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Model Cheking 16371. IntrodutionModel heking is an automati tehnique for verifying orretness properties ofsafety-ritial reative systems. This method has been suessfully applied to �ndsubtle errors in omplex industrial designs suh as sequential iruits, ommunia-tion protools and digital ontrollers [Browne, Clarke and Dill 1985, Clarke, Emer-son and Sistla 1986, Clarke, Long and MMillan 1991, Burh, Clarke, Dill, Longand MMillan 1994℄. It is expeted that besides lassial quality assurane mea-sures suh as stati analysis and testing, model heking will beome a standardproedure in the design of reative systems.A reative system [Harel and Pnueli 1985, Manna and Pnueli 1992, Manna andPnueli 1995℄ onsists of several omponents whih are designed to interat with oneanother and with the system's environment. In ontrast to funtional (or trans-formational) systems, in whih the semantis is given as a funtion from input tooutput values, a reative system is spei�ed by its temporal properties. A (tempo-ral) property is a set of desired behaviors in time; the system satis�es the propertyif eah exeution of the system belongs to this set. From a logial viewpoint, thesystem is desribed by a semantial (Kripke-)model , and a property is desribed bya logial formula. Arguing about system orretness, therefore, amounts to deter-mining the truth of formulas in models.In order to be able to perform suh a veri�ation, one needs a modelling languagein whih the system an be desribed, a spei�ation language for the formulationof properties, and a dedutive alulus or algorithm for the veri�ation proess.Usually, the system to be veri�ed is modeled as a (�nite) state transition graph,and the properties are formulated in an appropriate propositional temporal logi.An eÆient searh proedure is then used to determine whether or not the statetransition graph satis�es the temporal formulas. When model heking was �rstdeveloped in 1981 [Clarke and Emerson 1981, Emerson and Clarke 1982, Quielle andSifakis 1981℄, it was only possible to handle onurrent systems with a few thousandstates. In the last few years, however, the size of the onurrent systems that anbe handled has inreased dramatially. By using sophistiated data strutures andheuristi searh proedures, it is now possible to hek systems many orders ofmagnitude larger [Burh, Clarke, MMillan, Dill and Hwang 1992℄.Muh of the suess of model heking is due to the fat that it is a fully au-tomati veri�ation method. Interative methods are more general but harder touse; automati methods have a limited range but are more likely to be aepted.In interative veri�ation, the user provides the overall proof strategy; the mahineaugments this by� heking the orretness of eah step,� maintaining a list of assumptions and subgoals,� applying the rules and substitutions whih the user indiates, and by� searhing for appliable transformation rules and assumptions.Sophistiated tools are also able to prove ertain lemmas automatially, usually byapplying a heuristi searh. Although there has been onsiderable researh on the



1638 Edmund M. Clarke and Bernd-Holger Shlingloffuse of theorem provers, term rewriting systems and proof hekers for veri�ation,these tehniques are time onsuming and often require a great deal of manualintervention. Moreover, sine most interative provers are designed for undeidablelanguages (e.g., �rst or higher order logi), the proof proess an never be ompletelyautomati. User interation is required, e.g., to �nd loop invariants or indutivehypotheses, and only an experiened user an perform a nontrivial proof.On the other hand, with model heking all the user has to provide is a modelof the system and a formulation of the property to be proven. The veri�ation toolwill either terminate with an answer indiating that the model satis�es the formulaor show why the formula fails to hold in the model. These ounterexamples arepartiularly helpful in loating errors in the model or system.With the ompletely automati approah it may be neessary for the model hek-ing algorithm to traverse all reahable states of the system. This is only possible ifthe state spae is �nite. Whereas other automated dedution methods may be ableto handle some in�nite-state problems, model heking usually is onstrained to a�nite abstration. In fat, model heking algorithms an be regarded as deisionproedures for temporal properties of �nite-state reative systems. However, manyinteresting systems like sequential iruits or network protools are �nite state.Moreover, in the design of safety ritial systems it is often possible to separate the(�nite state) ontrol struture from the (in�nite state) data struture of a givenmodule. Finally, in many ases it is possible to abstrat an in�nite domain into anappropriate �nite one, suh that \interesting" properties are preserved. In an `aposteriori' veri�ation, some e�orts may be neessary to onstrut suh an abstra-tion from a given program. In a strutured software development proess, however,the abstrat system often arises naturally during an early design phase.A main impediment of the fully automati approah is the state explosion: ifany state of the system is uniquely desribed by n state bits, then there are 2npossible states the system an be in. At the present time, the number of states thatan be represented expliitly (e.g., by lists or hash tables) is approximately 106.In [Burh, Clarke, MMillan, Dill and Hwang 1992, MMillan 1993℄, binary dei-sion diagrams (BDDs) were used to represent state spaes symbolially. With thistehnique, models with several hundred state bits and more than 10100 reahablestates an be heked. Beause of this and other tehnial advanes in the availabletools it is now possible to verify reative systems of realisti industrial omplex-ity, and a number of major ompanies inluding Intel, Motorola, ATT, Fujitsu andSiemens have started using symboli model hekers to verify atual designs.We now desribe a onrete example of a nontrivial appliation, where modelheking has been used to improve a proposed international standard. Considerthe ahe oherene protool desribed in the draft IEEE Futurebus+ stan-dard [IEEE 1994℄. This protool is required to insure oherene: onsisteny of datain hierarhial systems omposed of many proessors and ahes interonneted bymultiple bus segments. Suh protools are notoriously omplex and, therefore, quitediÆult to debug. The Futurebus+ protool maintains oherene by having the in-dividual ahes observe all bus transations. In order to inrease performane, the



Model Cheking 1639protool allows transations to be split. That is, the ompletion of a transation maybe delayed and the bus freed. Then, it is possible to servie loal requests while theremote request is being proessed. At some later time, an expliit response is issuedto omplete the transation. Consider a sample on�guration with two proessorsP1 and P2 aessing data from a ommon memory via a single bus (see Fig. 1 onpage 1640). Initially, neither proessor has a opy of the data in its ahe; they aresaid to be in the invalid state. Proessor P1 issues a read shared request to obtaina readable opy of the data from memory. P2 may observe this transation and alsoobtain a readable opy, suh that at the end of the transation, both ahes ontaina shared unmodified opy of the data. Next, if P1 deides to modify the data, theopy held by P2 must be eliminated in order to maintain oherene. Therefore, P1issues an invalidate transation on the bus. When P2 noties this transation,it purges the data from its ahe. After exeuting the invalidate-transation, P1now has an exlusive opy of the data.The standard spei�es the possible states of the ahe data within eah proessorand how this state is updated during eah possible transation. It onsists of roughly300 so-alled attributes, whih are essentially boolean variables together with somerules for setting and learing them. In the automated veri�ation of the Futurebus+protool desribed in [Clarke, Grumberg, Hiraishi, Jha, Long, MMillan and Ness1993℄, these attributes were transformed into the input language of the SMV modelheker [MMillan 1993℄. For example, the following SMV ode fragment indiateshow the ahe state is updated when the ahe issues a read shared transation:next(state) :=ase CMD=read_shared:ase state=invalid:ase !SR & !TF: exlusive_unmodified;!SR : shared_unmodified;1 : invalid;esa;...esa;...esa;If the transation is not split (!SR), then the data will be supplied to the ahe.Either no other ahes will read the data (!TF), in whih ase the ahe obtainsan exlusive unmodified opy, or some other ahe also obtains the data, andeveryone obtains shared unmodified opies. If the transation is split, the ahedata remains in the invalid state.The model for the ahe oherene protool onsists of approximately 2300 linesof SMV ode (not ounting omments). The model is highly nondeterministi, bothto redue the omplexity of veri�ation by hiding details, and to over alloweddesign hoies. This model is ompiled into an internal BDD representation by theSMV program. Corretness properties are formulated in the temporal logi CTL.For example, ahe onsisteny is desribed by requiring that if two ahes have



1640 Edmund M. Clarke and Bernd-Holger Shlingloffopies of a ahe line, then they agree on the data in that line:AG (P1.readable & P2.readable -> P1.data = P2.data)This formula is evaluated automatially on the BDD representation of the model.SMV �nds that it is not valid and exhibits a senario whih ould lead to the error:initially, both ahes are invalid. Proessor P1 obtains an exlusive unmodifiedopy of the data (say, data1) as desribed above and the data of P2 is invalid (seeFig. 1). Then, P2 issues a read modified, whih P1 splits for invalidation. That is,the memory supplies a opy of the data to P2, and P1 postpones the invalidation ofahe data until loal ations are ompleted. Still having an exlusive unmodifiedopy of data1, P1 now modi�es the data (say, into data2) and transitions toexlusive modified. At this point, P1 and P2 are inonsistent. This bug an be�xed by requiring P1 to go to the shared unmodified state when it splits theread modified transation for invalidation.
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read_modifiedFigure 1: Error senario in the Futurebus+ protoolGiven a formal model of a system to be veri�ed, and a formulation of the proper-ties the system should satisfy, there are three possible results whih an automatedmodel heker an produe:1. either it �nds a proof for the formula in the model and outputs \veri�ed", or2. it onstruts a refutation, i.e., an exeution of the (model of the) system whihdissatis�es the (formulation of the) property, or3. the omplexity of the veri�ation proedure exeeds the given memory limit ortime bound.If there is not suÆient spae or time, in some ases it is possible to use bigger andfaster mahines for veri�ation. Alternatively, one an use a oarser abstration ofthe system and its properties. The third possibility is to employ heuristis whihimprove the performane of the veri�er. Some of these heuristis are disussed inSetions 10 and 11.In some sense it is more interesting to get a refutation than to get a proof. Witha refutation, one an deide whether it is due to the modelling and formulation, orwhether this undesired sequene of events ould indeed happen in reality. In theformer ase, the unrealisti behavior an be eliminated by additional assumptionson the model or formula. In the latter ase, one has found a bug, and the systemand model an be hanged appropriately. One of the major advantages of the fully



Model Cheking 1641automati approah is that there is almost no additional overhead for the newveri�ation of the hanged system.If the model heker is able to prove all spei�ed formulas for the given model,then the veri�ation is suessfully ompleted. However, there an never be anyguarantee that a system whih has been veri�ed by a omputer tool will funtionorretly in reality. Even if we ould assume that the veri�er's hard- and softwareis orret (whih we an not), there is a fundamental soure of inauray involved.Veri�ation proves theorems about models of systems and formulations of proper-ties, not about physial systems and desired behavior; we an never know to whatextent our models and formulations reet physial reality and intuitions. It is notpossible to guarantee that a physial system will behave orretly in unexpeted(i.e., unmodeled) situations. It would be unreasonable, however, to rejet formalmethods beause they annot o�er suh guarantees. Civil engineering an neverprove that a ertain building will not ollapse. Nevertheless it uses mathematialmodels to alulate loads and wall thiknesses and so on. Similarly, we an neverprove that our model adequately represents the reality. Therefore we an neverprove that a system will funtion as planned. Nevertheless, ompared to urrentpratie, the use of formal methods an signi�antly derease the amount of errorsin omplex software systems. A temporal logi spei�ation adds redundany to thedesign by restating an intended property in a (di�erent) onise formalism. Com-puter aided veri�ation an help to loate errors and to inrease reliability of thesesystems. In the future, formal veri�ation by model heking will augment lassialsoftware design tools suh as strutured analysis, ode review and testing.In this survey, we give a tutorial on the theoretial foundations and tehniquesused in model heking. Starting with elementary material on propositional tem-poral logis and automata we derive basi model heking algorithms from om-pleteness results and tableau deision proedures. Then we disuss appliations andtehniques for eÆient implementation of these algorithms. We extend the resultsto more expressive logis and models. Finally, we disuss some open problems andfuture researh diretions in the area. At the end of this hapter, the reader an�nd a list of all symbols and notations and an index of topis.2. Logial Languages, ExpressivenessOne of the major onerns of philosophial logi is to �nd an appropriate languagefor the formalization of natural language reasoning. The �rst and probably mostsuessful of these languages is �rst order logi. Almost all mathematial state-ments and proofs an be formulated in this language. However, ertain oneptsimportant for omputer siene like well-foundedness and transitive losure requiremore expressive languages.Temporal logi was invented to formalize natural language sentenes about eventsin time, whih use temporal adverbs like \eventually" and \onstantly". Temporallogis have proved to be useful for speifying onurrent systems, beause they andesribe the ordering of events without introduing time expliitly. There have been



1642 Edmund M. Clarke and Bernd-Holger Shlingloffmany variants of temporal logi proposed in the literature. Temporal logis an belassi�ed as� state- or transition- (interval-) based, depending on whether the formulatedproperties involve one or more referene points,� linear or branhing time, depending on the intuition of time as a sequene oras a tree of events,� star-free or regular, depending on the formal languages whih an be de�nedby formulas of the logi, and� propositional or �rst-order, depending on the ardinality of the nontemporaldomains.In priniple, these lassi�ations are orthogonal; in pratie, however, only er-tain ombinations are widely used. In this survey, we onentrate on propositionalmodal logi, linear temporal logi, omputation tree logi, and �xpoint alulus.Restritions and extensions of these logis are introdued whenever appropriate.2.1. Propositional and First Order LogiWe assume a set P = fp; q; p1; :::g of (atomi) propositions whih an be eithertrue or false. 1 For example, the proposition stak is empty denotes the fat that\the stak is empty". The propositional logi PL is built from P with the followingsyntax: PL ::= P j ? j (PL! PL)That is,� Every p2 P is a well-formed formula of propositional logi,� ? is a well-formed formula (\the falsum"),� if ' and  are well-formed formulae, then so is ('!  ), and� nothing else is a formula.P is a parameter of the logi; the speial ase P = fg is allowed. Other onnetivesan be de�ned as usual: :' , (' ! ?), > , :?, (' _  ) , (:' !  ),('^ ) , :(:'_: ), and ('$  ) , (('!  )^( ! ')). The preedene ofthese operators is �xed by (:;^;_;!;$), and parentheses are omitted in formulaswhenever appropriate. Atomi propositions and negated propositions are alledliterals .An interpretation I for the propositions is a funtion assigning a truth value fromftrue; falseg to every proposition. (For example, the proposition stak is emptyis interpreted di�erently on a farm, in a library, or in front of a omputer ter-minal.) A propositional model M , (U; I) onsists of the �xed binary domainU , ftrue; falseg and an interpretation for P . (Later on, we will onsider logis1A list of syntati ategories and other symbols is given in the appendix.



Model Cheking 1643over arbitrary nonbinary domains.) The most basi semantial notion is the valida-tion relation j= between a modelM and a formula '. It is de�ned by the followinglauses.� M j= p i� I(p) = true,� M =j= ?, and� M j= ('!  ) i� M j= ' implies M j=  .That is, M j= (' !  ) i� M =j= ' or M j=  . If M j= ', then we say that Mvalidates ', or, equivalently, ' is valid in M.Propositional logi is not well-suited to formalize statements about events intime. Even though the interpretation of a statement an be �xed, its truth valuemay vary in time. This annot be expressed diretly in PL.To express suh temporal dependenies, �rst order logi an be used. The set Pis rede�ned to be a set of monadi prediates . That is, eah p 2 P is augmentedwith an additional parameter denoting time, for example, stak is empty(t).For sake of simpliity, we do not inlude funtion symbols (or onstants) in the�rst-order language. Assume in addition to the set P of unary prediates a �xedset R , fR; a; b; :::g of aessibility relations , and let R+ , R[ f�; <; =g. Fur-thermore, let T be a set of �rst-order variables T , ft; t0; :::g for points in time(whih is assumed to be in�nite unless stated otherwise).FOL ::= P(T ) j ? j (FOL! FOL) j R+(T ; T ) j 9T FOLWhen writing formulas, we often use in�x notation for relational terms: t1Rt2 ,R(t1; t2). The notation 8t ' is an abbreviation for :9t :', the string x > y standsfor y < x, and x � y for (x < y _ x = y), et.To assign a truth value to a formula ontaining (free) variables, we assume thatwe are given a nonempty universe U of points in time, and that the interpretationI assigns to every proposition p 2 P a subset of points I(p) � U , and to everyrelation symbol R 2 R a binary relation I(R) � U � U . For the speial relationsigns =, �, and < we require that I(=) , f(w;w) j w 2 Ug is the equality relation,I(�) , SfI(R) j R 2 Rg is the transition relation, and I(<) is the transitivelosure of I(�), the reahability relation. A variable valuation v assigns to anyvariable t 2 T a point w 2 U . A �rst-order model M , (U; I;v) onsists of auniverse U , an interpretation I, and a variable valuation v. As in the propositionalase, we de�ne when a formula holds in a model:� M j= p(t) i� v(t) 2 I(p);� M =j= ?, and� M j= ('!  ) i� M j= ' implies M j=  ;� M j= R(t0; t1) i� (v(t0);v(t1)) 2 I(R);� M j= 9t ' i� (U; I;v0) j= ' for some v0 whih di�ers from v at most in t.This language is rather expressive: onsider the following example formulas.



1644 Edmund M. Clarke and Bernd-Holger Shlingloff(1) (stak is empty(t0)! 9t1(put(t0; t1) ^ :stak is empty(t1)))If stak is empty, then it is possible to perform a put suh that notstak is empty holds.(2) 8t1((t0 � t1 ^ req(t1))! 9t2(t1 < t2 ^ ak(t2)))Every request is eventually aknowledged.(3) 8t1((t0 � t1 ^ req(t1))! 9t2((t1 < t2 ^ ak(t2)) ^8t3((t1 < t3 ^ t3 < t2)! req(t3))))No request is withdrawn before it is aknowledged.2.2. Multimodal and Temporal LogiFirst order logi has been ritiized by theoretial linguists for not being intu-itive. Exept from text in mathematial books, one an hardly �nd English sen-tenes whih expliitly use variables to refer to objets. Natural language state-ments use modal adverbs like \possibly" and \neessarily" to refer to an alterna-tive state of a�airs. Temporal phrases in natural language use the adverbs \even-tually" and \onstantly" (or \sometime" and \always") to refer to future pointsin time. Modal logi was invented to formalize these modal and temporal adverbs[Lewis 1912, Prior 1957, Prior 1967℄. The idea is to suppress �rst-order variablest 2 T ; propositions p 2 P are nullary again. In modal logis, the meaning of aproposition like stak is empty is intended to be \the stak is empty now". Thus,in a temporal interpretation, every formula desribes a ertain state of a�airs at agiven point.To be able to desribe properties depending on the relations between points, inmultimodal logi for every R 2 R a new operator hRi' is introdued. The meaningof hRi' is \possibly '", i.e., \there exists some t aessible via R suh that ' holdsat t". Dually, [R℄' , : hRi :' means \neessarily '"; \for all t aessible via R,it is the ase that ' holds at t".ML ::= P j ? j (ML!ML) j hRiML:Intuitively, the above example (1) ould be written(stak is empty! hputi :stak is empty):Assume again that U is a nonempty set of points in time (or \possible worlds").An interpretation I for multimodal logi assigns to every p 2 P and R 2 R a subsetI(p) � U and a relation I(R) � U �U , respetively. The tuple F , (U; I) is alleda frame for P and R. A (Kripke-) model (introdued in [Kripke 1963, Kripke 1975℄)M , (U; I; w0) for multimodal logi onsists of a frame (U; I) and a urrent pointw0 2 U . If M = (U; I; w0), we say that M is based on the frame F = (U; I). Thus,a Kripke model for multimodal logi is similar to a �rst order model, where thevariable valuation v is replaed by a single designated point w0.Note that our notion of frame and model is somewhat di�erent from the tradi-tional use of these terms, where a frame denotes the tuple (U; fI(R) j R 2 Rg),



Model Cheking 1645and a model is the triple (U; fI(R) j R 2 Rg; fI(p) j p 2 Pg). Historially,atomi propositions have been regarded as being \variable" in a formula, thusfI(p) j p 2 Pg is a separate valuation for these variables. In this paper, a proposi-tion denotes a �xed prediate, hene its meaning is given by the interpretation. Ina later setion we introdue a separate syntati ategory of proposition variables,whih an be evaluated di�erently in eah ontext.Validity of a modal formula in a Kripke model M , (U; I; w0) is de�ned asfollows.� M j= p i� w0 2 I(p);� M =j= ?, and� M j= ('!  ) i� M j= ' implies M j=  .� M j= hRi' i� there exists w1 2 U with (w0; w1) 2 I(R) and (U; I; w1) j= '.We write w j= ' instead of (U; I; w) j= ' whenever the frame (U; I) is given. Aformula ' is universally valid (or frame-valid) in (U; I), if for all w 2 U it holdsthat w j= '.As de�ned above, � is interpreted as the transition relation, i.e., the union ofall aessibility relations, < is interpreted as the transitive losure of �, and � asthe reexive transitive losure (the reahability relation). For these speial relations�2 f�; <;=;�g, we heneforth simply write v � w instead of (v; w) 2 I(�). Weintrodue the speial operators X, F+ and F�:� w0 j= X' i� there exists w1 2 U suh that w0 � w1 and w1 j= ',� w0 j= F+' i� there exists w1 2 U suh that w0 < w1 and w1 j= ', and� w0 j= F�' i� there exists w1 2 U suh that w0 � w1 and w1 j= '.For the dual operators, we use the symbols X ' , :X:', and G+' , :F+:',and G�' , :F�:'. Traditionally, X, F, and G have been used to indiate neXttime, Future andGlobal operators2. Alternatively, F+ andG+ are alled sometime-and always-operators. X is referred to as weak next- operator.Here are some historial remarks on the use of these operators. In the 1950's and1960's, proof theory and model theory of modal logi was developed ([Resher andUrquhart 1971, Hughes and Cresswell 1977℄ are historial, and [Blakburn, de Rijkeand Venema 2000℄ is a modern textbook on this topi). Its appliability to omputersiene was disovered in the 1970's: [Burstall 1974℄ suggested a modal logi builtupon F+ and G+ to desribe program properties. [Kr�oger 1978℄ suggested to useboth X and F+ for program veri�ation. [Pnueli 1977℄ used a similar system forparallel programs. [Gabbay, Pnueli, Shelah and Stavi 1980℄ extended temporal logifor program spei�ation by the binary onnetive until (explained below). Theframework was further elaborated in [Pnueli 1981, Manna and Pnueli 1981, Mannaand Pnueli 1982b, Manna and Pnueli 1982a, Pnueli 1984, Harel and Pnueli 1985,2A note on notation: with the above onvention, the X, X, F+, F�, G+ and G� operators ouldbe written as h�i, [�℄, h<i, h�i, [<℄ and [�℄, respetively. In the literature, some authors use thesymbols �, Æ, 3, and 2. An index of the notations used in this hapter is given in the appendix.



1646 Edmund M. Clarke and Bernd-Holger ShlingloffManna and Pnueli 1987, Manna and Pnueli 1989℄. The ombination of hRi- and F+-operators originates from dynami logi [Salwiki 1970, Pratt 1976℄ (for an overviewon dynami logis, see [Harel 1984, Kozen and Tiuryn 1990℄).Intuitively, X' indiates that ' holds at some point aessible via a single tran-sition, F+' spei�es that ' must hold in some point whih an be reahed by anonempty sequene of transitions, and F�' means that ' holds at some reahablepoint (possibly now). Dually, X ' holds if all suessors satisfy ', and G�' andG+' determine that all reahable points (exept maybe the urrent point) mustvalidate '. With these operators, example (2) ould be writtenG�(req! F+ak):From the de�nition, w0 j= X ' i� w1 j= ' for all w1 2 U suh that w0 � w1.Similarly, w0 j= G+' i� w1 j= ' for all w1 2 U suh that w0 < w1. A pointw 2 U is alled terminal, if fw0 j w � w0g = fg. A terminal point represents a �nalstate of a terminating omputation. Terminal points satisfy allX - andG+-formulasvauously: if w0 has no aessible suessors, then w0 j= X ' and w0 j= G+' forany formula '.The di�erene between F+ and F� is that in the latter \the future inludes thepresent". Using the X operator, F+ and F� an be mutually de�ned: learly, theformula (F�' $ ' _ F+') is valid. Therefore, the F�-operator an be expressedby F+. Using the equivalene (F+'$ XF�'), eah ourrene of the operator F+in a formula an be replaed by F� and X, with only a linear inrease in formulalength. It is not possible to de�ne the F+-operator by F� alone (without X):2.1. Lemma. Without X, the operator F+ is stritly more expressive than F�.Proof: Consider two models M1 and M2, where U1 , U2 , fwg, I1(�) ,fg, I2(�) , f(w;w)g and I1(p) = I2(p) for all p 2 P . Then M1 =j= F+> andM2 j= F+>. However, w j= F�' i� w j= ' in both M1 and M2. Therefore, forall formulas ' whih involve only propositions, boolean operators and F� it holdsthat M1 j= ' i� M2 j= '. (The formal proof of this statement is omitted; it isa straightforward indution on the onstrution of suh formulas.) Hene, there isno formula ' onsisting only of propositions, boolean operators and F� suh thatfor all models M it holds that M j= ' i� M j= F+>. In other words, F+> is notexpressible in this language. 2A similar proof shows that modal operators annot express statements aboutintervals. For example, there is no formula equivalent to example (3) of the above.To remedy this lak of expressiveness, [Kamp 1968℄ introdued a binary operator('U+ ) meaning \' holds until  holds". We use the term temporal logi to referto any modal logi whih ontains some sort of until-operator. In omputer siene,this operator was �rst used by [Gabbay et al. 1980℄ to lassify important propertiesof onurrent programs. The semantis of U+ is de�ned as follows:� w0 j= ('U+ ) i� there exists w1 2 U with w0 < w1 and w1 j=  , and for allw2 2 U with w0 < w2 and w2 < w1, we have w2 j= '.



Model Cheking 1647This situation is illustrated by the following piture.- - - - - - -' ' '  . . .As an example, the above formula (3) an be expressed with an until-operator asG�(req! (reqU+ak)):Various other operators an be de�ned via U+. Sometime-operator and nexttimeoperators (for disrete �) are obtained as follows:� X'$ (?U+')� F+'$ (>U+')The proof of these equivalenes is immediate from the de�nition: w0 j= (?U+ )i� there exists w1 2 U with w0 < w1 and w1 j=  , and for all w2 2 U withw0 < w2 < w1 it holds that w2 j= ?, whih is impossible. In other words, w0 < w1,but there is no w2 that satis�es w0 < w2 and w2 < w1. Therefore w1 must be animmediate suessor of w0, i.e., w0 � w1. Consequently, w0 j= X'. The seondequivalene is obtained in a similar way.The reexive until -operator is de�ned as ('U� ) , ( _ ' ^ ('U+ )).- - - - - - -' ' ' '  . . .As above, F�'$ (>U�') and ('U+ )$ X('U� ). Without X it is not possibleto de�ne U+ or F+ from U�. Hene, X annot be de�ned by U�.The unless or weak until -operator is de�ned as('W+ ) , :(: U+:(' _  )):Whereas ('U+ ) requires that  eventually holds, ('W+ ) is also true if  isnever and ' always true. Intuitively, ('W+ ) says that ' holds at least up tothe next point where  holds. This an be seen as follows: assume that w0 j=:(: U+:(' _  )). By de�nition, it is not the ase that for some w1 > w0 bothw1 j= :(' _  ) and w2 j= : for all w0 < w2 < w1. Thus, for all w1 > w0 it holdsthat w1 j= (' _  ), or w2 j=  for some w0 < w2 < w1. In other words, if w1 > w0then either w1 j= ' or there is some w0 < w2 � w1 suh that w2 j=  . Therefore,if w2 =j=  for all w0 < w2 � w1, i.e. if w1 is before the next point where  holds,then w1 j= '.Note that by de�nition ('W+?) = :(>U+:') = G+'. Some texts de�ne theunless operator by (('U+ )_G+'). In natural models, whih onsist of a sequeneof points, these two de�nitions are equivalent:2.2. Lemma. For natural models, ('W+ )$ (('U+ ) _G+').Proof: We must show that for all models M whih are sequenes, the followingholds: (i) M j= (('W+ ) ! (('U+ ) _ G+')), (ii) M j= (G+' ! ('W+ ))



1648 Edmund M. Clarke and Bernd-Holger Shlingloffand (iii) M j= (('U+ ) ! ('W+ )). For (i), assume that w0 j= ('W+ ) andw0 =j= G+'. Then w1 =j= ' for some w1 > w0. Aording to above, there is somew0 < w2 � w1 suh that w2 j=  . Sine the model is assumed to be a sequene, it iswell-founded. Therefore there must be a smallest w2 with this property; i.e. w0 <w2 � w1, w2 j=  , and w3 =j=  for all w0 < w3 < w2. Again, aording tothe above, if w0 < w3 < w2 then w3 j= '. Therefore w0 j= ('U+ ). Formula(ii) follows immediately from the de�nition: if w0 j= G+', then w1 j= ' for allw1 > w0. Therefore, it is not the ase that some w1 > w0 exists whih satis�esw1 j= :(' _  ). This implies w0 =j= (: U+:(' _  )), i.e., w0 j= ('W+ ). Forimpliation (iii), we need the property that the model is linear: if w0 j= ('U+ ),then there exists w1 > w0 suh that w1 j=  and w2 j= ' for all w0 < w2 < w1.Assume any point w > w0. Then w < w1 or w � w1. In the �rst ase, w j= '. Inthe seond ase, there exists w0 = w1 suh that w0 j=  . Thus, for all w > w0 itholds that w j= ', or there exists w0 < w0 � w suh that w0 j=  . This shows thatw0 j= ('W+ ). 2This equivalene does not hold for dense time: for example, if (U;�) is isomorphito the rationals and I( ) , f1=n j n 2 Ng, then 8t1 > 09t2 > 0 (t2 < t1 ^  (t2)),hene 0 j= (?W+'). Moreover, 0 =j= X> and 0 j= F+>, hene 0 =j= ((?U+ ) _G+?). For more information on other models of time, see [van Benthem 1991,Gabbay, Hodkinson and Reynolds 1994℄. An immediate onsequene of Lemma 2.2is that in natural models the operator U+ is de�nable by W+ and F+:('U+ )$ (('W+ ) ^ F+ ):With �rst order logi, it is possible to use reverse relations: x > y i� y < x. In[Lihtenstein, Pnueli and Zuk 1985℄, the authors argue that the ability to refer tothe past an failitate program spei�ations. The temporal past or sine- operatorU� is de�ned with the following semantis:� w0 j= ('U� ) i� there exists w1 2 U with w1 < w0 and w1 j=  , and for allw2 2 U with w1 < w2 and w2 < w0, we have w2 j= '.The syntax of linear temporal logi (LTL) is de�ned as follows:LTL ::= P j ? j (LTL ! LTL) j (LTLU+LTL) j (LTLU�LTL):We write F�' and G�' for (>U�') and :F�:', respetively. Intuitively, theseoperators refer to \sometime in the past" and \always in the past". Moreover, F�'and G�' are abbreviations for (F�' _ ' _ F+') and :F�:', respetively.2.3. Expressive Completeness of Temporal LogiHow an �rst order and temporal logi be ompared? Temporal logi an be re-garded as a ertain fragment of �rst order logi; this is explained more formallybelow. In ontrast to modal or temporal logis, FOL formulas an mention several



Model Cheking 1649referene points (free variables). To be able to ompare the expressiveness of bothtype of logis, we restrit FOL to formulas with at most one free variable.The above semantis indues a translation \FOL" from modal or temporal to�rst order logi, where FOL(') has exatly one free variable t0.� FOL(p) , p(t0)� FOL(?) , (t0 6= t0)� FOL(('!  )) , (FOL(')! FOL( ))� FOL(hRi') , 9t0(t0Rt0 ^ FOL(')ft0 := t0g)� FOL(X') , 9t0(t0 � t0 ^ FOL(')ft0 := t0g)� FOL(F+') , 9t0(t0 < t0 ^ FOL(')ft0 := t0g)� FOL(F�') , 9t0(t0 � t0 ^ FOL(')ft0 := t0g)� FOL(('U+ )) ,9t0(t0 < t0 ^ FOL( )ft0 := t0g ^ 8t00(t0 < t00 < t0 ! FOL(')ft0 := t00g)).� FOL(('U� )) ,9t0(t0 < t0 ^ FOL( )ft0 := t0g ^ 8t00(t0 < t00 < t0 ! FOL(')ft0 := t00g)).This translation is sometimes alled the standard translation[Blakburn et al. 2000℄.In the translation of hRi', ..., ('U+ ), the symbols t0 and t00 denote arbitraryvariables whih do not our in FOL(') or FOL( ). The formula FOL( )ft0 := t0gdenotes the formula FOL( ), where every (free) ourrene of the variable t0 isreplaed by the variable whih is denoted by t0. The following example demonstratesthe standard translation.FOL(((:akU�req)U+ak))= 9t1(t0 < t1 ^ ak(t1) ^ 8t2(t0 < t2 < t1 ! FOL((:akU� req))ft0 := t2g))= 9t1(t0 < t1 ^ ak(t1) ^ 8t2(t0 < t2 < t1 !9t3(t3 < t2 ^ req(t3) ^ 8t4(t3 < t4 < t2 ! :ak(t4))))).The standard translation of a modal or temporal formula is a �rst-order for-mula with exatly one free variable t0. Corretness of the standard translation anformally be stated as follows:2.3. Fat. For every ' 2 ML or LTL there exists a �rst order formula FOL(')suh that for every frame (U; I), point w0 2 U and valuation v for whih v(t0) = w0it holds that (U; I; w0) j= ' i� (U; I;v) j= FOL(').Hene, FOL is at least as expressive as LTL. A logi is alled expressively omplete(or de�nitionally omplete), if there exists also a translation in the other diretion:given any �rst-order formula with exatly one free variable, does an equivalenttemporal formula exist?For the translation of any given temporal formula into �rst order logi only threevariables (say, t0, t1 and t2) are really needed. Other variables an be reused; forexample, the above FOL(((:akU� req)U+ ak)) is equivalent to9t1(t0 < t1 ^ ak(t1) ^ 8t2(t0 < t2 < t1 !



1650 Edmund M. Clarke and Bernd-Holger Shlingloff9t0(t0 < t2 ^ req(t0) ^ 8t1(t0 < t1 < t2 ! :ak(t1))))).Similarly, modal logi an be translated into the so-alled guarded fragment of �rst-order logi, whih allows only two variables. In the �rst-order lause for ('U+ )three variables are needed. This is the reason why the until-operator is not de�nablein modal logi. Likewise, LTL annot express any property whih \inherently"uses four variables. For example, the statement \there are three di�erent onnetedpoints reahable from the urrent point" is not expressible in temporal logi.9t1; t2; t3(t0 < t1 ^ t0 < t2 ^ t0 < t3 ^ t1 < t2 ^ t1 < t3 ^ t2 < t3)If < is irreexive, then a minimal model satisfying this formula is e.g. the following:
t0 t1 t2t3

�-R?U�In ase that < is a linear order (antisymmetri and total) this is equivalent to9t1(t0 < t1 ^ 9t2(t1 < t2 ^ 9t3(t2 < t3)))in whih we an rename t3 by t0 to get the equivalent9t1(t0 < t1 ^ 9t2(t1 < t2 ^ 9t0(t2 < t0)))whih in turn an be expressed temporally as F+F+F+>.Therefore, attention is restrited to ertain lasses of strutures, like ompletelinear orders, or �nitely-branhing trees, et. A natural model onsists of a �nite orin�nite sequene of points. Formally, a natural model M , (U; I; w0) is a Kripke-model with only one aessibility relation, suh that (U;�) is isomorphi to thenatural numbers or an initial segment of the natural numbers3, where � is theusual suessor relation.2.4. Theorem (Kamp, Gabbay). Temporal logi is expressively omplete for nat-ural models.The original proof of this theorem in [Kamp 1968, pp. 39{94℄ is extremely om-pliated. The proof given below follows [Gabbay 1989℄ and uses a ertain propertyalled separation. Call a temporal formula3Some textbooks restrit attention to in�nite models. Terminating omputations are then mod-elled with an idle loop. In this survey, we use both �nite and in�nite omputation sequenes.



