formula des
ribing a given set ofelements. Therefore attention is restri
ted to formulas in some normal form. A bi-nary de
ision diagram (BDD, [Bryant 1986, Bryant 1992℄) is su
h a 
anoni
al formfor a propositional formula. BDDs often are substantially more 
ompa
t than tra-ditional normal forms su
h as 
onjun
tive or disjun
tive normal form, and they 
anbe manipulated and evaluated very eÆ
iently. Hen
e, they have be
ome widely usedfor a variety of appli
ations in 
omputer-aided design appli
ations. Many presenttools in symboli
 simulation and veri�
ation of 
ombinational logi
 and sequential
ir
uits use a BDD library for manipulating large sets. The size of the BDD dependsmore on the stru
ture of the represented set than on its 
ardinality. For example,the BDD representation of the empty set and the full set are both of 
onstant sizeone. Be
ause of this dependen
e on the stru
ture of the represented obje
t, the de-s
ription of a system with BDDs is sometimes 
alled a symboli
 representation, andte
hniques using BDDs to represent obje
ts are 
alled symboli
 te
hniques . Subse-quently, we des
ribe symboli
 model 
he
king. For an alternative introdu
tion toBDDs and BDD based algorithms in automated theorem proving, see [Moore 1994℄.
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king 1737The use of BDDs in 
he
king language 
ontainment for !-automata is des
ribed in[Touati, Brayton and Kurshan 1991℄.In model 
he
king, binary de
ision diagrams are a preferred datatype for therepresentation of propositional formulas. They 
an be understood as an eÆ
ientimplementation of binary de
ision trees. Usually, the BDD is mu
h more su

in
tthan the original de
ision tree. EÆ
ien
y is gained by sharing of subtrees and byelimination of unne
essary nodes.Consider a three-pla
e boolean 
onne
tive Ite (\if-then-else"), su
h thatIte(';  1;  2) , (('!  1) ^ (:'!  2)):Equivalently, Ite(';  1;  2)$ (('^ 1)_ (:'^ 2)): Then ('!  )$ Ite(';  ;>),hen
e all boolean operators 
an be expressed with Ite, ? and >. A formula  is saidto be in tree form, if  = ?, or  = >, or  = Ite(v;  1;  2), where v 2 P and  1and  2 are in tree form. In other words, a formula  is in tree form, if it uses onlyIte, ?, >, and propositions, and, additionally, for every subformula Ite(';  1;  2) of , the formula ' is an (atomi
) proposition, and  1 and  2 are not propositions. Atree form formula 
an be drawn as binary de
ision tree, where for ea
h subformulaIte(v;  1;  2) there is a node labelled v whi
h has  2 and  1 as left and right 
hildnodes, respe
tively.Assume a linear ordering < on the set P of propositions. A tree form formulais said to be in ordered tree form, if for every subformula Ite(v1; '1; '2) of ', andevery subformula Ite(v2;  1;  2) of '1 or '2, it holds that v1 < v2. An ordered treeform formula is 
alled redu
ed, if it does not 
ontain any redundant subformulaIte(v;  ;  ) (with equal se
ond and third argument). The sequen
e of leaves of theformula tree in a redu
ed ordered tree form formula is 
alled the logi
al spe
trum ofthe formula. For any given ordering, the redu
ed ordered tree form is a normal form.That is, for every propositional formula there is exa
tly one equivalent formula inredu
ed ordered tree form. This formula 
an be obtained by repeated appli
ationof the so-
alled Shannon expansion:'$ Ite(v; 'fv := >g; 'fv := ?g);and boolean redu
tions like Ite(v;  ;  )$  and (? ! >)$ >.For example, truth table and tree form formula for the above set are given inFigure 28. The reader should also 
ompare the tree form formula to the tree givenon the following page.The redu
ed ordered tree form formula for the ordering (v1; v2; v3; v4) of propo-sitions is obtained by repeatedly repla
ing every redundant subformula Ite(v;  ;  )in the above tree form formula by  :S = Ite(v1; Ite(v2;>; Ite(v4;?;>)); Ite(v4;?;>))In a redu
ed ordered tree form formula, there might be several identi
al subfor-mulas. In order to further redu
e the length of the formula, we introdu
e namesfor subformulas. An abbreviated formula is a formula over the extended alpha-bet P0 , P [ fÆ1; :::; Æng, together with a (nonre
ursive) list of abbreviations
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hlingloffv1 v2 v3 v4 S1 1 1 1 11 1 1 0 11 1 0 1 11 1 0 0 11 0 1 1 01 0 1 0 11 0 0 1 01 0 0 0 10 1 1 1 00 1 1 0 10 1 0 1 00 1 0 0 10 0 1 1 00 0 1 0 10 0 0 1 00 0 0 0 1

S = Ite(v1;Ite(v2;Ite(v3;Ite(v4;>;>);Ite(v4;>;>));Ite(v3;Ite(v4;?;>);Ite(v4;?;>)));Ite(v2;Ite(v3;Ite(v4;?;>);Ite(v4;?;>));Ite(v3;Ite(v4;?;>);Ite(v4;?;>))))Figure 28: Truth table and tree form formula(Æ1 ,  1; :::; Æn ,  n). In ea
h abbreviation,  i is an abbreviated formulaIte(v; '; '0) over the alphabet Pi , P [ fÆi+1; :::; Æng. The introdu
tion of namesfor subformulas is 
omparable to the introdu
tion of pointers in formula trees: anabbreviated formula 
an be drawn as a dag (dire
ted a
y
li
 graph), where ea
hnode represents a subformula or abbreviation. A formula is maximally abbreviated,if1. no 
ompound subformula Ite(v; '1; '2) appears twi
e, and2. no two abbreviations have the same right hand side.For the above example, a maximally abbreviated formula isS = Ite(v1; Ite(v2;>; Æ); Æ), where Æ , Ite(v4;?;>)In an implementation an abbreviation 
an be a pointer or array index to the 
orre-sponding subformula. A maximally abbreviated formula is in BDD form, if for allsubformulas Ite(v; ';  ), both ' and  are from f?, >, Æ1; :::; Æng. In the example,this normal form 
an be obtained by introdu
ing further de�nitions:S = Ite(v1; Æ1; Æ2), where Æ1 , Ite(v2;>; Æ2) and Æ2 , Ite(v4;?;>)A
tually, a BDD form formula is given by a list of abbreviations (Æi , Ite(v; 'i;  i))and an entry point to this list. It 
an be drawn as a binary de
ision diagram: for



Model Che
king 1739any Æ , Ite(v; Æ1; Æ2), draw a node labelled v with referen
e Æ, whi
h has the nodesreferen
ed by Æ2 and Æ1 as left and right 
hildren, respe
tively. To illustrate theseideas with pi
tures, we give the binary de
ision tree for the above example S:
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v1

2
v

v3

v4This tree is just a trans
ription of the truth table of S's 
hara
teristi
 fun
tion.It has many isomorphi
 subtrees. For any two isomorphi
 subtrees it is suÆ
ient tomaintain only one 
opy. We 
an repla
e the other one by a link to the 
orrespondingsubtree.
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v4In the resulting stru
ture, there are nodes for whi
h both alternatives lead to thesame subtree. These nodes represent redundant de
isions and 
an be eliminated.
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v4The resulting graph is the (ordered) binary de
ision diagram for this set with or-dering (v1; v2; v3; v4). Given a variable ordering, there is a 
anoni
al BDD for everyformula. It 
an be 
onstru
ted using the Shannon expansion in a simple re
ursivedes
ent: '(vi:::vn)$ Ite(vi; 'fvi := >g(vi+1:::vn); 'fvi := ?g(vi+1:::vn))
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hlingloffThis gives the unique binary de
ision tree for the 
hosen ordering. To obtain theBDD for '(vi:::vn) we re
ursively 
al
ulate the BDD Æ1 for 'fvi := >g(vi+1:::vn)and Æ2 for 'fvi := ?g(vi+1:::vn). Upon ba
ktra
k, a new node Æ , Ite(vi; Æ1; Æ2)is added to the BDD. However, we do not 
reate a new node if both bran
hes inthe re
ursion are equal (return a 
ommon result), or if an equivalent node alreadyexists in the BDD. To 
he
k this latter 
ondition, we implement the set of BDDnodes Æ , Ite(v; Æ1; Æ2) as a hash table from (v; Æ1; Æ2) to Æ.Ea
h entry in the hash-table is a quadruple (Æ; v; Æ1; Æ2): pointers to BDD nodesare represented as integer numbers. A BDD is identi�ed by its topmost node, and0 is a pointer to ? and 1 is a pointer to >. That is, the type \Bdd" is de�nedas \Int". Likewise, variable names are represented as integer numbers; for 
laritywe introdu
e the type \Bddvar" whi
h is also de�ned as \Int". Thus, for ea
hBDD node (Æ; i; Æ1; Æ2) in the hash table, Æ (of type \Bdd") is the number of theBDD node, i (of type \Bddvar") is the number of a BDD variable, and Æ1 and Æ2(of type \Bdd") are links to other BDD nodes. For ea
h (i; Æ1; Æ2) the hash tablereturns the pointer Æ, if this node exists in the BDD.The resulting algorithm is given in Figure 29. It takes as input a PL formulawith P = fv1; :::; vng and 
al
ulates the table of BDD nodes and a pointer to thetopmost node for the variable ordering (v1; :::; vn).fun
tion PL2BDD (Formula ') : (Nodeset, Bdd) ==� Cal
ulates the BDD of 'as a set of nodes and a pointer to the topmost node �=Nodeset table := fg; =� Table of BDD nodes (Æ; i; Æ1; Æ2) �=Bdd max := 1; =� Index of maximal table entry �=Bdd result := BDD(',1); =� Index of topmost BDD node �=return (table, result);fun
tion BDD (Formula ', Bddvar i) : Bdd ==� ' is the 
urrent subformula, i is the 
urrent BDD variable �==� Return value is a pointer to the maximal BDD node �=if i > n then return eval(') =� ' is a boolean 
onstant �=else Æ1 := BDD('fvi := ?g, i+ 1); Æ2 := BDD('fvi := >g, i+ 1);if Æ1 = Æ2 then return Æ1elsif 9Æ : (Æ; i; Æ1; Æ2) 2 table then return Æelse max := max+ 1; table := table [ f(max; i; Æ1; Æ2)g; return max ;Figure 29: Transformation of propositional formulas into BDDsIn the BDD representation of sets, several operations 
an be performed veryeÆ
iently. Che
king whether a given element w is 
ontained in a setW � U is donein time O(log jU j) by traversing the BDD ofW a

ording to the bitstring en
oding ~w



Model Che
king 1741of w. Addition and deletion of elements as well as union and interse
tion of sets 
anbe done by re
ursive des
ent. We now des
ribe this pro
edure for the impli
ation.Note that the Ite-operator 
ommutes with other boolean 
onne
tives:(Ite(p; '1; '2)!  ) $ Ite(p; ('1 !  ); ('2 !  ))( ! Ite(q; '1; '2)) $ Ite(q; ( ! '1); ( ! '2))Similar equivalen
es hold for ^, _, et
. We prove only the �rst one of these equiv-alen
es. Re
all that Ite(p; '1; '2) is de�ned by Ite(p; '1; '2) $ ((p !  1) ^ (:p ! 2)). (Ite(p; '1; '2)!  ) $ (((p ^ '1) _ (:p ^ '2))!  )$ (((:p _ :'1) ^ (p _ :'2)) _  )$ ((:p _ :'1 _  ) ^ (p _ :'2 _  ))$ ((p ^ ('1 !  )) _ (:p ^ ('2 !  )))$ Ite(p; ('1 !  ); ('2 !  )) 2Given BDDs for ' and  , the BDD for (' !  ) 
an be 
onstru
ted as follows.Sin
e BDD(') and BDD( ) 
an be either 0, 1, or Ite(v; Æ1; Æ2), there are nine 
aseswhi
h have to be 
onsidered. If BDD(') is 0 or BDD( ) is 1, the resulting BDD isfun
tion BDD imp (Bdd ',  ) : Bdd ==� Cal
ulates the BDD of ('!  ) from the BDDs of ' and  �=if ' = 0 or  = 1 then return 1elsif ' = 1 then return  elsif  = 0 and ('; i; '1; '2) 2 table'then return new node(i; BDD imp('1; 0); BDD imp('2; 0))else ('; i; '1; '2) 2 table' and ( ; j;  1;  2) 2 table if i = j then return new node(i; BDD imp('1;  1); BDD imp('2;  2))elsif i < j then return new node(i; BDD imp('1;  ); BDD imp('2;  ))elsif i > j then return new node(j; BDD imp(';  1); BDD imp(';  2));fun
tion new node (Bddvar i, Bdd Æ1, Æ2) : Bdd ==� Returns a pointer to a new or existing BDD node �==� i is the number of a BDD variable, Æ1, Æ2 pointers to BDD nodes �=if Æ1 = Æ2 then return Æ1elsif 9Æ : (Æ; i; Æ1; Æ2) 2 table then return Æelse max := max+ 1; table := table [ f(max; i; Æ1; Æ2)g; return max ;Figure 30: Combination of BDDs
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hlingloff1. If BDD(') is 1, the resulting BDD is BDD( ). If BDD(') is an internal nodeIte(v; Æ1; Æ2), and BDD( ) is the leaf 0, we use the equivalen
e:(Ite(v; Æ1; Æ2)! ?) $ Ite(v; (Æ1 ! ?); (Æ2 ! ?))Sin
e :' , (' ! ?), this means that the BDD for :' is 
onstru
ted from theBDD for ' by ex
hanging all leafs 0 and 1. The only remaining 
ase is that bothBDD(') = Ite(v; '1; '2) and BDD( ) = Ite(v0;  1;  2) are internal nodes. Thereare three sub
ases:1. v = v0: (Ite(v; '1; '2)! Ite(v;  1;  2))$ Ite(v; ('1 !  1); ('2 !  2))2. v < v0 in the order of variables:(Ite(v; '1; '2)! Ite(v0;  1;  2))$ Ite(v; '1 ! Ite(v0;  1;  2); '2 ! Ite(v0;  1;  2))3. v > v0 in the order of variables:(Ite(v; '1; '2)! Ite(v0;  1;  2))$ Ite(v0; Ite(v; '1; '2)!  1; Ite(v; '1; '2)!  2)In all of these sub
ases, the BDD for ('!  ) is 
onstru
ted by a re
ursive 
all a
-
ording to the indi
ated equivalen
e. Again, upon ba
ktra
k a new node is 
reatedonly if both links are di�erent and no equivalent node exists so far. The algorithmis given in Fig. 30. Some BDD implementations use negated edges to avoid the re-
ursive des
ent for :'. Other implementations hash subformulas, su
h that 
ertainre
ursive des
ents 
an be avoided all together. For more information, see [Bra
e,Rudell and Bryant 1990℄.The 
omplexity of the fun
tion BDD imp is linear in the size of the argumentBDDs. In prin
iple, all 16 two-argument boolean operations on BDDs 
an be im-plemented with linear 
omplexity via this pro
edure. For example, the BDD forthe interse
tion of two sets ' and  
an be 
al
ulated from the BDDs of ' and using the de�nition (' ^  ) $ :(' ! : ). In pra
ti
e, however, most BDDlibraries a
hieve a better performan
e by providing for ea
h 
onne
tive a spe
ial re-
ursive pro
edure whi
h takes symmetries and idempoten
es in the arguments intorespe
t. [Bryant 1986℄ gives a uniform s
heme to handle all 16 boolean 
onne
tives.In Fig. 31 this generi
 BDD apply fun
tion is given; the idea of using a 
o-fa
toringfun
tion is from the BDD library by D. Long.For a given boolean fun
tion, the size of the BDD depends 
riti
ally on theordering of the variables. For the example formula above (
f. page 10)v1 = 0! ((v01 = 1) ^ (v02 = v2) ^ (v03 6= v3))and the variable ordering (v1; v2; v3; v01; v02; v03), the above algorithm yields the fol-lowing BDD. (We omit all bran
hes leading to negative leaves.)



Model Che
king 1743fun
tion BDD apply (Fun Æ, Bdd ',  ) : Bdd ==� Cal
ulates the BDD of (' Æ  ) from BDDs of ' and  �=if ' 2 f0; 1g and  2 f0; 1g then return ' Æ  else m := min var(',  );(f0; f1) := 
o fa
tor(';m); (g0; g1) := 
o fa
tor( ;m);Æ1 := BDD apply(Æ, f0, g0); Æ2 := BDD apply(Æ, f1, g1);return new node(m; Æ1; Æ2);fun
tion min var (Bdd ',  ) : Bddvar ==� Returns the minimal BDD variable in ' and  �=if ' 2 f0; 1g and ( ; j;  1;  2) 2 table then return jelsif ('; i; '1; '2) 2 table and  2 f0; 1g then return ielsif ('; i; '1; '2) 2 table and ( ; j;  1;  2) 2 table then return min(i; j);fun
tion 
o fa
tor (Bdd Æ, Bddvar m) : (Bdd, Bdd) ==� Returns two BDD pointers to 
ombine �=if Æ 2 f0; 1g then return (Æ; Æ)else =� (Æ; i; Æ1; Æ2) 2 table �=if i > m then return (Æ; Æ) else return (Æ1; Æ2);Figure 31: Applying arbitrary fun
tions to BDDs
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For the variable ordering (v1; v01; v2; v02; v3; v03), however, we obtain the followingmu
h smaller BDD:



1744 Edmund M. Clarke and Bernd-Holger S
hlingloff
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

1

0 1
v1

0

0

0

0

1

1

1

1

v1’

v2’

v3

v3’

v2

This is a 
ommon phenomenon when working with BDDs. In general, a goodheuristi
s is to keep \dependent" variables as 
lose together in the ordering aspossible [Fuji, Ootomo and Hori 1993, Enders, Filkorn and Taubner 1993℄. For amore formal treatment in the 
ontext of sequential 
ir
uits, see [Bermann 1991,M
Millan 1993℄. Unfortunately, the problem of �nding an optimal variable order-ing is NP-hard[Bryant 1991℄. Basi
ally, for every possible ordering one has to 
on-stru
t the BDD and 
ompare their sizes, whi
h is not feasible. Automati
 reorderingstrategies usually pro
eed by steepest as
end heuristi
s [Felt, York, Brayton andVin
entelli 1993, Rudell 1993, Bern, Meinel and Slobodov�a 1995℄.10.2. Symboli
 Model Che
king for CTLIn [Bur
h, Clarke, M
Millan, Dill and Hwang 1992℄, the term symboli
 model 
he
k-ing was introdu
ed for algorithms whi
h use a BDD representation of the Kripkemodel (
f. Page 1735).Assume that the transition relation is given as a BDD over the variables(v1; :::; vn; v01; :::; v0n), and for ea
h p 2 P a BDD over (v1; :::; vn) is given whi
hrepresents the set I(p). We will show how the na��ve CTL model 
he
king algo-rithm in Fig. 17 on P. 1714 
an be implemented dire
tly with this representation.Assume that ' is a propositional formula given as a BDD. Substitution 'fv := bgof a proposition v in ' by a 
onstant value b 2 f?;>g 
an be done by assigninga pointer to the appropriate leaf (0 or 1) to ea
h v node. Thus, the fun
tion thatrestri
ts some argument of a boolean fun
tion 
an be 
omputed in time whi
h islinear in the representation of the fun
tion. By using the substitution algorithm,boolean quanti�
ation 9v ' 
an be redu
ed to restri
tion by(9v ')$ ('fv := ?g _ 'fv := >g)Of 
ourse, it would be ineÆ
ient to implement simultaneous quanti�
ation 9~w ' ona set ~w , (v1:::vn) of variables by a sequen
e of su
h substitutions and disjun
tions.Fig. 32 shows how to 
al
ulate 9~w ' in a more dire
t way.We now des
ribe how to obtain a BDD representation of 'F for any CTL for-mula ' from the given BDD representation of F . The BDDs for ? and p 2 Pare trivial. The 
al
ulation of boolean 
omposites of BDDs was des
ribed in theprevious subse
tion. The evaluation of EU+ and AU+ involves 
omputing a �xed



Model Che
king 1745fun
tion BDD exists (Set of Bddvar w, Bdd ') : Bdd ==� w = fw1:::wng is a set of BDD variables, ' the BDD of a formula �==� Result is a BDD for 9w1:::9wn ' � =if ' 2 f0; 1g then return 'else =� ('; i; '1; '2) 2 table �=Æ1 := BDD exists(w, '1); Æ2 := BDD exists(w, '2);if i 2 w then return BDD apply(or, Æ1, Æ2)else return new node(i; Æ1; Æ2);Figure 32: Boolean quanti�
ation on BDDspoint. This is done a

ording to the iteration given in Figure 17. In the evaluationof E( 2U+ 1), we have to build the set fw j 9w0(w � w0 ^w0 2 ( F1 [  F2 \E))g,where E is an intermediate result of the iteration. This formula is an instan
eof the s
heme fw j 9w0('(w0) ^  (w;w0))g. Assume we are given a BDD for 'de�ned over the variables ~w , (v1; :::; vn), and a BDD for  in the variables(v1; :::; vn; v01; :::; v0n). The BDD for 9w0('(w0) ^  (w;w0)), whi
h uses variables(v1; :::; vn), 
an be obtained as follows. We �rst rename all variables vi in the BDDfor ' by v0i. Then we interse
t this BDD with the BDD for  to obtain a BDDover (v1; :::; vn; v01; :::; v0n). Finally, all primed variables are \thrown away" by exis-tential quanti�
ation on w0 , (v01; :::; v0n). The 
ase of A( 2U+ 1), where we haveto 
al
ulate fw j 8w0(w � w0 ! w0 2 ( F1 [  F2 \ E))g, is similar.In fa
t, all of the above BDD operations for one iteration step 
an be performedduring a simple BDD traversal, if vi and v0i are always kept together in the variableorder. This so-
alled relational produ
t algorithm is similar to the BDD apply andBDD exists algorithms in Figs. 31 and 32. Assume that we are given BDD repre-sentations of ' and  , where the variable ordering in the BDD for ' is w1:::wnand in  it is v1:::v2n, where wi = v2i�1 and w0i = v2i. Fun
tion relprod BDD inFig. 33 
al
ulates the representation of 9 ~w0('f~w := ~w0g ^  ). The result 
ontainsBDD variables v1v3:::v2n�1; renaming to w1:::wn 
an be done whenever a new nodeis 
reated (vi = wi+1=2).In theory, the 
omplexity of the CTL model 
he
king algorithm based on BDDsis not better than with an expli
it representation. In pra
ti
e, however, the BDDrepresentation of large sets of points in realisti
 systems tends to be quite man-ageable. Moreover, the number of iteration steps required to rea
h a �xed point isoften small (� 103). For hardware systems, that is, in the veri�
ation of sequen-tial 
ir
uits, most states are rea
hable in very few steps, but the BDDs tend togrow exponentially in the �rst few steps. For software systems, espe
ially if there isnot mu
h parallelism 
ontained, the BDD often grows only linear with the numberof steps, until the whole state spa
e is traversed. The following pi
ture shows therelation between the BDD size and number of steps in typi
al examples.



1746 Edmund M. Clarke and Bernd-Holger S
hlinglofffun
tion BDD relprod (Bdd ',  ) : Bdd ==� Cal
ulates a BDD for 9w0('(w0) ^  (w;w0)) �==� ' has variables 1::n and  has variables 1:::2n �==� Result 
ontains BDD variables 1; 3; 5:::; 2n� 1 �=if ' = 0 or  = 0 then return 0elsif  = 1 then return 1else m := min var 2(',  ); =� Substitution fw := w0g in ' �=(f0; f1) := 
o fa
tor(';m div 2); (g0; g1) := 
o fa
tor( ;m);Æ1 := BDD relprod(f0, g0); Æ2 := BDD relprod(f1, g1);if even(m) then return BDD apply(or, Æ1, Æ2)else return new node(m; Æ1; Æ2);fun
tion min var 2 (Bdd ',  ) : Bddvar =� Ass.: ( ; j;  1;  2) 2 table �= ==� Returns an appropriate variable number for BDD relprod �=if ' 2 f0; 1g then return jelse =� ('; i; '1; '2) 2 table' �= return min(2 � i; j);Figure 33: Relational produ
t on BDDs (9w0('(w0) ^  (w;w0)))
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10.3. Relational �-Cal
ulusThe global algorithm for model 
he
king the propositional �-
al
ulus 
an be imple-mented with BDDs similar as the CTL algorithm above. The relational produ
talgorithm 
an be used to 
al
ulate ea
h single step in the �xpoint iteration ofmodal formulas. We now show how this te
hnique 
an be extended to a ri
herlogi
al language whi
h is 
loser to other programming paradigms. We use a rela-tional �-
al
ulus similar to the one presented in [Park 1974℄. In 
omputer s
ien
e,[Chandra and Harel 1980℄ were the �rst to use similar �xed point operators for the
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king 1747spe
i�
ation of queries in relational databases. In 
ontrast to these papers, we donot use fun
tion symbols; they 
ould be added easily to this framework as spe
ialrelations. Informally, the relational �-
al
ulus 
an be seen as �rst order predi
atelogi
 with an additional re
ursion operator. More information on the logi
al prop-erties of this 
al
ulus 
an be found in [Vardi 1982, Immerman 1986, Gurevi
h andShelah 1986, Dawar, Lindell and Weinstein 1996℄.A (typed) stru
ture S 
onsists of a 
olle
tion of disjoint sets 
alled domains ,and a 
olle
tion of relations over these domains. (In some textbooks, stru
tures are
alled algebras .) Elements of the domains are 
alled obje
ts. Models for propositionaltemporal logi
s 
an be regarded to be spe
ial stru
tures with a single domain U ,unary predi
ates P � U and binary relations R � U � U on this domain.A signature � = (D;R) 
onsists of a �nite set D of domain names , and a �niteset R of relation symbols . Asso
iated with ea
h relation symbol is its type � , whi
his a sequen
e of domain names. Unary relation symbols are 
alled predi
ate symbols.An interpretation I for a signature � on a stru
ture S is a mapping I : � ! Sassigning a nonempty domain I(D) for ea
h domain name D and a relation ofappropriate arity for ea
h relation symbol. That is, if �(R) = (D1; :::; Dn), thenI(R) � (I(D1) � � � � � I(Dn)). If the interpretation of a predi
ate symbol P is asingleton set, we say that P is a 
onstant.Given a signature �, let V be a set of variables, ea
h of whi
h is either anindividual variable or a relation variable. Again, we assume that ea
h variable hasan appropriate type. In the relational �-
al
ulus, there are two more synta
ti