Model Cheking 1651� pure future, if it is of form ('U+ ), where in both ' and  no U�-operatorours, and� pure past, if it is of form ('U� ), where in both ' and  no U+-operatorours, and� pure present, if it ontains no U+ or U�-operators.A future formula is a boolean ombination of pure future and pure present formulas,i.e., one whih does not ontain any U�-operators. Similarly, a past formula doesnot ontain any U+. A formula is separated if it is a boolean ombination of futureand past formulas. A logi has the separation property (for a given lass of models),if for every formula there exists a separated formula whih is equivalent for allmodels under onsideration.2.5. Lemma. The separation property implies expressive ompleteness.Proof: This lemma is proven by indution on the struture of FOL-formulas. Forthe proof, we assume that LTL has the separation property for natural models.That is, for eah linear temporal formula there exists an equivalent formula whihis separated. We show that any �rst order formula '(t0) whih has exatly one freevariable t0 an be translated into a temporal formula LTL('). It suÆes to onsider�rst order logi whereR+ , f<;=g: in natural models, there is a single aessibilityrelation, and every atomi subformula t � t0 an be equivalently replaed by (t < t0^:9t00(t < t00 ^ t00 < t0)). Furthermore, the sope of quanti�ation an be minimizedsuh that no sub-formula ' , 9t  ontains a proposition p(t0) where t0 is free in '.For example, 9t1(t1 > t0^p(t0)^p(t1)) an be rewritten as p(t0)^9t1(t1 > t0^p(t1)).The translation of p(t0) is p. It is not neessary to give a translation for formulasp(t1) or t0 � t1, sine they involve other free variables than t0. The translationof a boolean onnetive of sub-formulas is the boolean onnetive of the transla-tion of the sub-formulas. The only remaining ase are formulas ' , 9t1  (t0; t1).Sine the sope of the quanti�er 9t1 is minimal, ' does not ontain any propositionp(t0). That is,  (t0; t1) is a boolean ombination of formulas p(t1), t0 � t1, and'0 , 9t2  0(t0; t1; t2). Replae every sub-formula t0 < t by a new unary proposi-tion future(t), replae every sub-formula t0 = t by a new unary present(t), andreplae every t < t0 by past(t). That is, ' now does not ontain any t0, and thuseah '0 is a formula with exatly one free variable t1. Sine the nesting depth ofexistential quanti�ers in eah '0 is smaller than that of ', we an apply the indu-tion hypothesis to get temporal formulae LTL('0). Reinserting these into  andreplaing p(t1) in  by p, and q(t1) by q for q 2 ffuture; present; pastg givesthe temporal formula LTL( ). To translate ' , 9t1  we separate the temporalformula (F�LTL( ) _ LTL( ) _ F+LTL( )). The resulting formula is a booleanombination of pure future, pure past and pure present formulas. Replae in thisformula every future inside a pure future formula by >, every other future by?. Similarly, replae every past inside a pure past formula by >, and every otherpast by ?. Finally, replae every present inside a pure present formula by >, everyother present by ?. The resulting formula is the required translation LTL(').Given any natural model M , (U; I; w0) for ', de�ne I(future) , fw j w >



1652 Edmund M. Clarke and Bernd-Holger Shlingloffw0g, I(present) , fw0g and I(past) , fw j w < w0g. Then every step in theabove translation preserves validity in M. Therefore, M j= ' i� M j= LTL('). 2To illustrate this onstrution, let us �nd the temporal equivalent of ' , 9t1(t0 <t1 ^ p(t1) ^ 8t2(t0 < t2 < t1 ! q(t2))). (We already know that the outome shouldbe (qU+ p).) The �rst replaement results in 9t1 , where  , (future(t1)^p(t1)^:9t2(future(t2)^t2 < t1^:q(t2))). The formula '0(t1) = 9t2(t2 < t1^future(t2)^:q(t2))) indutively translates to LTL('0) = F�(future ^ :q) = :G�(future!q). Thus LTL( ) = (future ^ p ^ G�(future ! q)). To obtain LTL(9t1 ) wehave to separate F�LTL( ) = F+LTL( ) _ LTL( ) _ F�LTL( ). SeparatingF+LTL( ) = F+(future^p^G�(future! q)) givesG�(future! q)^(future!q) ^ ((future ! q)U+(future ^ p)) (see below). The disjunts F�LTL( ) =F�(future^ p^G�(future! q)) and LTL( ) = (future^ p^G�(future! q))are already separated. To obtain LTL('), we now replae every future inside a purepast or pure present formula by ? and every future inside a pure future formulaby >. Then G�(future ! q) ^ (future ! q) redues to >, and ((future !q)U+(future ^ p)) redues to (qU+ p). The disjunts F�LTL( ) and LTL( )redue to ?. Therefore, F�LTL( ) redues to (qU+ p), whih is the expeted resultfor LTL( ).In the above, we used the following equivalene to separate a nested ourreneof future- and past- operators:j= F+(' ^G� )$ G� ^  ^ ( U+')Proof: The left side of this formula states that sometimes in the future, ' andalways in the past  holds. In other words, there is some w1 > w0 suh that ' holdsat w1, and for all w2 < w1, the formula  holds at w2. In a natural model, eah suhw2 must be in the past (w2 < w0), present (w2 = w0) or future (w0 < w2 < w1)of the urrent point w0. Therefore, for eah w2 < w0, the formula  holds, and holds at w0, and there is some w1 > w0 suh that ' holds at w1, and for allw0 < w2 < w1, the formula  holds at w2. This is stated by the right side of theformula. 2A more onvenient way to show the orretness of suh formulas than by seman-tial reasoning is by an automated proof proedure. In Setion 7, we will show thatLTL is deidable. There are several automated provers freely available. In fat, theabove formula is heked by the STeP system within milliseonds.To show expressive ompleteness, it remains to prove the following:2.6. Lemma. LTL has the separation property for natural models.Proof: Consider the ase of a non-separated formula ' , ('1U+'2), whihontains a diret subformula  , ( 1U� 2) (i.e.,  is a boolean omponent of'1 and/or '2, and does not our elsewhere in '1 or '2). We write '>i and'?i for 'if := >g and 'if := ?g, respetively. By propositional reasoning,



Model Cheking 1653'1 $ (( _ '?1 ) ^ (: _ '>1 )) and '2 $ (( ^ '>1 ) ^ (: _ '?2 )). Therefore, ' isequivalent to ((( _ '?1 ) ^ (: _ '>1 ))U+(( ^ '>2 ) _ (: ^ '?2 ))). By temporalreasoning, this in turn is equivalent to ((( _'?1 )U+( ^'>2 )) _ (( _'?1 )U+(: ^'?2 ))) ^ (((: _ '>1 )U+( ^ '>2 )) _ ((: _ '>1 )U+(: ^ '?2 ))).For eah of the four boolean omponents of this formula, an equivalent separatedformula is given in Fig. 2. Though these formulas are hard to read and diÆultto prove manually, their validity an be easily heked by an automated theoremprover. Intuitively, they are generalizations of the example given above. With theseparating lauses, ' an be rewritten suh that  is not in the sope of any U+.Sine the formulas of Fig. 2 still hold if U+ and U� are interhanged, eah('1U�'2) ontaining a diret subformula  , ( 1U+ 2) an be rewritten suhthat  does not our in the sope of a U�. The general ase of several di�erentpasttime-subformulas nested within future-subformulas and vie versa an be han-dled by repeated appliation of these transformations. Formally, the laim followsby indution on the nesting depth and number of U� sub-formulas within U+ andvie versa. 2Sine in the separation step of this onstrution subformulas may be dupliated,the resulting LTL formula an be nonelementary larger than the original FOLformula.(i) (h( 1U� 2) _ '1iU+h( 1U� 2) ^ '2i)$( 1U+'2) ^ h 2 _  1 ^ ( 1U� 2)i_(h 1 _  2 _ :(: 2U+:'1)iU+h 2 ^ ( 1U+'2)i)^(:(: 2U+:'1) _ h 2 _  1 ^ ( 1U� 2)i)(ii) (h( 1U� 2) _ '1iU+h:( 1U� 2) ^ '2i)$(h'1 ^ : 2iU+'2) ^ h(: 2 ^ (: 1 _ :( 1U� 2)))i_(h 1 _  2 _ ('1U+h'2 _ '1 ^  2i)iU+h: 1 ^ : 2 ^ (h'1 ^ : 2iU+'2)i)^('1U+h'1 ^  2i) _ h 2 _  1 ^ ( 1U� 2)i(iii) (h:( 1U� 2) _ '1iU+h( 1U� 2) ^ '2i)$(h'1 ^  1iU+'2) ^ h 2 _  1 ^ ( 1U� 2)i_(h: 2 _ ('1U+h'2 _ '1 ^ : 1 ^ : 2i)iU+h 2 ^ (h'1 ^  1iU+'2)i)^(['1U+h'1 ^ : 1 ^ : 2i℄ _ [: 2 ^ h: 1 _ :( 1U� 2)i℄)(iv) (h:( 1U� 2) _ '1iU+h:( 1U� 2) ^ '2i)$(:( 1U+:'1) _ h: 2 ^ (: 1 _ :( 1U� 2))i)^(:(h 1 _  2 _ :(: 2U+'2)iU+h 2 ^ ( 1U+:'1)i)_((: 2U+'2) ^ h: 2 ^ (: 1 _ :( 1U� 2))i))^(F+[: 1 ^ : 2 ^ (: 2U+'2)℄ _ [(: 2U+'2) ^ (: 2 ^ h: 1 _ :( 1U+ 2)i)℄)Figure 2: Separation lauses for LTL



1654 Edmund M. Clarke and Bernd-Holger Shlingloff3. Seond Order Languages3.1. Linear and Branhing Time LogisAs we have seen, linear temporal logi is expressively omplete for natural mod-els. The same result (with minor modi�ations) an be proved for �nitely branh-ing trees [Shlinglo� 1992a, Shlinglo� 1992b℄, and for ertain partially orderedstrutures [Thiagarajan and Walukiewiz 1997℄. In omputer siene, the possi-ble exeutions of a program an be modelled as a set of exeution sequenes.Alternatively, it an be modelled as a unique exeution tree, where branhes de-note nondeterministi deisions. This view is adopted in branhing time temporallogi [Lamport 1980, Ben-Ari, Manna and Pnueli 1983, Emerson and Halpern 1986℄.Statements about orretness of program an involve assertions about all maximalpaths in a tree. A path in a model is a (�nite or in�nite) nonempty sequene ofpoints � = (w0; w1; :::), where for eah i with 0 � i < j�j there exists an Ri 2 Rsuh that (wi; wi+1) 2 I(Ri). A path is maximal, if eah of its points whih has asuessor in the model also has a suessor in the path. In other words, a maximalpath is either in�nite, or its �nal point wn is terminal (there is no w suh thatwn � w). Computation tree logi (CTL) [Clarke and Emerson 1981, Emerson andClarke 1982℄ has the following syntax:CTL ::= P j ? j (CTL! CTL) j E(CTLU+CTL) j A(CTLU+CTL):CTL is interpreted on tree models . A tree is de�ned as usual: it has a single rootw0, and every node wn an be reahed from w0 by exatly one �nite path. Thetransitive losure \<" of the suessor relation \�" then denotes the usual tree-order: (w1; w2) 2 I(<) i� w1 is on the (unique) path from the root w0 up to w2.� w0 j= E('U+ ) i� there exists w1 > w0 suh that w1 j=  , and for allw2 2 U , if w0 < w2 < w1 then w2 j= '.� w0 j= A('U+ ) i� for all maximal paths p from w0 there exists w1 > w0on path p suh that w1 j=  , and for all w0 < w2 < w1, w2 j= '.Thus, the EU+-operator is de�ned similar to the LTL until-operator. However, theintended models for CTL are trees, whereas LTL usually is interpreted on naturalmodels. In CTL weak and derived operators an also be de�ned as abbreviations.However, in branhing time, there are two variants of eah derived operator.EX , E(?U+ ), AX , A(?U+ ),EX  , :AX: , AX  , :EX: ,EF+ , E(>U+ ), AF+ ,A(>U+ ),EG+ , :AF+: , AG+ , :EF+: ,E('U� ) , ( _ ' ^ E('U+ )), A('U� ) , ( _ ' ^A('U+ )),EF� , ( _ EF+ ), AF� , ( _AF+ ),EG� , ( ^ EG+ ), AG� , ( ^AG+ ),



Model Cheking 1655E('W+ ) , :A(: U+:(' _  )), A('W+ ) , :E(: U+:(' _  )).Informally, EX means that some suessor node satis�es  , and AX  holdsif all suessors are  . In a terminal point, AX? is valid, but AX? not: ifw0 has no suessors, then the only maximal path p from w0 is the one-elementsequene � = (w0). On this unique path � there is no w1 > w0, therefore eahformula A('U+ ) and E('U+ ) must be invalid. As a speial ase, in suh apoint EX> is not valid, but EX > and EX? are valid. In a nonterminal point,(EX' $ EX ') and (AX' $ AX '). Thus, if we restrit attention to modelswithout terminal points, these operators oinide. The operators AX and EX anbe expressed by EX and AX (with at most linear inrease of formula length)via (AX' $ AX ' ^ EX>) and (EX ' $ EX' _AX ?), that is, (EX ' $(EX> ! EX')). Thus, all CTL nexttime-operators an be expressed in termsof EX.The formula EF� means that some node in the omputation tree satis�es  ,andAF� spei�es that  must hold somewhere along every maximal omputationpath. Dually, AG� means that every node in the (sub-) tree satis�es  , whereasEG� indiates that  is globally valid along some path.
E('U+ ) A('U� ) EX AX In the above piture, nodes satisfying ' are shown solid (or as a shaded area),whereas  nodes are indiated by a irle.The operator AU+ an be expressed by EU+ and AF+. This haraterization issimilar to the de�nition of the unless-operator in linear temporal logi, f. page 1648:A('U+ )$ (A('W+ ) ^AF+ ) = (:E(: U+:(' _  )) ^AF+ ):Therefore, it is suÆient to onsider only the two basi operators EU+ and AF+ informal proofs and algorithms. Similarly, the formula E('W+ ) an be replaed by(E('U+ ) _ EG+'). However, there is no negation-free \dual" haraterizationof AW+ and EU+.We now give some examples of CTL formulas. The following properties are typ-ial orretness requirements that might arise in the veri�ation of a �nite stateonurrent program.| EF+(started^ :ready): it is possible to get to a state where started holdsbut ready does not hold.| AG�(req! AF+ ak): if a request ours, then it will be eventually aknowl-edged



1656 Edmund M. Clarke and Bernd-Holger Shlingloff| AG� AF� stak is empty: the proposition stak is empty holds in�nitelyoften on every omputation path| AG� EF� restart: from any state it is possible to get to a restart state.For many CTL formulas it is possible to formulate similar orretness properties inLTL. Possibility properties like the last one mentioned above an not be formulatedin LTL. On the other hand, ertain fairness properties annot be formulated inCTL.How an we ompare the expressivity ofCTL with (the future fragment of) LTL?Diret omparison is diÆult, sine models are di�erent: on natural models, whihare speial tree models with branhing degree one, AU+ and EU+-operators oin-ide. On tree models with higher branhing degree, LTL obviously annot expressA('U+ ).Therefore, one onsiders LTL and CTL on (nonlinear, non-tree) Kripke-models(U; I; w0). In ontrast to natural or tree models, Kripke-models an ontain reexivepoints, loops or even dense relations. We all an LTL future formula sequene-validin a Kripke-model M, if it is valid in all natural models ((w0; w1; :::); I; w0) whihare generated fromM, that is, for all maximal paths w0; w1; :::) in U starting fromw0. (A formal de�nition of this notion will be given in Setion 4.) Similarly, a CTL-formula is alled tree-valid in a Kripke-model, if it is valid in the root of the uniquemaximal tree generated from it.With this de�nition, the expressivity of LTL and CTL an be ompared. Itturns out that on Kripke models, neither of both is stritly more expressive thanthe other one. For example, the LTL formula ' , F+G+ p is not expressible inCTL (it is not the same property as AF+AG+ p). That is, there is no CTL-formula  suh that  is tree-valid in exatly the same Kripke-models in whih' is sequene-valid. Similarly, AG+EF+ p is not expressible in LTL (it is notthe same as G+F+ p). For more information on the expressiveness of linear versusbranhing time see [Emerson and Lei 1985, Emerson and Halpern 1986, Clarke andDraghiesu 1988, Emerson 1990℄.On Kripke-models, the logi CTL� (see [Emerson and Lei 1985, Emerson andHalpern 1986℄) subsumes CTL and LTL by separating path quanti�ation (E)from temporal quanti�ation (U+). Thus it is possible to write e.g. EG�F� p. Thelogi CTL� is stritly more expressive than both CTL and LTL. On binary trees,the expressiveness of CTL� an be ompared to �rst order logi with additional(seond order) quanti�ation on paths. For more information on the expressivenessand omplexity of various sublogis of CTL�, see [Emerson 1990℄.3.2. Propositionally Quanti�ed LogisQuanti�ation over maximal paths is not a �rst-order notion. It is lear that fornatural models, whih onsist of exatly one maximal path, this quanti�er is notvery useful. However, even for natural models, there might be other types of seond-order quanti�ation whih ould be interesting. Wolper remarked that \temporallogi an be more expressive"[Wolper 1982, Wolper 1983℄. In temporal or �rst-



Model Cheking 1657order logi, it is not possible to speify that a ertain proposition p holds on everyseond point of an exeution sequene, without onstraining the values of p inintermediate points. Formally, for a natural model where U = (w0; w1; :::), de�nethe new operator G2n bywi j=G2n ' i� wi+2n j= ' for all n � 0We will show that this operator an not be expressed in LTL or FOL. First, notethat the following operators are not equivalent to G2n '.G2nLTL ' , ' ^G�('! XX ')(G2nFOL ')(t0) , '(t0) ^ 8t � t0('(t) ! 8t1; t2(t � t1 � t2 ! '(t2)))These formulas de�ne a stronger property than required: they imply that if ' holdsin two adjaent states, it must hold always. Therefore, j= (G2nLTL ' ! G2n '). Thereverse impliation does not hold: there are models satisfyingG2n ' but notG2nLTL 'or G2nFOL '(t0), respetively.3.1. Theorem (Wolper). Let p be any atomi proposition. There is no LTL-formula ' suh that j= '$ G2n p.Proof: Consider the following sequene (M0;M1;M2; :::) of models. For eahi � 0, de�ne Mi , (Ui; Ii; wi0), where (Ui;�) is isomorphi to the integers:Ui , (:::; wi�2; wi�1; wi0; wi1; wi2; :::). Furthermore, de�ne Ii(q) , Uinwii for all q 2 P .That is, win j= q i� i 6= n for all atomi propositions q. Sine (Ui; Ii; wi0) is isomor-phi to (Ui+1; Ii+1; wi+11 ), we have wi0 j= ' i� wi+11 j= ' for all formulas '. As aonsequene, wi0 j= ' i� wi+10 j= X'.In the next step, we prove that any LTL formula will almost always be true oralmost always be false in the sequene (Mi): for any ' 2 LTL there exists an isuh that for all j � i it holds thatMi j= ' i�Mj j= '. This is proved by indutionon the struture of LTL formulas. The only interesting ase is given by the until-onnetives. We prove the ase of ('U� ). For this ase, the indution hypothesisguarantees that there is an i suh that for all j � i, both wj0 j= ' i� wj+10 j= ' (*)and wj0 j=  i� wj+10 j=  (**). We have to show that wj0 j= ('U� ) i� wj+10 j=('U� ). From the above onsequene, wj0 j= ('U� ) i� wj+10 j= X('U� ) (***).The following reursive haraterization is valid: j= ('U� )$ ( _'^X('U� )).In partiular, this implies j= ( ! ('U� )) (y), j= (: ! (('U� ) $ (' ^X('U� )))) (yy), and j= (: ! (('U� )! ')) (y y y).If wj0 j=  , then wj0 j= ('U� ) by (y). In this ase, by (**), wj+10 j=  , henealso wj+10 j= ('U� ) by (y). Therefore, if wj0 j=  , then wj0 j= ('U� ) i� wj+10 j=('U� ). Now we onsider the ase that wj0 =j=  . By (y y y), wj0 j= ('U� ) i�wj0 j= ' and wj0 j= ('U� ). By (*) and (***), this in turn holds i� wj+10 j= ' andwj+10 j= X('U� ). By (yy), this is the ase i� wj+10 j= ('U� ).To omplete the proof, we now show that this eventual stability property doesnot hold for formulas whih inlude the G2n operator. It is not hard to see thatMi j= G2n p i� i is odd: reall that wii =j= p. Thus, if i is even, then for n , i=2



1658 Edmund M. Clarke and Bernd-Holger Shlingloffwe have wi0+2n =j= p, whih means wi0 =j= G2n p. If i is odd, however, then for alln � 0, wi0+2n j= p, and thus wi0 j= G2n p. Hene, we have shown that for everyLTL formula ' there is a model Mi suh that Mi =j= ('$ G2n p). 2The above proof shows that theG2n operator annot be de�ned in the basi tem-poral or �rst order language. However, it an be de�ned if additional propositionsare allowed. To assert that G2n ' holds, it suÆes to provide a \new" propositionq (not ourring in ') suh that G2nLTL q holds, and that ' is valid wherever q isvalid. This puts an additional onstraint on the \auxiliary variable" q, whih anbe onsidered as an \implementation detail" in the ontext of '. If we disregardthe value of q, then the models satisfying (G2nLTL q ^G�(q ! ')) are exatly thosesatisfying G2n '. That is, for any model M suh that M j= (G2nLTL q ^G�(q! '))it holds that M j= G2n ', and for every model M suh that M j= G2n ' it holdsthat M0 j= (G2nLTL q ^G�(q! ')), where M0 di�ers from M only in the fat thatI(q) = fw0; w2; w4; :::g. Logially, this projetion operation amounts to existentialquanti�ation on temporal propositions or sets of points:G2n '$ 9q(G2nLTL q ^G�(q ! '))(G2n ')(t0)$ 9q((G2nFOL q)(t0) ^ 8t � t0(q(t)! '(t))))The language used in the �rst of these formulas is alled quanti�ed temporal logiqTL [Sistla 1983℄, the language of the seond item is monadi seond order logiMSOL.qTL ::= P j Q j ? j (qTL! qTL) j(qTLU+qTL) j (qTLU�qTL) j 9Q qTL:MSOL ::= P(T ) j Q(T ) j ? j (MSOL!MSOL)jR+(T ; T ) j 9T MSOL j 9Q MSOLTo de�ne this syntax, we used another syntati ategory Q = fq; q0; :::g ofproposition variables . Any valuation in a model v assigns a set v(q) � U to eah ofthese (seond order) variables. The formula 9q ' is valid in a model M = (U; I;v)if it is valid in some model M0 = (U; I;v0) whih di�ers from M at most in thevaluation of the proposition variable q 2 Q.It is easy to lift the expressive ompleteness theorem 2.4 to seond order.3.2. Lemma. On natural models, qTL has the same expressiveness as MSOL.Proof: In the proof of Theorem 2.4, it was shown how to onstrut the translationLTL(') of a �rst order formula '. For any MSOL formula there is an equiva-lent prenex formula of the form �q1�q2:::�qn , where  is a �rst order formulaand eah � is a seond order quanti�er. Thus, de�ning MSOL(�q1�q2:::�qn ) by�q1�q2:::�qn LTL( ) gives a translation from MSOL into qTL. 2



Model Cheking 16593.3. Lemma. On natural models, the U+-operator in qTL is de�nable by the oper-ators G� and X: ('U+ )$ 8q(G�(X( _ ' ^ q)! q)! q):Proof: Sine this lemma is used several times in subsequent setions, we give adetailed proof. For one diretion, assume that ('U+ ) is valid in M , (U; I; w0).To prove that M j= 8q(G�(X( _ ' ^ q) ! q) ! q), let I 0(q) be an arbitraryset of points, and show that (U; I 0; w0) j= (G�(X( _ ' ^ q) ! q) ! q). In otherwords, from the assumption w0 j= G�(X( _ ' ^ q) ! q) we have to show thatw0 j= q. In any natural model satisfying w0 j= ('U+ ), there are w1, ..., wn 2 Usuh that wi � wi+1 for all 0 � i < n, and '(wi) for all 0 < i < n, and wn j=  .If w0 j= G�(X( _ ' ^ q) ! q), then wi j= (X( _ ' ^ q) ! q) for all i � 0.Hene, wi j= (X ! q) and wi j= (X(' ^ q) ! q) for all i � 0. From wn j=  itfollows that wn�1 j= X . Sine wn�1 j= (X ! q), we have wn�1 j= q. Thereforewn�1 j= (' ^ q), and wn�2 j= X(' ^ q). Sine wn�2 j= (X(' ^ q) ! q), it followsthat wn�2 j= q. Continuing indutively, we �nd that wi j= q for all 0 � i < n.Therefore, w0 j= q.For the other diretion, assume that w0 j= 8q(G�(X( _ ' ^ q) ! q) ! q)and show that w0 j= ('U+ ). First, we show that there must be some w > w0satisfying w j=  . Assume for ontradition that this is not the ase. Choose I(q) ,fw j not w � w0g. In natural models, this is the set fw j w < w0g. It follows that(i) w j= q for all w suh that not w � w0, (ii) w0 =j= q, and (iii) w =j= q for allw > w0. We show that (*): w j= (X( _ ' ^ q) ! q) for all w 2 U . Aordingto the ontradition assumption, w =j=  for all w > w0. With (iii), it follows thatw =j= ( _ ' ^ q) for all w > w0. Hene, w =j= X( _ ' ^ q) for all w � w0. As aonsequene, (*) holds for all w � w0. If not w � w0, then (*) is an immediateonsequene of (i). From (*), we infer that w0 j= G�(X( _'^ q)! q). Therefore,w0 j= q, whih is a ontradition to (ii).Let w1; :::; wn be a set of points suh that wi � wi+1 for all 0 � i < n, and wn isthe smallest point satisfying  (i.e., wn j=  and wi j= : for all w0 < wi < wn).If n = 1, we are done: in this ase w0 j= X , whih implies that w0 j= ('U+ ).If n > 1, to prove w0 j= ('U+ ) we additionally have to show that wi j= ' forany 0 < i < n. Substitution of q with :q in the assumption yields the followingequivalent version: w0 j= 8q(q ! F�(q ^ X( _ ' ^ :q))). Choose I(q) , fw jw0 � w < wig. It follows that w0 j= F�(q ^X( _ ' ^ :q)). That is, there is somew 2 U suh that w j= (q ^X( _'^:q)). Sine n is minimal, there is no w 2 I(q)whih satis�es w j= X . Therefore, it follows that there is a w � w0 suh thatw j= (q ^X(' ^ :q)). Sine wi�1 is the only point with wi�1 j= (q ^X:q) we anonlude that wi�1 j= X', i.e., wi j= '. 2As a sideline we remark that this proof does not make essential use of the \past-omponent" of theG�-operator; in fat, the same proof holds verbatim if we replaeG� byG� and F� by F�. Thus, a orollary to Lemma 3.3 is ('U+ )$ 8q(G�(X( _' ^ q) ! q) ! q): (Sine F+ is somewhat more spei� than F� this ould beonsidered as a somehow weaker result.)



1660 Edmund M. Clarke and Bernd-Holger ShlingloffThe haraterization of the U+-operator with seond order quanti�ation is aspeial ase of the general sheme 8q(G�(� ! q) ! q), where � , X( _ ' ^ q).Dually, the operator ('W+ ) , :(: U+:(' _  )) is haraterized by('W+ ) $ :8q(G�(X(:(' _  ) _ (: ^ q))! q)! q)$ 9q(:q ^G�(X((: ^ :') _ (: ^ q))! q))$ 9q(:q ^G�(:q ! :X(: ^ (:' _ q))))$ 9q(:q ^G�(:q ! X( _ (' ^ :q))))$ 9q(q ^G�(q ! X( _ ' ^ q)))This is an instane of the dual sheme 9q(q ^G�(q ! �)) with � ,X( _ ' ^ q).For omplexity reasons, it is not always advisable to allow quanti�ers on arbi-trary subsets of the universe U . Therefore, we introdue �xpoint quanti�ation:quanti�ation on sets whih follows these shemes. This results in the propositional�-alulus �TL [Emerson and Clarke 1980, Pratt 1981, Kozen 1983, Kozen andParikh 1983℄:�TL ::= P j Q j ? j (�TL! �TL) j hRi �TL j �Q �TL:The semantis of �TL an be de�ned by a translation into MSOL.� MSOL(') is de�ned as in FOL('), for the ases p 2 P , ?, ( 1 !  2), andhRi � MSOL(q) , q(t0), if q 2 Q� MSOL(�q ') , 9q(q(t0) ^ 8t(q(t)!MSOL(')ft0 := tg)).Reall that 'ft0 := tg denotes the formula whih is formed from ' by replaingevery free ourrene of t0 by t. Similarly, 'fq :=  g denotes the formula whihresults from ' by replaing every free ourrene of q with  . The formula �q ' isshort for :�q :('fq := :qg). Thus, the translation of �q ' evaluates to�MSOL(�q ')= :9q(:q(t0) ^ 8t(:q(t)! :MSOL(')ft0 := tg))= 8q(q(t0) _ :8t(:q(t)! :MSOL(')ft0 := tg))= 8q(8t(MSOL(')ft0 := tg ! q(t))! q(t0)):In this hapter, we use � as basi operator and � as a de�ned operator, sinethe semantis of � is a restrited existential quanti�ation on sets of points, and� is a restrited universal seond order quanti�er. However, ('U+ ), whih isde�ned by an existential �rst order lause, is often assoiated with a �-formula:when interpreting �TL on natural models, we use the operator X for the uniquediamond operator hRi. With this notation, Lemma 3.3 an be reformulated asfollows.3.4. Corollary. For any natural model M,M j= ('U+ ) i� M j= �q X( _ ' ^ q)Proof: With Lemma 3.3, the equivalene follows almost immediately from thede�nitions.



Model Cheking 1661MSOL(�qX( _ ' ^ q))= 8q(8t(MSOL(X( _ ' ^ q))ft0 := tg ! q(t))! q(t0))=MSOL(8q(G�(X( _ ' ^ q)! q)! q))$ FOL(('U+ )) (aording to Lemma 3.3) 2Corollary 3.4 does not hold for more general Kripke models. In natural models,other operators an be haraterized by similar �TL formulas:M j= F+ i� M j= �q X( _ q)M j= ('W+ ) i� M j= �q X( _ ' ^ q)M j= G� i� M j= �q ( ^X q)M j= ('U� ) i� M j= �q ( _ ' ^X q)Similarly, on tree models allCTL operators an be de�ned by �TL formulas. Thesame holds for most other programming logis whih an be found in the literature.A formal justi�ation of this statement will be given below in Theorem 5.10.For ertain formulas, an alternative semantial desription of the � and � quanti-�ers in terms of greatest and least �xed points an be given. A funtion f : 2U ! 2Uis alled monotoni, if P � Q implies that f(P ) � f(Q). A set Q � U is alled a�xed point of f , if Q = f(Q).Let gfp(f) = SfQ j Q � f(Q)g and lfp(f) = TfQ j f(Q) � Qg. The Knaster-Tarski �xpoint theorem [Tarski 1955℄ states that if f is monotoni, then gfp(f) andlfp(f) are the greatest and least �xed point of f .3.5. Theorem (Knaster-Tarski). Let f : 2U ! 2U be monotoni. Then(a) gfp(f) = f(gfp(f)) and lfp(f) = f(lfp(f)), and(b) If Q = f(Q), then Q � gfp(f) and lfp(f) � Q.Proof: Sine gfp and lfp are dual, it suÆes to prove the theorem for gfp.If Q = f(Q), then Q � f(Q). If Q � f(Q), then Q 2 fQ j Q � f(Q)g, thatis, Q � SfQ j Q � f(Q)g = gfp(f). This proves (b). Furthermore, sine f ismonotoni, it implies that f(Q) � f(gfp(f)). Hene for eah Q, if Q � f(Q) thenQ � f(gfp(f)) by transitivity of set inlusion. Sine eah individual Q is a subset off(gfp(f)), this means that SfQ j Q � f(Q)g � f(gfp(f)), i.e., gfp(f) � f(gfp(f)).This is one part of (a). Now, we use this result to infer the onverse inlusion of (a):sine f is monotoni, f(gfp(f)) � f(f(gfp(f))). Thus, f(gfp(f)) 2 fQ j Q � f(Q)g,whih means f(gfp(f)) � SfQ j Q � f(Q)g. Therefore, f(gfp(f)) � gfp(f). 2In fat, this proof shows that the seond part of the theorem an be strengthened.3.6. Corollary. If f : 2U ! 2U is monotoni, then� Q � f(Q) implies Q � gfp(f), and� f(Q) � Q implies lfp(f) � Q.For a more detailed disussion of other �xpoint theorems, see [Davey and Priestley1990, Gunter and Sott 1990℄.