ategories: well-formed formulas and relation terms of type � . Assuming that thesymbols (, ), ?, !, =, 9, � and � are not in the signature, a well formed formula' is built a

ording to the following syntax:� ?, ('!  ), where ' and  are well formed formulas,� (x1 = x2), where x1 and x2 are individual variables of the same type,� 9x ', where ' is a well formed formula, and x is an individual variable, or� � x1:::xn, where � is a relation term of type (D1; :::; Dn) (see below), and xi isan individual variable of type Di for all i � n.In �rst order logi
, a relation term is just a relation symbol from the signature.In se
ond order logi
, a relation term 
an either be a relation symbol or a relationvariable q 2 Q. In the relational �-
al
ulus, more 
omplex relations 
an be spe
i-�ed via �-abstra
tion and �-re
ursion. In this 
al
ulus, a relation term � of type(D1; :::; Dn) is� a relation symbol R or relation variable X of type (D1; :::; Dn),� �x1:::xn ', where ' is a well formed formula and ea
h xi is an individualvariable of type Di, or� �X �, where X is a relation variable of type (D1; :::; Dn), and � a relation termof the same type whi
h is positive in X .As in the propositional 
ase, in this de�nition � is de�ned to be positive in X ,if every o

urren
e of X is under an even number of negation signs. Positivenessensures that the fun
tional de�ned by � is monotoni
 in the latti
e of values for Xand thus the least �xpoint of the fun
tional exists.
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hlingloffA variable valuation v is a mapping assigning an obje
t v(x) 2 D to everyindividual variable x of type D, and a relation v(X) � D1 � � � � � Dn to everyrelation variable X of type (D1; :::; Dn). A relational model M , (S; I;v) for thesignature � 
onsists of a stru
ture S, an interpretation I, and a variable valuationv. Similar to �rst order and temporal logi
s, we say that the model M , (S; I;v)is based on the frame F , (S; I). Any relational model M , (S; I;v) determinesan obje
t xM for every individual variable x, a relation �M of appropriate type forea
h relation term �, and a unique truth value 'M 2 ftrue; falseg for any formula'. This denotation of variables and formulas is de�ned in the usual way:� xM , v(x), if x 2 V is an individual variable,� ?M , false,� ('!  )M = true i� 'M = true implies  M = true,� (x1 = x2)M = true i� xM1 = xM2 ; i.e., i� x1 and x2 denote the same obje
t inS,� (9x ')M = true i� '(S;I;v0) = true for some valuation v0 whi
h di�ers fromv at most in x,� (� x1:::xn)M = true i� (xM1 ; :::; xMn ) 2 �M,� RM , I(R), if R is a relation symbol,� XM , v(X), if X is a relation variable,� (�x1:::xn ')M , f(d1; :::; dn) j 'F (d1; :::; dn) = trueg, where 'F(d1; :::; dn) ,'(S;I;v0) and v0 di�ers from v only in the assignment of di to xi for 1 � i � n;i.e., (�x1:::xn('))M is the relation 
onsisting of all tuples of obje
ts for whi
h' is true, and� (�X �)M , TfQ j �F(Q) � Qg, where �F(Q) , �(S;I;v0), and v0 di�ers fromv only in v0(X) = Q; i.e., �X(�)M is the least �xpoint of the fun
tional �F .The relational operators � and � are similar to the operators used in �-
al
ulusand in denotational semanti
s. In fa
t, we 
ould de�ne well formed formulas to beobje
t terms of the spe
ial type ffalse; trueg. Relation terms 
ould then be de�nedas fun
tion terms with boolean result, and the � abstra
tion builds su
h a fun
tionterm from a boolean obje
t term.The relational �-
al
ulus extends �rst order logi
 in a similar way as the proposi-tional � 
al
ulus extends modal logi
. In fa
t, the standard translation from modalinto �rst order logi
 
an be trivially extended into a standard translation frompropositional into relational � 
al
ulus. In addition, the relational � 
al
ulus o�erssome restri
ted form of non-monadi
 se
ond order quanti�
ation. It 
ontains 
lassi-
al �rst-order logi
 as a sublanguage. Note, however, that in the relational �-
al
ulusthere is no �-abstra
tion on relation variables. This would result in a se
ond-order
al
ulus. In 
ontrast to se
ond order logi
, there is no �-
al
ulus formula express-ing that domain D is �nite [Park 1974℄. On the other hand, the minimizationoperator 
an be expressed in se
ond order logi
 similar as in the propositional 
ase(
f. Page 1660): �X(�)~x$ 8X(8~x(�~x! X~x)! X~x)Sin
e the indu
tion axiom for arithmeti
 
an be formulated as a least �xpoint for-mula, the natural numbers have a 
ategori
al theory in the relational �-
al
ulus (for
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king 1749details, see also [Park 1974℄). Therefore, the set of valid formulas is not re
ursivelyenumerable, and its expressiveness lies properly in between �rst and se
ond orderlogi
.The �-re
ursion operator 
an be used to give re
ursive de�nitions of booleanfun
tions, similar to the use of re
ursion in fun
tional and logi
 programming.As an example, the addition-relation on natural numbers 
an be de�ned from the
onstant Z (zero) and the su

essor relation S by �X(�xyz(Zx^y = z_9uv(Sux^Svz ^ Xuyv))). All re
ursive fun
tions of arithmeti
 
an be de�ned in this way;therefore, on in�nite domains, the relational �-
al
ulus has the expressive powerof Turing ma
hines. On �nite domains, the model 
he
king problem is polynomialin the size of the stru
ture. Therefore, only those fun
tions are de�nable whi
h
an be 
omputed with time 
omplexity polynomial in the size of the stru
ture([Chandra and Harel 1980℄). For a restri
ted 
onverse of this statement, see [Vardi1982, Immerman 1986℄.Given a �nite relational frame F , (S; I) and a relational term � or formula ',model 
he
king 
an be used to determine the denotation �F or 'F , respe
tively.In [Bur
h, Clarke, M
Millan, Dill and Hwang 1992℄, a symboli
 model 
he
kingalgorithm for the relational �-
al
ulus is given (see Figure 34). Assume for simpli
itythat ea
h domain is binary; for non{binary domains the algorithm 
an be extendedby an appropriate en
oding. In the frame, the interpretation I of a relation of type(D1; :::; Dn) is represented by a BDD with variables v1; v2; :::; vn.A term or formula with free individual variables x1; :::; xm is represented as aBDD with additional BDD variables x1; :::; xm. A relation variable is representedby its name; ea
h BDD node 
an 
ontain (the name of) a relation variable as oneof its su

essors. In other words, ea
h BDD node is a tuple (Æ; i; Æ1; Æ2), where Æ isthe name of this node, i is a variable from the set fv1; :::; vn; x1; :::; xmg, and ea
hÆj is one of the BDD 
onstants 0 or 1, a name of another BDD node, or the nameof a relation variable. Substitution of a relation variable with a relation in a BDD
an be done by a simple BDD traversal.The model 
he
king algorithm is divided into two fun
tions, BDD form andBDD term, whi
h re
urse over the stru
ture of the formula and term. BDD forminputs a formula ' and (the BDD representation of) the interpretation I in frameF , and returns a BDD whi
h is satis�ed by a given valuation v i� (S; I;v) j= '.The �rst �ve 
ases in the fun
tion derive dire
tly from the respe
tive semanti
 def-initions and should require no explanation. The last 
ase, appli
ation of a relationterm �, uses the fun
tion BDD term(�; I) to �nd a representation of the relationalterm � (under the interpretation I), then substitutes the argument variables x1,..., xn for the pla
e-holder variables v1, ..., vn, produ
ing a BDD whi
h is satis�edi� � holds for x1; :::; xn.The fun
tion BDD term takes as arguments a relational term � and the BDD rep-resentation of the interpretation I. It returns a BDD whi
h represents the relationterm in the manner des
ribed above. The �rst and se
ond 
ase in the de�nitionof BDD term, a relation symbol or relation variable, simply return the BDD repre-sentation of the relation in the interpretation or the name of the relation variable,respe
tively. The third 
ase, �-abstra
tion, produ
es a BDD with variables v1, ...,
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hlingloffvn substituted for the variables v1, ..., vn. This is the representation for an n-aryrelation whi
h holds i� its arguments satisfy the formula ' when assigned to x1,..., xn. The most interesting 
ase is the last: the �xed point operator �. To �nd the�xed point of a relational term with respe
t to a free relation variable X we usethe standard te
hnique for �nding the least �xed point of a monotoni
 fun
tionalin a �nite domain. First we evaluate BDD term(�; I) to get a BDD r for �. Then we
ompute the �xed point by a series of approximations X0, X1, ..., beginning withthe empty relation (whi
h is represented by the BDD 
onstant 0). To 
ompute theBDD X i+1 from X i we substitute all o

urren
es of the variable X in the BDD rwith X i. Sin
e the domain is �nite and � is positive in X , the series must 
onvergeto the least �xed point (
f. Lemma 5.4 and Se
tion 8.3). Convergen
e is dete
tedwhen X i+1 = X i. In this 
ase, X i is the BDD for �X �. Note that testing for
onvergen
e is easy, sin
e with a hash-table implementation of BDD nodes equality
an be determined in 
onstant time (
f. the algorithm in Fig. 29).The �
ke model 
he
ker [Biere 1997℄ is one of the �rst tools for model 
he
kingthe relational �-
al
ulus. For ea
h non-binary domain, an appropriate binary en-fun
tion BDD form (Formula ', Interpretation I) : Bdd ==� Cal
ulates the BDD of formula ' in the interpretation I �=
ase ' ofx 2 V : return Ite(x; 1; 0);(x1 = x2): return Ite(x1; Ite(x2; 1; 0); Ite(x2; 0; 1));?: return 0;('1 ! '2): return BDD imp(BDD form('1, I), BDD form('2, I));9x ': return BDD exists(x, BDD form(', I));�x1:::xn: return BDD term(�, I)fv1 := x1g...fvn := xng;fun
tion BDD term (RelationalTerm �, Interpretation I) : Bdd ==� Cal
ulates the BDD of term � in the interpretation I �=
ase � ofR 2 R: return I(R) =� pointer to BDD for R �=;X 2 V : return X =� name of X �=;�x1:::xn ': return BDD form(', I)fx1 := v1g...fxn := vng;�X �: r := BDD term(�; I); return BDD lfp(r; 0);fun
tion BDD lfp (BDD r, BDD X i) : BDD ==� Fixpoint iteration of BDD r for � with substitution fX := X ig �=X i+1 := rfX := X ig;if X i+1 = X i then return X ielse return BDD lfp(r, X i+1);Figure 34: Symboli
 evaluation of formulas and terms
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oding is generated automati
ally. The model is given in a C-like input language.It is 
ompiled automati
ally into an internal BDD representation. Sin
e �
ke usesseveral sophisti
ated heuristi
s for the allo
ation of BDD variables, its performan
eis 
omparable to more spe
ialized systems like SMV.11. Partial Order Te
hniquesWith symboli
 methods we try to ta
kle the 
omplexity problem whi
h arises fromthe parallel 
omposition of modules by using the BDD data stru
ture whi
h 
anhandle very large sets. Partial order methods, on the other hand, try to avoid thegeneration of large sets: they only generate a minimal part of the state spa
e whi
his ne
essary to evaluate the given formula.Several variants have been suggested: stubborn sets ([Valmari 1990℄), sleep sets([Godefroid 1990, Godefroid and Wolper 1991, Godefroid and Pirottin 1993℄), inter-leaving and ample sets [Katz and Peled 1988, Peled 1993℄, and others. Subsequently,we des
ribe an algorithm for partial order model 
he
king of linear time temporallogi
 properties whi
h is based on [Yoneda, Nakade and Tohma 1989, Valmari 1990℄.For an overview of other methods, see [Clarke, Grumberg, Minea and Peled 1999℄.Partial order methods for bran
hing time logi
s and symboli
 methods have beeninvestigated in [Gerth, Kuiper, Peled and Pen
zek 1995, Alur, Brayton, Henzinger,Quadeer and Rajamani 1997℄. A somewhat di�erent approa
h to partial order model
he
king by unfolding of Petri nets was suggested in [M
Millan 1992, Esparza 1994℄.The interleaving de�nition of parallel program semanti
s determines the statespa
e of the global system to be the produ
t of all state spa
es of its parallel
omponents. This 
an lead to wasteful algorithms. In general, ea
h (nondetermin-isti
) exe
ution of a program generates a partial order, where points are orderedby 
ausality. In interleaving semanti
s this partial order is represented by the setof all of its interleaving sequen
es.For example, the following elementary Petri net represents a system with twopro
esses syn
hronizing via t0 and t3:
t11 t12