1662 Edmund M. Clarke and Bernd-Holger ShlingloffIn a frame F = (U; I), any formula ' de�nes a set 'F � U of points in theuniverse, namely 'F , fw j (U; I; w) j= 'g. Likewise, a formula ' with a freeproposition variable q de�nes a funtion 'Fq : U ! U from sets of points to sets ofpoints (a prediate transformer): if Q � U , then 'Fq (Q) , fw j (U; I 0; w) j= 'g,where I 0 di�ers from I only in I 0(q) , Q.3.7. Lemma. (�q ')F = gfp('Fq ) and (�q ')F = lfp('Fq ).Proof: Aording to the de�nitions, w 2 gfp('Fq ) i� w 2 SfQ j Q � 'Fq (Q)g,that is, if there is some Q � U suh that w 2 Q and Q � 'Fq (Q). In MSOLthis ondition an be denoted as w j= 9q(q(t0) ^ 8t(q(t) ! MSOL(')ft0 := tg)).This lause is exatly the semantial translation MSOL(�q '; thus w 2 gfp('Fq )i� w j= �q '. For lfp('Fq ), the dual proof holds. 2We say that a formula ' is monotoni in q, if the orresponding prediate trans-former 'Fq is monotoni. In other words, ' is monotoni in q i� ( 1 !  2) j=('fq :=  1g ! 'fq :=  2g) holds. ' is monotoni, if for eah sub-formula �q  ,the formula  is monotoni in q. Call an ourrene of a proposition variable q ina formula ' positive or negative, if it is under an even or odd number of negations.Formally, this notion is de�ned reursively: q is positive in the formula q. An o-urrene of q in the formula (' !  ) is positive, if it is a negative ourrene in' or a positive ourrene in  , and negative, if it is a positive ourrene in ' ora negative ourrene in  . An ourrene of q in hRi' and �q0 ' is positive ornegative, if it is positive or negative in ', respetively. A formula ' is alled positivein q, if every free ourrene of q in ' is positive. It is positive, if eah sub-formula�q  is positive in q.3.8. Lemma. If ' is positive in q, then 'Fq is a monotoni prediate transformer.Proof: This statement an be proved by indution on the struture of '. The in-dution basis, namely formulas whih are atomi propositions, proposition variablesor boolean onstants, is immediate. For the indutive step, assume that P � Q.If (' !  ) is positive in q, then  must be positive and ' must be negative in q.Therefore, :' is positive in q. The indution hypothesis is that  Fq (P ) �  Fq (Q)and :'Fq (P ) � :'Fq (Q). From this we an infer that 'Fq (Q) � 'Fq (P ). There-fore, if 'Fq (P ) �  Fq (P ) then 'Fq (Q) �  Fq (Q). This follows from 'Fq (Q) �'Fq (P ) �  Fq (P ) �  Fq (Q). In other words, (' !  )Fq (P ) � (' !  )Fq (Q).For the ase hRi', the indution hypothesis is that 'Fq (P ) � 'Fq (Q). Then,fw j 9w0(w;w0) 2 I(R)^w0 2 'Fq (P )g � fw j 9w0(w;w0) 2 I(R)^w0 2 'Fq (Q)g. Inother words, (hRi')Fq (P ) � (hRi')Fq (Q). Similarly, for formulas �q0', where q andq0 are di�erent variables, the indution hypothesis is that 'Fq;q0 (P;X) � 'Fq;q0(Q;X)for all X . Therefore, X � (')Fq;q0 (P;X) implies X � (')Fq;q0 (Q;X) for all X . Con-sequently, fw j for some X; w 2 X and X � 'Fq;q0(P;X)g � fw j for some X; w 2X and X � 'Fq;q0(Q;X)g. Aording to the de�nition, this is the semantis of



Model Cheking 1663(�q0')Fq (P ) � (�q0')Fq (Q). The last ase is �q'. Sine this formula has no freeourrene of variable q, its denotation (�q')Fq is a onstant funtion. Trivially,onstant funtions are monotoni. 2The onverse of this statement does not hold in general. In partiular, [Ajtaiand Gurevih 1987℄ shows that there is a formula whih is monotoni on all �nitestrutures but has no positive equivalent.3.9. Corollary. If ' is positive, then� j= (�q '$ 'fq := �q 'g) and j= (�q '$ 'fq := �q 'g).� If (U; I) j= (� $ 'fq := �g) then both (U; I) j= (� ! �q ') and (U; I) j=(�q '! �).� (U; I) j= (�! 'fq := �g) implies (U; I) j= (�! �q '), and(U; I) j= ('fq := �g ! �) implies (U; I) j= (�q '! �)Proof: If ' is positive in q, then 'Fq is monotoni aording to Lemma 3.8. The-orem 3.5 asserts that gfp('Fq ) = 'Fq (gfp('Fq )). In the notation of Lemma 3.7, thismeans (�q ')F = 'Fq ((�q ')F ). Moreover, 'Fq ((�q ')F ) = ('qfq := �q 'g)F .Therefore, M j= (�q ' $ 'qfq := �q 'g). The other statements are shownsimilarly. 2Aording to Corollary 3.4, ('U+ ) and ('W+ ) in natural models are leastand greatest �xed points of X( _'^ q) and X( _'^ q), respetively. Therefore,the following reursion and indution axioms hold:� j= ('U+ )$ X( _ ' ^ ('U+ )) and j= ('W+ )$ X( _ ' ^ ('W+ )).� (U; I) j= (X( _ ' ^ �)! �) implies (U; I) j= (('U+ )! �), and(U; I) j= (�! X( _ ' ^ �)) implies (U; I) j= (�! ('W+ )).In partiular, for F+, G+, F� and G�, we have� j= (F+ )$ X( _ F+ ) and j= (G+')$ X(' ^G+').� j= (F� )$ ( _XF� ) and j= (G�')$ (' ^XG�').� (U; I) j= (X( _ �)! �) implies (U; I) j= ((F+ )! �), and(U; I) j= (�! X(' ^ �)) implies (U; I) j= (�! G+').� (U; I) j= (( _X�)! �) implies (U; I) j= ((F� )! �), and(U; I) j= (�! (' ^X �)) implies (U; I) j= (�! G�').As we have shown, positive �TL formulas denote greatest or least �xed pointsof prediate transformers. For nonmonotoni formulas, the existene of �xed pointsis not granted. For example, there is no Q � U satisfying Q = U n Q; thus, thereis no �xed point of (:q)Fq . However, the MSOL semantis of �q :q is 9q(q(t0) ^8t(q(t) ! :q(t))), whih is equivalent to the well-de�ned value ?. On generalKripke-models, positive �TL is stritly weaker in expressiveness than unrestrited�TL. Even unrestrited �TL an, in turn, express fewer properties of Kripke modelsthan monadi seond order logi:



1664 Edmund M. Clarke and Bernd-Holger Shlingloff3.10. Lemma. Consider the lass of all Kripke models.(a) There is no positive �TL formula whih is equivalent to �q(hRi :q).(b) There is no �TL formula whih is equivalent to 8tp(t)Proof: For (a), onsider ' , �q(hRi :q). Then MSOL(') = 9q(q(t0) ^ 8t(q(t)!9t0(tRt0^:q(t0)))). This formula is equivalent to the �rst order ondition 9t(t0Rt^t0 6= t): in one diretion, if there is some q suh that w 2 I(q) and w j= 8t(q(t) !9t0(tRt0^:q(t0))), then there must be a point reahable from w whih is not in I(q),i.e., di�erent from w. For the reverse impliation, assume that w j= 9t(t0Rt^t0 6= t)and let I(q) , fwg. Then w j= q(t0) and w j= 8t(q(t) ! 9t0(tRt0 ^ :q(t0))).Therefore, w j= '.There is no positive formula whih an express this property: onsider the frameF , (U; I), where U , fw0; w1g, I(R) , f(w0; w0); (w0; w1); (w1; w1)g and I(p) =fg for all p 2 P . Then w0 j= ' and w1 =j= '. For eah positive formula  , however, itholds that w0 j=  i� w1 j=  . To prove this, we show by indution on the strutureof  that  F = fg or  F = U . For propositional formulas, this is immediate; thease hRi follows from the de�nition of F . The only remaining ase are formulas�q . Aording to the indution hypothesis, either ( fq := >g)F = fg or ( fq :=>g)F = U . In the �rst ase, from the fat that (�q )F � >F and monotoniity of  we infer that ( fq := �q g)F � ( fq := >g)F = fg. The �rst part of Theorem 3.5implies that (�q )F � ( fq := �q g)F ; therefore, (�q )F = fg. In the seond ase,U = >F = ( fq := >g)F . With the seond part of Theorem 3.5, it follows that>F � (�q )F , i.e., (�q )F = U .Statement (b) holds sine the truth of �TL formulas is preserved under disjointunions of models, whereas ' , 8tp(t) an be invalidated by adding an isolatedpoint w with w =j= p. Formally, onsider the models M0 , (U0; I; w0) and M1 ,(U1; I; w0), where U0 , fw0g, U1 , fw0; wg, I(R) , fg and I(p) , I(q) , fw0g.Then M0 j= ' and M1 =j= ', whereas for eah �TL formula  it holds thatM0 j= ' i� M1 j= '. As above, the only interesting ase is �q . If M0 j= �q then w0 j=  , whih implies M1 j= �q . In the other diretion, M1 j= �q impliesthat either M1 j=  or M01 , (U1; I1; w0) j=  , where I1(q) = U1. In the �rstase, M0 j= �q follows diretly. In the seond ase, M1 j=  fq := >g, whihimplies M0 j=  fq := >g by the indution hypothesis. From this, it follows thatM0 j= �q . 2If the model is onneted (that is, 8w;w0(w < w0 _ w = w0 _ w > w0)), thenevery point is reahable from the urrent point. In this ase, the operator G� (theuniversal modality) an replae the �rst-order universal quanti�er: M j= 8tp(t) i�M j= G�p. In this ase,M j= �q ' i� M j= 9q(q ^G�(q ! '));M j= �q ' i� M j= 8q(G�('! q)! q):Hene, on onneted models (and, in partiular, on natural models) �TL is at mostas expressive as qTL (andMSOL). Sine �TL does not ontain any past-operators,there is no �TL formula whih is equivalent to F�>. Subsequently, however, we will



Model Cheking 1665show that for initial validity in natural models a translation from qTL (orMSOL)into positive �TL exists. Sine the proof uses !-regular languages and !-automata,it is postponed to subsetion 3.4.3.3. !-automata and !-languagesGiven a (�nite or in�nite) natural model M , (U; I; w0), the interpretation Ide�nes a mapping I : P ! 2U from propositions into subsets of the universe.De�ne a labelling funtion L : U ! 2P byp 2 L(w) i� w 2 I(p)That is, L(w) , fp j w 2 I(p)g is the label of point w 2 U . If U = (w0; w1; w2; :::),then the sequene � = (L(w0);L(w1);L(w2); :::) is alled the !-word ofM over thealphabet � , 2P . A set of !-words is alled an !-language.Let F , (U; I) be the frame of a natural model. Formula ' is initially validin F , if (U; I; w0) j= ', where w0 is the unique initial point of U (whih has nopredeessors). For any suh frame F it holds that ' is universally valid i� G�' isinitially valid, and ' is initially valid i� (G�?! ') is universally valid.We say that a linear-time logi formula de�nes the set of all natural frames inwhih it is initially valid. Thus every suh formula de�nes the !-language given bythese frames. We now show that in order to de�ne languages by formulas it suf-�es to restrit attention to the future fragment of temporal logi. The separationLemma 2.6 states that any LTL-formula an be separated into a boolean ombi-nation of pure future, pure present and pure past formulas. It an be extended toqTL:3.11. Lemma. qTL has the separation property on natural models.Proof: Note that the formula 9q(' _  ) $ (9q ' _ 9q  ) is valid. Moreover, if'1,...,'n are pure past,  1,..., m are pure present and �1,...,�l are pure future, then9q(V'i ^V j ^V�k) is equivalent to (9qV'i ^ 9qV j ^ 9qV�k). Informally,this an be seen as follows: 9q(' ^  ) ! (9q' ^ 9q ) is a tautology. In the otherdiretion, assume that the past-formulas '1,...,'n are valid in the model (U; I; w0)where I(q) , Q1, the present-formulas  j are valid with I(q) , Q2, and the future-formulas �k are valid if I(q) , Q3, then the onjuntion of past, present and futurepart is valid if I(q) , (fw j w < w0g \Q1) [ (w0 \Q2) [ (fw j w > w0g \Q3).Now assume that ' , 9q , and show that there is an equivalent separatedformula. The indution hypothesis is that for  there exists an equivalent formula 0 whih is a boolean ombination of pure future, past and present formulas. Let 00 , WV('i ^  j ^ �k) be  0 in disjuntive normal form, where all 'i are purepast,  j pure present and �k pure future. Applying the above formulas we see that9q 00 $ WV(9q'i ^9q j ^9q�k). This formula is separated and equivalent to '.2



1666 Edmund M. Clarke and Bernd-Holger Shlingloff3.12. Lemma. For any LTL or qTL formula ' there exists an LTL or qTL futureformula (without U�-operators) de�ning the same language.Proof: Given a separated formula ', let '+ be the formula ' where every sub-formula ('U� ) is replaed by ?. Then ' is initially valid in any natural modelM i�  + is initially valid in M. Thus ' and '+ de�ne the same language. 2Languages an also be de�ned by (!-)regular expressions and by �nite (!-) au-tomata.The language of (!-)regular expression is de�ned similar to the language of usualregular expressions, with an additional operation denoting in�nite repetition of asubexpression.� Every letter from the alphabet is an !-regular expression.� If � and � are !-regular expressions, then so are ", (�+ �), (�;�) and �+.� If � is an !-regular expression, then so is �! .Every !-regular expression de�nes an !-language: the letter a � P de�nes f(a)g,i.e., a one-word language (one-element set) onsisting of a one-letter word (one-element sequene). " denotes the empty language, and (� + �), (�;�) and �+denote union, sequential omposition and �nite iteration of languages. �! denotesthe language of all words onsisting of an in�nite onatenation of words from �.A language is alled !-regular if it an be de�ned by an !-regular expression.We use boolean terms over P to denote (unions of) letters. For example, if P =fp1; p2g then (:p1^p2) denotes the letter fp2g, and (:p1_p2) denotes fg+fp2g+fp1,p2g.As an example for an !-regular expression, onsider (:p1)! + (>+; p2)!. Thisexpression de�nes the set of all in�nite words (�0; �1; �2; :::) suh that either for alli it holds that p1 62 �i, or for in�nitely many i it holds that p2 2 �i. That is, itde�nes the set of natural models M suh that M j= G�(:p1 ^ X>) _ G�F+ p2.Sine this formula implies G�X>, eah of its natural models must be in�nite.An !-automaton or fair transition system over the alphabet � = 2P is de�ned likea usual (nondeterministi) automaton with an additional reurrene set (\fairnessonstraint"); it is a tuple (S;�; S0; Sa; Sre), where� S is a set of states,� � � S � �� S is the transition relation,� S0 � S is the set of initial states,� Sa � S is the set of aepting states (for �nite words), and� Sre � S is the set of reurring states (for in�nite words).A B�uhi-automaton is a �nite !-automaton, that is, a fair transition system wherethe set S of states is �nite. A transition system (or labelled transition system) isa fair transition system where Sa = Sre = S. A weakly fair transition system isan !-automaton where Sre = S and Sa = fs j 8a; s0(s; a; s0) =2 �g. That is, ina weakly fair transition system all states are reurring, and states are aepting i�



Model Cheking 1667they are terminal. Usually, when talking about labelled and weakly fair transitionsystems, we omit the redundant omponents Sa and Sre.A (�nite or in�nite) nonempty word � , (�0; �1; :::) is aepted by an automaton(S;�; S0; Sa; Sre), if there is a funtion � assigning to any i < j�j a state �(�i) 2 Sof the automaton suh that� �(0) 2 S0,� For all 0 � i < n, (�(i); �i; �(i+ 1)) 2 �, and� (�(n); �n; s) 2 � for some s 2 Sa, if � is �nite with last letter wn, and� inf(�) \ Sre 6= fg, if � is in�nite, where inf(�) is the set of states that appearin�nitely often in the range of �. That is, at least one reurring state must beseleted in�nitely often.For alternative aeptane onditions, see [Thomas 1990℄4. We say that an automa-ton aepts a natural model M, if it aepts the !-word of M. The language of atransition system onsists of all paths through the transition graph; this languageis pre�x-losed (for any word in the language, all of its pre�xes are also ontained).The language de�ned by a weakly fair transition system onsists of all maximalpaths through the graph.
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TFigure 3: A B�uhi automaton aepting (:p1)! + (>+; p2)!As an example of a B�uhi-automaton, onsider Figure 3. This automaton aepts(i.e., de�nes) exatly the same language as the example !-regular expression above.In general, for any !-regular expression we an onstrut suh a B�uhi-automatonand vie versa; B�uhi-automata an de�ne all and only !-regular languages.3.13. Lemma. !-regular expressions and B�uhi-automata are of equal expressivepower.Proof: The proof of this statement is similar as for automata on �nite words: forone diretion, we have to show that the B�uhi aeptane ondition an be aptured4In the literature, a fairness onstraint in a transition systems is sometimes de�ned to be aset of pairs (s; e), where s 2 S is a state and e 2 � is an edge. It imposes the ondition thatif s appears in�nitely often, then e must be taken in�nitely often in eah aepted word. It anbe shown that for our purposes these de�nitions are equivalent. See [Anuhitanukul 1995℄ for therelationships and translations between these two notions for various aeptane onditions.



1668 Edmund M. Clarke and Bernd-Holger Shlingloffby an appropriate regular expression. Let L(si; sj) be a regular expression for thelanguage of �nite nonempty words sending an automaton from state si into statesj . Then the !-regular expression assoiated with any B�uhi-automaton is�fL(s0; s) j s0 2 S0; s 2 Sag+�fL(s0; s);L(s; s)! j s0 2 S0; s 2 SregFor the other diretion it must be shown that B�uhi-automata are losed undersingle letters, the empty language, union, onatenation, and �nite and in�niterepetition. All of these onstrutions are straightforward extensions of the appro-priate onstrutions for automata on �nite words [Hoproft and Ullman 1979℄. 2The automaton resulting from this proof is highly nondeterministi. An automa-ton is alled deterministi, if its transition relation is a funtion � : S��! S. Foreah nondeterministi �nite automaton on �nite words an equivalent deterministione is given by the well known powerset onstrution of Rabin and Sott [Hoproftand Ullman 1979℄. The same holds for �nite transition systems. In ontrast, for non-deterministi B�uhi-automata it is not always possible to onstrut an equivalentdeterministi one. For example, onsider the language L of all words ontaining only�nitely many p. This language is de�ned by the formula F�G+:p or the !-regularexpression (>+ + (>+;:p!)). However, there is no deterministi B�uhi-automatonde�ning L: Assume for ontradition that L is the language of A. Then A mustaept (�; (:p)!) for any �nite word �. In partiular, from any reahable statesome reurring state is reahed by a �nite number of :p-transitions. Let m be themaximum of these numbers. Therefore, in the run of A on the word (p; (:p)m)!in�nitely often reurring states are visited. Thus, this word also is aepted by A.This is a ontradition, sine it is not in L.3.4. Automata and LogisB�uhi [B�uhi 1962℄ showed that his automata are losed under omplement; this isa highly nontrivial proof. The best known onstrution for omplementing B�uhi-automata was given in [Safra 1988℄; it involves an exponential blowup of the numberof states of the automaton. More preisely, if A has n states, then it an be shownthat the smallest automaton aepting the omplement language of A in generalhas O(2n logn) states. For more information on the omplementation problem forB�uhi automata, see [Sistla, Vardi and Wolper 1987, Thomas 1990℄.Closure under omplement an be used to show that B�uhi-automata are at leastas expressive as qTL.3.14. Lemma. For every qTL formula there is a B�uhi-automaton de�ning thesame language.Proof: Aording to Lemma 3.12 it suÆes to give a translation for formulas with-outU�. An automaton for the proposition p 2 P is given by the trivial two-state ma-hine (fs0; sag;�; fs0g; fsag; fg), where (s0; a; sa) 2 � i� p 2 a. An automaton



Model Cheking 1669for ? is one whih never aepts. From an automaton for ', an automaton for X'and F+' an be built by an appropriate pre�xing with a single step or loop on theinitial states. Aording to the remark following Lemma 3.3, U+ an be expressedwith X, F+ and seond order quanti�ation. Impliations ('!  ) an be written as(:' _  ) and thus be redued to unions and omplements. Finally, existential se-ond order quanti�ation amounts to the projetion of the automaton onto a smalleralphabet: given an automaton A = (S;�; S0; Sa; Sre) over the alphabet 2(P[Q)whih aepts the models of ', the automaton A0(S;�0; S0; Sa; Sre) aepts allmodels of 9q ', where (si; a; sj) 2 �0 i� (si; anfqg; sj) 2 � or (si; a[fqg; sj) 2 �0.2In partiular, sine LTL is a sublanguage of qTL, for every LTL formula thereexists a orresponding B�uhi-automaton. In Setion 7, we will desribe a tableauxdeision proedure, whih an be seen as an eÆient algorithm to onstrut a B�uhi-automaton from a formula. Other aspets of the onnetions between temporallogis, monadi logis and automata an be found in [Thomas 1999℄.We now show that !-regular expressions are at most as expressive as �TL:3.15. Lemma. For every !-regular expression there exists a �TL-formula desrib-ing the same language.Proof: The proof assoiates with every !-regular expression ' a �TL-formula�TLq(') with at most one free proposition variable q indiating the end of thesequene.� �TLq(P ) , (Vp2P p ^Vp62P :p ^ q), if P 2 2P� �TLq(�) , ?� �TLq('+  ) , (�TLq(') _ �TLq( ))� �TLq('; ) , �TLq(')fq := X�TLq( )g� �TLq('+) , �q1 (�TLq(')fq := q _X q1g)� �TLq('!) , �q1 (�TLq(')fq := X q1g)If ' de�nes a language of in�nite strings, then �TLq(') does not ontain any freeourrene of q. However, if ' de�nes a language of �nite strings, then �TLq(')ontains the free proposition variable q denoting the �nal point. A �nite string isharaterized by the fat that in its last point the formulaX? holds. Therefore, the�TL-formula orresponding to an !-regular expression ' is de�ned as �TL(') ,�TLq(')fq := X ?g. It an be shown that �TL(') de�nes the same language asthe !-regular expression '. 2As an example, onsider the expression (:p1)! + (>+; p2)!.�TL((:p1)! + (>+; p2)!)= �q1 (�TL(:p1)fq := X q1g) _ �q2(�TL(>+; p2)fq := X q2g)= �q1 ((:p1 ^ q)fq := X q1g) _ �q2((�TL(>+)fq := X�TL(p2)g)fq := X q2g)= �q1 (:p1 ^X q1)_�q2(�q3(> ^ q)fq := q _X q3gfq := X(p2 ^ q)gfq := X q2g)



1670 Edmund M. Clarke and Bernd-Holger Shlingloff= �q1 (:p1 ^X q1) _ �q2(�q3(X(p2 ^ q) _X q3)fq := X q2g)= �q1 (:p1 ^X q1) _ �q2(�q3X(p2 ^X q2 _ q3))$ �q1 (:p1 ^X> ^X q1) _ �q2(�q3X(p2 _ q3) ^X q2)= G�(:p1 ^X>) _G�F+p2This lemma loses the irle in the expressiveness results of seond order languages.3.16. Theorem (B�uhi, Wolper, Sistla). To de�ne !-languages, the following for-malisms are of equal expressive power:i. �TLii. qTLiii. MSOLiv. B�uhi-automatav. !-regular expressionsProof: For every �TL-formula there exists an equivalent qTL-formula by de�ni-tion; on natural models qTL is equal in expressiveness to MSOL by Lemma 3.2;aording to Lemma 3.14, for every qTL (or MSOL) formula there is a B�uhi-automaton de�ning the set of its models; by Lemma 3.13, B�uhi-automata areequivalent to !-regular expressions; and these in turn an be desribed by �TL-formulas as shown in Lemma 3.15. 2Similar results an be proved about logis with past operators on integer mod-els (bi-in�nite words) and two-way automata, and about branhing time log-is (�TL=qTL on tree models) and tree automata (� � S � 2P � (R � S)n)(see [Niwinsky 1988, Thomas 1990, Shlinglo� 1992b℄).4. Model Transformations and PropertiesAs we have seen, linear temporal formulas and !-automata both an be used todesribe sets of in�nite sequenes. The pratial di�erene is, that logi tends tobe more \desriptive", speifying what a system should do, whereas automata tendto be more \mahine-oriented", indiating how it should be done. Logial formulasare \global", they are interpreted on the whole struture, whereas automata are\loal", desribing single states and transitions.Therefore, traditionally automata or related models are used to give an abstrataount of the system to be veri�ed, whereas formulas are used to speify proper-ties of these systems. But, sine it is possible to translate between automata andformulas and bak, this hoie is a matter of omplexity, of available algorithmsand of taste. We ould equally well de�ne both system and properties in temporallogi; in this ase we would have to prove an impliation formula (Setion 7 willexplain how to do this). Another alternative is that both the implementation andthe spei�ation are given as automata, where the latter is more \abstrat" thanthe former. Then we have to prove that one an simulate the other.



Model Cheking 1671In the next setions, we desribe various transformations between models suh assimulations and re�nements, and investigate the preservation of logial propertiesunder these transformations.4.1. Models, Automata and Transition SystemsThe previous setion related !-automata and linear temporal formulas via the !-language aepted by the automaton and the set of natural models in whih the for-mula is initially valid. There is, however, a more diret onnetion on the struturallevel. Let M = (U; I; w0) be a Kripke-model with prediates from P and aessi-bility relations from R. Consider the alphabet � = 2P �R, and let � = (�0�1�2:::)be an !-word, where �i = (ai; Ri). We say that � is generated by M if there existsa mapping � from indies of letters of � into points of U , suh that� �(0) = w0,� if �(i) = w, then ai = L(w),� if �(i) = w and �(i+ 1) = w0, then (w;w0) 2 I(Ri), and� if � is �nite with last letter �n, and �(n) = w, then w is terminal (i.e., there isno w0 suh that w � w0).(Reall that L(w) , fp j p 2 I(w)g is the label of point w.) The fourth onditionguarantees that generated words represent maximal paths in the model5. De�nethe language generated by M to be the set of all !-words generated by M. Withthese de�nitions, Kripke-models an be regarded as weakly fair transition systemsfor the alphabet � = 2P � R. (Reall that in a weakly fair transition system allstates are reurring, and all terminal states are aepting.)4.1. Lemma. For any Kripke-model M = (U; I; w0) there exists a weakly fair tran-sition system MA = (S;�; S0), suh that the language generated by M is equal tothe language aepted by MA.Proof: To prove this lemma, there are several alternative onstrutions. One pos-sibility is to de�ne S , U [fstopg, where stop is a speial aepting state for �nitepaths. Furthermore, S0 , fw0g, and (w; (P;R); s) 2 � i� w 2 U , L(w) = P , andeither (w; s) 2 I(R) or w is terminal and s = stop. Then, MA aepts exatly theset of all natural models whih are generated by M. 2Thus, models an be seen as automata. Likewise, formulas an be seen as au-tomata: in the previous setion we observed that for every LTL formula there existsan equivalent B�uhi-automaton. Sine this proof is onstrutive, it yields a methodto obtain suh an automaton. However, a muh more onise way of onstrutingit is the tableau onstrution skethed in Setion 7 below.5Some texts omit this ondition, with the onsequene that all pre�xes of a generated word arealso generated. Other authors impose the even stronger ondition that all generated words mustbe in�nite; this implies that all points in a model should be nonterminal.



1672 Edmund M. Clarke and Bernd-Holger ShlingloffLet ' be an LTL-formula, and M be a Kripke-model with a single aessibilityrelation. Then ' is sequene-valid in M i� the language generated by M (i.e., thelanguage aepted by the weakly fair transition system MA for M) is a subset ofthe language aepted by the B�uhi-automaton M' for '. That is,M j= ' i� L(MA) � L(M'):The latter ondition is equivalent to L(MA)\L(M') = fg, or L(MA�M:') = fg.Here, M1 �M2 denotes the produt of !-automata, where the produt automa-ton M1 �M2 aepts an in�nite word � i� eah omponent automaton aepts�. Formally, if Mi , (Si;�i; Si;0; Si;a; Si;re) for i = 1; 2, then M1 � M2 ,(S;�; S0; Sa; Sre), where� S , S1 � S2 � f1; 2g,� ((s1; s2; i); a; (s01; s02; j)) 2 � i� (s1; a; s01) 2 �1, (s2; a; s02) 2 �2, and i = j, ori = 1 and s1 2 S1;re and j = 2, or i = 2 and s2 2 S2;re and j = 1.� S0 , S1;0 � S2;0 � f1g,� Sa , S1;a � S2;a � f0; 1g,� Sre , S1;re � S2;re � f2g,Intuitively, the de�nition of Sre enfores that in an in�nite run of M1 �M2 botha state from S1;re and a state from S2;re must be visited in�nitely often. Withthis onstrution, model heking of LTL sequene-validity in �nite models reduesto the nonemptyness problem of B�uhi-automata: a feasible way to hek whetherM j= ' is to onstrut the B�uhi-automata MA for the model and M:' for:', and to hek whether the language of the produt automaton MA �M:' isempty. This approah is implemented in the SPIN and COSPAN model hekingtools [Holzmann 1991, Kurshan 1994℄.If both system M and property ' are given as automata, then \spei�ation"' an be regarded as a \more abstrat version" of the \implementation" M. Wewrite MI j= MS if L(MI) � L(MS), i.e., if (the language of) MI is a subset of(the language of) MS . A property ' is de�ned to be just any !-language ' � �!,where � = 2P �R.4.2. Theorem. Let M1 and M2 be B�uhi-automata. Then� M1 j=M2 i� for all properties ', if M2 j= ' then M1 j= '.� M1 j=M2 i� for all !-regular ', if M2 j= ' then M1 j= '.Proof: One diretion is immediate by transitivity of the subset relation: ifL(M1) � L(M2) and L(M2) � L('), then L(M1) � L('). The other dire-tion follows from instantiating ' with L(M2) and, in the strong form, from thefat that the B�uhi-automaton M2 de�nes a regular language. 2This theorem an help to redue the omplexity of heking whether a modelsatis�es a formula. In order to prove M1 j= ', it an be helpful to look for a\small" model M2 suh that M1 j=M2 and M2 j= '.



Model Cheking 16734.2. Safety and Liveness PropertiesA similar haraterization result as the above 4.2 holds for �nite transition systemsand a speial lass of !-languages alled safety-properties . For natural models Mand M0, let M[::i℄ be the model onsisting of the �rst i points of M, and MÆM0be the onatenation of the two models M and M0. (If M is in�nite, then de�neMÆM0 ,M.)� ' is a safety property, i� for every natural model M,M j= ' if 8i9M0 : M[::i℄ ÆM0 j= 'This de�nition is from [Alpern and Shneider 1985℄. An !-language ' is a safetyproperty if for every model not satisfying ' there is a �nite pre�x M[::i℄ whihan not be ompleted by any ontinuation M0 suh that M[::i℄ Æ M0 j= '. Inother words, for every model dissatisfying ' something \bad" must have happenedafter some �nite number of steps whih annot be remedied by any future goodbehavior. Hene, in Lamport's popular haraterization, safety properties expressthat \something bad never happens" [Lamport 1983℄.� ' is a liveness property , i� for every natural model M,8i9M0 : M[::i℄ ÆM0 j= 'A liveness property ', on the other hand, an never be refuted by observing onlya �nite pre�x of some run. It holds, if and only if every �nite sequene an beompleted to a model satisfying ', hene ' states that \something good eventuallyhappens". Notie, however, that in ontrast to the \bad thing" referred to above,the ourrene of the \good thing" does not have to be observable in any �xed timeinterval. Thus, liveness failures annot be deteted by testing.Without proof we state some fats about safety and liveness from [Alpern andShneider 1985℄:4.3. Theorem. (Properties of safety and liveness)� Safety properties are losed under �nite unions and arbitrary intersetions.� Liveness properties are losed under arbitrary unions, but not under interse-tions.� > is the only property whih is both a safety and a liveness property.� For any property ' there exists a safety property 'S and a liveness property 'Lsuh that ' = ('S \ 'L).The last of these fats is known as the deomposition theorem and an be proved bytopologial arguments. The safety-part of a property ' is the topologial losure of', that is, the least safety property ontaining '. As an example, on natural modelsthe LTL-formula (pU+ q) is equivalent to ((pW+q) ^ F+ q), where the languagede�ned by (pW+ q) is a safety property and the language de�ned by F+ q is a



1674 Edmund M. Clarke and Bernd-Holger Shlingloffliveness property. Similarly, total orretness statements about programs an bedeomposed into invariane (safety) and termination (liveness).We now give a syntatial haraterization of LTL safety properties.4.4. Theorem. Every temporal formula built from literals with ?, >, ^, _ andW+ de�nes a safety property.Proof: The proof is by indution on the struture of the formula. The only inter-esting ase is ('W+ ). Assume that any model M falsifying both ' and  hasa �nite pre�x M[::i℄ suh that any extension of M[::i℄ falsi�es these formulas. IfM =j= ('W+ ), then there is a wj > w0 suh that wj j= (:' ^ : ), and wk j= : for w0 < wk < wj . Therefore, in any model M[::j+i℄ ÆM0, the formula ('W+ )must be invalid. 2An alternative haraterization of safety in linear temporal logi is with past-operators. Any LTL formula G� , where  is a past formula, de�nes a safetyproperty. Moreover, any LTL-de�nable safety property an be de�ned by a formulaof this form [Lihtenstein et al. 1985℄.A binary relation � � U � U is alled image �nite, if for any x 2 U the setfy 2 U j (x; y) 2 �g is �nite. In partiular, any �nite relation is image �nite. Weall a transition system (S;�; S0) �nitary , if S0 is �nite and � is image �nite. Ofourse, any �nite transition system is �nitary. Intuitively, �nitary transition systemsallow only \�nite nondeterminism". The following statement extends Theorem 4.4to �nitary transition systems:4.5. Theorem. Any �nitary transition system de�nes a safety property.Proof: Consider the language L of a �nitary transition system. We have to showthat for every sequene �, if 8i9�0 : �[::i℄ Æ �0 2 L then � 2 L. In other words,assume that any �nite pre�x of � an be extended to a string in L and show� 2 L. If � is �nite, then it is a �nite pre�x of itself; thus there exists some �0suh that � Æ�0 2 L. Sine every state of a transition system is aepting, it followsthat � 2 L. If � is in�nite, onsider the following omputation tree: eah node ismarked by (s; �[::i℄), where s is a state of the transition system and �[::i℄ is a �nitepre�x of �. The root is marked (s; ()), where s is any state. For any initial states0 2 S0 of the transition system there is a hild of the root in the omputationtree whih is marked (s0; �0), where �0 = �[::0℄ is the �rst letter of �. Given a nodemarked (s; �[::i�1℄) (where i > 0), for any s0 suh that (s; �i�1; s0) 2 � there isa hild node in the tree marked (s0; (�0; :::; �i)). Thus there exists a node marked(s; �[::i℄) i� there is a path from some initial state to state s whih is labelled by(�0; :::; �i�1). Sine S0 is �nite and � is image �nite, the omputation tree is �nitelybranhing. Sine every pre�x of � an be extended to a string whih is aeptedby the transition system, the tree ontains in�nitely many nodes. Thus, by K�onig'slemma from elementary set theory, it must ontain an in�nite branh. Therefore,



Model Cheking 1675there is a path in the transition system labelled by �. Sine all states in a transitionsystem are reurring, it aepts �. 2
M: 	� ?� ??

. . .
Figure 4: A non-�nitary Kripke-modelWithout the �nitary restrition, Lemma 4.5 does not hold: onsider the in�nitetransition systemM of Figure 4. It shows a tree, suh that for every natural numberi a path of length i starts from the root. This transition system de�nes the set of all�nite strings (F�X?), whih is not a safety property. Similarly, the same languagean be de�ned by an image �nite transition system with in�nitely many startingstates. In partiular, Lemma 4.5 implies that any �nite transition system de�nesan !-regular safety property. A weaker inverse statement also holds:4.6. Lemma. For every !-regular safety property there is a �nite transition systemde�ning this property.Proof: Assume that a B�uhi-automaton de�ning a ertain safety property ' isgiven. We transform this automaton into a suitable normal form. First, any nona-epting state s an either delared to be aepting or deleted, depending on whetheran aepting state is reahable from s or not: sine safety properties are pre�x-losedlanguages, if there is an aepted path whih passes through nonaepting states,then there must be an equivalent path passing only through aepting states. Sim-ilarly, nonaepting SCCs an be deleted: these are nontrivial strongly onnetedomponents in the automaton whih do not ontain a reurring state. Sine ' is asafety property, for any aepted path � passing through states in a nonaeptingSCC there must be an equivalent path whih avoids this SCC. Otherwise, assumethat � = �1 Æ �2, where �1 leads into the nonaepting SCC. Consider the (nona-epted) path �1 Æ �! whih passes in�nitely often through the nodes of this nona-epting SCC. Any �nite pre�x �1 Æ�n of this path an be extended to the aeptedpath �1Æ�nÆ�2; hene the whole path would have to be aepted. After the deletionof nonaepting SCCs, eah nontrivial SCC ontains a reurring state. Therefore,



1676 Edmund M. Clarke and Bernd-Holger Shlingloffthe automaton aepts all �nite and in�nite paths through its state graph. Con-sider the transition system with the same state set and transition relation, whereall states are aepting and reurring. The language of this transition system is thesame as that of the (redued) automaton. 2For LTL safety properties ', a deterministi transition systemM' orrespondingto ' an be obtained diretly by a tableau proedure; see setion 7.Given a �nite Kripke model M and an !-regular safety property ', hekingwhether M sequene-validates ' is espeially easy. Let MA be the weakly fairtransition system orresponding to M aording to Lemma 4.1, and let M' be adeterministi �nite transition system de�ning the same language as '. As above,M j= ' i� L(MA) � L(M'). Language ontainment an be deided by exeutingMA (program) and M' (spei�ation) in parallel and heking that for everystep in MA the orresponding step in M' exists. This approah is also used inspei�ation-based testing, where a number of test runs � 2 L(MA) is hekedwhether they onform to the spei�ation, that is, � 2 L(M'). The test runsare either determined by the system under test, or seleted by the spei�ationaording to some overage strategy.Safety properties an be used to haraterize language ontainment for �nitarytransition systems just as !-regular properties for B�uhi-automata (f. Fat 4.2).For �nitary transition systems, it is suÆient to hek whether M2 j= ' impliesM1 j= ' for all safety properties ' in order to establish M1 j=M2:4.7. Theorem. Let M1 and M2 be �nitary transition systems. Then M1 j=M2i� for all safety properties ', if M2 j= ' then M1 j= '.Proof: Assume that M1 j= M2, and that M1 =j= '. Then there exists a word �aepted byM1 suh that � =2 '. Sine L(M1) � L(M2), this ounter model is alsoin the language of M2, hene M2 =j= '. For the other diretion, sine the set of allnatural models generated from a �nitary transition system is a safety property andby the fat that M2 j=M2 the assumption immediately redues to M1 j=M2. 24.3. Simulation RelationsThe above haraterization results onentrate on ontainment between the !-languages generated by models and (linear time) formulas. However, there are tworeasons to onsider also weaker preorders between models than ontainment: �rstly,for large nondeterministi transition systems language ontainment may not be easyto hek. Seondly, sometimes it is desirable to formulate properties whih dependon the struture of the system under onsideration rather than on its behavior. Suhproperties may not be preserved even for systems generating the same language.For example, onsider the two models M1 and M2 of Figure 5 over P = fg andR = fa; b; g.



Model Cheking 1677M1: ?a	b R M2: 	a Ra?b ?Figure 5: Two sequene-equivalent but branhing-inequivalent Kripke-modelsClearly, L(M1) = L(M2), and therefore M1 j= M2. That is, if we observesequenes of transitions, then every possible behavior of M1 is also a possiblebehavior of M2. However, if we observe not only transitions whih are taken, butalso transitions whih ould be taken, then the behavior of M1 and M2 di�ers:if \possible ontinuations" are indiated by small light bulbs, then in the �rstsystem after performing a both the b and  lights will be lit, whereas in the seondsystem only one of both is on. Formally, for every LTL-formula  it holds that  is sequene-valid in M1 i�  is sequene-valid in M2. For ' , [a℄([b℄? _ [℄?), itholds that M2 j= ', but M1 6j= '.Given two modelsM1 = (U1; I1; w1) andM2 = (U2; I2; w2), we say thatM1 is asubmodel of M2 (denoted by M1 vM2), if U1 � U2, I1 = I2 # U1 (the restritionof I2 to U2), and w1 = w2. Intuitively, a submodel onsists of some parts of theoriginal model. In the proof of Lemma 4.6 we onstruted a speial submodel whihpreserves all exeution sequenes. Generally, all temporal properties are preservedwhen a model is replaed by the generated submodel , i.e., the submodel onsistingof all points reahable from the urrent point. However, usually properties are notpreserved when a model is replaed by an arbitrary submodel. Instead of simplyomitting parts of a model, it is better to ollapse several points into a single point.For any two models M1 = (U1; I1; w1) and M2 = (U2; I2; w2), a relation H �U1 � U2 is alled a simulation relation between M1 and M2 if� (w1; w2) 2 H ,� For all p 2 P , u 2 U1, and v 2 U2, if (u; v) 2 H then u 2 I1(p) i� v 2 I2(p).� For all u and v suh that (u; v) 2 H and all R and u0 suh that (u; u0) 2 I1(R)there is a v0 with the property that (v; v0) 2 I2(R) and (u0; v0) 2 H .Figure 6 illustrates the third ondition.We say that M1 is simulated by M2, or M2 simulates M1 (denoted by M1 !�M2), if there exists a simulation relation H between M1 and M2. Simulationrelates a model M1 to an abstration M2 of the model M1. It guarantees thatevery behavior of the model is also a possible behavior of the abstration. However,sine a point in the abstrat model usually represents a set of points in the originalmodel, the abstration might have behaviors that have no ounterpart in the originalmodel. Thus, the term \simulation" is used as in \the PC simulates a gameboy" or\this program simulates the development of bateria ultures".



1678 Edmund M. Clarke and Bernd-Holger Shlingloffuu0?R -H vv0?R-H-Figure 6: Simulation ondition for u and v4.8. Fat. !� is a preorder on the lass of all models.Proof: The proof of reexivity is immediate. For transitivity, note that the rela-tional produt of two simulation relations is again a simulation relation. 2If M1 vM2, then M1 !�M2. Moreover, if M1 !�M2, then M1 j=M2: if M2an simulate M1, then for every maximal run � generated by M1 there exists aorresponding �0 2 M2.A model is alled deterministi, if for every w 2 U and R 2 R there is at mostone w0 2 U suh that (w;w0) 2 I(R). (This de�nition is somewhat weaker thanthe de�nition of deterministi automata on page 1668.) For deterministi M2 alsothe onverse holds: M1 j= M2 i� M1 !� M2. This is true beause for any wordthere is at most one path through a deterministi transition system. Deterministimodels and properties are an important speial ase. Whereas for many problemsin nondeterministi transition systems an exponential searh via baktraking isused, in the deterministi ase the same problems an be solved with polynomialomplexity.4.9. Lemma. Let H be a simulation relation between M1 = (U1; I1; w1) and M2 =(U2; I2; w2), and (w01; w02) 2 H. Then (U1; I1; w01)!� (U2; I2; w02).Proof: The proof is immediate from the de�nition of simulation relations. 2A modal box formula is a formula not involving any diamond operator. Morepreisely, literals (propositions and negated propositions) and ?;> are modal boxformulas, and if ' and  are modal box formulas, then ('^ ), ('_ ) and [R℄' aremodal box formulas. Similar to Lemmas 4.2 and 4.6, the following lemma relatessimulations between models and preservation of modal box formulas:4.10. Lemma. Let M1 = (U1; I1; w1) and M2 = (U2; I2; w2) be Kripke-models.M1 !�M2 implies that for all modal box formulas ', if M2 j= ' then M1 j= '.



Model Cheking 1679Proof: The proof is by indution on '. The base ases ?;> are trivial. For p 2 P ,the assumption (w1; w2) 2 H implies w1 2 I1(p) i� w2 2 I2(p). For boolean opera-tors ^, _, the statement is an immediate onsequene of the indution hypothesis.Finally, if w1 =j= [R℄', then there is a w01 2 U1 suh that (w1; w01) 2 I1(R) andw01 =j= '. Sine M1 !� M2, there is a w02 2 U2 suh that (w2; w02) 2 I2(R) and(w01; w02) 2 H . Lemma 4.9 asserts that (U1; I1; w01)!� (U2; I2; w02). Aording to theindution hypothesis, w02 =j= '. Therefore, w2 =j= [R℄', whih was to be proved. 2This lemma makes it possible to hek safety in the abstrated (small) modelM2rather than in the original (large) model M1: if M1 violates a modal box formula,then this violation will also our in M2.The above statement an be extended to more expressive logis. The logiACTL [Long 1993, Clarke, Grumberg and Long 1994a, Clarke, Long and MMillan1989, Josko 1993, Dams, Grumberg and Gerth 1994℄ is \CTL without E quanti-�er". That is, literals and >;? are ACTL formulas, and if ' and  are ACTLformulas, then (' ^  ), (' _  ), A('U+ ) and A('W+ ) are ACTL formulas,where A('W+ ) , :E(: U+:(' _  )).4.11. Theorem. Let M1 and M2 be Kripke-models and ' be an ACTL formula.If M1 !�M2 and M2 j= ', then M1 j= '.Proof: Intuitively, this theorem is true beause formulas in ACTL desribe prop-erties that are valid in all paths of a model. They annot express the existene of aspei� path in the model. If M1 !�M2, then every behavior of M1 is a behaviorof M2. Thus every formula of ACTL that is valid in M2 must also be valid inM1.Formally, the theorem is proved by indution on the struture of '. Again, theonly interesting ases are AU+ and AW+. We show the ase of ' , A(�U+ ).Note that :A(�U+ )$ (E(: U+:(�_ ))_EG+: ) (f. page 1655). Assumethat M1 !�M2 and M1 =j= ', and show that M2 =j= '. If w1 =j= A(�U+ ), thenin M1 there is either a �nite sequene of nodes w11 , w21 , ..., wn1 , suh that wi1 =j=  for 0 < i < n, and wn1 =j= (� _  ), or a maximal path w11 , w21 , w31 , ..., suh thatwi1 =j=  for all i > 0. Similar to the above, the indution hypothesis proves that aorresponding �nite or in�nite sequene w12 , w22 , ..., wn2 or w12 , w22 , w32 , ..., exists,suh that wi2 =j=  for 0 < i < n, and wn2 =j= (� _  ), or wi2 =j=  for all i > 0. Thusw2 =j= A(�U+ ). 2In general the onverse of the above lemma and theorem are not valid. Essentially,this is due to the same reason why Lemma 4.5 fails to hold for non-�nitary transitionsystem: onsider the ounterexample of Figure 7.Both models have in�nitely many branhes from the root, one branh of lengthone, one branh of length two, one branh of length three, and so on. M1 has anadditional branh of in�nite length. These two models annot be distinguished byany modal formula:4.12. Lemma. For any ' 2ML it holds that M1 j= ' i� M2 j= '
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M1:

w1	 � ?� ??
... R R R . . .

M2:
w2	 � ?� ??
. . .

Figure 7: Two modally indistinguishable modelsProof: The statement is proved by indution on '. The ruial ase is ' = hRi ,M1 j= ', and the suessor w01 of w1 for whih w01 j=  is on the additional in�nitebranh of M1. Choose any branh of M2 of length at least n, where n is thenumber of modal operators in '. Denote the i-th point on the in�nite branh ofM1 and on the hosen branh of M2 by wi1 and wi2, respetively (where w01 = w1and w02 = w2). Then for all i � n and all sub-formulas �i of ' with at most (n� i)modal operators it holds that wi1 j= �i i� wi2 j= �i. This is proved by subindutionon n � i: if n � i = 0, then it holds by de�nition of the models. If n � i > 0 andwi+11 j= �i+1 i� wi+12 j= �i+1, then wi1 j= hRi �i+1 i� wi2 j= hRi �i+1. Espeially, sine' has n modal operators, w01 j= ' i� w02 j= '. 2In partiular, Lemma 4.12 implies that for every modal box formula ', ifM2 j= 'then M1 j= '. Yet, M2 does not simulate M1: assume a simulation relation Hmapping the �rst node w of the in�nite path of M1 to any node w0 of any �nitepath in M2. Then H must map the suessor of w to the suessor of w0, thesuessor of the suessor of w to the suessor of the suessor of w0, and so on.There are �nitely many suessors from w0, but in�nitely many suessors from w.Thus, after a �nite number of steps, there will be nodes u 2M1 and v 2M2 suhthat (u; v) 2 H , and u has a suessor in M1, but v has no suessor in M2.This is a somewhat ontrived ounterexample. In \many" ases, the onverse willhold. Reall that a model is alled image �nite, if every point has only �nitely manysuessors.



Model Cheking 16814.13. Theorem. LetM1 andM2 be image �nite Kripke-models. Then M1 !�M2i� for all modal box formulas ', if M2 j= ' then M1 j= '.Proof: Assume that all modal box formulas holding in M2 , (U2; I2; w2) arealso valid forM1 , (U1; I1; w1), and onstrut a simulation between M1 and M2.De�ne H by (u; v) 2 H i� for all modal box formulas ', if v j= ' then u j= '. Then(w1; w2) 2 H by de�nition, and (u; v) 2 H implies L1(u) = L2(v), sine literals aremodal box formulas. Assume (u; v) 2 H and (u; u0) 2 I1(R). We have to show thatthere is a v0 suh that (v; v0) 2 I2(R) and for all modal box formulas ', if u0 =j= 'then v0 =j= '. Assume for ontradition that for eah v0 with (v; v0) 2 I2(R) thereis a 'v0 suh that u0 =j= 'v0 and v0 j= 'v0 . Sine M2 is image �nite, W'v0 existsand is a modal box formula. Moreover, for all suh v0, we have v0 j= W'v0 , whihmeans v j= [R℄W'v0 . This implies u j= [R℄W'v0 and therefore u0 j= W'v0 . This isa ontradition to the assumption that u0 =j= 'v0 for all 'v0 . 2We already mentioned that the above theorems an be used to redue the om-plexity of model heking. To prove thatM1 j= ', it an help to �nd an appropriateabstration M2, and to prove M1 !� M2 and M2 j= '. For more information,see [Bensalem, Bouajani, Loiseaux and Sifakis 1992℄.Extremely eÆient algorithms are known to hek language inlusion for deter-ministi �nite automata [Hoproft and Ullman 1979℄. These algorithms an be usedto hek the simulation preorder for deterministi models. For nondeterministi �-nite modelsM1 = (U1; I1; w1) andM2 = (U2; I2; w2), to hek whetherM1 !�M2we de�ne a sequene of relations H0, H1, . . . on U1 � U2 as follows:� (u; v) 2 H0 i� for all p 2 P it holds that u 2 I1(p) i� v 2 I2(p)� (u; v) 2 Hn+1 i� (u; v) 2 Hn and for all R and u0 2 U1 suh that (u; u0) 2 I1(R)there is a v0 with the property that (v; v0) 2 I2(R) and (u0; v0) 2 Hn.The intersetion H� of all Hn is the largest simulation relation betweenM1 andM2. That is, M1 !� M2 i� (w1; w2) 2 H�. Algorithmially, if Hn = Hn�1, thenH� , Hn and the onstrution terminates. In other words, we onstrut the greatest�xed point of the one-step simulation relation. Sine the strutures are �nite, thereare only �nitely many di�erent Hn. Thus, termination is guaranteed. In Figure 8,R(u) denotes the set fu0 j (u; u0) 2 I(R)g, and j1 is the �rst omponent of a tuple.In the next setion, a more elaborate implementation of a similar algorithm forsymmetri simulation relations is given, whih is based on partition re�nement.5. Equivalene redutionsIn this setion, we onsider symmetri preorders, i.e., equivalenes, and equivalenetransformations between models. There are various possibilities for de�ning equiv-alenes on models. For any preorder � from the preeding setion, an equivalenean be de�ned by M1 'M2 i� M1 �M2 and M2 �M1. In this way, the equiv-alene indued by the submodel ordering v is isomorphism. For M1 j= M2, the



1682 Edmund M. Clarke and Bernd-Holger Shlingloffproedure Sim hek (Model (U1; I1; w1), Model (U2; I2; w2)) =Hnew := f(u; v) j u 2 U1; v 2 U2; L1(u) = L2(v)grepeatHold := Hnew; Hnew := fgfor all (u; v) 2 Hold doadd := >; for all R 2 R doif not R(u) � �(R(u)�R(v)) \Hold�j1 then add := ?if add then Hnew := Hnew [ f(u; v)guntil Hnew = Hold;if (w1; w2) 2 Hnewthen print(\(U1; I1; w1) is simulated by (U2; I2; w2)")else print(\There is no simulation between (U1; I1; w1) and (U2; I2; w2)");Figure 8: Algorithm for simulation hekingsymmetri version is equality of the generated languages. Other model equivalenesare introdued by equivalene with respet to logial formulas, and by symmetrisimulations.5.1. Bisimulations (p-morphisms)A lassial notion from modal logi is p-morphism [Segerberg 1968℄, [Segerberg1971, p37℄ or bisimulation [Milner 1980, Park 1981℄. A bisimulation is a relation $�between the universes of two Kripke-models (U1; I1; w1) and (U2; I2; w2) suh that� w1 $� w2,� If u$� v, then u 2 I1(p) i� v 2 I2(p)� If u$� v and (u; u0) 2 I1(R), then there exists v0 suh that (v; v0) 2 I2(R) andu0 $� v0.� If u$� v and (v; v0) 2 I2(R), then there exists u0 suh that (u; u0) 2 I1(R) andu0 $� v0.Two Kripke-modelsM1 and M2 are bisimilar (denoted by M1 $�M2), if thereexists a bisimulation between them. Figure 9 shows some examples of bisimilarmodels.This example demonstrates the following statements:5.1. Fat.� Eah model is bisimilar to one where dupliate states (whih have the sameinput and output) are removed,� Eah model is bisimilar to its unfolding, and



Model Cheking 1683-	a 6b RaRb 6a 	b -	a 6bI bRb ?a �a -?a 6b
- - - - - - - -a a a ab b b . . .Figure 9: Bisimilar models� Eah model is bisimilar to its reahable part.IfM1 $�M2, thenM1 !�M2 andM2 !�M1; the other diretion of this statementis not neessarily true. For example, eah of the models in Figure 10 simulates theother one, but they are not bisimilar.- ?a	a Rb - ?a Ra	a Rb ?aFigure 10: Not-bisimilar modelsAnother important equivalene relation between models is that of being indistin-guishable by formulas of a ertain logi. We say that the models M1 and M2 areequivalent with respet to the logi L (M1 �L M2) if for all well formed formulasof L it holds that M1 j= ' i� M2 j= '. The relation �FOL is alled elementaryequivalene. Bisimulation relations are preisely those equivalenes whih preserveall modal formulas:5.2. Lemma. Bisimilar models are modally equivalent: if M1 $� M2, thenM1 �ML M2The proof is by indution on the struture of ', analogous to the proof ofLemma 4.10.Hene, it is \safe" to substitute a model by a bisimilar one in a strutured softwaredevelopment proess: all multimodal formulas whih are valid for the original modelwill remain valid for the substituted model. The onverse of this lemma againrequires image �niteness:



1684 Edmund M. Clarke and Bernd-Holger Shlingloff5.3. Theorem (Segerberg71). Image �nite models are modally equivalent i� theyare bisimilar: if M1 and M2 are image �nite, then M1 $�M2 i� M1 �ML M2Again, the proof is similar to the proof of Theorem 4.13 in the previous setion.The only di�erene is that bisimulation is a symmetri relation.In general, this theorem does not hold for more expressive logis. For �niteKripke-models, however, it an be lifted even to logis like positive �TL. Givenany formula ' whih is positive in q, and a natural number n, we de�ne �0q ' , >,and �n+1q ' , 'fq := �nq 'g. That is, �nq ' , 'fq := 'gfq := 'g � � � fq := >g.5.4. Lemma. Let M , (U; I; w) be a �nite model, where jU j = n, and let ' be amonotoni �TL formula. Then M j= �q ' i� M j= �nq 'Proof: One diretion of this lemma follows from the fat that �q ' denotes a �xedpoint, i.e., (�q ' ! 'fq := �q 'g). Sine ' is monotoni, this implies ('fq :=�q 'g ! 'fq := 'fq := �q 'gg). By hain reasoning, (�q ' ! 'fq := 'fq :=�q 'gg). By indution, (�q ' ! 'fq := 'gfq := 'g:::fq := �q 'g). Again, sine 'is monotoni in q, it holds that ('fq := �q 'g ! 'fq := >g), thus (�q '! �nq ')is valid.For the other diretion, let F , (U; I) be the frame on whih M is based.Consider the sequene ((�nq ')F )n�0 of sets of points. Clearly, (�0q ')F =>F = U � (�1q ')F . Sine 'Fq is monotoni (f. Fat 3.8), (�1q ')F ='Fq ((�0q ')F ) � 'Fq ((�1q ')F ) = (�2q ')F . Continuing this argument, we on-lude that ((�nq ')F )n�0 is a desending hain of sets. There are two possibil-ities: either there exists an i < jU j suh that (�iq ')F = (�i+1q ')F , hene(�iq ')F = (�nq ')F , or (�nq ')F = f g. In either ase, the sequene stabilizes afterat most jU j steps: (�nq ')F = (�n+1q ')F . As a onsequene, (�nq '! �n+1q ')is universally valid in F .Now assume that M =j= �q ', and show that M =j= �nq '. Aording to thede�nition on page 1660, (U; I; w) =j= �q ' means that for all Q � U suh thatw 2 Q there exists a v 2 Q suh that (U; I 0; v) =j= ', where I 0(q) = Q. (*) LetQ = (�nq ')F . If w =2 Q, then (U; I; w) =j= �nq ' and we are done. If w 2 Q,then by (*) for some v it holds that (U; I; v) j= �nq ', and (U; I 0; v) =j= ', whereI 0(q) = (�nq ')F . In other words, (U; I 0; v) =j= 'fq := �nq 'g, whih means that(U; I; v) =j= �n+1'. Sine (U; I; v) j= (�nq '! �n+1q '), this is a ontradition. 2This lemma is important for model heking of �TL on �nite Kripke models.Moreover, it allows to prove the following result.5.5. Theorem. Finite models are monotoni �TL-equivalent i� they are bisimilar:if M1 and M2 are �nite, then M1 $�M2 i� M1 ��TL M2Proof: Trivially, �nite models are also image �nite. Any two models whih areequivalent with respet to monotoni �TL are modally equivalent, sine modal logiis a sublanguage of �TL. Hene as an immediate onsequene of Theorem 5.3, anytwo �nite models whih are �TL equivalent are bisimilar.



Model Cheking 1685For the other diretion, assume that M1 j= ' and M2 6j= ', where ' is amonotoni �TL-formula. Let n , max(jU1j; jU2j), and 'n be ' where every sub-formula �q  is replaed by �nq  . As a onsequene of Lemma 5.4, Mi j= ' i�Mi j= 'n for i = 1; 2. Therefore,M1 j= 'n andM2 6j= 'n. Sine 'n is a multimodalformula,M1 and M2 are modally inequivalent. Theorem 5.3 implies that M1 andM2 are not bisimilar. 25.6. Corollary. Any two �nite Kripke-models whih an be distinguished by amonotoni �TL-formula an also be distinguished by a multimodal formula: if M1and M2 are �nite, then M1 ��TL M2 i� M1 �ML M2[Browne, Clarke and Grumberg 1988℄ proved that if two �nite models an be dis-tinguished by a formula of the logi CTL�, then they an be distinguished by aCTL formula. Every CTL� formula has a positive �TL equivalent [Dam 1994℄(on tree models, CTL� an be translated into monadi seond order logi, whihis of the same expressiveness as �TL). Therefore this result an be obtained as aonsequene of the above.5.2. Distinguishing Power and Ehrenfeuht-Fra��ss�e GamesThe previous theorems showed that logis with di�erent expressiveness an havethe same distinguishing apabilities. We wish to formalize these notions. A logi L2is said to be at least as expressive as L1 (or L1 is at most as expressive as L2) i�for any formula '1 2 L1 there exists a formula '2 2 L2 suh that for all modelsMwe have M j= '1 i� M j= '2. L1 and L2 have the same expressive power if L1 isat least as expressive as L2 and L2 is at least as expressive as L1. In other words,two logis have the same expressive power i� for any formula of one logi there isan equivalent formula from the other logi. For example, Theorem 2.4 states thaton natural models, FOL and LTL have the same expressive power.Logi L2 is at least as distinguishing as L1 (or L1 is at most as distinguishing asL2) if any two models whih are inequivalent with respet to L1 are also inequiva-lent with respet to L2. That is, L2 at least as distinguishing as L1 i�M1 �L2 M2implies M1 �L1 M2. L1 and L2 have the same distinguishing power if L1 is atmost as distinguishing as L2 and L2 is at most as distinguishing as L1. In otherwords, L1 and L2 have the same distinguishing power i� for all models M1 andM2 it holds that M1 �L1 M2 i� M1 �L2 M2.Expressiveness is a �ner equivalene relation on the lass of all logis than dis-tinguishability:5.7. Fat. If L1 is at most as expressive as L2, then it is at most as distinguishing.If L1 and L2 have the same expressive power, then they have the same distinguish-ing power (but not vie versa).Proof: Assume that for any formula '1 2 L1 there exists an equivalent formula'2 2 L2. Assume further two models M1 and M2 whih are inequivalent with



1686 Edmund M. Clarke and Bernd-Holger Shlingloffrespet to L1, that is, for some '1 2 L1 we have M1 j= '1 and M2 =j= '1 or vieversa. Aording to the �rst assumption there exists '2 2 L2 equivalent to '1.Therefore M1 j= '2 and M2 =j= '2 or vie versa, whih means that M1 and M2are inequivalent with respet to L2. The seond statement follows by symmetry. Asexample of logis with equal distinguishing power but di�erent expressive power,onsider multimodal logi and positive �TL. 2For any formula ', we say that ' is preserved under bisimulations, if for all modelsM1 $�M2 it holds thatM1 j= ' i�M2 j= '. A logi L is bisimulation invariant, ifall well-formed formulas of L are preserved under bisimulations. Lemma 5.2 showsthat multimodal logi is bisimulation invariant. In other words, if a property anbe de�ned by a multimodal formula, then it is preserved under bisimulations. Thesame holds for more expressive logis like monotoni �TL:5.8. Lemma. �TL is bisimulation invariant: if M1 $� M2, then for any positive�TL formula ' it holds that M1 j= ' i� M2 j= '.In his thesis, van Benthem investigated the reverse diretion, and gave a on-netion between bisimulations, �rst order and modal expressiveness (see [vanBenthem 1983℄). He showed that for �rst order formulas, bisimulation invarianeimplies multimodal de�nability:5.9. Theorem (Expressive ompleteness of ML). For any �rst order formula '(with one free variable) whih is preserved under bisimulations there exists an equiv-alent multimodal formula.Thus, exatly those �rst order formulas whih are preserved under bisimulationsan be translated into modal logi. [Janin and Walukiewiz 1996℄ extended thistheorem for seond order formulas and �TL, whih is a onverse to Lemma 5.8:5.10. Theorem (Expressive ompleteness of �TL). Let ' be any MSOL prop-erty. Then ' is preserved under bisimulations i� ' is de�nable by a positive �TLformula.In partiular, this result implies that every logi whih is bisimulation invariant andhas a semantial translation into MSOL an be also translated into mTL. As aorollary, many propositional logis of programs (CTL�, PDL, ...) whih have beensuggested an be translated into the �-alulus.Segerberg's theorem 5.3 relates modal equivalene to bisimilarity. Bisimilarityan also be de�ned in terms of a so-alled Ehrenfeuht-Fra��ss�e game [Fra��ss�e 1954,Ehrenfeuht 1961℄: there are two players, Ann and Bob. They play on a board onwhih two Kripke-models are drawn. Ann's goal is to show that these models arenot bisimilar, whereas Bob's goal is to show that they are bisimilar. (So, this is notreally a fair game, sine the outome is predetermined by the shape of the board.)Eah player has an unlimited amount of pebbles whih are numbered onseu-tively: a0; a1; a2; ::: and b0; b1; b2; :::. To start the game, eah player plaes his �rst



Model Cheking 1687pebble a0, b0 on the urrent point of one of the models. If the urrent points havea di�erent label, Bob has lost immediately.Thus, round 0 onsists of plaing a0 and b0 on the board. Similarly, round jonsists of the plaement of aj and bj : Ann hooses any point w0 on one of themodels on whih some pebble (say, ai or bi for i < j) had been plaed previously,and puts her next pebble aj on some point w1 whih is an R-suessor of w0. Bobthen loates the ith pebble (that is, bi or ai, respetively) on the other model, sayin point w00. He looks for a point w01 suh that w00Rw01, and w1 and w10 have thesame label. If he an't �nd suh a point he has lost and the game ends; otherwisehe hooses any suh point and puts his next pebble bj on it.If the game ontinues forever, then Bob has won. Ann an fore a win within nrounds, if she an plae her pebble in suh a way that Bob immediately loses thegame, or if she an hoose a point suh that for eah possible answer of Bob shean fore a win within n� 1 rounds. Ann has a winning strategy if there is some nsuh that she an fore a win within n rounds. Bob has winning strategy i� Anndoes not have one; i.e., if in eah round and for eah possible move of Ann there isa response by Bob to ontinue the game.Ehrenfeuht-Fra��ss�e games are a onvenient way to imagine bisimulations.5.11. Theorem. Ann has a winning strategy in this game i� the two models arenot bisimilar; i.e., Bob has a winning strategy i� they are bisimilar.Proof: From Bob's winning strategy, it is easy to onstrut a bisimulation be-tween the two models: wi $� w0i i� Bob would have hosen wi or w0i as a reply toAnn's hoosing w0i or wi, respetively. For the other diretion, every bisimulationdetermines a winning strategy for Bob: he just replies by hoosing any point whihis related to the point hosen by Ann via the bisimulation relation. 2It is easy to modify the rules of the game suh that it aptures the equivaleneof two models with respet to other logial languages. For example, in a game forMSOL we allow both Ann and Bob in any move to plae an arbitrary set of pebbleson one of the models on the board. Then the two models an be distinguished bya monadi seond order formula i� Ann has a winning strategy.5.3. Auto-bisimulations and the Paige/Tarjan AlgorithmIn this subsetion we show how to minimize a given Kripke-model with respet tobisimulation equivalene. Note that our de�nitions did not exlude bisimulationsfrom a model to itself (auto-bisimulations); i.e., some points in a model an berelated by a bisimulation to other points in the same model.5.12. Lemma. The union of any number of auto-bisimulations on a model is againan auto-bisimulation.Proof: This follows diretly from the de�nition of bisimulation relations. 2



1688 Edmund M. Clarke and Bernd-Holger ShlingloffThus, for any model, there exists a largest auto-bisimulation, namely, the union ofall auto-bisimulations of this model. Additionally, the reexive transitive symmet-ri losure of any auto-bisimulation is again an auto-bisimulation. Hene, for anyauto-bisimulation $� there is a largest equivalene relation � ontaining it ($���)whih is again an auto-bisimulation. And, the largest auto-bisimulation must be anequivalene relation on the set of points of a model.Given any model M , (U; I; w0), and any equivalene relation � on U . De�nethe quotient of M with respet to � to be the modelM� , (U�; I�; w�0 ), where U�is the set of equivalene lasses of U with respet to �, w�0 is the equivalene lass ofw0, w� 2 I�(p) if there is some w 2 w� suh that w 2 I(p), and (w�1 ; w�2 ) 2 I�(R)if there are w1 2 w�1 and w2 2 w�2 suh that (w1; w2) 2 I(R).5.13. Lemma. If the equivalene relation � is an auto-bisimulation, then M $�M�.Proof: De�ne u $� v� i� u � v. That is, eah point in the original model ismapped to its equivalene lass in the quotient model. We have to show that forthis relation the four onditions de�ning a bisimulation (f. page 1682) hold. Forthe initial point, w0 $� w�0 holds beause w0 � w0. Sine � is a bisimulation,u � v implies that L(u) = L(v). Thus if u $� v� then u 2 I(p) i� v� 2 I�(p).Furthermore, if (u1; u2) 2 I(R) and u1 $� v�1 , then by de�nition (u�1 ; u�2 ) 2 I�(R)and u1 � v1. Therefore, u�1 = v�1 , i.e., (v�1 ; u�2 ) 2 I�(R). For the last ondition,assume that (v�1 ; v�2 ) 2 I�(R) and v�1 $� u1. Then there exist w1 and w2 suh thatw1 � v1, w2 � v2 and (w1; w2) 2 I(R). From v�1 $� u1 we infer u1 � v1 and thusu1 � w1. Sine � is a bisimulation, there exists a u2 � w2 suh that (u1; u2) 2 I(R).From u2 � w2 and w2 � v2 we onlude that u2 � v2, i.e., u2 $� v�2 . 2The quotient of a model with respet to its largest auto-bisimulation an beregarded as a minimal representation of this model. In �nite models, this minimalrepresentation an be onstruted very eÆiently.For any set of points P � U , let hRiP , fw j 9w0 2 P; (w;w0) 2 I(R)g. Givenany partition of U into equivalene lasses, all a omponent w� uniform, if forall p 2 P it holds that w� � I(p) or w� \ I(p) = fg. That is, w� is uniform ifL(w1) = L(w2) for all w1; w2 2 w�. A omponent w� is alled stable with respetto P , if for all R either w� � hRiP or w� \ hRiP = fg. The partition is alledstable, if all omponents are uniform and stable with respet to all omponents.5.14. Theorem. The oarsest stable partition is the largest auto-bisimulation.Proof: First, we show that any stable partition is an auto-bisimulation. Trivially,w0 � w0. Sine u� is uniform, u � v implies L(u) = L(v). If (u; u0) 2 I(R), thenu� � hRi u0�, beause u� is stable with respet to u0�. In other words, u� � fw j9w0 � u0; (w;w0) 2 I(R)g. Therefore, if u � v, then there is a v0 � u0 suh that(v; v0) 2 I(R). The symmetri ondition is proved symmetrially. Vie versa, everyauto-bisimulation de�nes a stable partition: to show that u� is stable with respet tov�, assume that u1 � u2 2 u�. Sine � is a bisimulation, for every (u1; u01) 2 I(R)



Model Cheking 1689and u01 2 v� there must be a u02 � u01 2 v� suh that (u2; u02) 2 I(R). Therefore,u� � hRi v� or u� \ hRi v� = fg. If � is the oarsest stable partition, then for anyauto-bisimulation $� it holds that $� � �. Assuming for ontradition that u, vand $� exist suh that u$� v and not u � v, aording to Lemma 5.12 the union of$� and � would be a stable partition oarser than �. 2The following algorithm an be used to onstrut the oarsest stable partition:| Start with the trivial partition onsisting of only one omponent| Repeat{ Choose a omponent w�0 and a proposition p 2 P ;{ Split w�0 into w�0 \ I(p) and w�0 n I(p)or{ Choose omponents w�0 and w�1 , and a relation R 2 R;{ Split w�0 into w�0 \ hRiw�1 and w�0 n hRiw�1until no new omponents an be obtained that wayThe Paige-Tarjan algorithm [Paige and Tarjan 1987℄ given in Figure 11 is asophistiated implementation of this idea; it maintains two partitions: a oarserone, C, and a �ner one, F . All omponents in F are stable with respet to anyomponent in C. The nondeterministi hoie in the above repeat-loop is replaedby a systemati split of the �ner partition with respet to all omponents of theoarser partition. Initially, C is the trivial partition and F is the split of C w.r.t. allp 2 P and R 2 R. Then, a w� 2 C is split into w�1 2 F and w�2 , w� n w�1 . Anyw�0 2 F is split into four parts: First, it is split with respet to hRiw�1 , and thenagain with respet to hRiw�2 .In this split of w�0 , either the last or the �rst three parts must be empty: sinew�0 is stable with respet to C, either w�0 � hRiw� or w�0 \ hRiw� = fg for allR. If w�0 � hRiw�, then (w�0 n hRiw�1 ) n hRiw�2 = fg. If w�0 \ hRiw� = fg, thenboth w�0 \ hRiw�1 = fg and w�0 \ hRiw�2 = fg: sine w� = w�1 [ w�2 , it holds thathRiw� = hRiw�1 [ hRiw�2 .The overall omplexity of the algorithm is O(m � logn), where n is the numberof points in the original model, and m is the number of points (partitions) in theresult.6. CompletenessLogiians are interested in logial truths, i.e., in the set of formulas whih are validin all models of the logi. How does it help to know about the set of all validformulas when we want to �nd out whether a partiular formula ' holds for agiven model or theory? The answer is to enode the model or theory as a set ofassumptions � and hek whether the formula in question follows from �.In fat, a logi an be de�ned to be any set of well-formed formulas whih islosed under provable onsequene; and a theory is a set of well-formed formulaswhih is losed under semantial onsequene.Thus there are three notions of onsequene involved here:



1690 Edmund M. Clarke and Bernd-Holger Shlinglofffuntion Bisimulation minimize (Model (U; I; v)) : Model =C := ffUgg, F := ffUggfor all p 2 P and w� 2 F doF := (F n fw�g) [ fw� \ I(p); w� n I(p)g;for all R 2 R and w� 2 F doF := (F n fw�g) [ fw� \ hRifUg; w� n hRifUgg;while C 6= F dohoose w� 2 C n F and w�1 2 F suh that w�1 � w�w�2 := w� n w�1 ; C := (C n fw�g) [ fw�1 ; w�2 g;for all R 2 R and w�0 2 F doF := F n fw�0 g[f(w�0 \ hRiw�1 ) \ hRiw�2 , (w�0 \ hRiw�1 ) n hRiw�2 ,(w�0 n hRiw�1 ) \ hRiw�2 , (w�0 n hRiw�1 ) n hRiw�2 gend;return (F; I�; v�)Figure 11: Paige-Tarjan algorithm for bisimulation minimization� � jj� ' if ' follows from �,i.e. if any model in whih all formulas from � are valid also validates ',� � ` ' if ' an be proved from �,i.e. if there is a proof of ' whih uses only assumptions from �, and� (�! ') if ' is implied by �.This is a statement of the objet language whih is only de�ned if � is a singleformula. To be liberal, we an identify a �nite set of formulas � , f'1; :::; 'ngwith the onjuntion �̂ , ('1 ^ ::: ^ 'n).Note that � jj� ' is di�erent from M j= '. The notations jj� ' and ` ' are shortfor fg jj� ' and fg ` ', respetively.Of ourse, the semantial notion of validity sometimes is restrited to ertainlasses of models, e.g., to those satisfying ertain axioms, or to natural or treemodels.Also, the algorithmi notion of provability sometimes is parameterized by a er-tain proof-system. In this setion, we will use Hilbert-style proof-systems, onsistingof a set of axioms and derivation rules . Although suh proof systems are not verypratial, often they an illustrate the priniples underlying ompleteness proofs.Usually, axioms and derivation rules ontain proposition variables q 2 Q and asubstitution rule allowing onsistent replaement of proposition variables with for-mulas. Coneptually, proposition variables are not the same as propositions, thoughmany authors do not distinguish between these syntati ategories. A free propo-sition variable in an axiom an be thought of more or less as if it were universallyquanti�ed.