t0

t21 t22

t3This system generates the following partial order:
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hlinglofft0 t11t21 t12t22 t3 t0 t11t21 t12t22 t3 . . .Some of the interleaving sequen
es aret0 t11 t12 t21 t22 t3 :::t0 t11 t21 t12 t22 t3 :::t0 t11 t21 t22 t12 t3 :::t0 t21 t11 t22 t12 t3 :::t0 t21 t11 t12 t22 t3 :::However, it may not be ne
essary to 
onsider all of these interleavings to determine,e.g., the truth value of the formulaG+F� t3. The main idea of partial order methodsis to try to inspe
t only some \representative" interleaving sequen
es for the formulain question. Thus, we do not alter the semanti
s to deal with \real" 
on
urren
y(where independent transitions 
an o

ur at the same time), and we do not extendthe logi
 to be able to express partial order properties. On the 
ontrary, we willlimit the expressiveness of temporal logi
 and use the partial order to improve theeÆ
ien
y of model 
he
king.11.1. Stuttering Invarian
eGiven an elementary Petri net N and a formula ', we want to �nd whether thereexists a run � of N satisfying '. In general, there are in�nitely many runs throughthe system; therefore we partition them into a �nite number of equivalen
e 
lasses,su
h that the existen
e of a satisfying run � implies that every element of theequivalen
e 
lass [�℄ satis�es '. Thus we only have to 
he
k a �nite number ofequivalen
e 
lasses, and a 
oarser partition yields a better algorithm.To do so, we need a stuttering invariant temporal logi
. Consider a formulawith the atomi
 propositions fp1; :::; pkg � P . Two natural models M and M0 arestrongly equivalent with respe
t to fp1; :::; pkg, if they are of the same 
ardinality,and for all i � 0 and all p 2 fp1; :::; pkg we have wi 2 I(p) i� w0i 2 I 0(p). Apoint wi+1 in M is stuttering w.r.t. fp1; :::; pkg, if for all p 2 fp1; :::; pkg we havewi 2 I(p) i� wi+1 2 I(p). For any model M , (U; I; w0), de�ne the stutter-freekernel Mo w.r.t. fp1; :::; pkg to be the model obtained by eliminating all stutteringstates fromM. More formally,Mo 
ontains all non-stuttering points fromM, andw � w0 in Mo i� w � w0 in M, or there are stuttering points w1, ..., wn su
hthat w � w1 � � � � � wn � w0 in M. Two models M1 and M2 are stutteringequivalent w.r.t. fp1; :::; pkg, if their stutter-free kernels are strongly equivalentw.r.t. fp1; :::; pkg.A formula ' is stuttering invariant or preserved under stuttering, if for any twomodels M1 and M2 whi
h are stuttering equivalent with respe
t to the set ofatomi
 propositions of ' it holds thatM1 j= ' i�M2 j= '. A language is stutteringinvariant, if all of its formulas are stuttering invariant.
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king 1753In general, formulas involving the operator X are not stuttering invariant.For example, the formula X p holds in the model (fw0; w1; w2g; I; w0), whereI(p) = fw0; w1g and w0 � w1 � w2, but not in the stuttering equivalent model(fw0; w2g; I; w0). The next-operator has always been a topi
 of dis
ussions in tem-poral spe
i�
ation [Lamport 1983℄. Most notions of re�nement of systems do notpreserve properties with next-operators. Re
all that X is de�nable with U+, butnot with U� (see Lemma 2.1 and Page 1647). Let LTL�X be the logi
 built frompropositions p 2 P , boolean 
onne
tives ?, ! and the re
exive until operator U�.11.1. Lemma. Any LTL �X formula is stuttering invariant.Proof: Assume that ' is an LTL � X formula, M , (U; I; w0) a model andMo , (Uo; Io; w0) the stuttering-free kernel of ' w.r.t. the propositions in '.Furthermore, for any w 2 U , let wo 2 Uo be the maximal non-stuttering point su
hthat wo � w. We show that for any w 2 U(�) (U; I; w) j= ' i� (Uo; Io; wo) j= ':In parti
ular, sin
e wo0 = w0, this implies that M j= ' i� Mo j= '. From this,the 
laim follows immediately: if Mo1 and Mo2 are strongly equivalent w.r.t. theatomi
 propositions of ', then 
learly Mo1 j= ' i� Mo2 j= '. If M1 and M2are stuttering equivalent, then the stutter-free kernels Mo1 and Mo2 are stronglyequivalent. Therefore, in this 
ase M1 j= ' i� Mo1 j= ' i� Mo2 j= ' i� M2 j= '.The proof of (�) is by indu
tion '. For atomi
 propositions, wi+1 j= p i� wi j= pfor ea
h point wi+1 whi
h is stuttering w.r.t. fp; p1; :::; pkg. Therefore w j= p i�wo j= p. For boolean 
onne
tives the statement is obvious. For the U�-operator,we treat only the 
ase ' = F� = (>U� ); the general 
ase ' = ( 2U� 1) issimilar. (U; I; w0) j= F� means that there is a w1 � w0 su
h that (U; I; w1) j=  .By the indu
tive hypothesis, this is equivalent to the 
laim that for some w1 � w0,(Uo; Io; wo1) j=  . This 
laim in turn holds i� for some v1 2 Uo, v1 � wo0 and(Uo; Io; v1) j=  1. This means that (Uo; Io; wo0) j= F� . Note that this proof is notvalid for the F+-operator, sin
e it is possible that w1 > w0 but wo1 = w0. 2In [Peled and Wilke 1997℄, a 
onverse to this lemma is proved:11.2. Theorem. Any LTL formula whi
h is stuttering invariant is expressible inLTL �X.Stuttering invarian
e allows to group all stuttering equivalent runs into the sameequivalen
e 
lass, thereby redu
ing the average 
omplexity of the model 
he
king.Of 
ourse, the redu
tion will be better if ' uses fewer propositions. Usually, a givenformula mentions only a small subset of the system, allowing the equivalen
e 
lassesto be rather large. In parti
ular, 
onsider a system with two independent transitionst1 and t2 (a formal 
riterion of independen
e is given below). All runs whi
h di�eronly in the interleaving of t1 and t2 are stuttering equivalent with respe
t to allatomi
 propositions not related to t1 or t2. Therefore, ea
h LTL �X formula notreferring to t1 and t2 has the same truth value for all of these runs.
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hlingloff11.2. Partial Order Analysis of Elementary NetsFirst, we need an appropriate stuttering-invariant restri
ted logi
al language toexpress \interesting" properties of elementary Petri nets. Re
all that a state of thenet is just a marking of its pla
es. Thus, it is reasonable to use pla
es as atomi
propositions, where a proposition p is valid in a state i� the pla
e p is marked inthat marking.Assume that we are given an elementary Petri net and an LTL � X formulades
ribing a property of this net. Now, we de�ne when two transitions are inde-pendent of one another. Firstly, independent transitions must neither disable norenable ea
h other; that is, if t1 is enabled in s and s0 is a su

essor of s with respe
tto the �ring of t1, then t2 is enabled at s i� t2 is enabled at s0, and vi
e versa for t2�ring. Se
ondly, if the independent transitions t1 and t2 are both enabled in s, thenthey must be able to 
ommute; that is, ea
h exe
ution obtained by �rst �ring t1and then t2 must be stuttering equivalent (w.r.t. the property under 
onsideration)to one obtained by �rst �ring t2 and then t1.However, it is not pra
ti
al to 
he
k these two properties for all pairs of transitionsin all global states of the system. Therefore, we use a synta
ti
 
ondition whi
hensures that some transition is independent from another one.Call a set T of transitions persistent in s, if whatever one does from s whileremaining outside of T does not a�e
t T . Formally, T is persistent in s i� for allt 2 T and all �ring sequen
es t0; t1; :::; tn; t su
h that ti 62 T for all 0 � i � n thereexists a stuttering equivalent �ring sequen
e starting with t.If T is persistent, we do not have to 
onsider the �ring of transitions outside ofT when 
onstru
ting the 
hildren of the given state in the depth-�rst-sear
h; therewill be a stuttering equivalent sequen
e 
onstru
ted by the �ring of some t 2 T .However, this de�nition still is not e�e
tive. There is no eÆ
ient way to 
omputea minimal persistent set of transitions for a given state. Therefore, we 
omputean approximation. There is a tradeo� between the amount of time spent in the
al
ulation of minimal persistent sets, and the redu
tion of the state spa
e obtained.As a general strategy, some simple heuristi
s 
an gain a lot, and sophisti
atedmethods don't add too mu
h.We start with a single enabled transition T = ftg and repeat until stabilization toadd all transitions whi
h 
an \interfere" with some transition in T . Here \interfere"means that they 
an enable or disable, or 
annot 
ommute with some transition inT .Given any marking m, �rable transition tf and disabled transition t, we haveto �nd a set of �rable transitions su
h that the �ring of any transition in this set
ould lead to the �ring of t before tf . A set NEC(t;m) of transitions is ne
essaryfor t in m, if NEC(t;m) = ft0 j p 2 t0�g for some p 2 (�t nm). We use a fun
tionalnotation here, sin
e NEC(t;m) is determined by the 
hosen heuristi
 strategy.Similarly, the set NEC�(t;m) is de�ned to be any set of transitions 
ontaining twhi
h is transitively 
losed under ne
essity; that is, for any t0 2 NEC�(t;m) su
hthat t is disabled in m there exists a set NEC(t0;m) of transitions ne
essary fort0 su
h that NEC(t0;m) � NEC�(t;m). If t is disabled in m, then t 
annot �re
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king 1755unless some transitions from NEC�(t;m) �re before.If t is in 
on
i
t with tf , then the �ring of any transition in NEC�(t;m) 
ouldeventually enable t; therefore all transitions in NEC�(t;m) have to be �red as alter-natives to the �ring of tf . But, there is still another 
lass of dependent transitions.We want to obtain stuttering equivalen
e with respe
t to the atomi
 propositionsin '. Therefore, we have to take into a