Model Cheking 1691To ompliate things even more, there are two notions of validity of a formula:loal validity (U; I; w0) j= ' (in a model, where the evaluation point is given), anduniversal validity (U; I) j= ' in a frame (U; I). Traditionally, fous has been onomplete axiom systems for universal validity rather than for the loal version;proofs are muh simpler. Thus, in this setion we are interested in formulas whihare valid in all models at all points.One of the major onerns after de�ning a logial language and its models isto �nd an adequate proof-system for the logi, i.e. one whih is both sound andomplete. That is, for any � and ',� if � ` ', then � jj� ' (Soundness), and� if � jj� ', then � ` ' (Completeness).It is obvious that any proof system should be sound: we don't want to be able to\prove" false statements. Usually is very easy to prove soundness. We just have toshow that the axioms are valid, and that all formulas whih an be dedued fromvalid formulas by the derivation rules are valid. Completeness is often muh harderto show, if not impossible. However, it is important to strive for ompleteness.Firstly, we would like to make sure that any spei�ation whih is satis�ed bya program an be proved from the program axioms, provided the spei�ationis expressible in the logi. Seondly, and more important, in many ases deisionalgorithms for automated veri�ation an be obtained from the ompleteness proofsor vie versa.6.1. Dedutions in Multimodal LogiTo illustrate the basi idea, we start with a simple dedutive system for multimodallogi. A number of similar proofs an be found in [Burgess 1984℄. We use thefollowing axioms and rules:(taut) propositional tautologies(MP) p; (p! q) ` q(N) q ` [R℄ q(K) ` ([R℄(p! q)! ([R℄ p! [R℄ q))Sine this axiom system is based on the [R℄-operator rather than the hRi-operator,we identify hRi' with : [R℄:'.To prove � ` ' we have to give a derivation of ' from the assumptions �, i.e.,a sequene of formulas suh that the last element of this sequene is ', and everyelement of this sequene is either from �, or a substitution instane of an axiom,or the substitution instane of the onsequene of a rule, where all premisses of therule for this substitution appear already in the derivation.As an example, let us assume (p! q) and derive some onsequenes:1. (p! q) (assumption)2. [R℄(p! q) (1, N)3. ([R℄(p! q)! ([R℄ p! [R℄q)) (K)4. ([R℄ p! [R℄q) (2, 3, MP)



1692 Edmund M. Clarke and Bernd-Holger Shlingloff5. (:q! :p) (1, taut)6. ([R℄:q! [R℄:p) (5, as in 1-4)7. (: [R℄:p! : [R℄:q) (6, taut)8. (hRi p! hRi q) (7, hRi' , : [R℄:')Lines (4) and (8) form the basis for an indutive proof of the following replaementand monotoniity rules:(repl) (p$ q) ` ('(p)$ '(q)), and(mon) (p! q) ` ('(p)! '(q)), where '(q) is positive in q.(mon) is a syntatial analog of Lemma 3.8. The requirement that '(q) is positivein q means that every ourrene of q is under an even number of negation signs(f. the de�nition on Page 1662). For example, [R℄ q, hRi q, and (q ^ [R℄(q _ hRi q))are positive in q.6.1. Theorem (Soundness of ML axiom system). If � ` ' then � jj� '.Proof: Soundness of (taut) and (MP) is immediate. (N) is the so alled nees-sitation rule. Its validity depends on the universal interpretation of validity: f someformula is valid in every point of a model, it is valid in every point whih is theR-suessor of some other point in that model. (K) is the lassial Kripke-axiomwhih holds for all normal modal logis. If in all aessible points p holds, and inall aessible points (p! q) holds, then in all aessible points q must hold. 2The lassial way to prove this theorem is the so{alled Henkin-Hasenj�ager on-strution. A set 	 of formulas is onsistent with �, if there is no �nite subsetf 1; :::;  ng � 	 suh that � ` ( 1 ^ ::: ^  n ! ?). Given a set � of assumptionsand a formula ' whih is onsistent with �, we will onstrut a model in whih �is universally valid and ' is loally valid. Call a set w of formulas maximal, if forany formula  , either  or : is in w.6.2. Lemma (Lindenbaum's extension lemma). For any formula ' whih is onsis-tent with � there exists a maximal onsistent set w0 suh that ' 2 w0 and � � w0Proof: Start with � [ f'g; for every formula  aording to a �xed enumerationadd either  or : to w, whihever is onsistent with the set onstruted so far.2The anonial model for � is (U; I; w), where� U is the set of maximal onsistent sets whih inlude �,� I(R) , f(w0; w1) j q 2 w1 implies hRi q 2 w0g, and� I(p) , fw0 j p 2 w0g, and� w is any element from U suh that ' 2 w.The following result is sometimes alled the \truth" lemma. Intuitively, it statesthat any point in the anonial model ontains exatly those formulas whih aresatis�ed by this point.



Model Cheking 16936.3. Lemma (Truth lemma). Let ' be any formula and w be a maximal onsistentset in the anonial model. Then ' 2 w i� (U; I; w) j= '.Proof: The proof is by indution on the struture of '. In the indutive step,there is one interesting ase. We must show that hRi' 2 w0 i� (U; I; w0) j= hRi'.We �rst prove that (U; I; w0) j= hRi' implies hRi' 2 w0. Sine w0 j= hRi', thereexists a w1 suh that w0Rw1 and w1 j= '. By de�nition of R, we have hRi q 2 w0 forall q 2 w1. Sine w1 j= ', the indution hypothesis implies ' 2 w1. Consequently,hRi' 2 w0.For the other diretion, assume that hRi' 2 w0. We have to show that thereexists a maximal onsistent set w1 suh that (w0; w1) 2 I(R) and ' 2 w1. Firstobserve that the formula ` ((hRi' ^ [R℄ )! hRi(' ^  )) is derivable:1. [R℄( ! :')! ([R℄ ! [R℄:') (K)2. (: [R℄:' ^ [R℄ )! : [R℄( ! :')) (1, taut)3. (hRi' ^ [R℄ )! hRi(' ^  ) (2, repl, taut)Reall that [R℄' is a syntatial abbreviation of : hRi :'. In line 3., we replaed::' by ' and :( ! :') by ('^ ). This derivation an be generalized to obtain` ((hRi' ^ [R℄ 1 ^ � � � ^ [R℄ n)! hRi(' ^  1 ^ � � � n))Beause of this result, the set f'g [ f j [R℄ 2 w0g must be onsistent with�. Otherwise, by the de�nition of onsisteny on page 1692, there would exista �nite set f 1; :::;  ng of formulas suh that [R℄ i 2 w0 for all 1 � i � n, and('^ 1^� � � n ! ?) must be derivable from �. Sine ` (hRi? ! ?), we would have� ` (hRi('^ 1 ^ � � � n)! ?). Therefore, � ` ((hRi'^ [R℄ 1 ^ � � � [R℄ n)! ?).Sine fhRi'; [R℄ 1; :::; [R℄ ng � w0, the set w0 would be inonsistent with �,whih is a ontradition.Sine f'g [ f j [R℄ 2 w0g is onsistent with �, there exists some maximalonsistent extension w1 of this set. Moreover, if  2 w1, then [R℄: an not be in w0(otherwise, both  and : would be in w1). Sine w0 is maximal,  2 w1 implies: [R℄: = hRi 2 w0. From the de�nition of I(R), it follows that (w0; w1) 2I(R). Sine ' 2 w1, the indution hypothesis gives (U; I; w1) j= '. Together with(w0; w1) 2 I(R) we have (U; I; w0) j= hRi', whih was to be shown. 26.4. Lemma (Satis�ability of onsistent formulas). Every multimodal formula 'onsistent with � is satis�able in some model validating �.Proof: Sine for the anonial model (U; I; w) it holds that � � w and ' 2 w,Lemma 6.3 asserts that (U; I; w) j= � and (U; I; w) j= '. Thus every onsistentformula is satis�ed in its anonial model. 26.5. Theorem (Completeness). The dedutive system for ML is omplete:If � jj� ' then � ` '.



1694 Edmund M. Clarke and Bernd-Holger ShlingloffProof: Without loss of generality, we an assume � to be onsistent with itself: if� is inonsistent, then � ` ' holds trivially. If � jj� ', then no model in whih � isuniversally valid ontains a point whih satis�es f:'g; therefore with 6.4 it followsthat f:'g is inonsistent with �, hene � ` (:'! ?), whih is � ` '. 2We now show how this proof an be extended for natural models. Reall thata model is alled deterministi, if all aessibility relations R 2 R are univalent :for any given point w there is at most one R-suessor of w. The following axiomdesribes this property.(U) ` (hRi q ! [R℄ q)Soundness of this axiom in deterministi models is immediate: if there is any R-suessor satisfying q, then all R-suessors must satisfy q. In the ompletenessproof, axiom U fores the anonial model to be deterministi: for every w0 2 U ofthe anonial model and every R 2 R there an be at most one w1 with (w0; w1) 2I(R). To see why this is true, assume for ontradition that (w0; w1) 2 I(R) and(w0; w01) 2 I(R). If w1 6= w01, then there must be a formula  suh that  2 w1 and: 2 w01. Therefore hRi 2 w0 and hRi : 2 w0. This is a ontradition to theonsisteny of w0: from axiom U it follows that if hRi 2 w0, then : hRi : 2 w0,sine maximal onsistent sets are losed under modus ponens. Thus, hRi : 62 w0.Therefore, we have shown6.6. Theorem. (U) is sound and omplete for deterministi models.There are a number of other axioms whih impose spei� onditions on theanonial model. To investigate suh onnetions is the topi of orrespondenetheory , see [van Benthem 1984℄. Correspondenes between modal axioms and rela-tion algebrai expressions an be found in [Shlinglo� and Heinle 1997℄. (Suh anexpression is built from basi relation symbols with union, omplement, onate-nation, and transitive losure.)As an example for the use of axiom (U) in veri�ation, we provef(on! hRi :on ^ [S℄?); (:on! hSi on ^ hRi :on)g ` [R℄ hSi [S℄?:The assumptions an be seen as desribing the ations of a semaphore with twostates, on and :on, whih an be set with an S-operation when it is not on, and anbe reset with an R-operation at any time. The semaphore annot be set when it isin state on. We want to show that after a reset it is possible to set the semaphoreone and only one; that is, for all points reahable with an R operation there existsan S suessor from whih no further S operation is possible.1. on! hRi :on ^ [S℄? (assuumption)2. :on! hSi on ^ hRi :on (assumption)3. on! hRi :on (1, taut)4. :on! hRi :on (2, taut)5. hRi :on (3, 4, taut)



Model Cheking 16956. hRi :on! [R℄:on (U)7. [R℄:on (5, 6, MP)8. :on! hSi on (2, taut)9. [R℄:on! [R℄ hSi on (8, mon)10. [R℄ hSi on (7, 9, MP)11. on! [S℄? (1, taut)12. [R℄ hSi on! [R℄ hSi [S℄? (11, mon)13. [R℄ hSi [S℄? (10, 12, MP)As we see, even in suh simple examples it an be quite diÆult to �nd a Hilbert-style proof \by hand"; therefore it is important to develop automati proof methods.Algorithms for this purpose are the topi of Setion 7.Consider the ase that the logi ontains only one aessibility relation (R =fRg). Then eah path through a deterministi anonial model forms a naturalmodel: let the formula ' be onsistent with all substitution instanes of the ax-iom (U). Consider a sequene � , (w0; w1; w2; :::) of points in the (deterministi)anonial model for ' suh that ' 2 w0 and wiRwi+1 for all i. Obviously, � is anatural model whih initially satis�es '. Therefore, with axiom (U) eah onsis-tent formula is satis�able in a natural model; in other words, (U) is omplete formonomodal logi in natural models. The same holds if we require univalene of thetransition relation �, SR:(N) q ` X q(K) ` (X(p! q)! (X p! X q))(U) ` (X q ! X q)Together with (taut) and (MP), these axioms are sound and omplete for theX-operator in natural models.6.2. Transitive Closure OperatorsA major di�erene between temporal and modal logi is that temporal logi hasoperators for the transitive losure of the transition relation. In order to motivatethe disussion in the ompleteness proofs for CTL and LTL, in this subsetion weextend the above ompleteness proof to handle suh operators. For simpliity, we�rst give the proof for the logi with operators X (or, equivalently EX) for thetransition relation and F� (or EF�) for its reexive transitive losure (plus derivedoperators X ' , :X:', G�' , :F�:', et.). The neessary generalizations forCTL and LTL are indiated at the end of this subsetion.Close inspetion of the semantis of F� reveals a fundamental problem, om-pared to the ompleteness proof given above. Consider the set � , fp; Xp, XXp,XXXp, ... g. Then learly � jj� G�'. However, � =̀ G�', sine every proof ofG�'from � an use only a limited number of premisses (proofs are �nite sequenes).But there does not exist a �nite subset �0 � � suh that the statement �0 ` G�'holds.



1696 Edmund M. Clarke and Bernd-Holger ShlingloffThus, the above ompleteness proof fails. For an arbitrary set �, it may not bepossible to onstrut a maximal onsistent extension, sine we an not apply anaxiom to show the onsisteny of an in�nite set of premisses.When dealing with seond order onepts like transitive losure we have to limitourselves to a weaker form of ompleteness. An axiom system is alled weakly om-plete, if � jj� ' implies � ` ' for all �nite �.In �rst order logi, the dedution theorem makes it possible to disard any �niteset of assumptions:  jj� ' i� jj� (8 ! '), where 8 is the universal losure of  .In temporal logi, a similar dedution theorem holds:6.7. Theorem (Dedution theorem).  jj� ' i� jj� (G� ! '):Therefore, to prove weak ompleteness it is suÆient to prove that jj� ' implies` '. We use the following axiom system (in addition to modus ponens (MP) andpropositional tautologies (taut)):(N) q ` X q(K) ` (X(p! q)! (X p! X q))(Re) ` (G� q ! (q ^XG� q))(Ind) (p! (q ^X p)) ` (p! G� q)Dually, the last axiom and rule an be written as(Re) ` ((q _XF� q)! F� q)(Ind) ((q _X p)! p) ` (F� q ! p)(N) and (K) are \nexttime-versions" of the respetive modal rule and axiom givenabove. In this subsetion, we prove ompleteness for general Kripke strutures (witha possibly nondeterministi aessibility relation), thus there is no need for thetemporal version of (U). Axiom (Re) and rule (Ind) are sometimes attributedto Segerberg. They reet the de�nition of the transitive losure as the minimaltransitive relation whih inludes all aessibility relations. (Re) is the reursionaxiom whih an be used to unfold a G�-operator (f. Subsetion 3.2, Page 1663):G�'! (' ^X(' ^X(' ^ :::))):(Ind) is the indution rule whih an be used to dedue a property G�' from aninvariant  , i.e., from a formula  for whih ( ! X  ) and ( ! ') are derivable.6.8. Lemma. (Re) and (Ind) are sound: ` ' implies j= '.For the soundness of (Re), observe that w j= G� q means that for all u � w itholds that u j= q. Thus w j= q, and for all v � w and u � v we have u j= q, whihmeans w j= XG�'.For the soundness of (Ind), assume that (p ! (q ^X p)) is universally valid ina frame F , (U; I), that is, for any w 2 U , if w j= p, then w j= q and v j= p for allv � w. Assume further that w0 j= p, and show that w j= q for all w � w0. We show



Model Cheking 1697that w j= p for all w � w0. From this the laim follows sine w j= p implies w j= q.The proof is by indution on the length of the shortest path between w0 and w. Ifthis length is zero, then w0 = w, and there is nothing to show. For the indutivestep, assume that the shortest path from w0 to w has n + 1 elements. Then thereexists a predeessor w0 � w suh that w0 � w0, and the shortest path between w0and w0 has n elements. From the indution hypothesis, w0 j= p. Sine w0 � w, itfollows that w j= p. 2Next, we show that these axioms are omplete for transitive losure. Up to thetruth lemma, the proof is almost the same as for modal logi. But, we only use�nite maximal onsistent sets: we start with a single (�nite) onsistent formula 'for whih we have to onstrut a model. The set ESF (') of extended sub-formulasof ' (sometimes also alled Fisher-Ladner losure, [Fisher and Ladner 1979℄) isthe following set of formulas:� '1 and '2 are extended sub-formulas of ('1 ! '2),(thus ' is an extended sub-formula of :')� ' is an extended sub-formula of X',� ' and XF�' are extended sub-formulas of F�',� ' is an extended sub-formula of ', and� every extended sub-formula of an extended sub-formula of ' is an extendedsub-formula of '.For any given ', the set ESF (') is �nite. A onsistent set of formulas is alled�nitely maximal , if it is maximal with respet to ESF ('); that is, for every extendedsub-formula  of ', either  or : is in the �nitely maximal onsistent set.As in the in�nite ase, for any onsistent formula ' there exists at least oneonsistent set w0 whih is �nitely maximal with respet to ESF (') suh that' 2 w0. Consider the following �nite anonial model (U; I; w):� U is the set of �nitely maximal onsistent sets,� I(�) , f(w0; w1) j :X q 2 w0 implies :q 2 w1g, and� I(p) , fw0 j p 2 w0g, and� w is any element from U suh that ' 2 w.Compare this with the anonial model for modal logi on Page 1692. Similar as inLemma 6.3, for any extended sub-formula ' and �nitely maximal onsistent set w,the following statement holds:6.9. Lemma (Truth lemma for transitive losure operators). w j= ' i� ' 2 w.From this truth lemma, ompleteness follows exatly as in the multimodal ase.Proof: The proof is by indution on '. The ase ' = X is proven almostexatly as in the ompleteness proof for modal logi. If (U; I; w0) j= X , thenthere exists a w1 suh that w0 � w1 and w1 j=  . Assuming for ontradition thatX =2 w0, we have :X 2 w0, sine the set of extended sub-formulas is losedunder (single) negation. From the de�nition of I(�) we an infer that : 2 w1, i.e., =2 w1. Aording to the indution hypothesis, w1 =j=  , whih is a ontradition.In the other diretion, assume that X 2 w0, and let w1 be any �nitely maximal



1698 Edmund M. Clarke and Bernd-Holger Shlingloffonsistent extension of f g [ f:� j :X � 2 w0g. Sine  2 w1, the indutionhypothesis gives (U; I; w1) j=  . Aording to the de�nition of I(�) it holds thatw0 � w1. Therefore (U; I; w0) j= X .Thus, it remains to show that F� 2 w0 i� (U; I; w0) j= F� . For one diretion,assume that F� =2 w0. We have to prove that w0 =j= F� . In other words, if w0 � wnthen it has to be shown that wn =j=  . Note that w0 � wn i� there is a �nite path(w0; w1; :::; wn) suh that wi � wi+1 for all i < n. We show by indution on nthat :F� 2 wn, hene F� =2 wn. For n = 0, there is nothing to show. Forn > 0, the indution hypothesis guarantees that F� =2 wn�1, i.e., :F� 2 wn�1.Both XF� and :XF� are extended sub-formulas of F�', therefore one of themmust be in wn�1. From axiom (Re), the formula (:F� ! :XF� ) an bederived. Consequently, :XF� 2 wn�1. Thus by the de�nition of I(�), we have:F� 2 wn. Now we show that wn =j=  . Sine axiom (Re) derives (:F� ! : )and :F� 2 wn, the assumption  2 wn would ontradit the onsisteny of wn.Therefore,  =2 wn. Aording to the indution hypothesis, wn =j=  .Now we prove that F� 2 w0 implies w0 j= F� . For any �nitely maximalonsistent set w and any (�nite) set W of suh sets, let ŵ , Vf j  2 wg, and�W , Wfŵ j w 2 Wg. Furthermore, let Xw , fw0 j w � w0g. An important step isto prove (�) ` (ŵ ! X �Xw)Sine ` ((X  1 ^ X  2) ! X( 1 ^  2)), we an infer ` (VfX  ig ! XVf ig).Therefore, ` (ŵ ! XVf:q j :X q 2 wg). Sine U is the set of all �nitely maximalonsistent sets, ` �U an be proven by propositional reasoning: for eah ' and p,it is valid that ' ` ((' ^ p) _ (' ^ :p). Sine �U is the disjuntion of all possibleonjuntion of positive and negative literals from P , it is derivable from this formula.Therefore, ` (ŵ ! X �U). Together, this gives ` (ŵ ! X( �U ^Vf:q j :X q 2 wg)).Consequently, ` (ŵ ! XWfû ^ Vf:q j :X q 2 wg j u 2 Ug). If w0 , u [ f:q j:X q 2 wg is inonsistent, then ` (ŵ0 ! ?). If w0 is onsistent, then w � w0aording to the de�nition of I(�), i.e., w0 2 Xw. Therefore, ` (ŵ ! XWfŵ0 jw0 2 Xwg), whih proves (�).Sine there are only �nitely many extended sub-formulas, the universe U is �nite.Let W , fw0; w1; :::; wng be the set fw0 2 U j w0 � w0g. From (�), it follows that `(Wfŵ j w 2Wg ! WfX �Xw j w 2 Wg). Furthermore, ` (WfX �Xwg ! XWf �Xwg).Sine fXw j w 2Wg �W , it holds that ` (WfX̂w j w 2 Wg ! �W ). Therefore,(��) ` ( �W ! X �W )Assume that w0 =j= F� and show that F� =2 w0. From the assumption, w =j=  forall w 2 W . As above, the indution hypothesis implies that  =2 w for all w 2 W ,i.e., : 2 w. Consequently, (ŵ ! : ) for all w 2 W , whih implies ` ( �W ! : ).Together with (��) we have ` ( �W ! (: ^X �W )). Thus, by (Ind), ` ( �W ! G�: ).Sine w0 2 W , it holds that ` (ŵ0 ! �W ). Therefore, ` (ŵ0 ! :F� ). Sine w0 isonsistent, F� =2 w0. 26.10. Lemma. ((N), (K), (Re), (Ind)) is omplete: if j= ' then ` '.



Model Cheking 1699Proof: The theorem follows from Lemma 6.9 similar as Theorem 6.5 follows fromLemma 6.3 for multimodal logi. 2This ompleteness proof an easily be extended to CTL [Emerson and Halpern1985℄. The following axiom system (in addition to propositional logi) is sound andomplete:(N) q ` AX q(K) ` (AX(p! q)! (AX p! AX q))(ReEU+) ` (EX(q2 _ q1 ^ E(q1U+ q2))! E(q1U+ q2))(ReAU+) ` (AX(q2 _ q1 ^A(q1U+ q2))! A(q1U+ q2))(IndEU+) (EX(q2 _ q1 ^ p)! p) ` (E(q1U+ q2)! p)(IndAU+) (AX(q2 _ q1 ^ p)! p) ` (A(q1U+ q2)! p)For LTL, proving ompleteness for natural models is more intriate, sine wehave to onstrut a natural model from the anonial model. The axiom systemfor the future fragment uses suitable versions of (N), (K), (Re), (Ind) and(U). For LTL with past operators, additional axioms are neessary whih desribethe relation between U+ and U�. Several elaborate proofs an be found in theliterature [Prior 1957, Gabbay et al. 1980, Burgess 1984, Lihtenstein et al. 1985,Kr�oger 1987℄.A sound and omplete proof system for qTL was desribed in [Kesten and Pnueli1995℄. We just briey indiate how the above axioms an be extended for �TL:(Re�) ` (�q '! 'fq := �q 'g)(Ind�) (p! 'fq := pg) ` (p! �q ')An equivalent formulation whih is based on the least �xpoint operator is(Re�) ` ('fq := �q 'g ! �q ')(Ind�) ('fq := pg ! p) ` (�q '! p)All reursion and indution axioms above an be obtained as speial ases ofthese very general axioms. For their soundness, we refer to the Knaster-Tarski�xpoint properties in Corollary 3.9. The ompleteness proof an be adapted toshow ompleteness for a ertain sublass of positive �TL formulas, the aonjun-tive ones [Kozen 1983℄. This restrition enfores that if �r  1 and �s  2 are sub-formulas of �q  eah ontaining an ourrene of the same variable q, then no twoourrenes of variables r and s are onjuntively related.The problem of ompleteness of these axioms for all �TL formulas was solvedin [Walukiewiz 1995℄. It an be shown that for any formula there exists an equiv-alent aonjuntive formula. Thereby it suÆes to derive this aonjuntive formulafrom the axioms in order to prove any given formula.In these proofs, there is a pattern whih will frequently reappear in subsequentsetions. An invariane is a negative ourrene of a least �xpoint operator, or apositive ourrene of a greatest �xpoint operator (e.g., G�, W+, �). Dually, an



1700 Edmund M. Clarke and Bernd-Holger Shlingloffeventuality (F�, U+, � et.) is a positive ourrene of a least �xpoint operator,or a negative ourrenes of greatest �xpoint operator. In the ompleteness proof,invarianes are unfolded via the reursion axiom, whereas eventualities are ful�lledusing the reursion axiom.7. Deision ProeduresIn this setion we derive deision proedures for some of the logis introdued above.As shown by B�uhi and Rabin [B�uhi 1962, Rabin 1969℄, monadi seond orderlogi on natural and tree models is deidable. Therefore, all logis whih have avalidity-preserving standard translation into MSOL or SnS (seond order logi ofn suessors) are deidable. However, this proof does not yield eÆient deisionalgorithms. In this setion, we will develop suh algorithms from the ompletenessproofs of the previous setion. Given a set of assumptions � and a formula ', wewant to deide whether � ` ' or not. By ompleteness, � ` ' i� � jj� '. Eventhough multimodal logi is omplete, for arbitrary sets � of assumptions and agiven formula ' it is not deidable whether � jj� '. Therefore, we restrit attentionto �nite sets of assumptions. Hene we need an algorithm whih, given a formula 'and a �nite set of assumptions �, deides whether there is a model whih globallyvalidates � suh that ' is satis�ed in the initial point.If suh a model exists, then often the size of the anonial model for � and 'an be bounded by a funtion of the length of the formulas �̂ and ' (\�nite modelproperty"). Therefore, many propositional modal and temporal logis are deidable:it is suÆient to hek all models up to a ertain size whether they are appropriate.However, this is not pratial. In this setion, we show how to onstrut a modele�etively.There are two main apprahes. \Global" algorithms start with the largest possiblemodel and shrink it to an appropriate size. \Loal" algorithms start with a minimalmodel whih is extended until it is a model for the formula. For tehnial reasons,global algorithms seem to be more adequate for the branhing time approah, andloal algorithms seem to be better suited for linear temporal logis.7.1. Deiding Branhing Time LogisTo deide whether a given multimodal formula ' is satis�able with assumptions�, we try in a systemati way to onstrut the anonial model for � jj� '. Inthe universe of this model, points are maximal onsistent sets of formulas. Sine weassume that the set � of assumptions is �nite, it is suÆient to onsider maximalitywith respet to all sub-formulas of �̂ and '. In the following, we assume that ' and� are given and write SF for the (�nite) set of all of these sub-formulas. We usesubsets of SF to represent maximal sets of sub-formulas. That is, a set w � SFrepresents the maximal set f j  2 wg [ f: j  =2 wg. A set w � SF ofsubformulas is alled propositionally onsistent, if



Model Cheking 1701� ? 62 w, and� if ( 1 !  2) 2 SF , then ( 1 !  2) 2 w i�  1 2 w implies  2 2 w.That is, ( 1 !  2) 2 w i�  1 =2 w or  2 2 w. Expanding the de�nitions it an beshown that� if : 2 SF , then : 2 w i�  =2 w,� if ( 1 ^  2) 2 SF , then ( 1 ^  2) 2 w i�  1 2 w and  2 2 w, and� if ( 1 _  2) 2 SF , then ( 1 _  2) 2 w i�  1 2 w or  2 2 w.Any propositionally onsistent set is \onsistent for propositional logi": if we on-sistently replae any modal formula in w by a new proposition, then the resultingset of formulas is satis�able in propositional logi. A satisfying interpretation isgiven by I(p) , true i� p 2 w.To onstrut the anonial model of a onsistent formula, let the universe Uinitially be the set of propositionally onsistent sets of sub-formulas whih ontainall assumptions. That is, U , fw � SF j � � wg. The obvious hoie for I(p) thenis fw j p 2 wg. The initial interpretation of any hRi operator is the universal relationU � U . The deision proedure iteratively deletes `bad ars' and `bad points' untilstabilization is reahed. Bad ars are pairs (w0; w1) 2 I(R) suh that w0 ontains[R℄ but it is not the ase that  2 w1. More preisely, an ar (w0; w1) is bad if forsome sub-formula hRi it holds that hRi =2 w0 and  2 w1. Bad points w0 ontaina formula hRi , but there does not (or no longer) exist a tuple (w0; w1) 2 I(R)with  2 w1. If upon termination there is a point w whih was not deleted suhthat ' 2 w, it returns \satis�able", else it returns \unsatis�able".7.1. Lemma. The modal logi deision proedure is sound: ' is satis�able in somemodel whih universally validates � i� the proedure returns \satis�able".Proof: For one diretion, let M = (U; I; w0) be the result of the above deletionproedure. That is, assume thatM does not ontain a bad ar or bad point, and thatw0 2 U is some point with ' 2 w0. We show that (U; I) j= � and (U; I; w0) j= '.Similar to the truth Lemma 6.3, for every w 2 U and every  2 SF it holds that( 2 w) i� (U; I; w) j=  . This is shown by indution on the struture of  : foratomi propositions and boolean ombinations of formulas the statement is just aonsequene of the respetive de�nitions. For modal subformulas, it follows fromthe deletion rules in the deision proedure: if [R℄ 2 w, then for all w0 2 U suhthat (w;w0) 2 I(R) it must be the ase that  2 w0. This holds sine M doesnot ontain any bad ars. By the indution hypothesis, w0 j=  , and thereforew j= [R℄ . If hRi 2 w, then there is some w0 2 U suh that (w;w0) 2 I(R) and 2 w0. This holds sine M does not ontain any bad points. As above, it followsthat w j= hRi . Thus, the assumption ' 2 w0 implies that w0 j= '. Moreover,sine every w 2 U ontains � we have shown that ' is satis�able in a model whihglobally validates �.For the other diretion, assume that for some (�nite or in�nite) model M =(U; I; w0) it holds that w0 j= ', and w j= 	̂ for all w 2 U . We have to show thatthe above proedure terminates suessfully. For any w 2 U , let w� , f 2 SF j



1702 Edmund M. Clarke and Bernd-Holger Shlingloffw j=  g. Sine SF is �nite, there are only �nitely many suh w�. Let the �ltrationof M be M� , (U�; I�; w�0 ), where� U� , fw j w = u� for some u 2 Ug,� (w1; w2) 2 I�(R) i� there are u1; u2 2 U suh that w1 = u�1 and w2 = u�2 and(u1; u2) 2 I(R),� w 2 I�(p) i� p 2 w, and� w�0 = f 2 SF j w0 j=  g.Clearly,M� is a submodel of the initial model of our deision algorithm. Moreover,no point or ar of M� is ever removed by the deision proedure. Therefore, thealgorithm terminates with a nonempty result. Sine w0 j= ', it holds that ' 2 w�0 .2Sine the deision algorithm iterates over all of the points and sub-formulas, thereare two ways to implement it. First, we an implement it by a searh of all pointsusing nested iteration for all sub-formulas of this point. The seond tehnique is touse a bottom up searh of all sub-formulas, where we hek all points and ars to seewhether they are `bad' with respet to this formula. In both ases, it is importantto repeat the searh after some deletions have taken plae, until stabilization isreahed. A pseudo-ode desription is given in Fig. 12. Reall that R(w) denotesthe set of suessors of point w with respet to relation R. Furthermore, for any setof points U and formula  , let U denote fw 2 U j  2 wg.Depending on the data strutures used for the representation of sets, it maynot be neessary to implement set operations by a traversal of all elements of theset. For example, all set operations whih are used in the omment lines of thepseudo-ode an be implemented diretly with a BDD representation for U and Ras desribed in Setion 10.In a onrete implementation of this algorithm, there is a tradeo� between om-putation time and spae: for any sub-formula  , ( 1 !  2) and any point w,it an be determined whether  2 w by deiding whether  1 =2 w or  2 2 w.Hene, it is not neessary to represent a propositionally onsistent set by the set ofsub-formulas it onsists of; boolean ombinations of sub-formulas an be omitted.A point then is represented by� the set of sub-formulas whih are atomi propositions, and� the set of sub-formulas whih are of the kind hRi .If we use this representation, then we may have to alulate the value of booleanombinations of formulas from their onstituent parts. This value is needed in orderto determine whether the representation of a point is propositionally onsistent withthe assumptions.We now show how to extend this algorithm to transitive losure operators. Thereursion axiom for the F�-operator an be written as follows: (f. page 1696):(Re) ` (:F� q ! :q ^X :F� q)This axiom indiates that if F� =2 w0, then  =2 w0 and for all w1 suh thatw0 � w1 it should hold that F� =2 w1. Thus, in the model all points for whihF� =2 w0 and  2 w0 have to be deleted. Similarly, `bad ars' (w0; w1) are thosefor whih F� =2 w0 and F� 2 w1.



Model Cheking 1703proedure ML sat (Formula ', Formulaset �) ==� Input � and ', determine if ' satis�able with global assumptions � �=U := fw � SF j � � w; ? =2 wg;=� delete propositionally inonsistent points �=for all  = ( 1 !  2) 2 SF do= � U := U \ ((U n U 1) [ (U \ U 2) [ (U 1 n U n U 2)) � =for all w 2 U doif ( 2 w ^  1 2 w ^  2 =2 w) _ ( =2 w ^ ( 1 =2 w _  2 2 w))then U := U n fwg;R := U � U ;repeat until stabilizationfor all  = hRi 1 2 SF do=� delete bad ars �== � R := R \ ((U � U) [ (U � (U n U 1))) � =for all (w0; w1) 2 R doif w0 =2 U _ w1 =2 U _ ( =2 w0 ^  1 2 w1)then R := R n f(w0; w1)g;=� delete bad points �== � U := (U n U ) [ (U \ fw j (R(w) \ U 1) 6= fgg) � =for all w 2 U doif ( 2 w ^ 8w0 2 R(w) ( 1 =2 w0)) then U := U n fwg;if U' = fgthen print(', \is not satis�able with assumptions", �)else print(', \and the assumptions", �, \are sati�able in", U')Figure 12: Modal logi deision algorithmIn modal logi, a `bad point' was de�ned to be one whih ontains hRi , but noR-suessor ontains  . For transitive losure operators, however, it is not suÆientto delete all points w0 for whih F� 2 w0,  =2 w0 and no suessor ontains F� .There might be a losed loop of points all of whih ontain F� , but no pointontaining  is reahable from the loop. A point is bad, if it ontains F� , butdoes not ful�ll this eventuality, i.e., no reahable point wn ontains  . To hekthis ondition, we need another iteration: for eah sub-formula of the form F� we iteratively mark all points whih an reah a point ontaining  . We initiallymark all points whih ontain  . We then ontinue to mark all points whih havea marked suessor. After stabilization all formulas F� in unmarked points areunsatis�ed and the respetive points an be deleted. The algorithm, whih is anextension of the algorithm in Figure 12, is given in Figure 13. For a orretnessproof and an extension to CTL, see [Emerson and Sistla 1984, Emerson 1990℄



1704 Edmund M. Clarke and Bernd-Holger Shlinglofffor all  = F� 1 2 SF do=� delete bad `ars' �=U := U n fw j  =2 w0 ^  1 2 w0g;R := R n f(w0; w1) j  =2 w0 ^  2 w1g;=� mark all points whih an reah  1 �=New := fw0 j 9w1 2 U : (w0; w1) 2 R ^  1 2 w1g;Marked := New ;repeatNew := fw0 j 9w1 2 New : (w0; w1) 2 Rgn Marked ;Marked := Marked [ New ;until New=fg;=� delete bad points �=U := U n fw j  1 2 w ^ w =2 Markedg;Figure 13: marking algorithm for transitive losure7.2. Satis�ability Algorithms for Natural ModelsThe branhing time deision proedures desribed in the previous subsetion on-strut a \most general" model for any satis�able formula. For any sub-formula, allpropositionally onsistent sets are traversed. The number of propositionally onsis-tent sets of sub-formulas is exponential in the length of the formula; therefore, withan expliit representation of sets these algorithms are limited to \small" formulas.Natural models for linear time logis are sequenes of points. Eah point deter-mines a propositionally onsistent set of sub-formulas, namely the set of those sub-formulas whih are valid in this point. Often, the number of di�erent propositionallyonsistent sets determined by a spei� linear-time model is small, ompared to thenumber of all propositionally onsistent sets. Thus, in the deision proedure it anbe more appropriate to build a model inrementally:� Start with some initial point, and� iteratively hoose the next point for the onstruted sequene.In this way, only those propositionally onsistent sets have to be stored whih atu-ally appear in the model. Of ourse, in the worst ase all propositionally onsistentsets will be traversed; however, we an expet a better average-ase behavior.This proedure involves a nondeterministi hoie. Therefore, it is implementedusing baktraking searh. Similar to the presentation in the previous subsetion,we �rst give an algorithm for modal logi before onsidering operators whih involvereursion. Sine we are aiming at natural models, we use deterministi monomodallogi, that is, modal logi with a single aessibility relation R for whih axiom Uis required (f. page 1691).We want to deide whether a formula ' is satis�able in a natural model glob-



Model Cheking 1705ally validating the assumptions �. We start with the set W of all propositionallyonsistent extensions of � [ f'g. That is, w 2W i�� ' 2 w,� � � w,� ? =2 w, and� for all sub-formulas  = ( 1 !  2) it holds that  2 w i�  1 2 w implies 2 2 w.We hoose some w0 2 W and try to onstrut a model with w0 as initial point.At level i in the onstrution, we are given a propositionally onsistent set wi. If itdoes not ontain any formula hRi , we are �nished. In this ase, we have found a�nite model of length i with �nal point wi. Otherwise, we onstrut the setwRi , f j hRi 2 wig [ f: j : hRi 2 wig [ �We refer to f j hRi 2 wig as the positive future obligations and to f: j: hRi 2 wig as the negative future obligations of wi. Thus, wRi is the set of allfuture obligations of wi (with respet to R), plus the global assumptions. We thenbuild the set S of all propositionally onsistent extensions of wRi . Sine there are only�nitely many subformulas of (�̂^'), the set S is �nite. If wRi is not propositionallyonsistent, then S = fg. In this ase, we baktrak to level i� 1 (or report failure,if i = 0). Otherwise, we hoose some wi+1 2 S as suessor of wi and ontinue adin�nitum. If we hit upon a point whih is already ontained in the onstruted sub-model w0:::wi, then the in�nite yli model w0:::wi(wi+1:::wi)! initially satis�es 'and globally satis�es �. Sine there are only �nitely many maximal propositionallyonsistent sets, the onstrution must terminate. A pseudoode desription of thisalgorithm is given in Figure 14.proedure ML sat lin (Formula ', Formulaset �) =W := fw � SF j ' 2 w;� � w;w propositionally onsistent g;Stak := fg;for all w 2W do depth first searh(w);print(', \is unsatis�able with assumptions", �);proedure depth first searh (w) =if w 2 Stak then print(';�, \satis�able by", Stak); exit;push(w, Stak);pos := f 2 SF j hRi 2 wg; neg := f 2 SF j hRi =2 wg;if pos= fg then print(';�, \satis�able by", Stak); exit;S := fw � SF j pos� w;w\ neg= fg;� � w;w prop. onsistent g;for all w0 2 S do depth first searh(w0);pop(Stak);Figure 14: Modal logi deision algorithm for linear modelsIn this algorithm, there is some redundant alulation.



1706 Edmund M. Clarke and Bernd-Holger Shlingloff� Firstly, whenever we baktrak from a point, there annot be a suessful on-tinuation from this point. Therefore, we an add all points whih are poppedfrom the stak to a list M . If proedure depth �rst searh is alled with anargument whih is ontained in M , it an baktrak immediately.� Seondly, we already noted that it is not neessary to represent a propositionallyonsistent set by an enumeration of all sub-formulas it onsists of. It is suÆientto mark for every proposition variable and for every sub-formula starting withan hRi-operator whether they are ontained in the maximal onsistent set.� Thirdly, in the alulation of the set S of possible suessors of a point, it issuÆient to onsider propositionally onsistent sets whih are subsets of (pos [neg [�). That is, for sub-formulas  of ' whih are neither future obligations ofw nor sub-formulas of global assumptions from �, it is not neessary to �x theirvalue in the suessor w0. Both possible extensions, where  2 w0 or  =2 w0, arepropositionally onsistent and will lead to the same result. This improvementan be implemented for example by using a three-valued harateristi funtionfor sub-formulas and propositionally onsistent sets (ontained, not ontained,don't are) in the representation of points.In Figure 15 we give a set of tableau rules for monomodal logi on deterministimodels. The tableau rules an be seen as an impliit formulation of the algorithmin Figure 14, where the above improvements are inluded by de�nition. Similartableau rules for modal logis an be found in [Fitting 1983℄ and for temporallogis in [Wolper 1985℄.(!) �; ( 1 !  2)�;: 1 �;  2 (: !) �;:( 1 !  2)�;  1;: 2(?1) �;  ;: � (?2) �;?� (>) �;:?�(hRi) �; hRi'1; :::; hRi'n;: hRi 1; :::;: hRi m�; '1; :::; 'n;: 1; :::;: m ([R℄) �Figure 15: Tableau rules for monomodal logi on deterministi modelsIn these rules, � denotes any set of formulas, and � is the set of global assump-tions. The double line in rules (hRi) and ([R℄) indiates a transition from one pointin the onstruted model to the next, and the star indiates that a branh is losed.Eah tableau rule allows to derive zero, one or two sets of formulas from any set offormulas. Additional regulations are:� Rule (!) an only be applied if  2 6= ?.� Rules (hRi) and ([R℄) an only be applied if no other rule is appliable.� Rule (hRi) an only be applied if no other hRi' or : hRi is in �.



Model Cheking 1707� Rule ([R℄) an only be applied if no hRi' is in �.A tableau is a �nite tree of sets of formulas suh that� The root of the tableau is � [ f'g, and� The hildren of eah node are onstruted aording to some tableau rule.A leaf is alled losed , if it onsists of the symbol �. It is alled open, if it onsistsof a subset of formulas of some other node on the path from the root to this leaf.(In partiular, if rule (hRi) regenerates the root, the new leaf is open. Also, anyempty node onstruted by rule ([R℄) is open). A tableau is ompleted, if any leafis losed or open. A ompleted tableau is suessful, if it ontains an open leaf.There is a strong onnetion between the tableau method and the loal satis-�ability algorithm skethed above. The propositional tableau rules systematiallygenerate all neessary propositionally maximal onsistent extensions of a given setof formulas, and the modal rules �x the struture of the aessibility relation(s) inthe generated model graph.For any given root, there are several di�erent tableaus, sine we did not speifyany order in whih the rules have to be applied. Nevertheless all these tableaus areequivalent: if there is some suessful tableau for ' and �, then every ompletedtableau for it is suessful.7.2. Theorem. ' is satis�able with assumptions � i� � [ f'g has a suessfultableau.Proof: For one diretion, assume that there is some natural model M ,((w0; w1; w2; :::); I; w0), where w0 j= ' and wi j= � for every i > 0, and showthat there is a ompleted tableau for ' and � with an open leaf. Equivalently,assume that any ompleted tableau for ' and � is given, and show that it ontainsan open leaf. We onstrut a sequene of tableau nodes ni, and assoiate with anyni a point w(ni) in the model. As an invariant of this onstrution, we show thatfor all formulas  2 ni it holds that w(ni) j=  .Initially n0 is the root of the tableau, with w(n0) , w0. Sine w0 j= ' andw0 j= �, the invariant is satis�ed. Given any tableau node ni with w(ni) = wj , nolosing rules an be appliable, beause this would ontradit the invariant. Assumethe hild ni+1 of ni is onstruted by rule (: !) or (>). Then w(ni+1) , wj , andthe invariant is preserved. If two hildren of ni are onstruted by rule (!), then anyone of them is hosen whih preserves the invariant, and again w(ni+1) , wj . If nihas a hild obtained by rule (hRi), then w(ni+1) , wj+1. The spei� formulationof the rule guarantees that the invariant is preserved. Sine the tableau is �nite,and we an never apply one of the losing rules, we must hit an open leaf sooner orlater.For the other diretion, we have to show that from any ompleted tableau withopen leafs we an onstrut a model. The onstrution is similar to above. Weonsider the unfolding of the tableau. This is the tree arising from the repeatedsubstitution of any open leaf with the subtableau rooted at the node subsuming



1708 Edmund M. Clarke and Bernd-Holger Shlingloffthis open leaf. In partiular, an empty node generated by rule ([R℄) an be replaedwith any node on the path from the root to this node. If the tableau ontains openleaves, then the unfolding ontains in�nite paths. In the unfolding, all any nodewhose hild is onstruted by rule (hRi) or ([R℄) a pre-state. It an be shown thatthe sequene of pre-states of any in�nite path from the root onstitutes an in�nitemodel. 2As an example for the tableau onstrution, onsider the semaphore frompage 1694. A linear time modelling of the transitions is given by� , f(on! r ^ hRi :on); (:on! r ^ hRi :on _ s ^ hRi on); :(r ^ s)g:Here, r and s denote the semaphore-operations \reset" and \set", respetively. Weprove that after a reset the semaphore an be set only one:' , (r! [R℄(s! [R℄(s! ?))):To show that � jj� ', we onstrut the tableau with root � , � [ f:'g and showthat it is losed. The tableau is given in Figure 16.In this tableau, we omitted boolean deompositions. All leaves are losed beausethey ontain both r and s. This is a ontradition to the assumption :(r ^ s)expressing that only one ation is performed at a time.Tableaus for LTLWe now extend these methods to linear time temporal logi. For simpliity, werestrit attention to the operators X and F�. The algorithms are similar to themodal logi ase desribed above. To deide whether a formula ' is satis�ablein a natural model, we apply the same depth-�rst searh algorithm as skethedin Figure 14, where X replaes hRi, and extended sub-formulas (ESF ) are usedinstead of subformulas (SF ). (Reall that both  and XF� are extended sub-formulas of F� .)There are two further modi�ations. Firstly, assume we are given a sub-formulaF� and a node w suh that one of the following holds.� F� 2 w and  =2 w and XF� =2 w, or� F� =2 w, and  2 w or XF� 2 w.In this ase, we an disard node w. Even though it may be propositionally onsis-tent, it does not respet the reursion axiom` F� $  _XF� :Thus, this node annot appear as a point in the model.Seondly, when the depth-�rst-searh �nds a node w whih is already on thestak, it would be preliminary to report a suess. Consider the set of nodes w ,w0; w1; :::; wn, whih are on the path from w to w. It ould be the ase that thereis some sub-formula F� , suh that eah node ontains both F� and XF� , butnone of them ontains  . That is, the eventuality ' is required but not ful�lled in
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�; r; '1 (where '1 , hRi(s ^ hRi s))on; r; hRi :on; '1�; :on; s; hRi sr; s; : : :� :on; s; hRi s; hRi on�; s; ons; on; r; hRi :on�
:on; r; hRi :on; '1�; :on; s; hRi s� � � :on; s; hRi on; r; '1�

Figure 16: Tableau for � and (r! [R℄(s! [R℄(s! ?))):



1710 Edmund M. Clarke and Bernd-Holger Shlingloffw0; :::; wn. The ful�llment of F�' is \postponed forever" from eah wi to the nextin a yli manner.However, we annot disard w0; w1; :::; wn, beause they might ontribute to asatisfying model. Consider the following situation:w0?w1?w2	w3p Rw4q
Æ O

We assume that all nodes in this piture ontain F� p and F� q. The only node on-taining p is w3, and the only node ontaining q is w4. When the baktraking searhenounters w1 as hild of w3, it �nds that in the loop w1; w2; w3 the proposition qis required but not ful�lled. Thus it baktraks to w2 and �nds w4 as seond hild.This time, in the loop w0; w1; w2; w4 the proposition p is required but not ful�lled.However, both p and q are satis�ed in the model (w0; w1; w2; w3; w1; w2; w4)! .Thus, when the depth-�rst-searh �nds a bakward ar, it has to searh thestrongly onneted omponent of nodes of the urrent node. A strongly onnetedomponent (SCC) is a set W of points suh that for all w1; w2 2 W , if w1 6= w2,then there is a path from w1 to w2 and bak. An SCC W is alled terminal, if forall w 2 W , w0 =2 W , it is not the ase that w � w0. It is alled self-ful�lling, ifall required formulas are ful�lled, i.e., if for any w 2 W and ('1U+'2) 2 w thereexists a w0 2 W suh that '2 2 w0. For the deision algorithm, the depth-�rst-searh graph has to be partitioned into strongly onneted omponents. The givenformula is satis�able i� a self-ful�lling SCC is reahable from some initial node.We postpone the algorithmi formulation of this partitioning to the next setion,where the same algorithm is given in the ontext of model heking. Instead, wesketh the neessary modi�ations in the tableau onstrution. As additional rulesto those of Figure 15, we add:(F�) �;F� �;  �;XF� (:F�) �;:F� �;: ;:XF� To deal with unful�lled eventuality formulas, a bakward loop an only be re-garded as open, if for any F� whih ours in any wi in the loop, there is a wj inthe loop suh that  2 wj (loop ondition). If the loop ondition is not met, the



Model Cheking 1711unfolding of the tableau has to ontinue until all nodes of the SCC are ontainedin the loop. In this ase, the respetive branhes are losed.As an example for the loop ondition, we show transitivity of �:` (F�F� p! F� p)The root of the tableau is marked with the negation of this formula, i.e. with F�F�pand :F�p. F�F� p; :F�pF�p; :F�p� XF�F�p; :F�pXF�F�p; :p; :XF�pF�F�p; :F�p��The leaf marked (�) loses beause it is ontraditory. The leaf (��) loses beauseit is subsumed by the root above, and the SCC to whih it belongs ontains theunful�lled eventuality F�F�p.There is a lose onnetion between tableaus for temporal logis and !-automata.The pre-states in the tableau (i.e., nodes immediately above a double line) anbe seen as states of a generalized B�uhi-automaton. The set of open leafs arethe aepting states, and the reurring states are determined as follows: for anysub-formula ' , F� it must hold that ' is in�nitely often not ontained inan aepting run, or  is ontained in�nitely often. This an be formulatedas generalized B�uhi-aeptane ondition on the states [Clarke, Grumberg andHamaguhi 1997℄. The formula then is satis�able i� the language of the orre-sponding automaton is nonempty, and it is valid i� this language is �! (the set ofall �nite and in�nite strings over �). Therefore, the deision problem for LTLan be regarded as an instane of the language problem of generalized B�uhiautomata [Wolper 1985, Emerson 1985, Vardi and Wolper 1986, Kurshan 1994℄.In [Vardi 1995℄ other embeddings of tableau-based satis�ability proedures for tem-poral logis into deision algorithms for !-automata, based on alternating automata,are desribed.8. Basi Model Cheking AlgorithmsIn this setion, we will show how the most ommonly used model heking proe-dures an be obtained from the above deision proedures.Given a model M and a formula ', the model heking problem is to deidewhetherM j= '. In priniple, this an be done by enodingM as a set of assump-tions (\premisses" or \program axioms") �, and deiding whether � ` '. However,some experiments will quikly onvine the reader that a na��ve approah of doing



1712 Edmund M. Clarke and Bernd-Holger Shlingloffso is doomed to failure. Usually, the program axioms all have a very speial form,suh as(state i ! (X su i1 _ � � � _X su in))in a linear time modelling, or(state i ! (ha1i su i1 ^ � � � ^ hani su in))in a branhing time approah. The deision proedure in general an not takeadvantage of this speial form of the assumptions and will in every step breakdown all assumptions to its basi propositional omponents. This results in a veryineÆient behavior; usually only very small systems an be veri�ed and debuggedthat way.Therefore, model heking algorithms avoid the enoding of the models as a set ofprogram axioms; they use the models diretly instead. Model heking determineswhether a given spei�ation formula is satis�ed in a given Kripke-model, i.e.,whether a tree or natural model satisfying the formula an be generated from it.There are two variants of this task, depending on whether the initial or universalde�nition of satisfation of a formula in a model is used. In the usual de�nition, aKripke-model M , (U; I; w0) is given, whih onsists of universe U , aessibilityrelation(s) de�ned by I, and urrent point w0 2 U , and we have to hek whetherthe formula ' is satis�ed: (U; I; w0) j= '. In the universal de�nition, we are givena frame F , (U; I) onsisting of universe and interpretation, and want to knowwhether the formula is satis�ed in all models based on this frame: (U; I) j= ' i�for all w0 2 U it holds that (U; I; w0) j= '. Equivalently, we want to know whether'F = U , where 'F , fw 2 U j w j= 'g is the set of points satisfying '.Of ourse, any algorithm whih alulates 'F an also be used to deide whether(U; I; w0) j= ' holds: w0 j= ' i� w0 2 'F . Vie versa, if we have an eÆientalgorithm to deide whether w0 j= ', we an alulate 'F by an iteration on allstates.The model heking problem has two parameters: modelM and formula '. Algo-rithms whih iterate on the struture of ' and in eah step traverse the whole ofMare sometimes alled global . Algorithms whih iteratively extend the heked partof M and in eah step determine the truth of eah sub-formula of ' are sometimesalled loal. Although the theoretial worst-time omplexity is not inuened bythis hoie, the average ase behavior may di�er signi�antly.In priniple, the three axes (branhing/linear, universal/initial, global/loal) areindependent. In pratie, however, for branhing time logis mostly global algo-rithms for universal validity are used, whereas for linear time logis loal algorithmsfor initial validity have been suggested.8.1. Global Branhing Time Model ChekingGiven a Kripke frame F = (U; I) and a multimodal formula ', the set 'F , fw 2U j w j= 'g of points validating ' an be alulated by a reursive desent on thestruture of ':



Model Cheking 1713� If p is an atomi proposition, then pF , I(p).� ?F , fg.� ('!  )F , (U n 'F ) [  F .� (hRi )F , fw 2 U j 9w0 2  F ; (w;w0) 2 I(R)g.This algorithm seems to be just a trivial reformulation of the semantial de�nitionfor the logial operators. However, there are some important observations.� Firstly, (hRi )F an be alulated from  F in two ways: we an hek for eahw 2 U , whether the intersetion of  F and R(w) is nonempty. Alternatively,we an alulate SfR�1(w0) j w0 2  Fg, where R�1(w0) , fw j (w;w0) 2I(R)g is the inverse image of point w under the relation R. This inverse imagealulation an be aomplished by a traversal of all ars (w;w0) 2 I(R): ifw0 2  F , then w 2 (hRi )F .� Seondly, to avoid realulation of ommon subformulas, we use a table, wherefor eah sub-formula  the set  F is stored. The size of  F an be of the sameorder of magnitude as jU j. Thus, we need an eÆient data struture for largesets of points.� Thirdly, the overall omplexity of this algorithm is linear in the number ofdi�erent sub-formulas and in the size of the model. However, even for in�nitemodels whih are given by some symboli desription, e.g., Petri nets or Turingmahines, some model heking problems an be deidable [Andersen 1994,Gurov, Berezin and Kapron 1996, Burkart and Esparza 1997℄. In suh ases, F an be of in�nite size, and must be represented by a symboli desriptionas well.Similar to the above modal logi proedure, the CTL model heking algorithmproeeds by marking eah point with the set of sub-formulas whih are valid forthis point. Suppose we have already marked the set of points satisfying  1 andthe points satisfying  2. To label the set of points satisfying ' , E( 2U+ 1) or' , A( 2U+ 1), we use the �xpoint unfoldingsE( 2U+ 1)$ EX( 1 _  2 ^ E( 2U+ 1))A( 2U+ 1)$ AX( 1 _  2 ^A( 2U+ 1))For ' , E( 2U+ 1), we label all points with ' whih have a suessor that islabelled with  1, or with  2 and also '. This proess is repeated until stabilizationis reahed. For ' , A( 2U+ 1), note that AX� $ (EX> ^AX �). Thus, welabel all points with ' whih have at least one suessor, and for whih all suessorsare labelled with  1, or with  2 and also '. Again, this proess must be repeateduntil no new points an be marked. The proedure is omparable to the markingalgorithm in Figure 13. A reursive formulation of this algorithm is given in Fig. 17.Sine the Kripke-model has a �nite number of points, eah repeat in the al-gorithm stabilizes after at most jU j passes. In the worst ase, eah pass searhesthe whole model (jU j2 transitions), hene the omplexity is linear in the number ofdi�erent sub-formulas, and ubi in jU j.



1714 Edmund M. Clarke and Bernd-Holger Shlingloffproedure CTL hek (Model (U; I; w0), Formula ') =if w0 2 eval(')then print(\' is satis�ed at w0 in (U; I)")else print(\' not satis�ed at w0 in (U; I)");funtion eval (Formula '): Pointset =ase ' ofp : return I(p);? : return fg;( 1 !  2) : return Un eval( 1) [ eval( 2);E( 2U+ 1) : E1 := eval( 1); E2 := eval( 2); E := fg;repeat until stabilizationE := E [ fw j (su(w) \ (E1 [ (E2 \ E))) 6= fgg;return E;A( 2U+ 1) : E1 := eval( 1); E2 := eval( 2); E := fg;repeat until stabilizationE := E [ fw j fg 6= su(w) � E1 [ (E2 \ E)g;return E;funtion su (Point w): Pointset = return fw0 j (w;w0) 2 I(�)g;Figure 17: na��ve CTL model heking algorithmThis bound an be improved if the searh is organized better. In [Clarke, Emersonand Sistla 1986℄, an algorithm is given whih is linear in the size of the model aswell. For the EF+-operator, the problem of marking all points for whih EF+'holds, given the set of point satisfying ', is equivalent to the inverse reahabilityproblem: given a set of points, mark all points from whih any �nite path leadsinto the given set. Assuming that for any two points we an deide in onstanttime whether they are onneted by an ar, this an be done with time omplexityquadrati in the number of points.funtion reah (Pointset Target): Pointset =Soure := fg; Searh := Target ;while Searh 6= fg doSearh := pred (Searh) n Soure;Soure := Soure [ Searhenddo;return Soure;funtion pred (Point w): Pointset = return fw0 j (w0; w) 2 I(�)g;Figure 18: Inverse reahability alulation



Model Cheking 1715The algorithm given in Fig. 18 alulates the set Soure of all points from whihany point in given set Target is reahable. In this algorithm, every point entersthe set Searh in the while loop at most one. Moreover, all set operations an beperformed in time linear in the size of these sets, i.e., in the number of points; thusthe overall omplexity is quadrati in jU j or linear in the size of the Kripke-model.For the EU+-operator, this idea an be re�ned to give an evaluation proedureof linear omplexity. The AU+-operator an be expressed byA( 2U+ 1)$ :(E(: 1U+(:( 1 ^  2)) _ EG+: 1)Thus, we only need a proedure marking all points for whih EG+' holds. Thisan be done as follows:� restrit the model to those states satisfying '� �nd the maximal strongly onneted omponents in the restrition� mark all points in the original model from whih a nontrivial SCC or a pointwithout suessors an be reahed by a path in the restrited model.These operations an be aomplished with time omplexity whih is quadrati inU . Thus, the overall omplexity of CTL model heking is linear in the size of theformula and in the size of the model.Fairness ConstraintsSome automated model hekers for CTL (for example, SMV [MMillan 1993℄ andSVE [Dingel and Filkorn 1995℄) allow to speify a set of onstraints � together withthe Kripke-model. These onstraints are assumed to hold in the whole model; i.e.,they restrit the model to those parts where they are valid. This use of onstraints issomewhat di�erent from the assumptions in the previous setions, whih were usedto onstrain the set of possible models. For example, an !-automaton an be re-garded as a Kripke-model, together with global eventuality and fairness onstraints(aepting and reurring states). Constraints an be formulated in the same lan-guage in whih the formula to be heked is spei�ed; however, \mixed" approaheshave been suggested [Josko 1993℄, where e.g. the onstraints are desribed in LTLand the property is desribed in CTL.As an example for the use of suh onstraints, often the path-quanti�ers A andE are restrited to fair paths. Simple fairness onstraints are of form F+ , where  is a boolean ombination of propositions. For example, the ondition F+> spei�esthat eah run must be in�nite. As another example for a simple fairness onstraint,we might want to restrit our attention to exeution sequenes in whih everyomponent is always eventually sheduled. Streett fairness onstraints are of form(G+F+ 1 ! G+F+ 2) and are useful to restrit attention to strongly fair shed-ulers: if a omponent in�nitely often requests a resoure, it will be granted in�nitelyoften. Historially, di�erent fairness onstraints were disussed in [Lehmann, Pnueliand Stavi 1981, Quielle and Sifakis 1982℄. A omprehensive treatment of fairnessonepts and proofs is given in [Franez 1986℄.



1716 Edmund M. Clarke and Bernd-Holger ShlingloffThe above algorithm an be modi�ed to deal with suh fairness onstraints bybuilding the tableau of the LTL-assumption and heking the CTL-formula on theprodut of Kripke-model and tableau. The omplexity inreases by a fator whihdepends on the type of LTL-formulas in the assumption. For more information,see [Emerson and Lei 1986, Kupferman and Vardi 1996, Emerson, Jutla and Sistla1993, Clarke, Grumberg and Long 1993℄.8.2. Loal Linear Time Model ChekingFor a given Kripke-modelM = (U; I; w0) and CTL-formula ', the relationM j= 'holds i� the maximal tree generated fromM at w0 satis�es '. For linear time logis,M j= ' is interpreted by sequene-validity. That is, we want to hek whether everymaximal sequene generated from M at w0 satis�es '. Equivalently, we have todeide whether :' is satis�able in some natural model generated fromM. In somesense, this is a more omplex question than the one for branhing time, beause awhole set of natural models has to be heked. Hene, we annot simply mark apoint in the Kripke-model with the set of linear-time formulas whih are valid forthis point: for example, F+ an be valid for one of the generated sequenes, andnot valid for another one.We �rst onsider sequene-validity of modal logi with a single aessibility re-lation R. Given a Kripke-model M = (U; I; w0) and a modal formula ', we wantto determine whether there is a maximal sequene generated from M at w0 whihsatis�es ' in w0. This is done by a depth-�rst-searh in the produt of the set ofpropositionally maximal onsistent sets of sub-formulas and the set of points in themodel.Formally, an atom � is any pair (w;m), where w 2 U is a point, and m � SF (')is a propositionally onsistent set of sub-formulas. An atom is admissible, if w andm agree on the interpretation of propositions. That is, if p 2 SF ('), then p 2 m i�w 2 I(p).An initial atom is any admissible atom � = (w0;m0), where w0 is the urrentpoint of M, and ' 2 m0. We de�ne a relation XR between admissible atoms:XR((w;m); (w0 ;m0)) holds i� the following onditions are met:1. (w;w0) 2 I(R),2. if hRi 2 SF (') and  2 m0, then hRi 2 m,3. if hRi 2 m, then  2 m0, and4. some hRi 2 m.The �rst ondition reets the fat that the steps in the generated sequene arepredetermined by the Kripke-model. The seond ondition is imposed by the se-mantis of the hRi-operator. The third ondition is a reformulations of the axiom(U) and the orresponding tableau rule (hRi) on page 1706. The fourth onditionorresponds to the tableau rule ([R℄); it allows the generated sequene to be �nitewhen no hRi is ontained in a node.Now we an onstrut a forest of atoms as follows:� initial nodes are all initial atoms



Model Cheking 1717� any node � has as hildren all �0 suh that XR(�; �0)Sine for any �nite Kripke-model there are only �nitely many atoms, eah branhin this forest an be made �nite by appropriate bakward ars. As in the tableaude�nition, a leaf is alled open, if it has no hRi formulas in its �rst omponent (m);otherwise, it is losed.An aepting path through the resulting struture starts with any initial nodeand is either in�nite or ends with an open leaf. Any aepting path is a sequenegenerated from the Kripke-model whih satis�es the given formula :', therebyforming a ounterexample to the spei�ation '.To implement the searh for an aepting path, we perform a depth-�rst searhwith baktraking from the set of initial atoms to all of its suessors. In order tobe able to terminate loops in this searh, we have to store all atoms whih wereenountered previously. Though there are several possibilities to represent suh aset of atoms, the method of hoie seems to be to employ a hash table. It is notneessary to use all omponents of m as hash indies, sine the value of propositionsis determined by w, and boolean ombinations of formulas an be reovered fromtheir onstituent parts. Therefore, it is suÆient to store only the value of hRi-subformulas.In general, sine we are only looking for some ounter-model, we an terminatethe searh if a ounter-model is found. Although in the worst ase (if no ounter-model exists) the whole forest must be searhed, it is possible to �nd errors veryquikly by an appropriate ordering of the depth-�rst searh suessors.In the depth-�rst searh, we have to remove losed atoms from the list of possibleloop points. A better way is to mark these nodes as losed while baktraking;then the searh will not reurse again if suh an atom reappears. Also all otherimprovements mentioned on page 1706 an be used for this algorithm.Extensions for LTLWe have seen that the loal model heking algorithm for modal logi is almostthe same algorithm as the loal tableau deision proedure. Similarly, the loalmodel heking for LTL is very lose to its respetive satis�ability algorithm. Forsimpliity, in this subsetion we restrit attention to the future fragment of LTL.In the de�nition of XR((w;m); (w0 ;m0)), we replae hRi by X and require inaddition5. if F� 2 SF (') then F� 2 m i�  2 m or XF� 2 mThis requirement orresponds to the reursion axiom ` F� $  _XF� . As inthe ase of modal logi, we try to thread an aepting path through the graph ofatoms whih arises from this de�nition. However, we an only aept those pathsin whih all eventualities F� are ful�lled. Sine we an not guarantee that severaleventualities are simultaneously ful�lled in some single loop, we have to alulatethe strongly onneted omponents of the reexive transitive losure ofXR. An SCCW of atoms is alled self-ful�lling, if for any F� in some � 2 W there exists some�0 2 W with  2 �0. Any atom whih does not ontain positive future obligationsX is a trivial SCC, beause it is a terminal node in the atom graph. Suh a node