ount that ' might �x an order onto the�ring of independent transitions. Usually, ' 
ontains only a few propositions. Call atransition visible for ', if �t[ t� 
ontains any pla
e p appearing in '. If t is visible,the �ring order with other visible transitions is important. A visible transition 
anbe regarded to be in 
on
i
t with all other visible transitions. De�ne the 
on
i
tof t by C(t) = ft0 j �t0 \ �t 6= fgg [ ftg:The extended 
on
i
t of t is just the 
on
i
t of t, if t is invisible; otherwise, it is the
on
i
t of t plus all other visible transitions. Now a dependent set DEP (tf ;m) oftf is any set of transitions su
h for any t in the extended 
on
i
t of tf there existsa set NEC(t;m) � DEP (tf ;m).Finally, the set of transitions whi
h are �red should be transitively 
losed un-der dependen
y; thus, let READY (m) be any (smallest) nonempty set of �rabletransitions, su
h thatDEP (tf ;m) � READY (m) if tf 2 READY (m):Corre
tness of this redu
tion method is guaranteed by the following theorem:11.3. Theorem. For any �ring sequen
e � of the net there exists a �ring sequen
e�0 generated only by �ring ready transitions su
h that � and �0 are equivalent withrespe
t to all LTL �X safety properties.Consider the depth-�rst model 
he
king algorithm for LTL in Figure 19. Duringthe 
onstru
tion of the set of 
hildren of a state in the depth �rst sear
h we 
annegle
t all �rable transitions whi
h are not ready. This 
an result in a 
onsiderableaverage 
ase redu
tion; in fa
t, for examples with many 
on
urrent and \almost"independent pro
esses it 
an logarithmi
ally redu
e the state spa
e whi
h has to betraversed. Though the worst 
ase 
omplexity of 
onstru
ting a ready set is 
ubi
 inthe size of the net, in average examples it is only linear in the number of transitions.The above 
onstru
tion 
an be extended to deal also with liveness and otherlinear temporal logi
 properties. To do so, we need to assure that whenever a stateis rea
hed for the se
ond time, a di�erent ready set is 
onstru
ted, to make surethat no eventuality is delayed in�nitely often. For a detailed exposition and anextension to real-time logi
s, see [Yoneda and S
hlinglo� 1997℄.12. Bounded Model Che
kingThe model 
he
king algorithms of the previous se
tions were based on the idea of
al
ulating the greatest or least �xed point of a 
ertain 
ontinuous fun
tion. Model
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he
king 
an also be done by translating temporal logi
 into 
lassi
al logi
 and usingwell-established automated dedu
tion methods. In parti
ular, in Subse
tion 2.3on Page 1649 we de�ned a translation FOL from linear temporal logi
 to �rstorder logi
. If the model to be 
he
ked is �nite, then ea
h �rst order existentialquanti�er 
an be repla
ed by a �nite disjun
tion, and every universal quanti�er 
anbe repla
ed by a �nite 
onjun
tion of variables. Moreover, as des
ribed in se
tion 10,ea
h �nite model 
an be 
oded as a boolean 
ombination of atomi
 formulas p(t)and t � t0. Likewise, for sequen
e-validity, the 
ondition that a �nite set ft1; : : : tngof points forms a maximal path in a model 
an be 
oded as su
h a formula.Consider the 
onjun
tion of the propositional translation of the formula and theboolean en
oding of the model. This is a formula whi
h 
an be tested for satis�a-bility by standard SAT algorithms. In [Biere, Cimatti, Fujita and Zhu 1999, Biere,Cimatti and Zhu 1999℄, the term bounded model 
he
king is introdu
ed for 
he
k-ing sequen
e-validity of future LTL formulas with this approa
h. The exe
utionsequen
es of a Kripke model are enumerated by in
reasing length and 
ombinedwith the translation of the formula. These are 
onverted into 
onjun
tive normalform and tested for satis�ability by propositional theorem provers. With appropri-ate heuristi
s, in some 
ases this method turned out to give even better results thanBDD based methods.12.1. An ExampleBefore giving the te
hni
al details, we show an example. Consider the Kripke modelin Fig. 35. There are four points in the model. Ea
h point w is represented by two
00

01 10

11

Figure 35: A two-bit modelstate variables, w , (v1; v0), denoting the value of the high bit and the low bit,respe
tively. The initial state is (00). Thus the initial state predi
ate I(w) is de�nedas (:v1 ^ :v0). The only terminal state is (11), thus the terminal state predi
ateT (w) is (v1 ^ v0). The transition relation is represented by the formula R(w;w0) ,(:v1^:v0^:v01^v00)_(:v1^v0^v01^:v00)_(v1^:v0^:v01^:v00)_(:v1^:v0^v01^v00)
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king 1757Suppose we are interested in the fa
t that any exe
ution eventually rea
hes state(11). In LTL, this amounts to 
he
king whether F�(v1^v0) is sequen
e-valid. Equiv-alently, we 
an 
he
k whether there is a maximal path in the model in whi
h state(11) is never rea
hed. That is, we 
he
k whether G�:(v1 ^ v0) is satis�able in themodel. A

ording to the de�nition, this is the 
ase i� there is a path in the modelstarting in an initial point and ending in a terminal point or in a 
y
le, su
h thatevery point on the path satis�es :v1 or :v0. In bounded model 
he
king, we restri
tour attention to paths of length k, that is, paths with k + 1 states. We start withk = 0, and in
rement k until a witness is found. Consider the 
ase where k equals 2.We name the k+1 states as w0, w1, w2. Sin
e every state is en
oded by two booleanvariables, there are six propositional variables altogether: v01 , v00 , v11 , v10 , v21 , v20 . Wenow formulate a set of 
onstraints on these variables in propositional logi
 whi
hguarantee that the path � = (w0, w1, w2) is indeed a witness for G�(:v1 _ :v0).� First, � must start in an initial point. This is expressed by I(w0) as des
ribedabove: '1 , (:v01 ^ :v00)� Se
ond, ea
h wi+1 must be a su

essor of wi a

ording to the transition relation,i.e., R(w0; w1) ^R(w1; w2) must hold. This expands to'2 ,(:v01 ^ :v00 ^ :v11 ^ v10) _ (:v01 ^ v00 ^ v11 ^ :v10) _(v01 ^ :v00 ^ :v11 ^ :v10) _ (:v01 ^ :v00 ^ v11 ^ v10) ^(:v11 ^ :v10 ^ :v21 ^ v20) _ (:v11 ^ v10 ^ v21 ^ :v20) _(v11 ^ :v10 ^ :v21 ^ :v20) _ (:v11 ^ :v10 ^ v21 ^ v20)� Third, the path must be either terminal or end in a loop. That is, either T (w2)holds, or there must be a transition from w2 to one of w0, w1 or w2. Theformula '3 , T (w2) _ R(w2; w0) _ R(w2; w1) _ R(w2; w2) is expanded similarto '2.� Fourth,G�:(v1^v0) must hold in the �rst point of the sequen
e, i.e., :(v1^v0)must hold for w0, w1 and w2. Therefore, '4 , V2i=0 :(vi1 ^ vi0).It is easy to see that there is a propositional model for ' , '1^'2^'3^'4 i� thereis a maximal path 
onsisting of three model states validating the given formula.Satis�ability of ' 
an be 
he
ked by SAT pro
edures like SATO [Zhang 1997℄ orSt�almar
k's algorithm [St�almar
k 1989, St�almar
k and S�a
und 1990, Bor�alv 1997℄.Thus, by in
reasing the number of states allowed in the sear
h, we get an alternativemodel 
he
king pro
edure.In this example, the formula is indeed satis�able. The satisfying assignment 
or-responds to a 
ounterexample that is a path from the initial point (00) over (01)to (10) followed by the loop from (10) to (00). If the transition from (10) to (00) is
hanged to point (11), then the original formula be
omes unsatis�able.12.2. Translation into Propositional Logi
Assume that we are given a Kripke model M, an LTL formula  and a bound k.Subsequently, ea
h wi is a ve
tor of dlog jMje boolean variables. We will 
onstru
ta propositional formula in w0. . .wk whi
h is (propositionally) satis�able i� there isa maximal path of length k in M validating  .
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hlingloffThe initial and terminal state predi
ates I(w) and T (w) and the transition rela-tion R(w;w0) are given by M. The following propositional formula des
ribes thatthe points to whi
h the variables w1. . .wk refer form a maximal path in M:[[M℄℄k , I(w0) ^ k_i=1R(wi�1; wi) ^ �T (wk) _ k_l=0R(wk; wl)�Now we de�ne the translation [[ ℄℄ik of a temporal formula  evaluated at pointwi in the sequen
e (w0 : : : wk). In general, the 
onstraint imposed by the temporalspe
i�
ation depends on whether the path under 
onsideration is terminating ornot. Consider the formula ('U+ ) in a terminating path (w0 : : : wk). This formulaholds in point wi i� there is a i < j � k su
h that su
h that  holds at wj , and' holds at all wm su
h that i < m < j. This 
an be translated by a disjun
tionover all possible positions wj at whi
h  eventually might hold, and a 
onjun
tionfor ea
h of these positions ensuring that ' holds for all points between wi and wj .That is, in this 
ase [[('U+ )℄℄ik , Wkj=i+1([[ ℄℄jk ^Vj�1m=i+1[['℄℄mk )Now 
onsider the 
ase that the path (w0 : : : wl : : : wk) ends with a loop from wkto wl. The formula ('U+ ) is satis�ed in wi i� one of the following holds:� as for terminating sequen
es, there exists some i < j � k su
h that  holds atwj , and ' holds at all wm su
h that i < m < j, or� there exists some l � j � i su
h that  holds at wj , and ' holds at all wm su
hthat i < m � k, and ' holds at all wm su
h that l � m < j.Figure 36 visualizes these two possibilities.
ww0 l wi wj wk

ww0 l wi wkwjFigure 36: Two possibilities for \until" in a loopThe de�nition of [[ ℄℄ik is by re
ursion on the stru
ture of  , where the 
urrentpoint i 
hanges but the length of the path k stays the same. For this translation,let i � k be natural numbers, and let (Wij=l  ) , ? for l > i.� [[p℄℄ik , p(wi)� [[?℄℄ik , ?� [[('!  )℄℄ik , ([['℄℄ik ! [[ ℄℄ik)
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king 1759� [[('U+ )℄℄ik , Wkj=i+1([[ ℄℄jk ^Vj�1m=i+1[['℄℄mk ) _Wkl=0 �Vkm=i+1[['℄℄mk ^ R(wk; wl) ^Wij=l �[[ ℄℄jk ^Vj�1m=l[['℄℄mk ��For the last of these 
lauses, 
f. Figure 36. Corre
tness of our translation 
an bestated as follows.12.1. Theorem. There exists a maximal path of length k generated by M whi
hinitially validates  i� ([[M℄℄k ^ [[ ℄℄0k) is propositionally satis�able. In other words, is sequen
e-valid in M i� ([[M℄℄k ! [[ ℄℄0k) is propositionally valid for all k � 0.An upper bound for the length k of the path to be 
onsidered is jMj � 2j j (forthe 
omplexity of LTL model 
he
king, see Se
t. 8.2). In prin
iple, bounded model
he
king 
ould be extended to other spe
i�
ation logi
s su
h as �TL. In pra
ti
e,however, the number of boolean propositions whi
h are introdu
ed tends to be toobig for 
urrently available SAT provers.13. Abstra
tionsEven though BDD representations, partial order methods and SAT pro
edures allowto apply model 
he
king to rather large systems, one of the main topi
s still is thesize of the models. To verify an implementation of several thousands of lines of 
odeby model 
he
king, it is ne
essary to �nd a suitable abstra
tion.13.1. Abstra
tion fun
tionsNumerous authors have 
onsidered the problem of redu
ing the 
omplexity of veri�-
ation by using abstra
tions, equivalen
es, preorders, et
. For example, in [Graf andSte�en 1990℄ a method is des
ribed for generating a redu
ed version of the globalstate spa
e, given a des
ription of how the system is stru
tured and spe
i�
ationsof how the 
omponents intera
t. In [Wolper 1986℄ it is demonstrated how to domodel 
he
king for programs whi
h are data independent. The method des
ribedin [Kurshan 1989℄, whi
h is based on !-language 
ontainment, was implemented inthe COSPAN system [Har'El and Kurshan 1990, Kurshan 1994℄. In this system, theuser may give abstra
t models of the system and spe
i�
ation in order to redu
ethe 
omplexity of the test for 
ontainment. To ensure soundness, the user spe
i�eshomomorphisms between a
tual and abstra
t pro
esses. These homomorphisms are
he
ked automati
ally. We des
ribe a general framework elaborated in [Long 1993℄.Traditionally, �nite-state veri�
ation methods fo
us on the 
ontrol 
ow of thesystem. Symboli
 methods have made it possible to handle even some systems thatinvolve nontrivial data manipulation, but the 
omplexity of veri�
ation is oftenhigh. However, spe
i�
ations of systems that in
lude data paths usually involvefairly simple relationships among the data values in the system. For example, the
orre
tness of a 
ommuni
ations proto
ol might be independent of the parti
ular
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hlingloffdata transmitted, provided that no two subsequent messages are identi
al. As an-other example, in verifying the addition operation of a mi
ropro
essor, we mightrequire that the value in one register is eventually equal to the sum of the values intwo other registers. The 
omplexity of the veri�
ation 
an be redu
ed in su
h 
asesby suitable abstra
tions. An abstra
tion is spe
i�ed by giving a mapping betweenthe a
tual data values in the system and a small set of abstra
t data values. By ex-tending the mapping to states and transitions, we 
an produ
e an abstra
t versionof the system under 
onsideration. The abstra
t system is often mu
h smaller thanthe a
tual system, and, as a result, it is usually mu
h simpler to verify propertiesat the abstra
t level.R R R Rt0
e0?even(x)
6x :=x div2 t1

e1?odd(x)
6x :=3x+ 1(a) Con
rete system

t0; t1; ae t0; t1; ao
e0; t1; ae t0; e1; ao?6 ?�I

(b) Abstra
tionFigure 37: The dining mathemati
iansFor example, 
onsider the program from Figure 37. This example 
alled the\dining mathemati
ians" is from [Dams et al. 1994℄ and is re
onsidered in [Merz1997℄. It 
onsists of two pro
esses 
ommuni
ating via a shared variable x whi
hranges over the domain Dx of all integers. Initially x is any positive integer. Bothpro
esses have a \thinking" and an \eating" state and start in the former. That is,the state spa
e is ft0; e0g�ft1; e1g�Dx, and the initial states are f(t0; t1; d) j d > 0g.Note that both of these sets are in�nite. The system ensures mutual ex
lusion tothe eating phase and starvation-freeness for both pro
esses.Assume that we are interested in proving mutual ex
lusion: AG�:(e0 ^ e1). We
reate a domain Ax of abstra
t values for x, with Ax , faz; ae; aog, and de�ne theabstra
tion mapping hx from Dx to Ax as follows.�x(d) ,8><>: az; if d = 0;ae; if d is even, andao; if d is odd:Now we 
an use just three atomi
 propositions to express the abstra
t value of x:\x b= a0", \x b= ae", and \x b= ao". We 
an no longer express properties about theexa
t value of x using these atomi
 propositions. In many 
ases though, by judi
ious
hoi
e of the abstra
tion mapping, knowing just the abstra
t value is suÆ
ient.