1718 Edmund M. Clarke and Bernd-Holger Shlingloffforms a self-ful�lling SCC, beause the above ondition (5.) guarantees that for anyF� 2 �, also  2 �. The given formula ' is satis�able in M i� there exists aself-ful�lling SCC whih is reahable from some initial atom. In this ase, a naturalmodel for ' generated by M is given by any sequene of atoms from an initialatom whih ends in a terminal atom or in�nitely often passes through all atoms ofa self-ful�lling SCC.For U+-operators, eah positive ourrene ( 1U+ 2) in some � 2 W is aneventuality whih has to be ful�lled at some point; thus the SCC W is de�ned tobe self-ful�lling, if it is nontrivial and for any ( 1U+ 2) in some � 2 W there existssome �0 2W with  2 2 �0, or it is trivial and does not ontain any ( 1U+ 2).To onstrut maximal SCCs, two di�erent algorithms have been suggested(see,e.g. [Aho, Hoproft and Ullman 1974℄). For model heking, Tarjan's algo-rithm [Tarjan 1972℄ is partiularly well-suited, sine it enumerates the strong om-ponents of a graph during the baktrak from the depth-�rst searh. If a maximalSCC W is found, all required and ful�lled eventualities in all nodes of W an beolleted. W is self-ful�lling if all required eventualities are ful�lled. Thus modelheking an be performed \on-the-y" during the enumeration of the reahableatoms of the model. An appropriate depth{�rst{searh LTL model heking algo-rithm is given in 19.In this algorithm, the funtion hildren onstruts for a given atom � the setof all possible suessor atoms aording to the transition relation of the Kripke-model and to the �xed point de�nition of the until-operator. One way to implementthis funtion is to represent atoms by bitstrings whih ontain one bit for eahproposition p2 P and one bit for eah sub-formula ( 2U+ 1) 2 SF ('). New atomsare inluded into a hash table, whih ontains one bitstring for eah atom. For eahentry into the hash table, the funtion hildren returns a list of pointers to the hashtable. For more information on bitstate hashing tehniques and state spae ahing,see [Couroubetis, Vardi, Wolper and Yannakakis 1992, Holzmann 1995, Godefroid,Holzmann and Pirottin 1995℄.The proedure depth first searh realizes Tarjan's algorithm and the testwhether an SCC is self-ful�lling. It reursively builds all atoms reahable froma given atom �. When the proedure baktraks, � is the root of a maximal SCC i�there are no atoms � in the subtree below � suh that � is also in the subtree of �.In this ase, the maximal SCC ontaining � onsists of all nodes in the subtree be-low �, and this maximal SCC an be heked for aeptane. table is implementedas a hash table from atoms to natural numbers. table[�℄ ontains� UNDEFINED, as long as atom � has not ourred,� the depth-�rst-number of �, when � is �rst enountered,� the depth{�rst{number of the �rst enountered atom belonging to the samestrongly onneted omponent as �, after return from the reursive all, and� MAXNAT (any value for whih min(n, MAXNAT) is always n), after the max-imal strong omponent ontaining � has been analyzed.To hek whether an SCC is self-ful�lling, during its enumeration two sets are built:required ontains the union of all eventualities whih are required, and ful�lled



Model Cheking 1719proedure LTL hek (Model M, Formula ') =Nat depth �rst ount := 0; =� number of reursive all �=Atomset stak := fg; =� Stak of searhed atoms �=Natarray table; =� Hashtable from atoms to natural numbers �=Atomset init := f� j � is an initial atom of M and 'g;for all � 2 init do depth first searh(�);print(\' is not satis�able in M");proedure depth first searh (Atom �) =if (table [�℄ = UNDEFINED) then =� � is a new atom �=Nat dfnumber := depth �rst ount ; =� save urrent ount �=depth �rst ount := depth �rst ount+1;table[�℄ := dfnumber ; =� initialize with urrent depth �=push(stak, �);Atomset su := hildren(�);for all (� 2 su) dodepth first searh(�);table[�℄ := min(table[�℄, table[�℄); =� � above �? �=if (table[�℄ = dfnumber) then =� � is the root of an SCC �=Formulaset required := fg, ful�lled := fg;repeat� := pop(stak);table[�℄ := MAXNAT;required := required [ f 1 j ( 2U+ 1) 2 �g;ful�lled := ful�lled [ f j  2 �guntil (� = �); =� all elements of SCC are popped �=if required � ful�lled =� SCC is self-ful�lling �=then print(\' satis�able in M"); exit;funtion hildren (Atom (w;m)) : Atomset =if f( 2U+ 1) 2 mg = fg then return fg =�no future obligations�=else return f(w0;m0) j w � w0;( 2U+ 1) 2 m i�  1 2 m0 or  2 2 m0 and ( 2U+ 2) 2 m0gFigure 19: Depth{�rst{searh LTL model heking algorithmontains the union of all eventualities whih are ful�lled in the atoms of this SCC.The SCC is self-ful�lling if required�ful�lled.The main program alls depth first searh for all initial atoms, where for aninitial atom (w0;m0)1. w0 is the urrent point of M, and2. m0 � SF (') is any propositionally onsistent set suh that ' 2 m0.If during the onstrution of the atom graph a maximal self-ful�lling SCC is found,



1720 Edmund M. Clarke and Bernd-Holger Shlingloffthe algorithm reports suess; if the whole graph is searhed without suess weknow that the formula is not satis�able, and the program terminates with thisresult.This algorithm is exponential in the number of U+-formulas, beause every setof suh sub-formulas determines a propositionally onsistent set. It is linear in thesize of the Kripke-model. In general, it an be shown that the problem of LTL-model heking (inluding past-operators) is PSPACE-omplete in the size of theformula and NLOGSPACE in the size of the model (see [Sistla and Clarke 1986,Lihtenstein and Pnueli 1985℄). The exponential omplexity in the length of theformula usually is not very problemati, beause spei�ation formulas tend to berather short. The linear omplexity in the size of the model is a more serious limitingfator, sine in the worst ase (i.e., if the formula is unsatis�able) all atoms haveto be traversed. Current tehnology limits the appliability of suh algorithms tomodels with approximately 105�106 reahable atoms. In Setion 11 we will disussapproahes whih try to overome this limit.8.3. Model Cheking for Propositional �-CalulusBoth the loal and the global model heking algorithms an be easily adapted to�TL. Global model heking for CTL unfolds the �xpoint de�nition of the AU+and EU+ operators. If we restrit our attention to ontinuous �TL-formulas (seebelow), then this idea an be used to obtain a global model heking algorithmfor these formulas. Moreover, as we will disuss in Setion 10, this algorithm anbe eÆiently implemented using BDDs (see [Burh, Clarke, MMillan, Dill andHwang 1992℄).Aording to the Knaster-Tarski theorem proved in Setion 3.2,(U; I; w) j= �q ' i� w 2[fQ j Q � 'Ffq := Qgg(U; I; w) j= �q ' i� w 2\fQ j 'Ffq := Qg � QgA funtion f : 2U ! 2U is alled union-ontinuous, if f(Si2Ifxig) = Si2I f(xi)for any index set I . If the funtional de�ned by ' is union-ontinuous, then the�xpoints an be obtained as �q ' = limi!!'i(>)�q ' = limi!!'i(?)If U is �nite, then every monotoni funtion is union-ontinuous. Moreover, aord-ing to Lemma 5.4, on �nite models it is suÆient to onsider the limit up to theardinality of the universe: �q ' = limi�jUj'i(>)�q ' = limi�jUj'i(?)



Model Cheking 1721funtion eval (Formula '): Pointset =ase ' ofp : return I(p); =� interpretation of proposition p �=q : return v(q); =� valuation of proposition variable q �=? : return fg;( 1 !  2) : return Un eval( 1) [ eval( 2);hRi : return R�1( eval( ));�q( ) : H := U ;repeat until stabilizationH := eval( fq := Hg);return H ;�q( ) : H := fg;repeat until stabilizationH := eval( fq := Hg);return H ;Figure 20: na��ve global branhing time �TL model heking algorithmConsequently, for �nite domains model heking of positive �TL an be performedby extending the na��ve global algorithm. The result is depited in Figure 20.Sine every repeat in this algorithm an iterate up to jU j times, the omplexityis of order j'j � jU jqd('), where qd(') is the depth of nesting of �xpoint operators in'. This high omplexity is due to the fat that the omputation of any inner �xedpoint formula has to be restarted from srath for every new iteration of an enlosing�xed point operator. For example, onsider the CTL-formula EF�(p1 ^ EF�p2).�TL(EF�(p1 ^ EF� p2)) = �q1(X q1 _ (p1 ^ �q2(X q2 _ p2))):This formula is alternation-free: in the inner �xed point formula �q2(X q2 _ p2)there is no ourrene of q1. Therefore, in the evaluation of �q1, this formula hasa onstant value. For suh formulas, model heking an be done with linear timeomplexity [Emerson et al. 1993, Cleaveland and Ste�en 1993℄. In ontrast, onsiderthe �TL formula �q1(p1 ^ �q2(X q1 _X q2 _ p2)):Here the inner formula �q2(X q1 _X q2 _p2) is re-evaluated for every new iterationof q1. That is, if  (q1; q2) , (X q1 _X q2 _ p2)F and '(q1) , (p1 ^ �q2 (q1; q2))F ,we alulate �q1'(q1) by iterating'0 , ?, 0;0 , ? 0;1 ,  ('0;  0;0) = (X? _X? _ p2), 0;2 ,  ('0;  0;1) = (X? _X �X? _ p2� _ p2),



1722 Edmund M. Clarke and Bernd-Holger Shlingloff 0;3 ,  ('0;  0;2) = (X? _X �X? _X(X? _ p2) _ p2� _ p2),... 0;n+1 ,  ('0;  0;n) = �q2(X? _X q2 _ p2), if  0;n+1 =  0;n,'1 , '('0) = (p1 ^ �q2(X? _X q2 _ p2)) = (p1 ^  0;n), 1;0 , ? 1;1 ,  ('1;  1;0) = (X �p1 ^ �q2(X? _X q2 _ p2)� _X? _ p2), 1;2 ,  ('1;  1;1) = (X'1 _X 1;1 _ p2),...and so on. A more sophistiated algorithm was given in [Emerson and Lei 1986℄.Eah sequene �q1:::�qn or �q1:::�qn of nested �xpoints of the same type an bealulated by a single loop. Sine  is monotoni, and '0 � '1, we have  0;n �  1;n.To ompute a least �xed point, it is suÆient to start with any value below theresult. Therefore,  1;0 an be initialized with  0;n instead of ?. Generally, whenrestarting the omputation of an inner �xed point of the same type, we an usethe last approximation result as a starting value. Thus, the value of this inner�xed point an inrease at most jU j times. The overall omplexity of this improvedalgorithm is (j'j�jU j)ad('), where ad(') is the alternation depth of di�erent �xpointoperators in '.In [Long, Browne, Clarke, Jha and Marrero 1994℄ the authors observe that bystoring even more intermediate values, the time omplexity for evaluating �xpointformulas an be redued to O(jU jbad=2+1). It an be shown that the omplexity ofmodel heking �TL is in NP \ o-NP; however, no lower bound is known to date.For more information, see [Berezin, Clarke, Jha and Marrero 1996℄.For the loal version, there have been a number of algorithms proposed in the lit-erature [Winskel 1991, Cleaveland 1990, Brad�eld and Stirling 1991, Stirling 1991℄.We give a sketh of the tableau method from [Stirling and Walker 1991℄, whihillustrates the basi ideas. The algorithm explores only a (small) part of the modelby depth-�rst searh. Eah node in the tableau is marked by a sequene �; w j=  ,where w 2 U is a point in the model,  is a sub-formula of the given formula and �is a de�nition list. This is a sequene of delarations (q1 =  1; :::; qn =  n), wherethe proposition variables qi are pairwise disjoint and  i uses at most variables fromq1; :::; qi�1. For simpliity, we use _, ^, hRi, [R℄, � and � as basi operators andassume that negations only our in literals. Furthermore, we assume that in theformula to be heked eah � and � quanti�ation binds a di�erent propositionvariable.Sine in [Stirling and Walker 1991℄ the �-alulus is interpreted on branhingstrutures, the tableau rules given in Figure 21 are nondeterministi. Any nodemarked �; w j= ( 1^ 2) has two hildren, where one is marked �; w j=  1 and theother �; w j=  2. For a node marked �; w j= ( 1 _ 2) there is only one hild nodewhih is either marked �; w j=  1 or �; w j=  2. Thus, for a given point w andformula ', there are several nonequivalent ompleted tableaus; w j= ' i� some of



Model Cheking 1723these tableaus is suessful. A tableau is suessful, if eah leaf is suessful. To turnthe tableau method into a onrete model heking algorithm, we have to performa depth-�rst searh through all possible tableaus.(_i) �; w j= ( 1 _  2)�; w j=  i (i 2 f1; 2g) (^) �; w j= ( 1 ^  2)�; w j=  1 �; w j=  2(hRi) �; w j= hRi �; w0 j=  ([R℄) �; w j= [R℄ �; w1 j=  � � � �; wn j=  (�) �; w j= �q �0; w j=  (�) �; w j= �q �0; w j=  (PVar) �; w j= q�; w j=  Figure 21: Tableau rules for branhing time �TLThe additional regulations for the tableau rules in Figure 21 are:� Rule (hRi) an only be applied if w0 2 R(w).� In rule ([R℄), it must hold that R(w) = fw1; :::; wng.� In rule (�) and (�), �0 , � [ fq =  g.� Rule (PVar) an only be applied if (q =  ) 2 �, and there is no anestor nodewhih is labelled �0; w j=  (with the same w and  ).Intuitively, to hek whether �q holds in point w, we reord that q must beinterpreted as a �xpoint of  (q), and hek whether  holds in w. Whenever we hitupon the proposition variable q in the further deomposition of  (q), we an unfoldthis ourrene to  . However, to guarantee that the unfolding terminates, eahproposition variable may be unfolded at most one in every branh of the tableauand every point of the model. Thus, for �nite models eah tableau is �nite.A tableau is maximal, if there is no leaf for whih any rule is appliable. In amaximal tableau, a leaf �; w j=  is alled suessful, if�  = p 2 P and w 2 I(p), or  = :p and w =2 I(p),�  = q 2 Q, q =2 �, w 2 v(q), or  = :q, q =2 �, w =2 v(q), or�  = [R℄ 0 and R(w) = fg (Rule ([R℄) produes no hildren),�  = q 2 Q and q was inluded in � by rule (�).In other words, a maximal tableau is not suessful if it ontains some unsuess-ful leaf �; w j=  whih satis�es�  = p 2 P and w =2 I(p), or  = :p and w 2 I(p),�  = q 2 Q, q =2 �, w =2 v(q), or  = :q, q =2 �, w 2 v(q), or�  = hRi 0 and R(w) = fg (Rule (hRi) not appliable),�  = q 2 Q and q was inluded in � by rule (�).



1724 Edmund M. Clarke and Bernd-Holger ShlingloffWith these de�nitions, soundness and ompleteness of the tableau deisionmethod is stated in the following theorem, a proof of whih an be found in [Stirlingand Walker 1991℄.8.1. Theorem. w 2 'F i� there exists a suessful tableau with root fg; w j= '.More eÆient loal model heking algorithms for fragments of �TL an be foundin [Cleaveland and Ste�en 1993, Bhat and Cleaveland 1996℄.A somewhat di�erent approah for model heking of �-alulus was suggested in[Mader 1992℄. It is based on Gauss-elimination: proving a formula in this approahis similar to solving a system of linear inequalities.9. Modelling of Reative SystemsUp to now, we assumed that a system is given as a single Kripke-model. However,real-life systems usually are omposed of a number of smaller subomponents. Evenif the target system is a single sequential mahine, it is often advantageous to modelit as a set of proesses running in parallel:� usually the funtionality suggests a ertain deomposition into modules; se-quentialization is not the primary issue in the design;� ertain subomponents (e.g. hardware omponents) atually are independentof the rest of the system and, therefore, oneptually parallel,� the environment an be seen as a proess running in parallel to the system;� software-reusability and objet-oriented design require modularity.9.1. Parallel Programming ParadigmsHene, we have to onsider systems of parallel proesses, that is, proesses whihare exeuted during the same time period, and the synhronization between theseproesses. We distinguish between two main paradigms of parallel systems: dis-tributed systems, where the subomponents are seen as spatially apart from eahother, and onurrent systems, where the subomponents use ommon resouressuh as proessor time or memory ells.Message Passing vs. Shared VariablesConsequently, there are two main paradigms for synhronization between parallelproesses: via message passing (for distributed systems), and via shared variables(for onurrent systems).Of ourse, there is no lear distintion between distributed and onurrent pro-grams. It is not possible to formalize the onept of being spatially apart, sine thisis dependent on one's own point of view: from the United States, all omputers ina loal area network in Europe an be regarded as a single system. From the pro-essor's viewpoint, a hard disk ontroller an be regarded as a remote subsystem.



Model Cheking 1725On the other side, every omponent of a distributed system shares some resourewith some other omponent; if it were totally unrelated it would not make sense toregard it as being part of one system.Consequently, from a ertain point of view, passing a message between proessA and B an be seen as proess A writing into a shared variable whih is read byB. On the other side, writing a shared variable an be seen as sending to all otherproesses whih might use this variable the message that its value has hanged.In fat, this transition from the message passing paradigm to an implementationvia shared variables ours in every network ontroller; and the transition fromthe shared variables paradigm to an implementation via message passing ours inevery distributed ahe.However, di�erent paradigms produe di�erent tehniques; many parallel pro-gramming languages and many veri�ation systems support only one of these twoparadigms.Synhronous vs. Asynhronous SystemsAnother issue is the modelling of a proess exeution in time. In disrete proessesa omputation onsists of a sequene of steps, whereas in ontinuous systems thevalue of state parameters hanges gradually as time passes. Hybrid systems ombinedisrete and ontinuous omponents. Usually, the model of time whih is used inveri�ation is determined by the type of system under onsideration.For parallel systems of disrete proesses, there are various ways to model theirexeution. Synhronous proessing is haraterized by the fat that in eah step, ev-ery parallel omponent advanes. For example, a iruit in whih eah gate swithesat the pulse of a global lok an be seen as a synhronous system. In ontrast, in anasynhronous exeution in eah step an arbitrary (nonempty) subset of all ompo-nents proeeds. For example, a set of agents working independently and synhroniz-ing via mailboxes is a typial asynhronous system. With synhronous proessing,the transition relation of the system is the onjuntion of the transition relationsof the omponents, with asynhronous proessing it is the disjuntion.If eah proess an perform an \idle" step at any time (\stutter"), then syn-hronous and asynhronous proessing oinides. Both synhronous and asyn-hronous exeutions an be implemented by interleaving , where in eah step atmost one proess is ative. A typial example is a set of threads in a time-sharingoperating system on a mono-proessor mahine. With interleaving exeution, usu-ally some fairness onstraints are imposed on the sheduling to ensure that allproesses an progress.Related to the exeution mode is the mode of interation between parallel om-ponents. With synhronous ommuniation, eah omponent wishing to interatis bloked until all partners it requires are willing to partiipate in the ommu-niation. The information is then broadast to all ommuniation partners. Withasynhronous ommuniation eah proess deides whether it wants to wait at aertain point or not; usually some kind of bu�ering mehanism is used for messageswhih are not needed immediately.



1726 Edmund M. Clarke and Bernd-Holger ShlingloffSynhronous ommuniation an be seen as a speial ase of asynhronous om-muniation where the length of eah bu�er queue is limited to one, and eah proessdeides to wait after writing into or before reading from that queue until the queueis empty or full again, respetively.Vie versa, a bu�er an be seen as a separate proess in a synhronous systemwhih is always willing to ommuniate with other proesses. If the size of thebu�er is unbounded, the system is not �nite state. Even if their size is bounded,the bu�ers an be the biggest part of the modelling of an asynhronously ommu-niating system.9.2. Some Conrete Formalisms for Finite State SystemsReall that a (labelled) transition system is a tuple (�; S;�; S0), where� � is a nonempty �nite alphabet,� S is a nonempty �nite set of states,� � � S � �� S is the transition relation, and� S0 � S is the set of initial states.A parallel transition system is a tuple T = (T1; :::; Tn) of transition systems, suhthat Si \ Sj = fg, for i < j. The global transition system T assoiated with aparallel transition system (T1; :::; Tn) is de�ned by T = (�; S;�; S0), where� � = S�i� S = S1 � � � � � Sn� S0 = S10 � � � � � Sn0, and� ((s1; :::; sn); a; (s01; :::; s0n)) 2 � i� for all Ti| if a 2 �i, then (si; a; s0i) 2 �i, and| if a 62 �i, then si = s0iThus, in a parallel transition system synhronization between omponents is by theommon alphabet. The size of the state spae of the global transition system is theprodut of the sizes of all parallel omponents.An elementary Petri net is a tuple N = (P; T; F; s0), where� P is a �nite set of plaes,� T is a �nite set of transitions (P \ T = fg),� F � (P � T ) [ (T � P ) is the ow relation, and� m0 � P is the initial marking of the net.A marking m of the net is any subset of P . By �t , fp j (p; t) 2 Fg and t� ,fp j (t; p) 2 Fg we denote the preset and the postset of transition t, respetively. Atransition t is enabled at marking m if �t � m (all its input plaes are oupied atm) and t� \m � �t (all its output plaes are empty at m, or they are also inputplaes). Markingm0 is the result of �ring transition t from markingm, if t is enabledat m and m0 = (mn�t)[ t�. In ontrast to ondition-event Petri nets [Reisig 1998℄,where eah plae an be oupied by an arbitrary number of tokens, elementaryPetri nets inherently are �nite-state.



Model Cheking 1727For every elementary Petri net there is an assoiated transition system: the al-phabet is the set of transitions, the state set is the set of markings, the initial stateis the initial marking, and (m; t;m0) 2 � i� m0 is the result of �ring t from m. Thenumber of states of this transition system is exponential in the number of plaes ofthe net. Alternatively, for any elementary Petri net we an obtain a parallel tran-sition system of the same order of magnitude: for eah plae p in the net there isa transition system with two states p1 and p0, denoting the fat that p is oupiedor empty, respetively. For eah t 2 T , we let (p1; t; p0) 2 � i� p 2 �t n t� and(p0; t; p1) 2 � i� p 2 t � n � t. Furthermore, (p1; t; p1) 2 � i� p 2 �t \ t�. The lan-guage of the global transition system assoiated with this parallel transition systemis the set of �ring sequenes of the net. Vie versa, every parallel transition systeman be formulated as an elementary Petri net of the same order of magnitude. Theonstrution is straightforward.A shared variables program is a tuple (V;D; T; s0), where� V = (v1; :::; vn) is a set of program variables ,� D = D1�� � ��Dn) is the state spae, where eah Di = fdi1; :::; dimig is a �nitedomain for variable vi,� T � D �D is a transition relation, and� s0 = (d11; :::; dn1) is the initial state.A state of a shared variables program is a tuple (d1; :::; dn), where eah di 2 Di.Thus the number of states in a shared variables program is the produt of the sizeof all domains. The transition relation T an be de�ned by a propositional formula'T with the set of atomi proposition P = f(x = y) j x; y 2 (V [ V 0 [ SDi)g,where V 0 = fv01; :::; v0ng. If s = (d1; :::; dn) and s0 = (d01; :::; d0n), then (s; s0) 2 T i�I j= 'T , where I(vi) = di and I(v0i) = d0i.Using relational semantis, a shared variables program an be obtained for almostall other models for onurreny. Therefore, shared variable programs are widelyused to model reative systems.9.3. Example AppliationsA Combinatorial GameAs a �rst example, we desribe the use of model heking in a ombinatorial searh.Although this example is not very typial for real appliations, it an demonstratethe apabilities and limits of present tehnology. A well-known puzzle from 1870by the Amerian Sam Loyd onsists of a h � v grid in whih there are (h � v) � 1numbered tiles and one blank spae. A move onsists in moving any tile into theposition of the blank. The goal is to ahieve a ertain predetermined order on thetiles.
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2This puzzle an be desribed by a shared variables program as follows. For eahtile there is a program variable whih notes its horizontal and vertial position.Furthermore, there is a program variable move indiating whether the next movewill be a shift up, down, left or right of the blank spae. If the move would bring itout of the borders, nothing is hanged; otherwise, its position is swapped with therespetive adjaent tile.MODULE mainDEFINE v := 3; h := 3;VAR move: u,d,l,r;hpos: array 0..(h*v-1) of 1..h;vpos: array 0..(h*v-1) of 1..v;ASSIGNnext(hpos[0℄) := ase(move=l) & !(hpos[0℄=1) : hpos[0℄ - 1;(move=r) & !(hpos[0℄=h) : hpos[0℄ + 1;1: hpos[0℄; esa;next(vpos[0℄) := ase(move=u) & !(vpos[0℄=1) : vpos[0℄ - 1;(move=d) & !(vpos[0℄=v) : vpos[0℄ + 1;1: vpos[0℄; esa;for all i:next(hpos[i℄) := ase(move=l) & !(hpos[0℄=1) & vpos[i℄=vpos[0℄ & hpos[i℄=hpos[0℄+1 |(move=r) & !(hpos[0℄=h) & vpos[i℄=vpos[0℄ & hpos[i℄=hpos[0℄-1 : hpos[0℄;1: hpos[i℄; esa;next(vpos[i℄) := ase(move=u) & !(vpos[0℄=1) & hpos[i℄=hpos[0℄ & vpos[i℄=vpos[0℄-1 |(move=d) & !(vpos[0℄=v) & hpos[i℄=hpos[0℄ & vpos[i℄=vpos[0℄+1 : vpos[0℄;1: vpos[i℄; esa;init(vpos[i℄) := i div h + 1; init(hpos[i℄) := i mod h + 1;DEFINE goal := Vi(vpos[i℄ = v - (i div h) & hpos[i℄ = h - (i mod h))SPEC !EF goal Figure 22: SMV Code for Loyds PuzzleThe SMV ode orresponding to this desription6 is shown in Figure 22. Forh = 3 and v = 3, the internal representation of the transition relation takes about3KB. There are 4 � (h � v)! = 1:4 � 106 states, of whih 50% are reahable from any6In the atual SMV ode, variable array bounds or indies, e.g., vpos[i℄, are not allowed andhave to be replaed by the respetive onstant values vpos[1℄,vpos[2℄,...



Model Cheking 1729initial state. The spei�ation laims that a ertain �nal state is not reahable; themodel heker ontradits this laim by showing a sequene of moves (rrddlluur-rddlluurrddlluurrdd) whih gives a solution to the puzzle. The solution is foundwithin a ouple of minutes on a 32 MB Pentium 133.For h = 4, v = 3, there are approximately 109 reahable states. Although thesymboli model heker detets rather quikly that some solution must exist, for theonstrution of a onrete solution sequene the state spae has to be partitionedinto strongly onneted omponents. This requires several days of CPU time andapproximately 1GB RAM on a Spar Ultra. For model heking appliations, virtualmemory is not very useful; if the representation of the reahable state spae exeedsthe available main memory, then onstant swapping ours. To �nd a solution forh = 4, v = 4 by exhaustive state spae exploration seems to be beyond the limits ofpresent tehnology. In [Edelkamp and Re�el 1998℄, a ombination of model hekingand heuristi searh is used to automatially onstrut solutions to this and otherombinatorial games.A Sequential CiruitOur seond example is from hardware veri�ation. We onsider a shift register forinterfaing a parallel data bus. The register is from the 74x95 TTL family and isdesribed in [Nowiki and Adam 1990℄. It is used to exhange data between thebus and a serial devie. It thus ats as parallel-serial onverter and vie versa. Afuntional diagram of the register is given in Figure 23.The register has a mode ontrol input m to hoose between parallel or serialaess mode. For eah mode, there is a orresponding input lok (p and s).Parallel loading is performed if m is high and a p lok pulse arrives. In this ase,data is read from the bus into the assoiated ip-ops. The data appears at the Qoutputs at the pulse of the p lok.For serial loading, mode ontrol should be low. Data is input serially with everytik of the s lok. At eah pulse the state of all ip-ops is transferred one stageto the right. After n yles, the data is positioned at the parallel output and anbe sent to the bus by an o ommand. A right shift ours if the serial input inp isheld low. By a sequene of n right shifts, data whih has been obtained in parallelfrom the bus an be written serially to the out port.The register is implemented with SR-bistables whih have the following hara-teristi funtion. If both inputs are low, the bistable keeps its state. The output QS R Q'0 0 Q1 0 10 1 01 1 -is set if input S is high, and reset if input R is high. If both S and R are high, then Q
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Figure 23: A shift register for data bus interfaingis unde�ned. This an be modelled by a nondeterministi internal hoie betweenhigh and low output. The lath is triggered by a negative edge of the lok pulse.That is, a hange of output ours only at the time instant when the lok linegoes from high to low. If the value of the lok line is part of the state spae, thenthe lok value would be low in every new state. For an aurate state-based model(e.g., of an asynhronous iruit), we would have to inlude timing information ofall gates. However, if the lok is only used as trigger, an event based modelling ismore adequate: the high-to-low hange of the lok line is onsidered as an eventourrene. In eah state, this event may or may not our. To prevent exeutionsin whih the input or output loks are inde�nitely bloked, we require in�nitelymany input and output lok tiks in every in�nite run.The model is just a representation of the iruit's truth table, where the outputsare a boolean funtion of inputs and lath states. It an be derived automatiallyfrom any standard hardware desription language; in fat, several model hekerssupport suh front-end translations. Corretness of parallel and sequential input isexpressed by the following formulas, where n is the width of the data bus:AG�(m ^ p! n_i=1(bus[i℄$ A((o! AX bus[i℄)U+i)))



Model Cheking 1731MODULE mainVAR Q, bus: array 1..n of boolean; -- n SR-lathes, n databitsinp, m, p, s, o: boolean; -- input linesDEFINE out := Q[1℄; i := ((m & p) | (!m & s));A[i℄ := m & p & bus[i℄; B[i℄ := !m & Q[i + 1℄;R[i℄ := !(A[i℄ | B[i℄); S[i℄ := !R[i℄;ASSIGN next(Q[i℄) := ase i: ase!S[i℄ & !R[i℄: Q[i℄; --holdS[i℄ & !R[i℄: 1; --set!S[i℄ & R[i℄: 0; --resetS[i℄ & R[i℄: f0,1g; esa; --undef!i: Q[i℄; esa; -- unhanged if no inputnext(bus[i℄) := ase o: Q[i℄; !o: f0, 1g; esa;FAIRNESS i FAIRNESS oFigure 24: Model of shift registerAG�(:m ^ s! n_i=2(Q[i℄$ A(Q[i-1℄U+ i)))Intuitively, these formulas assure that data whih is input into the register re-mains there until a new input ours. If the mode ontrol is set to parallel andthere is a tik of the parallel lok, then the data whih is urrently on bus i willbe delivered at eah tik of the output lok, until a new input ours. If the modeontrol is set to serial, and there is a tik of the serial lok, then the lathes willremain stable until the next input.The SMV model heker an verify these formulas for a bus width of 32 bit inless than a seond. Similar formulas an be used to verify that after a sequene ofn sequential load operations, the orret data word will be put onto the bus on asubsequent output pulse.If the onnetion struture of wires within the iruit is \well-behaved", thenautomati veri�ation is suessful even on muh bigger iruits. A iruit is \well-behaved" if there exists an ordering of all wires suh that the value of a wire onlydepends on the value of wires whih are lose in the ordering. For a formal de�nitionof this ondition see [MMillan 1993℄. A large number of iruits with hundreds ofstorage plaes have been veri�ed automatially in this way.A Communiation ProtoolThe third example is a set of ommuniating proesses within the operating systemof a Siemens ellular phone. In this system, there are a number of basi proessesommuniating with one another by priority messages. Eah of the proesses imple-ments a �nite state mahine, whih is desribed by a set of SDL diagrams. Basially,a proess waits in a ertain state until it reeives a message from some other proess.It then performs some spei�ed operations, sends a number of messages to othermessages, and transitions to another state. Figure 25 shows part of the transition



1732 Edmund M. Clarke and Bernd-Holger Shlingloffgraph of a proess and the orresponding SDL diagram. The displayed part is usedto implement the following quote from the GSM international standard.\Initially the mobile station looks for a ell whih satis�es the suitability on-straints by heking ells in desending order of reeived signal strength. If a suit-able ell is found, the mobile station amps on it and performs any registrationneessary."A property to be veri�ed is that the system never deadloks:AG�EF�initThat is, no sequene of user ations an bring the phone into a state from whereit annot be reset. Sine the number of merhandised units is expeted to be veryhigh, orretness is an important design issue. In this partiular example, a numberof potential problems in the design ould be identi�ed by model heking beforethe atual implementation took plae [Shlinglo� 1997℄.In the model to be heked, there are �ve basi proesses, plus the operatingsystem kernel. There are approximately 50 di�erent types of messages whih an besent by the proesses, and eah proess has between 10 and 20 states. The operatingsystem is responsible for the sheduling of proesses aording to a priority sheme,and for the storage and delivery of messages. Therefore, it has to maintain a bu�er,in whih for eah proess all messages are kept. The size of these bu�ers turnsout to be the most important parameter in the veri�ation. Basially, eah bu�erslot ould be �lled with every message; thus a ombinatorial explosion similar tothe one in our �rst example an our. However, a bu�er overow almost ertainlyindiates an error in the implementation; for example, if some high-priority proesskeeps resending the same message, it will eventually �ll up any bounded bu�er. Inthe modelled system, a total number of 15-20 bu�er slots was suÆient; a fairnessassumption is used to selet only those omputations in whih no bu�er overowours. Moreover, the bu�er ontents usually follows a regular pattern, therefore theabove mentioned state explosion is avoided. In pratial appliations, an exponentialgrowth in the number of reahable states almost ertainly indiates an error. Forbu�ers in whih all messages have the same priority, the transition relation of abounded bu�er an be de�ned by the transition table in Figure 26.In the right half of this table, an empty entry means that the respetive programvariable is set by the environment. An input value of nil in i indiates that there isno message to be sent; in this ase the next value of i is determined by the sender.If this proess has put a non-nil value x into i, then this value is appended to thebu�er, and i is reset to nil. The last line indiates a bu�er overow: if a messageis to be sent with the message bu�er already �lled, i remains stable. Thus, theformula AG�(i 6= nil ! X(i = nil)) an be used to determine whether a bu�eroverow an our. If the output variable o is nil and there is a message to deliver,it is opied into o. When the operating system delivers a message y from o, it resetso to nil.The ontent of the bu�er b is given as a sequene hx1; :::; x�i of messages, where hidenotes the empty bu�er. There are various possibilities to model suh sequenes.In Figure 27 we show a modelling whih uses n program variables b1; :::; bn, suh
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Figure 25: Transition graph and SDL diagram



1734 Edmund M. Clarke and Bernd-Holger Shlingloffi b o i0 b0 o0nil hi nil hi nilx hi nil nil hi xnil hx1; :::; x�i nil hx1; :::; x��1i x�x hx1; :::; x�i nil nil hx; x1; :::; x��1i x�nil hi y hix hi y nil hxinil hx1; :::; x�i y hx1; :::; x�ix hx1; :::; x�i y (� < n) nil hx; x1; :::; x�ix hx1; :::; xni y x hx1; :::; xniFigure 26: Transition relation of a bounded bu�erthat b1 ontains the front element of the message queue, and inoming messagesare appended into the smallest b� whih is empty (ontains nil as value).next(b[j℄) := ase(i=nil) & !(o=nil) : b[j℄;(i=nil) & (o=nil) : b[j+1℄;!(i=nil) & !(o=nil) : if !(b[j-1℄=nil) & b[j℄=nil then ielse b[j℄ fi;!(i=nil) & (o=nil) : if b[j℄=nil then nilelse if b[j+1℄=nil then ielse b[j+1℄ fi fi; esa;Figure 27: Model of bounded bu�erIn this modelling, we rely on the fat that whenever bj = nil, then for all k � j,also bk = nil. This assumption only holds for the reahable states of a bu�er whihis initially empty; there are many transitions from illegal, i.e., non reahable statesto other illegal states in this model. In an expliit representation of the transitionrelation, one should try to avoid these redundant entries. Below, we disuss symbolirepresentations with BDDs. With suh a representation, even though the size ofthe transition relation is muh bigger than the transition relation restrited to thereahable states, its representation is muh smaller. Sine the value of eah bu�erslot depends only on its immediate neighbors, in fat the size of the representation islinear in the (�xed) number and width of the bu�er slots. For modelling unboundedqueues, eÆient data strutures are disussed in [Boigelot and Godefroid 1996,Godefroid and Long 1996℄.