Model Che
king 1761Two points w0 = (w00; w01; d0) and w1 = (w10; w11; d1) in the original Kripkemodel are equivalent w.r.t. the abstra
tion mapping �, if w00 = w10, w01 = w11 and�x(d1) = �x(d2). That is, two points are equivalent if they have the same label, andthe abstra
ted variable values in both points are equal. The �-abstra
tion is thequotient of the original model under this equivalen
e. Sin
e the abstra
t domainAx is �nite, the �-abstra
tion is a �nite Kripke model. Figure 37(b) shows therea
hable part of the �-abstra
tion of 37(a). It is easy to see (and 
an be 
on�rmedby model 
he
king) that the abstra
ted system validates AG�:(e0 ^ e1). As wewill see below, this implies that the original systems also guarantees this property.Formally, abstra
tions are formed by giving surje
tions �1, . . . , �n whi
h mapea
h Di onto a set D�i of abstra
t values. The surje
tion � = (�1; : : : ; �n) thenmaps ea
h program state to a 
orresponding abstra
t state. As explained above,this mapping may be applied in a natural way to the initial states and the tran-sitions of the program. The resulting transition system is the �-abstra
tion of theoriginal program. Applying abstra
tions to several or all of the program variables,the spe
i�
ation has a mu
h smaller number of atomi
 propositions and points. Forthe abstra
ted system, various state spa
e redu
tions dis
ussed in previous se
tions
an be applied.One way of obtaining a representation of the �-abstra
tion of a 
on
urrent pro-gram is to build a representation of the original state spa
e and to 
onstru
t the�-abstra
tion from it. However, if the original state spa
e is in�nite as in the aboveexample, or it is too large to �t into memory, this may not be feasible. In the�nite state 
ase, it might be possible to represent the system using BDD-basedmethods, but the 
omputational 
omplexity of building the �-quotient from thisrepresentation 
an still be very high.To 
ir
umvent these problems, another way of produ
ing abstra
t models in aBDD-based veri�
ation tool is to start with a high level des
ription of the systemand the abstra
tion fun
tion. The system 
ould be given, e.g., as a program ina hardware des
ription language. From this, a BDD for the abstra
ted system isgenerated dire
tly. In order to perform the 
ompilation pro
ess e�e
tively, an ap-proximation to the �-abstra
tion is generated[Clarke, Grumberg and Long 1994a℄.This approximation might be somewhat larger than the �-abstra
tion, but it 
anbe built very eÆ
iently. The te
hniques used in this 
onstru
tion are similar tothose involved in abstra
t interpretation [Cousot and Cousot 1977, Cousot andCousot 1979, Dams 1995℄. This way, it is even possible to use abstra
tions to verifysystems in whi
h the data path is not 
ompletely spe
i�ed. By modeling the datapath as a 
olle
tion of units that perform unspe
i�ed fun
tions, the veri�
ation ofthe data path and the veri�
ation of the 
ontrol 
an be largely de
oupled.To be able to interpret spe
i�
ation formulas with respe
t to both the originaltransition system and its abstra
tion, atomi
 formulas must be those spe
ifying thata program variable has a parti
ular abstra
t value. In Theorem 4.11 we showed thatifM1 is simulated byM2, then any formula in the logi
 ACTL valid inM2 is alsovalid inM1. An abstra
tion is a spe
ial simulation; thus if anACTL formula is truein the abstra
t system, we 
an 
on
lude that it is also true in the original system. Inaddition, if the equivalen
e relations indu
ed by the �i are 
ongruen
es with respe
t
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hlingloffto the operations used in the program, then the formula is true in the abstra
tsystem i� it is true of the original system. [Loiseaux, Graf, Sifakis, Bouajjani andBensalem 1995℄ dis
usses abstra
tion te
hniques whi
h preserve properties spe
i�edin �TL.It should be emphasized that the 
hoi
e of suitable abstra
tions �i is an inter-a
tive step in the veri�
ation. Usually, there are several possibilities to abstra
t agiven system, all preserving di�erent properties. In our above example, the 
ho-sen abstra
tion does not allow to prove starvation-freeness of the se
ond pro
ess.However, this situation is not typi
al for industrial appli
ations. In [Clarke, Grum-berg and Long 1994a℄, the following abstra
tions are used to verify a pipelinedarithmeti
/logi
al unit with over 4000 state bits and 101300 rea
hable states.� 
ongruen
e modulo an integer, for dealing with arithmeti
 operations;� single bit abstra
tions, for dealing with bitwise logi
al operations;� produ
t abstra
tions, for 
omputing abstra
tions su
h as the above; and� symboli
 abstra
tions. This is a powerful type of abstra
tion that allows toverify an entire 
lass of formulas simultaneously.Another approa
h at implementing abstra
tion fun
tions is dire
tly at the level ofthe BDD data stru
ture. Given an abstra
tion fun
tion, we 
an redu
e the size of aBDD by merging nodes that have the same abstra
t value. Abstra
t BDDs (ABDDs)are a generalization of Residue BDDs (RBDDs, see [Kimura 1995℄). To obtainan ABDD it is not ne
essary to build the full BDD: ABDDs 
an be 
onstru
teddire
tly from the abstra
tion fun
tion and the des
ription of the system. For moreinformation, see [Clarke, Jha, Lu and Minea 1997℄.13.2. Symmetry Redu
tionsMost large hardware 
ir
uits are highly symmetri
. For instan
e, one 
an �nd sym-metry in memories, 
a
hes, register �les, bus and network proto
ols | any typeof hardware 
ontaining repli
ated stru
tures. For symmetri
 systems, we 
an applyspe
ial abstra
tions to avoid sear
hing the entire state spa
e of the 
ir
uit and to re-du
e the size of the BDDs representing the transition relation[Starke 1991, Emersonand Sistla 1993, Clarke, Filkorn and Jha 1993, Ip and Dill 1993℄.Suppose that we want to represent the boolean fun
tion (formula) '(v1; :::; vn)of n variables by a BDD. Symmetry in a boolean fun
tion is modeled in terms ofa permutation group a
ting on the set of variables of the fun
tion. We say that 'is invariant under a permutation � on v1, ..., vn, if the value of the fun
tion doesnot 
hange when the permutation � is applied to its arguments:'(v1; :::; vn) = '(�(v1); :::; �(vn))The fun
tion is said to be invariant under a group G of permutations, if it is in-variant under ea
h permutation � in G. For example, let '(v1; v2; v3; v4) be thefun
tion whi
h tests whether two 2-bit numbers (v1; v3) and (v2; v4) are equal. Thefun
tion ' is 
learly invariant under the transpositions (1 2) and (3 4). The �rst per-mutation 
orresponds to ex
hanging input bits v1 and v2. The se
ond 
orresponds
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hanging v3 and v4. The fun
tion will, of 
ourse, also be invariant under thegroup generated by the two transpositions.Let Bn be the set of boolean ve
tors of length n, and let G be a permutationgroup on 1; :::; n. Assume that G a
ts on Bn in the natural way. For example,applying the transposition (2 3) to (0; 1; 0; 1) yields (0; 0; 1; 1). We say that twove
tors v1 and v2 are equivalent with respe
t to G if there is a permutation � in Gsu
h that v1 = v2. Sin
e G is a group, this relation is an equivalen
e relation onBn and therefore partitions Bn into a number of equivalen
e 
lasses. The numberof equivalen
e 
lasses may be mu
h smaller than the number of boolean ve
tors inBn.A boolean fun
tion '(v1; :::; vn) is uniquely determined by the set of ve
tors in Bnthat 
ause it to have the value >. If ' is invariant under some group of permutationsG, it may be possible to 
ompa
t the BDD representation for ': if any one of theboolean ve
tors in some equivalen
e 
lass determined by G makes ' true, then all ofthe ve
tors in this equivalen
e 
lass will. Consequently, in the BDD representationfor ' it is ne
essary to keep at most one representative from ea
h equivalen
e 
lass.In many 
ases this signi�
antly redu
es the size of the BDD for '.Essentially the same idea 
an be used to redu
e the size of the state spa
e thatmust be sear
hed by the symboli
 model 
he
king algorithm. Let U be the set ofpossible states of the system, whi
h are determined by the values of v1, ..., vn. Apermutation of these state variables indu
es a permutation on the state-spa
e ofthe system. Let � be the transition relation of the system and � be an equivalen
erelation. We say that � respe
ts � if whenever w1 � w01 and w2 � w02, thenw1 � w2 i� w01 � w02. When the transition relation R respe
ts the equivalen
erelation � determined by a permutation group, it is possible to redu
e the statespa
e to the set of equivalen
e 
lasses U� determined by �. The 
orrespondingtransition relation between these equivalen
e 
lasses is ��. Sin
e we only need onepoint for ea
h equivalen
e 
lass, the model (U�;��) is often mu
h smaller thanthe original model (U;�).Similar as with abstra
tion fun
tions, the redu
ed BDD 
an be 
onstru
ted di-re
tly from a des
ription of the system and the permutation group. For more in-formation, the reader is referred to [Kannan and Lipton 1986, Clarke, Filkorn andJha 1993℄. It is not 
lear, though, how the redu
tions obtained by symmetries in-tera
ts with other abstra
tion te
hniques and partial order methods.13.3. Parameterized SystemsA spe
ial 
ase of a symmetry is that the system 
onsists of an arbitrary number ofsimilar or identi
al pro
esses. Systems of this type are 
ommonpla
e { they o

ur inbus proto
ols and network proto
ols, I/O 
hannels, and many other stru
tures thatare designed to be extensible by adding similar 
omponents. A number of methodshave been proposed for extending model 
he
king to su
h designs [Clarke, Grumbergand Browne 1986, Wolper and Lovinfosse 1989, German and Sistla 1992, Clarke,Grumberg and Jha 1995℄.
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hlingloffAfter using a model 
he
ker to determine the 
orre
tness of a system 
on�guredwith a �xed number of pro
essors or other 
omponents, it is natural to ask whetherthis number is enough in some sense to represent a system with any number of
omponents. This question was approa
hed in [Browne, Clarke and Grumberg 1989℄,who extended CTL to a logi
 
alled indexed CTL. This logi
 allows the restri
teduse of pro
ess quanti�ers as in the formula Vi 'i, whi
h means that the formula 'holds for all pro
esses i. Restri
ting the use of these quanti�ers and eliminating thenext-time operator makes it impossible to write a formula whi
h 
an distinguishthe number of pro
esses in a system. By establishing an appropriate relationshipbetween a system with n pro
esses and a system with n + 1 pro
esses, one 
anguarantee that all systems satisfy the same set of formulas in the indexed logi
.This method was used to establish the 
orre
tness of a mutual ex
lusion algorithmby exhibiting a bisimulation relation between an n-pro
ess system and a 2-pro
esssystem, and applying model 
he
king to the 2-pro
ess system.One disadvantage of the indexing method is that the bisimulation relation mustbe proved \by hand" in an ad ho
 manner. Finite state methods 
annot be used to
he
k it be
ause it is a map between states of a �nite state pro
ess and a pro
ess withan arbitrary number of states. A method without this disadvantage was proposedin [Kurshan and M
Millan 1989℄, and independently in [Wolper and Lovinfosse1989℄. This method uses a pro
ess Q to a
t as an invariant, as the number ofpro
esses in
reases. If P represents one pro
ess in the system, then by showingthat the possible exe
utions of P 
omposed with Q are 
ontained in the possibleexe
utions of Q, we 
an 
on
lude by indu
tion that Q adequately represents asystem of any �nite number of pro
esses. Sin
e both P 
omposed with Q and Q are�nite state pro
esses, the 
ontainment relation 
an be 
he
ked automati
ally. Thismethod has been applied in [M
Millan and S
hwalbe 1992℄ to the En
ore Gigamax
a
he 
onsisten
y proto
ol. By slightly generalizing the model of one pro
essor, aninvariant pro
ess for this system 
ould be obtained whi
h stands for any number ofpro
essors on a bus.These indu
tion te
hniques have been generalized by a number of authors(e.g., [Marelly and Grumberg 1991℄). However, the main problem in all of theseveri�
ation methods is that of 
onstru
ting the invariant pro
ess. Currently, theinvariant pro
ess must be generated intera
tively. Counterexamples produ
ed bymodel 
he
king tools are helpful for guiding the 
onstru
tion, but it would be use-ful to have automated te
hniques for this purpose. To make these methods generallya

epted, more results on the 
ombination of model 
he
king and indu
tive theoremproving and powerful heuristi
s are ne
essary.14. Compositionality and Modular Veri�
ationAs explained in Se
tion 9, most 
ir
uits and proto
ols are modeled as networks of
ommuni
ating parallel pro
esses. The 
omplexity of these models grows exponen-tially in the number of pro
esses; thus, monolithi
 veri�
ation of su
h designs 
anbe hard. Therefore, it may be ne
essary to verify small 
omponents separately and,
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king 1765from that, derive the 
orre
tness of the whole design, without building a model forthe entire system. This so-
alled 
ompositionality paradigm has been investigatedby a number of authors [deRoever, Langmaa
k and Pnueli 1998℄.14.1. Model Che
king and Theorem ProvingAssume a pro
ess 
onsisting of a parallel 
omposition of several subpro
esses, whereall subpro
esses have asso
iated formulas spe
ifying their properties. Whenever aproperty of a parallel 
omposition is to be proven, we 
an �rst prove for ea
h 
om-ponent that the 
orresponding property holds, and then infer in an adequate proofsystem that the global property of the 
omposition also holds. Model 
he
king 
anbe used to verify the individual 
omponents; then theorem proving te
hniques 
anbe used to derive global properties of their parallel 
omposition. The 
ompositionstep substantially simpli�es the veri�
ation problem, sin
e it avoids building theglobal state spa
e. Thus, the 
ompositionality paradigm is a promising perspe
tivefor the 
ombination of model 
he
king with theorem proving.Moreover, this approa
h supports the hierar
hi
al design pro
ess. One 
an workout spe
i�
ations for all parts of a 
omplex system and prove that if every 
ompo-nent satis�es its spe
i�
ation, then the whole system is 
orre
t. When the system isimplemented it is suÆ
ient to verify ea
h 
omponent separately. It is also possibleto 
hange the a
tual implementation of some 
omponent without having to repeatthe veri�
ation of the entire system as soon as the new implementation meets itslo
al requirements.For instan
e, 
onsider the problem of verifying a 
ommuni
ations proto
ol thatis modelled by three pro
esses: a transmitter, some type of network, and a re
eiver.Suppose that the spe
i�
ation for the system is that data is eventually transmitted
orre
tly from the sender to the re
eiver. Su
h a spe
i�
ation might be de
omposedinto three lo
al properties. First, the data should eventually be transferred 
orre
tlyfrom the transmitter to the network. Se
ond, the data should eventually be trans-ferred 
orre
tly from one end of the network to the other. Finally, the data shouldeventually be transferred 
orre
tly from the network to the re
eiver. We might beable to verify the �rst of these lo
al properties using only the transmitter and thenetwork, the se
ond using only the network, and the third using only the networkand the re
eiver. By de
omposing the veri�
ation in this way, we never have to
ompose all of the pro
esses and therefore avoid the state explosion phenomenon.Whereas model 
he
king for the veri�
ation of the individual 
omponents is awell-understood te
hnique, for the derivation of global system properties from lo
al
omponents properties an appropriate 
al
ulus is needed. There are two possibilitiesfor implementing a proof system for su
h a 
al
ulus. The �rst is to in
orporate the
al
ulus into a general purpose theorem prover. For example, there are embeddingsof Lamport's temporal logi
 of a
tions (TLA) into the theorem provers LARCH,PVS and Isabelle (see, e.g., [Abadi, Lamport and Merz 1996℄). However, the 
om-putational 
omplexity inherent in su
h an approa
h may prevent the resulting toolfrom being appli
able for large industrial designs.
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hlingloffThe se
ond possibility is to build a spe
ial purpose theorem prover for the 
hosen
al
ulus. Several suggestions for a 
on
rete framework following this approa
h havebeen made. The proof system of [Stirling 1987℄ is, probably, the most 
ompositionalin the sense that it 
learly redu
es the veri�
ation problem to the veri�
ation of
omponents. However, the logi
 whi
h is used in this paper is too weak to be ofmu
h interest in pra
ti
e. In [Andersen, Stirling and Winskel 1994℄ the parallel
omposition operator was eliminated basi
ally by en
oding one of the subpro
essesinto the formula. In the worst 
ase this results in an exponential blow-up in the sizeof the formula, and the total 
omplexity remains the same as for non-
ompositionalmodel 
he
king. The proof system of [Dam 1995℄ is 
omplete for �nite-state pro-
esses. However, it uses a silent � a
tion for all syn
hronizations, and in the � -rulethere have to be as many premises as there are a
tions in the model. Therefore,one 
an only have a �xed set of a
tions.The STeP system [Bj�rner, Browne, Chang, Col�on, Kapur, Manna, Simpa andUribe 1995, Bj�rner, Browne, Chang, Col�on, Kapur, Manna, Sipma and Uribe 1996℄implements another approa
h to 
ombining model 
he
king and theorem provingunder a single framework. However, the user must de
ide what has to be model
he
ked and what to be derived in a theorem prover. It would be desirable to 
reatethe veri�
ation agenda automati
ally, su
h that the user will only have to supplysome intermediate properties and possibly assist the theorem prover during a proofsear
h.14.2. Compositional Assume-Guarantee ReasoningIdeally, 
ompositional reasoning exploits the natural de
omposition of a 
omplexsystem into simpler 
omponents, handling one 
omponent at a time. In pra
ti
e,however, when a 
omponent is veri�ed it may be ne
essary to assume that theenvironment behaves in a 
ertain manner. If the other 
omponents in the systemguarantee this behavior, then we 
an 
on
lude that the veri�ed properties are validin the entire system. These properties 
an be used to dedu
e additional globalproperties of the system.The assume-guarantee paradigm (
f. e.g., [Pnueli 1984℄) uses this method. Typi-
ally, a formula is a triple h iMh'i where  and ' are temporal formulas and Mis a program. The formula is valid if whenever M is part of a system satisfying  ,the system must also satisfy '. A typi
al proof shows that h iMh'i and h>iM0h ihold and 
on
ludes that h>iM k M0h'i is valid. This proof strategy 
an also beexpressed as an inferen
e rule: h iMh'ih>iM0h ih>iM kM0h'iThe soundness of an assume-guarantee rule of this form is straightforward. Amore powerful form that also involves pure temporal reasoning is:
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king 1767h 1iM1h'1ih 2iM2h'2i�1 ^ '1 !  2�1 ^ '2 !  1'1 ^ '2 ! �2h�1iM1 k M2h�2iIn the 
omposed system M1 k M2, the module M2 is part of the environmentofM1 and vi
e versa.M2 guarantees via '2 that the assumption  1 ofM1 is met,provided that its own assumption  2 holds.M1, in turn, guarantees the assumptionof M2, provided that its assumption holds.As shown in [Pnueli 1984℄, 
areless appli
ation of this rule may lead to a 
ir
ularreasoning and, thus, may result in an erroneous 
on
lusion. To avoid this, Pnuelisuggested asso
iating a parameter over some well{founded set with ea
h temporalformula in the assume-guarantee rule. The rule then allows for a temporal for-mula to be dedu
ed only from formulas with smaller parameters. For an abstra
ta

ount of 
omposition, see [Merz 1997℄. Several tools have been developed thatpermit this type of reasoning to be automated [Josko 1993, Long 1993, Grumbergand Long 1994℄. The tools provide a ma
hinery for 
he
king automati
ally the va-lidity of formulas of the form h iMh'i. These tools, however, su�er from two mainde�
ien
ies.Firstly, they do not provide any me
hanism to avoid or to lo
ate 
ir
ular reason-ing. Thus, they 
ount on the user \
ommon sense" for 
orre
t appli
ation of themethod. An open problem is to develop an algorithm for 
he
king non-
ir
ularityin assume-guarantee reasoning. This 
ould bridge the gap between the abstra
tassume-guarantee paradigm and its 
omputerized version.Se
ondly, in order to obtain a powerful method, the preorder and the semanti
sof the logi
s should both in
lude a notion of fairness. This is essential for modellingsystems (hardware or 
ommuni
ation proto
ols) at the appropriate level of abstra
-tion. Unfortunately, no eÆ
ient te
hnique exists to 
he
k or 
ompute fair preorderbetween models. In [Grumberg and Long 1994℄, it is suggested how to 
he
k thefair preorder in some simple 
ases. In the general 
ase, the problem is PSPACE-hard [Kupferman and Vardi 1996℄. A notion of fair preorder that, on the one hand,is suitable for 
omputerized assume-guarantee reasoning, and on the other hand,
an be 
he
ked eÆ
iently, would make 
ompositional reasoning less error prone and
ould widen the appli
ability of this type of reasoning.15. Further Topi
sThere are several extensions to ea
h of the topi
s presented here, and in many areasthere is a lot of ongoing a
tivity. Current resear
h 
an be 
lassi�ed into two maintra
ks:� improve eÆ
ien
y and appli
ability of present model 
he
king te
hniques, and



1768 Edmund M. Clarke and Bernd-Holger S
hlingloff� extend the realm of appli
ation and merge model 
he
king with other formalmethods.A number of papers on industrial 
ase studies, advan
ed heuristi
s, and improvedalgorithms and data stru
tures follows the �rst tra
k. The se
ond tra
k en
ompassespapers on model 
he
king for in�nite state systems, integration with simulation andtesting, as well as model 
he
king for real-time, probabilisti
 and se
urity relatedappli
ations.15.1. Combination of Heuristi
sPartial order te
hniques attempt to alleviate the state explosion problem by 
on-stru
ting a redu
ed state spa
e to be sear
hed by the model 
he
king algorithm.Originally introdu
ed in the 
ontext of untimed models, they have been expandedto handle real time systems [Yoneda and S
hlinglo� 1997, Sloan and Buy 1997℄. Inturn, symboli
 te
hniques have been applied to model 
he
king for real-time sys-tems. It seems to be a 
hallenging task to 
ombine the advantages of partial orderredu
tion with a symboli
 representation for real-time system veri�
ation. One ofthe intrinsi
 diÆ
ulties is that the partial order redu
tion, as des
ribed in se
tion 11,needs to have a

ess to the sear
h history, whi
h is trivially implemented for expli
itstate sear
h but has no immediate 
orresponden
e in the symboli
 
ase. Re
ent ad-van
es [Alur et al. 1997, Kurshan, Levin, Minea, Peled and Yenigun 1997℄ haveshown that this te
hnique 
an be 
ombined with symboli
 model 
he
king, whi
hin many 
ases allows mu
h larger state spa
es to be handled. One of these meth-ods [Kurshan et al. 1997℄ allows partial order redu
tion to be performed stati
ally,by analyzing the state graph of ea
h asyn
hronous system 
omponent. Existingpartial order methods for real-time models are dynami
 in the sense that they usetiming information obtained during the state spa
e sear
h. However, probably asigni�
ant part of the dependen
y information 
an be obtained stati
ally as well,making the 
ombination with symboli
 te
hniques possible [Minea 1999℄.Partial order methods mostly have been investigated within the 
ontext of(stutter-invariant) linear temporal logi
 model 
he
king. The method redu
es the
omplex part of the model 
he
king problem, namely the size of the model. Thetableau for an LTL spe
i�
ation is usually small. However, the state explosion prob-lem is even more prevalent in the 
ase of 
onforman
e 
he
king and (bi-)simulationbetween automata. A problem here is how to apply partial order redu
tion simul-taneously to both models.A key fa
tor that a�e
ts the eÆ
ien
y of partial order redu
tion is the numberof visible transitions, i.e., transitions that may 
hange a predi
ate in the 
he
kedproperty. With more and more 
omplex spe
i�
ations, the number of visible tran-sitions in
reases and less redu
tion 
an be a
hieved. Some approa
hes to alleviatethis problem have been proposed in [Peled 1993℄. One possibility is to take advan-tage of the stru
ture of the spe
i�
ation and rewrite it as a 
ombination of simplerproperties. However, no optimal solution is known to date.Other issues that are important in 
onjun
tion with the 
ombination of heuris-
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s are abstra
tion and 
ompositionality. It is still unknown how the eÆ
ien
yimprovement gained by symboli
 representation and partial order analysis intera
twith abstra
tion te
hniques and 
ompositional reasoning. To be able to verify evenbigger systems, it is important to develop methods and tools that allow to 
ombinethe bene�ts of several methods.15.2. Real Time SystemsWithin the last few years, several attempts have been made to apply formal analysismethods also to real time systems . The ideas and te
hniques presented so far arewell-suited for the veri�
ation of systems in whi
h only 
ausal aspe
ts of time areimportant. In some appli
ations it is desirable to 
onsider quantitative aspe
ts oftiming behavior. We say that a system has to satisfy hard real time 
onstraints, if its
orre
tness depends on the value or progress of \the real" 
lo
k. In hard real-timesystems, not only the relative order of events is important, but also their absoluteduration with respe
t to a (
on
eptual) global 
lo
k. For example, in a traÆ
 light
ontroller, it might not be suÆ
ient to show that if a pedestrian pushes a button,then eventually the green lights will be on. To allow approa
hing 
ars to pass, thelight should stay red after the button has been pushed for at least 10 se
onds. Toavoid that pedestrians start 
rossing at red, it should also 
hange not later than30 se
onds after the request. In this example, we assume that both the pedestrianand the traÆ
 light 
ontroller have the same measure of the duration of a se
ond.Of 
ourse, it is possible to model the global 
lo
k as separate 
on
urrent part ofthe system. Then this global 
lo
k syn
hronizes the lo
al 
lo
ks of both pedestrianand traÆ
 light 
ontroller. Thus, it is possible to 
onsider real-time veri�
ation asspe
ial 
ase of the untimed methods des
ribed above. However, in hard real-timesystems, global time is ubiquitous, therefore this approa
h may not be the mosteÆ
ient.It is important to note that \hard real time" does not mean \as fast as possible".As the above example shows, predi
tability of timing behavior 
an also mean thatsome events do not o

ur before a 
ertain amount of time has elapsed. As anotherexample, 
onsider a real-time proto
ol, where all ne
essary 
omputation steps mustbe performed in exa
tly a �xed time slot. Currently, hard real time systems aredesigned with trial and error: if a 
omponent is too fast, an idle waiting loop isin
orporated; if it is too slow, more expensive hardware is used. This pro
edure hasseveral disadvantages. Firstly, it 
an add intri
ate hardware-software dependen
iesto a system. Therefore the migration to new hardware generations is 
ompli
ated.Se
ondly, the exe
ution time of single statements 
an vary depending on inputdata, nondeterministi
 s
heduling, 
a
he behavior, et
. Timing measurement 
annot guarantee that the a
tual timing will be within required boundaries. Finally, inappli
ations like the design of asyn
hronous 
ir
uits, an arbitrary delay of signals
an be expensive.In real time veri�
ation, 
lo
k values usually are assumed to be nonnegative real,rational or natural numbers. As opposed to untimed systems, there is no gener-
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epted representation of sets or regions of timing values. Common tools usedi�eren
e bound matri
es [Dill 1989℄ and 
lo
k regions [Alur, Cour
oubetis andDill 1990, Alur 1991℄ to represent timing 
onstraints. Real time systems often aremodelled with timed automata [Alur 1998, Alur and Dill 1990℄ or timed transitionsystems [Henzinger, Manna and Pnueli 1992℄. For an overview on real time log-i
s and models, see [Alur and Henzinger 1992℄. Rea
hability and model 
he
kingalgorithms for these models are given in [Alur et al. 1990℄. Generally, the 
omplex-ity of verifying real-time systems is mu
h higher than that for untimed systems.Moreover, timing 
onstru
ts are often represented using an expli
it state represen-tation. Consequently, the number of states that 
an be handled is relatively small(105 � 107). Thus, at present, only highly abstra
ted examples (e.g., [Ar
her andHeitmeyer 1996℄) 
an be veri�ed automati
ally by model 
he
king tools like Kro-nos [Yovine 1997, Yovine 1998℄ or Uppaal [Larsen, Petterson and Yi 1997, A
eto,Bergueno and Larsen 1998℄.It is a 
hallenging resear
h task to �nd a paradigm separating the real-time 
om-ponent from the fun
tional and rea
tive 
omponent in the spe
i�
ation of typi
alreal-time requirements. This 
ould make model 
he
king an integral 
omponent inthe development of rea
tive real-time systems.15.3. Probabilisti
 Model Che
kingSome safety-
riti
al systems have a sto
hasti
 behavior. This may be either dueto the fa
t that some part of the outside world, whi
h is sto
hasti
 in nature, ismodelled as part of the system, or be
ause of hardware failures whi
h may happensto
hasti
ally. Available model 
he
kers usually model the probabilisti
 behavior ofsu
h systems non-deterministi
ally, missing the ability to assess how probable somesystem behavior is.A number of theoreti
al papers have been written on probabilisti
 veri�
ation.EÆ
ient algorithms have been given by several authors; for example, there is anLTL model 
he
king algorithm whi
h is exponential in the size of the formula andpolynomial in the size of the Markov 
hain [Cour
oubetis and Yannakakis 1995℄.However, 
urrently there are no probabilisti
 model 
he
king tools available whi
h
an verify systems of realisti
 size. The bottlene
k is the 
onstru
tion of the statespa
e and the ne
essity to solve huge systems of linear equations. A more eÆ
ientalternative 
ould be to perform the probability 
al
ulations using Multi-TerminalBinary De
ision Diagrams (MTBDDs).MTBDDs [Bahar, Frohm, Gaona, Ha
htel, Ma
ii, Pardo and Somenzi 1993,Clarke, Fujita, M
Geer, Yang and Zhao 1993℄ di�er from BDDs in that the leavesmay have values other than 0 and 1; in this 
ase the leaves 
ontain transition proba-bilities. MTBDDs 
an be used to represent D{valued matri
es eÆ
iently. Considera 2m � 2m{matrix A. Its elements aij , 
an be viewed as the values of a fun
-tion fA : f0; : : : 2m � 1g � f0; : : :2m � 1g ! D, where fA(i; j) = aij . Using thestandard en
oding 
 : Bm ! f0; : : :2m � 1g of boolean sequen
es of length lessthan m into the integers, this fun
tion may be interpreted as a D{valued boolean
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tion f : Bm ! D where f(x; y) = fA(
(x); 
(y)) for x = (x0 : : : xm�1) andy = (y0 : : : ym�1). This transformation now allows matri
es to be represented asMTBDDs. In order to obtain an eÆ
ient MTBDD{representation, the variables of fare permuted. Instead of the MTBDD for f(x0 : : : xm�1; y0 : : : ym�1), the MTBDDobtained from f(x0; y0; x0; y0; : : : xm�1; ym�1) 
an be used. This 
onvention imposesa re
ursive stru
ture on the matrix from whi
h eÆ
ient re
ursive algorithms for allstandard matrix operations 
an be derived.MTBDDs 
an be integrated with a symboli
 model 
he
ker and have the poten-tial to outperform other matrix representations be
ause they are very 
ompa
t. Forexample, in [Ha
htel, Ma
ii, Pardo and Somenzi 1996℄ symboli
 algorithms were de-veloped to perform steady-state probabilisti
 analysis for systems with �nite statemodels of more than 1027 states. While it is diÆ
ult to provide pre
ise time 
om-plexity estimates for probabilisti
 model 
he
king using MTBDDs, the su

ess ofBDDs in pra
ti
e indi
ates that this is likely to be a worthwhile approa
h.The standard model used in probabilisti
 model 
he
king are �nite state dis
rete-time Markov 
hains ([Hansson and Jonsson 1989, Cour
oubetis and Yannakakis1995, Aziz, Singhal, Balarin, Brayton and Sangiovanni-Vin
entelli 1995, Aziz, San-wal, Singhal and Brayton 1996℄). This model is a powerful notation for the depend-ability analysis of fault-tolerant real-time 
ontrol systems, performan
e analysis of
ommer
ial 
omputer systems and networks, and operation of automated manufa
-turing systems.To spe
ify properties of �nite state dis
rete-time Markov 
hains, Probabilis-ti
 Real Time Computation Tree Logi
 (PCTL) was introdu
ed in [Hansson andJonsson 1989℄. PCTL augments CTL with time and probability; it is a very ex-pressive logi
 and o�ers simple model 
he
king algorithms that 
an be implementedusing symboli
 te
hniques in a straightforward manner [Baier, Clarke, Hartonas-Garmhausen, Kwiatkowska and Ryan 1997℄.However, in order to make model 
he
king a standard method for probabilisti
veri�
ation, more experien
es with industrial size examples, typi
al requirementsand eÆ
ient tools are ne
essary.15.4. Model Che
king for Se
urity Proto
olsSe
urity proto
ols are another promising area for the appli
ation of model 
he
kingte
hniques. The in
reasing amount of 
on�dential information (su
h as monetarytransa
tions) sent over inse
ure 
ommuni
ation links (su
h as the internet) requiresmore and more sophisti
ated en
ryption proto
ols. Like hardware designs, theseproto
ols 
an have subtle bugs whi
h are diÆ
ult to �nd. It may be possible touse the same exhaustive sear
h te
hniques as in model 
he
king to verify se
urityproto
ols. By examining all possible exe
ution tra
es of the proto
ol in the pres-en
e of a mali
ious adversary with well de�ned 
apabilities, it may be possible todetermine if an atta
k on the proto
ol 
ould be su

essful.Typi
ally, se
urity proto
ols 
an be thought of as a set of prin
ipals whi
h sendmessages to ea
h other. The hope is that by requiring agents to produ
e a se-
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e of formatted and en
rypted messages, the se
urity goals of the proto
ol 
anbe a
hieved. For example, if a prin
ipal A re
eives a message en
rypted with akey known only by prin
ipal B, then prin
ipal A should be able to 
on
lude thatprin
ipal B 
reated the message. However, it would be in
orre
t to 
on
lude thatprin
ipal A is talking to prin
ipal B. An adversary 
ould be replaying a messageoverheard during a previous 
onversation between A and B. If the aim is to keep themessage se
ret, then as long as the adversary does not learn the key, this se
urityproperty is satis�ed. If, however, the aim is to authenti
ate B to A, then 
learlythis is not satis�ed sin
e the message was not ne
essarily sent by B.Sin
e the reasoning behind the 
orre
tness of these proto
ols 
an be sub-tle, resear
hers have tried turning to formal methods to prove proto
ols 
orre
t.In [Burrows, Abadi and Needham 1989℄, a logi
 of belief is developed in whi
h one
ould formally reason about se
urity proto
ols by stating axioms about the proto
oland trying to derive theorems about its se
urity. [Kindred and Wing 1996℄ addedsome automation to this pro
ess by generating theory 
he
kers for these logi
s.In [Meadows 1994℄, a di�erent approa
h is taken by modelling a se
urity proto
olin terms of a set of rewrite rules. These rules 
apture the way that the adversary 
anlearn new information using en
ryption and de
ryption, and by re
eiving replies tomessages sent to parti
ipants of the proto
ol. In [Woo and Lam 1993℄, the authorspropose a model for authenti
ation and provide a number of inferen
e rules that
ould be used for proving properties in this model. The paper [Mit
hell, Mit
helland Stern 1997℄ investigated the use of Mur', a previously existing model 
he
ker,for verifying se
urity proto
ols.A spe
ial purpose model 
he
ker for authenti�
ation proto
ols 
ould 
ontain twoorthogonal 
omponents. The �rst is a state exploration 
omponent. Ea
h honestagent 
an be des
ribed by the sequen
e of a
tions that it takes during a run ofthe proto
ol, and 
an be viewed as a �nite-state ma
hine. A tra
e of the a
tionsperformed by the asyn
hronous 
omposition of these state ma
hines 
orrespondsto a possible exe
ution of the proto
ol by the agents. By performing an exhaustivesear
h of the state spa
e of the 
omposition, it 
an be determined if various se
urityproperties are violated.The se
ond 
omponent would be the message derivation engine whi
h is usedto model what the adversary is allowed to do. It 
an be implemented as a simplenatural dedu
tion theorem prover for 
onstru
ting valid messages. The adversary
an inter
ept messages, misdire
t messages, and generate new messages using en-
ryption, de
ryption, 
on
atenation (pairing), and proje
tion. Ea
h time a messageis sent, the adversary inter
epts the message and adds it to the set of assumptionsit 
an use to derive new messages. Whenever an honest agent re
eives a message,the message must have been generated by the derivation engine.A �rst prototypi
al implementation shows that this framework 
an be su

ess-fully used to analyze threats and exhibit possible atta
ks in authenti
ation proto-
ols. It is also general enough to handle other kinds of se
urity proto
ols su
h askey ex
hange and ele
troni
 
ommer
e. Moreover, 
ombining model 
he
king withother automated dedu
tion te
hniques 
ould make it possible to verify both theen
ryption algorithm and the a
tual implementation at the same time. However,
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king 1773for a widespread use it is additionally ne
essary to integrate the model 
he
kingapproa
h with other, more well-established se
urity design methods.A
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