Model Cheking 173510. Symboli Model ChekingModel heking methods derive a great deal of their suess from the eÆieny ofthe data strutures that are used. A propositional formula an be regarded as aboolean funtion, mapping an interpretation of the propositions into ftrue; falseg.Sine very powerful tehniques exist for manipulation of suh funtions, it makessense to represent temporal and prediate logi formulas as well as frames in termsof boolean funtions. The general idea is to enode eah domain element by aboolean sequene. Prediates and relations are then represented by their hara-teristi funtions. Temporal operators are interpreted algorithmially aording totheir �xpoint de�nitions.For any shared variables program, we an obtain an equivalent shared variablesprogram whih uses only binary domains of the form D = f0; 1gn. To do so, we usean arbitrary binary enoding of domain Di and introdue for any program variablevi over domain Di new binary program variables vi1; :::; vik, where k = dlog2(jDij)e.This enoding is omparable to the implementation of arbitrary data types ondigital omputers, where eah bit an take only two values.If all program variables V = fv1; :::; vng of a shared variables program are over abinary domain, then any propositional formula ' over P = fv1; :::; vng desribes aset of states of the program, namely the set of all propositional models (interpre-tations) whih validate the formula. Here we assume the substitution 0 for falseand 1 for true. Vie versa, for any set of states there is a propositional formuladesribing this set. However, this formula is not uniquely determined; the problemof �nding a shortest formula desribing a given set of states is o-NP-hard.The transition relation of a shared variables program with binary program vari-ables V = fv1; :::; vng an be represented as an ordinary propositional formula overP = fv1; :::; vn; v01; :::; v0ng. If the transition relation is given as a propositional for-mula with equalities, we replae 0 by ?, and 1 by >, and (v = v0) by (v $ v0)7.For example, the formulav1 = 0! ((v01 = 1) ^ (v02 = v2) ^ (v03 6= v3))in this notation beomes:v1 ! (v01 ^ (v02 $ v2) ^ :(v03 $ v3))For a shared variables program with n program variables over binary domains thesize of the state spae is 2n. Therefore e.g. the state spae of a bu�er of length10 with values between 1 and 1000 is 2100 ' 1030. The reahable state spae isa subset of this state spae, whih an be of the same order of magnitude. Thetransition relation for this bu�er onsists of pairs of states and therefore has a sizeof approximately 1060.To perform global model heking on systems of this or bigger size, we need aneÆient representation of large sets.7Reall that ? and > are propositional formulas, false and true are truth values and 0 and 1are domain elements.



1736 Edmund M. Clarke and Bernd-Holger Shlingloff10.1. Binary Deision DiagramsClearly, a set ould be represented by a table of boolean values. Containment of anelement in suh a set ould then be alulated by seleting the appropriate elementfrom the table. Another possible representation of a set is the expliit enumerationof its elements, e.g., as a list or array. However, these representations an be ratherwasteful, sine they pay no respet to the internal struture of the set. For example,given the domainD = f0; 1; :::; 15g, the expliit enumeration of the set \all numberswhih are even or bigger than 11" isS = f0; 2; 4; 6; 8; 10; 12; 13; 14; 15gThe bitstring representation isS = (1010101010101111):These representations take O(jDj � dlog2(jDj)e) memory bits. Bitstrings provideextremely eÆient (onstant-time) aess. In model heking appliations, however,the spae used by the data is usually more important than the exeution time. So,it is desirable to have a onise data struture for representing large sets whih stillpermits eÆient aess to the elements.Given a binary enoding ~v = v1v2v3v4 of the domain D, the above expliitenumeration isS = f0000; 0010; 0100; 0110; 1000; 1010; 1100; 1101; 1110; 1111gThis desription orresponds to a propositional formula in disjuntive normal form.A muh more suint representation of the same set an be given by the formulaS = f~v j v4 = 0 _ v1 = 1 ^ v2 = 1gUsually it is hard to �nd a minimal propositional formula desribing a given set ofelements. Therefore attention is restrited to formulas in some normal form. A bi-nary deision diagram (BDD, [Bryant 1986, Bryant 1992℄) is suh a anonial formfor a propositional formula. BDDs often are substantially more ompat than tra-ditional normal forms suh as onjuntive or disjuntive normal form, and they anbe manipulated and evaluated very eÆiently. Hene, they have beome widely usedfor a variety of appliations in omputer-aided design appliations. Many presenttools in symboli simulation and veri�ation of ombinational logi and sequentialiruits use a BDD library for manipulating large sets. The size of the BDD dependsmore on the struture of the represented set than on its ardinality. For example,the BDD representation of the empty set and the full set are both of onstant sizeone. Beause of this dependene on the struture of the represented objet, the de-sription of a system with BDDs is sometimes alled a symboli representation, andtehniques using BDDs to represent objets are alled symboli tehniques . Subse-quently, we desribe symboli model heking. For an alternative introdution toBDDs and BDD based algorithms in automated theorem proving, see [Moore 1994℄.



Model Cheking 1737The use of BDDs in heking language ontainment for !-automata is desribed in[Touati, Brayton and Kurshan 1991℄.In model heking, binary deision diagrams are a preferred datatype for therepresentation of propositional formulas. They an be understood as an eÆientimplementation of binary deision trees. Usually, the BDD is muh more suintthan the original deision tree. EÆieny is gained by sharing of subtrees and byelimination of unneessary nodes.Consider a three-plae boolean onnetive Ite (\if-then-else"), suh thatIte(';  1;  2) , (('!  1) ^ (:'!  2)):Equivalently, Ite(';  1;  2)$ (('^ 1)_ (:'^ 2)): Then ('!  )$ Ite(';  ;>),hene all boolean operators an be expressed with Ite, ? and >. A formula  is saidto be in tree form, if  = ?, or  = >, or  = Ite(v;  1;  2), where v 2 P and  1and  2 are in tree form. In other words, a formula  is in tree form, if it uses onlyIte, ?, >, and propositions, and, additionally, for every subformula Ite(';  1;  2) of , the formula ' is an (atomi) proposition, and  1 and  2 are not propositions. Atree form formula an be drawn as binary deision tree, where for eah subformulaIte(v;  1;  2) there is a node labelled v whih has  2 and  1 as left and right hildnodes, respetively.Assume a linear ordering < on the set P of propositions. A tree form formulais said to be in ordered tree form, if for every subformula Ite(v1; '1; '2) of ', andevery subformula Ite(v2;  1;  2) of '1 or '2, it holds that v1 < v2. An ordered treeform formula is alled redued, if it does not ontain any redundant subformulaIte(v;  ;  ) (with equal seond and third argument). The sequene of leaves of theformula tree in a redued ordered tree form formula is alled the logial spetrum ofthe formula. For any given ordering, the redued ordered tree form is a normal form.That is, for every propositional formula there is exatly one equivalent formula inredued ordered tree form. This formula an be obtained by repeated appliationof the so-alled Shannon expansion:'$ Ite(v; 'fv := >g; 'fv := ?g);and boolean redutions like Ite(v;  ;  )$  and (? ! >)$ >.For example, truth table and tree form formula for the above set are given inFigure 28. The reader should also ompare the tree form formula to the tree givenon the following page.The redued ordered tree form formula for the ordering (v1; v2; v3; v4) of propo-sitions is obtained by repeatedly replaing every redundant subformula Ite(v;  ;  )in the above tree form formula by  :S = Ite(v1; Ite(v2;>; Ite(v4;?;>)); Ite(v4;?;>))In a redued ordered tree form formula, there might be several idential subfor-mulas. In order to further redue the length of the formula, we introdue namesfor subformulas. An abbreviated formula is a formula over the extended alpha-bet P0 , P [ fÆ1; :::; Æng, together with a (nonreursive) list of abbreviations



1738 Edmund M. Clarke and Bernd-Holger Shlingloffv1 v2 v3 v4 S1 1 1 1 11 1 1 0 11 1 0 1 11 1 0 0 11 0 1 1 01 0 1 0 11 0 0 1 01 0 0 0 10 1 1 1 00 1 1 0 10 1 0 1 00 1 0 0 10 0 1 1 00 0 1 0 10 0 0 1 00 0 0 0 1

S = Ite(v1;Ite(v2;Ite(v3;Ite(v4;>;>);Ite(v4;>;>));Ite(v3;Ite(v4;?;>);Ite(v4;?;>)));Ite(v2;Ite(v3;Ite(v4;?;>);Ite(v4;?;>));Ite(v3;Ite(v4;?;>);Ite(v4;?;>))))Figure 28: Truth table and tree form formula(Æ1 ,  1; :::; Æn ,  n). In eah abbreviation,  i is an abbreviated formulaIte(v; '; '0) over the alphabet Pi , P [ fÆi+1; :::; Æng. The introdution of namesfor subformulas is omparable to the introdution of pointers in formula trees: anabbreviated formula an be drawn as a dag (direted ayli graph), where eahnode represents a subformula or abbreviation. A formula is maximally abbreviated,if1. no ompound subformula Ite(v; '1; '2) appears twie, and2. no two abbreviations have the same right hand side.For the above example, a maximally abbreviated formula isS = Ite(v1; Ite(v2;>; Æ); Æ), where Æ , Ite(v4;?;>)In an implementation an abbreviation an be a pointer or array index to the orre-sponding subformula. A maximally abbreviated formula is in BDD form, if for allsubformulas Ite(v; ';  ), both ' and  are from f?, >, Æ1; :::; Æng. In the example,this normal form an be obtained by introduing further de�nitions:S = Ite(v1; Æ1; Æ2), where Æ1 , Ite(v2;>; Æ2) and Æ2 , Ite(v4;?;>)Atually, a BDD form formula is given by a list of abbreviations (Æi , Ite(v; 'i;  i))and an entry point to this list. It an be drawn as a binary deision diagram: for



Model Cheking 1739any Æ , Ite(v; Æ1; Æ2), draw a node labelled v with referene Æ, whih has the nodesreferened by Æ2 and Æ1 as left and right hildren, respetively. To illustrate theseideas with pitures, we give the binary deision tree for the above example S:
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v1

2
v

v3

v4This tree is just a transription of the truth table of S's harateristi funtion.It has many isomorphi subtrees. For any two isomorphi subtrees it is suÆient tomaintain only one opy. We an replae the other one by a link to the orrespondingsubtree.
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v4In the resulting struture, there are nodes for whih both alternatives lead to thesame subtree. These nodes represent redundant deisions and an be eliminated.
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v4The resulting graph is the (ordered) binary deision diagram for this set with or-dering (v1; v2; v3; v4). Given a variable ordering, there is a anonial BDD for everyformula. It an be onstruted using the Shannon expansion in a simple reursivedesent: '(vi:::vn)$ Ite(vi; 'fvi := >g(vi+1:::vn); 'fvi := ?g(vi+1:::vn))



1740 Edmund M. Clarke and Bernd-Holger ShlingloffThis gives the unique binary deision tree for the hosen ordering. To obtain theBDD for '(vi:::vn) we reursively alulate the BDD Æ1 for 'fvi := >g(vi+1:::vn)and Æ2 for 'fvi := ?g(vi+1:::vn). Upon baktrak, a new node Æ , Ite(vi; Æ1; Æ2)is added to the BDD. However, we do not reate a new node if both branhes inthe reursion are equal (return a ommon result), or if an equivalent node alreadyexists in the BDD. To hek this latter ondition, we implement the set of BDDnodes Æ , Ite(v; Æ1; Æ2) as a hash table from (v; Æ1; Æ2) to Æ.Eah entry in the hash-table is a quadruple (Æ; v; Æ1; Æ2): pointers to BDD nodesare represented as integer numbers. A BDD is identi�ed by its topmost node, and0 is a pointer to ? and 1 is a pointer to >. That is, the type \Bdd" is de�nedas \Int". Likewise, variable names are represented as integer numbers; for laritywe introdue the type \Bddvar" whih is also de�ned as \Int". Thus, for eahBDD node (Æ; i; Æ1; Æ2) in the hash table, Æ (of type \Bdd") is the number of theBDD node, i (of type \Bddvar") is the number of a BDD variable, and Æ1 and Æ2(of type \Bdd") are links to other BDD nodes. For eah (i; Æ1; Æ2) the hash tablereturns the pointer Æ, if this node exists in the BDD.The resulting algorithm is given in Figure 29. It takes as input a PL formulawith P = fv1; :::; vng and alulates the table of BDD nodes and a pointer to thetopmost node for the variable ordering (v1; :::; vn).funtion PL2BDD (Formula ') : (Nodeset, Bdd) ==� Calulates the BDD of 'as a set of nodes and a pointer to the topmost node �=Nodeset table := fg; =� Table of BDD nodes (Æ; i; Æ1; Æ2) �=Bdd max := 1; =� Index of maximal table entry �=Bdd result := BDD(',1); =� Index of topmost BDD node �=return (table, result);funtion BDD (Formula ', Bddvar i) : Bdd ==� ' is the urrent subformula, i is the urrent BDD variable �==� Return value is a pointer to the maximal BDD node �=if i > n then return eval(') =� ' is a boolean onstant �=else Æ1 := BDD('fvi := ?g, i+ 1); Æ2 := BDD('fvi := >g, i+ 1);if Æ1 = Æ2 then return Æ1elsif 9Æ : (Æ; i; Æ1; Æ2) 2 table then return Æelse max := max+ 1; table := table [ f(max; i; Æ1; Æ2)g; return max ;Figure 29: Transformation of propositional formulas into BDDsIn the BDD representation of sets, several operations an be performed veryeÆiently. Cheking whether a given element w is ontained in a setW � U is donein time O(log jU j) by traversing the BDD ofW aording to the bitstring enoding ~w



Model Cheking 1741of w. Addition and deletion of elements as well as union and intersetion of sets anbe done by reursive desent. We now desribe this proedure for the impliation.Note that the Ite-operator ommutes with other boolean onnetives:(Ite(p; '1; '2)!  ) $ Ite(p; ('1 !  ); ('2 !  ))( ! Ite(q; '1; '2)) $ Ite(q; ( ! '1); ( ! '2))Similar equivalenes hold for ^, _, et. We prove only the �rst one of these equiv-alenes. Reall that Ite(p; '1; '2) is de�ned by Ite(p; '1; '2) $ ((p !  1) ^ (:p ! 2)). (Ite(p; '1; '2)!  ) $ (((p ^ '1) _ (:p ^ '2))!  )$ (((:p _ :'1) ^ (p _ :'2)) _  )$ ((:p _ :'1 _  ) ^ (p _ :'2 _  ))$ ((p ^ ('1 !  )) _ (:p ^ ('2 !  )))$ Ite(p; ('1 !  ); ('2 !  )) 2Given BDDs for ' and  , the BDD for (' !  ) an be onstruted as follows.Sine BDD(') and BDD( ) an be either 0, 1, or Ite(v; Æ1; Æ2), there are nine aseswhih have to be onsidered. If BDD(') is 0 or BDD( ) is 1, the resulting BDD isfuntion BDD imp (Bdd ',  ) : Bdd ==� Calulates the BDD of ('!  ) from the BDDs of ' and  �=if ' = 0 or  = 1 then return 1elsif ' = 1 then return  elsif  = 0 and ('; i; '1; '2) 2 table'then return new node(i; BDD imp('1; 0); BDD imp('2; 0))else ('; i; '1; '2) 2 table' and ( ; j;  1;  2) 2 table if i = j then return new node(i; BDD imp('1;  1); BDD imp('2;  2))elsif i < j then return new node(i; BDD imp('1;  ); BDD imp('2;  ))elsif i > j then return new node(j; BDD imp(';  1); BDD imp(';  2));funtion new node (Bddvar i, Bdd Æ1, Æ2) : Bdd ==� Returns a pointer to a new or existing BDD node �==� i is the number of a BDD variable, Æ1, Æ2 pointers to BDD nodes �=if Æ1 = Æ2 then return Æ1elsif 9Æ : (Æ; i; Æ1; Æ2) 2 table then return Æelse max := max+ 1; table := table [ f(max; i; Æ1; Æ2)g; return max ;Figure 30: Combination of BDDs



1742 Edmund M. Clarke and Bernd-Holger Shlingloff1. If BDD(') is 1, the resulting BDD is BDD( ). If BDD(') is an internal nodeIte(v; Æ1; Æ2), and BDD( ) is the leaf 0, we use the equivalene:(Ite(v; Æ1; Æ2)! ?) $ Ite(v; (Æ1 ! ?); (Æ2 ! ?))Sine :' , (' ! ?), this means that the BDD for :' is onstruted from theBDD for ' by exhanging all leafs 0 and 1. The only remaining ase is that bothBDD(') = Ite(v; '1; '2) and BDD( ) = Ite(v0;  1;  2) are internal nodes. Thereare three subases:1. v = v0: (Ite(v; '1; '2)! Ite(v;  1;  2))$ Ite(v; ('1 !  1); ('2 !  2))2. v < v0 in the order of variables:(Ite(v; '1; '2)! Ite(v0;  1;  2))$ Ite(v; '1 ! Ite(v0;  1;  2); '2 ! Ite(v0;  1;  2))3. v > v0 in the order of variables:(Ite(v; '1; '2)! Ite(v0;  1;  2))$ Ite(v0; Ite(v; '1; '2)!  1; Ite(v; '1; '2)!  2)In all of these subases, the BDD for ('!  ) is onstruted by a reursive all a-ording to the indiated equivalene. Again, upon baktrak a new node is reatedonly if both links are di�erent and no equivalent node exists so far. The algorithmis given in Fig. 30. Some BDD implementations use negated edges to avoid the re-ursive desent for :'. Other implementations hash subformulas, suh that ertainreursive desents an be avoided all together. For more information, see [Brae,Rudell and Bryant 1990℄.The omplexity of the funtion BDD imp is linear in the size of the argumentBDDs. In priniple, all 16 two-argument boolean operations on BDDs an be im-plemented with linear omplexity via this proedure. For example, the BDD forthe intersetion of two sets ' and  an be alulated from the BDDs of ' and using the de�nition (' ^  ) $ :(' ! : ). In pratie, however, most BDDlibraries ahieve a better performane by providing for eah onnetive a speial re-ursive proedure whih takes symmetries and idempotenes in the arguments intorespet. [Bryant 1986℄ gives a uniform sheme to handle all 16 boolean onnetives.In Fig. 31 this generi BDD apply funtion is given; the idea of using a o-fatoringfuntion is from the BDD library by D. Long.For a given boolean funtion, the size of the BDD depends ritially on theordering of the variables. For the example formula above (f. page 10)v1 = 0! ((v01 = 1) ^ (v02 = v2) ^ (v03 6= v3))and the variable ordering (v1; v2; v3; v01; v02; v03), the above algorithm yields the fol-lowing BDD. (We omit all branhes leading to negative leaves.)



Model Cheking 1743funtion BDD apply (Fun Æ, Bdd ',  ) : Bdd ==� Calulates the BDD of (' Æ  ) from BDDs of ' and  �=if ' 2 f0; 1g and  2 f0; 1g then return ' Æ  else m := min var(',  );(f0; f1) := o fator(';m); (g0; g1) := o fator( ;m);Æ1 := BDD apply(Æ, f0, g0); Æ2 := BDD apply(Æ, f1, g1);return new node(m; Æ1; Æ2);funtion min var (Bdd ',  ) : Bddvar ==� Returns the minimal BDD variable in ' and  �=if ' 2 f0; 1g and ( ; j;  1;  2) 2 table then return jelsif ('; i; '1; '2) 2 table and  2 f0; 1g then return ielsif ('; i; '1; '2) 2 table and ( ; j;  1;  2) 2 table then return min(i; j);funtion o fator (Bdd Æ, Bddvar m) : (Bdd, Bdd) ==� Returns two BDD pointers to ombine �=if Æ 2 f0; 1g then return (Æ; Æ)else =� (Æ; i; Æ1; Æ2) 2 table �=if i > m then return (Æ; Æ) else return (Æ1; Æ2);Figure 31: Applying arbitrary funtions to BDDs
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For the variable ordering (v1; v01; v2; v02; v3; v03), however, we obtain the followingmuh smaller BDD:
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This is a ommon phenomenon when working with BDDs. In general, a goodheuristis is to keep \dependent" variables as lose together in the ordering aspossible [Fuji, Ootomo and Hori 1993, Enders, Filkorn and Taubner 1993℄. For amore formal treatment in the ontext of sequential iruits, see [Bermann 1991,MMillan 1993℄. Unfortunately, the problem of �nding an optimal variable order-ing is NP-hard[Bryant 1991℄. Basially, for every possible ordering one has to on-strut the BDD and ompare their sizes, whih is not feasible. Automati reorderingstrategies usually proeed by steepest asend heuristis [Felt, York, Brayton andVinentelli 1993, Rudell 1993, Bern, Meinel and Slobodov�a 1995℄.10.2. Symboli Model Cheking for CTLIn [Burh, Clarke, MMillan, Dill and Hwang 1992℄, the term symboli model hek-ing was introdued for algorithms whih use a BDD representation of the Kripkemodel (f. Page 1735).Assume that the transition relation is given as a BDD over the variables(v1; :::; vn; v01; :::; v0n), and for eah p 2 P a BDD over (v1; :::; vn) is given whihrepresents the set I(p). We will show how the na��ve CTL model heking algo-rithm in Fig. 17 on P. 1714 an be implemented diretly with this representation.Assume that ' is a propositional formula given as a BDD. Substitution 'fv := bgof a proposition v in ' by a onstant value b 2 f?;>g an be done by assigninga pointer to the appropriate leaf (0 or 1) to eah v node. Thus, the funtion thatrestrits some argument of a boolean funtion an be omputed in time whih islinear in the representation of the funtion. By using the substitution algorithm,boolean quanti�ation 9v ' an be redued to restrition by(9v ')$ ('fv := ?g _ 'fv := >g)Of ourse, it would be ineÆient to implement simultaneous quanti�ation 9~w ' ona set ~w , (v1:::vn) of variables by a sequene of suh substitutions and disjuntions.Fig. 32 shows how to alulate 9~w ' in a more diret way.We now desribe how to obtain a BDD representation of 'F for any CTL for-mula ' from the given BDD representation of F . The BDDs for ? and p 2 Pare trivial. The alulation of boolean omposites of BDDs was desribed in theprevious subsetion. The evaluation of EU+ and AU+ involves omputing a �xed



Model Cheking 1745funtion BDD exists (Set of Bddvar w, Bdd ') : Bdd ==� w = fw1:::wng is a set of BDD variables, ' the BDD of a formula �==� Result is a BDD for 9w1:::9wn ' � =if ' 2 f0; 1g then return 'else =� ('; i; '1; '2) 2 table �=Æ1 := BDD exists(w, '1); Æ2 := BDD exists(w, '2);if i 2 w then return BDD apply(or, Æ1, Æ2)else return new node(i; Æ1; Æ2);Figure 32: Boolean quanti�ation on BDDspoint. This is done aording to the iteration given in Figure 17. In the evaluationof E( 2U+ 1), we have to build the set fw j 9w0(w � w0 ^w0 2 ( F1 [  F2 \E))g,where E is an intermediate result of the iteration. This formula is an instaneof the sheme fw j 9w0('(w0) ^  (w;w0))g. Assume we are given a BDD for 'de�ned over the variables ~w , (v1; :::; vn), and a BDD for  in the variables(v1; :::; vn; v01; :::; v0n). The BDD for 9w0('(w0) ^  (w;w0)), whih uses variables(v1; :::; vn), an be obtained as follows. We �rst rename all variables vi in the BDDfor ' by v0i. Then we interset this BDD with the BDD for  to obtain a BDDover (v1; :::; vn; v01; :::; v0n). Finally, all primed variables are \thrown away" by exis-tential quanti�ation on w0 , (v01; :::; v0n). The ase of A( 2U+ 1), where we haveto alulate fw j 8w0(w � w0 ! w0 2 ( F1 [  F2 \ E))g, is similar.In fat, all of the above BDD operations for one iteration step an be performedduring a simple BDD traversal, if vi and v0i are always kept together in the variableorder. This so-alled relational produt algorithm is similar to the BDD apply andBDD exists algorithms in Figs. 31 and 32. Assume that we are given BDD repre-sentations of ' and  , where the variable ordering in the BDD for ' is w1:::wnand in  it is v1:::v2n, where wi = v2i�1 and w0i = v2i. Funtion relprod BDD inFig. 33 alulates the representation of 9 ~w0('f~w := ~w0g ^  ). The result ontainsBDD variables v1v3:::v2n�1; renaming to w1:::wn an be done whenever a new nodeis reated (vi = wi+1=2).In theory, the omplexity of the CTL model heking algorithm based on BDDsis not better than with an expliit representation. In pratie, however, the BDDrepresentation of large sets of points in realisti systems tends to be quite man-ageable. Moreover, the number of iteration steps required to reah a �xed point isoften small (� 103). For hardware systems, that is, in the veri�ation of sequen-tial iruits, most states are reahable in very few steps, but the BDDs tend togrow exponentially in the �rst few steps. For software systems, espeially if there isnot muh parallelism ontained, the BDD often grows only linear with the numberof steps, until the whole state spae is traversed. The following piture shows therelation between the BDD size and number of steps in typial examples.



1746 Edmund M. Clarke and Bernd-Holger Shlinglofffuntion BDD relprod (Bdd ',  ) : Bdd ==� Calulates a BDD for 9w0('(w0) ^  (w;w0)) �==� ' has variables 1::n and  has variables 1:::2n �==� Result ontains BDD variables 1; 3; 5:::; 2n� 1 �=if ' = 0 or  = 0 then return 0elsif  = 1 then return 1else m := min var 2(',  ); =� Substitution fw := w0g in ' �=(f0; f1) := o fator(';m div 2); (g0; g1) := o fator( ;m);Æ1 := BDD relprod(f0, g0); Æ2 := BDD relprod(f1, g1);if even(m) then return BDD apply(or, Æ1, Æ2)else return new node(m; Æ1; Æ2);funtion min var 2 (Bdd ',  ) : Bddvar =� Ass.: ( ; j;  1;  2) 2 table �= ==� Returns an appropriate variable number for BDD relprod �=if ' 2 f0; 1g then return jelse =� ('; i; '1; '2) 2 table' �= return min(2 � i; j);Figure 33: Relational produt on BDDs (9w0('(w0) ^  (w;w0)))
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10.3. Relational �-CalulusThe global algorithm for model heking the propositional �-alulus an be imple-mented with BDDs similar as the CTL algorithm above. The relational produtalgorithm an be used to alulate eah single step in the �xpoint iteration ofmodal formulas. We now show how this tehnique an be extended to a riherlogial language whih is loser to other programming paradigms. We use a rela-tional �-alulus similar to the one presented in [Park 1974℄. In omputer siene,[Chandra and Harel 1980℄ were the �rst to use similar �xed point operators for the



Model Cheking 1747spei�ation of queries in relational databases. In ontrast to these papers, we donot use funtion symbols; they ould be added easily to this framework as speialrelations. Informally, the relational �-alulus an be seen as �rst order prediatelogi with an additional reursion operator. More information on the logial prop-erties of this alulus an be found in [Vardi 1982, Immerman 1986, Gurevih andShelah 1986, Dawar, Lindell and Weinstein 1996℄.A (typed) struture S onsists of a olletion of disjoint sets alled domains ,and a olletion of relations over these domains. (In some textbooks, strutures arealled algebras .) Elements of the domains are alled objets. Models for propositionaltemporal logis an be regarded to be speial strutures with a single domain U ,unary prediates P � U and binary relations R � U � U on this domain.A signature � = (D;R) onsists of a �nite set D of domain names , and a �niteset R of relation symbols . Assoiated with eah relation symbol is its type � , whihis a sequene of domain names. Unary relation symbols are alled prediate symbols.An interpretation I for a signature � on a struture S is a mapping I : � ! Sassigning a nonempty domain I(D) for eah domain name D and a relation ofappropriate arity for eah relation symbol. That is, if �(R) = (D1; :::; Dn), thenI(R) � (I(D1) � � � � � I(Dn)). If the interpretation of a prediate symbol P is asingleton set, we say that P is a onstant.Given a signature �, let V be a set of variables, eah of whih is either anindividual variable or a relation variable. Again, we assume that eah variable hasan appropriate type. In the relational �-alulus, there are two more syntatiategories: well-formed formulas and relation terms of type � . Assuming that thesymbols (, ), ?, !, =, 9, � and � are not in the signature, a well formed formula' is built aording to the following syntax:� ?, ('!  ), where ' and  are well formed formulas,� (x1 = x2), where x1 and x2 are individual variables of the same type,� 9x ', where ' is a well formed formula, and x is an individual variable, or� � x1:::xn, where � is a relation term of type (D1; :::; Dn) (see below), and xi isan individual variable of type Di for all i � n.In �rst order logi, a relation term is just a relation symbol from the signature.In seond order logi, a relation term an either be a relation symbol or a relationvariable q 2 Q. In the relational �-alulus, more omplex relations an be spei-�ed via �-abstration and �-reursion. In this alulus, a relation term � of type(D1; :::; Dn) is� a relation symbol R or relation variable X of type (D1; :::; Dn),� �x1:::xn ', where ' is a well formed formula and eah xi is an individualvariable of type Di, or� �X �, where X is a relation variable of type (D1; :::; Dn), and � a relation termof the same type whih is positive in X .As in the propositional ase, in this de�nition � is de�ned to be positive in X ,if every ourrene of X is under an even number of negation signs. Positivenessensures that the funtional de�ned by � is monotoni in the lattie of values for Xand thus the least �xpoint of the funtional exists.



1748 Edmund M. Clarke and Bernd-Holger ShlingloffA variable valuation v is a mapping assigning an objet v(x) 2 D to everyindividual variable x of type D, and a relation v(X) � D1 � � � � � Dn to everyrelation variable X of type (D1; :::; Dn). A relational model M , (S; I;v) for thesignature � onsists of a struture S, an interpretation I, and a variable valuationv. Similar to �rst order and temporal logis, we say that the model M , (S; I;v)is based on the frame F , (S; I). Any relational model M , (S; I;v) determinesan objet xM for every individual variable x, a relation �M of appropriate type foreah relation term �, and a unique truth value 'M 2 ftrue; falseg for any formula'. This denotation of variables and formulas is de�ned in the usual way:� xM , v(x), if x 2 V is an individual variable,� ?M , false,� ('!  )M = true i� 'M = true implies  M = true,� (x1 = x2)M = true i� xM1 = xM2 ; i.e., i� x1 and x2 denote the same objet inS,� (9x ')M = true i� '(S;I;v0) = true for some valuation v0 whih di�ers fromv at most in x,� (� x1:::xn)M = true i� (xM1 ; :::; xMn ) 2 �M,� RM , I(R), if R is a relation symbol,� XM , v(X), if X is a relation variable,� (�x1:::xn ')M , f(d1; :::; dn) j 'F (d1; :::; dn) = trueg, where 'F(d1; :::; dn) ,'(S;I;v0) and v0 di�ers from v only in the assignment of di to xi for 1 � i � n;i.e., (�x1:::xn('))M is the relation onsisting of all tuples of objets for whih' is true, and� (�X �)M , TfQ j �F(Q) � Qg, where �F(Q) , �(S;I;v0), and v0 di�ers fromv only in v0(X) = Q; i.e., �X(�)M is the least �xpoint of the funtional �F .The relational operators � and � are similar to the operators used in �-alulusand in denotational semantis. In fat, we ould de�ne well formed formulas to beobjet terms of the speial type ffalse; trueg. Relation terms ould then be de�nedas funtion terms with boolean result, and the � abstration builds suh a funtionterm from a boolean objet term.The relational �-alulus extends �rst order logi in a similar way as the proposi-tional � alulus extends modal logi. In fat, the standard translation from modalinto �rst order logi an be trivially extended into a standard translation frompropositional into relational � alulus. In addition, the relational � alulus o�erssome restrited form of non-monadi seond order quanti�ation. It ontains lassi-al �rst-order logi as a sublanguage. Note, however, that in the relational �-alulusthere is no �-abstration on relation variables. This would result in a seond-orderalulus. In ontrast to seond order logi, there is no �-alulus formula express-ing that domain D is �nite [Park 1974℄. On the other hand, the minimizationoperator an be expressed in seond order logi similar as in the propositional ase(f. Page 1660): �X(�)~x$ 8X(8~x(�~x! X~x)! X~x)Sine the indution axiom for arithmeti an be formulated as a least �xpoint for-mula, the natural numbers have a ategorial theory in the relational �-alulus (for



Model Cheking 1749details, see also [Park 1974℄). Therefore, the set of valid formulas is not reursivelyenumerable, and its expressiveness lies properly in between �rst and seond orderlogi.The �-reursion operator an be used to give reursive de�nitions of booleanfuntions, similar to the use of reursion in funtional and logi programming.As an example, the addition-relation on natural numbers an be de�ned from theonstant Z (zero) and the suessor relation S by �X(�xyz(Zx^y = z_9uv(Sux^Svz ^ Xuyv))). All reursive funtions of arithmeti an be de�ned in this way;therefore, on in�nite domains, the relational �-alulus has the expressive powerof Turing mahines. On �nite domains, the model heking problem is polynomialin the size of the struture. Therefore, only those funtions are de�nable whihan be omputed with time omplexity polynomial in the size of the struture([Chandra and Harel 1980℄). For a restrited onverse of this statement, see [Vardi1982, Immerman 1986℄.Given a �nite relational frame F , (S; I) and a relational term � or formula ',model heking an be used to determine the denotation �F or 'F , respetively.In [Burh, Clarke, MMillan, Dill and Hwang 1992℄, a symboli model hekingalgorithm for the relational �-alulus is given (see Figure 34). Assume for simpliitythat eah domain is binary; for non{binary domains the algorithm an be extendedby an appropriate enoding. In the frame, the interpretation I of a relation of type(D1; :::; Dn) is represented by a BDD with variables v1; v2; :::; vn.A term or formula with free individual variables x1; :::; xm is represented as aBDD with additional BDD variables x1; :::; xm. A relation variable is representedby its name; eah BDD node an ontain (the name of) a relation variable as oneof its suessors. In other words, eah BDD node is a tuple (Æ; i; Æ1; Æ2), where Æ isthe name of this node, i is a variable from the set fv1; :::; vn; x1; :::; xmg, and eahÆj is one of the BDD onstants 0 or 1, a name of another BDD node, or the nameof a relation variable. Substitution of a relation variable with a relation in a BDDan be done by a simple BDD traversal.The model heking algorithm is divided into two funtions, BDD form andBDD term, whih reurse over the struture of the formula and term. BDD forminputs a formula ' and (the BDD representation of) the interpretation I in frameF , and returns a BDD whih is satis�ed by a given valuation v i� (S; I;v) j= '.The �rst �ve ases in the funtion derive diretly from the respetive semanti def-initions and should require no explanation. The last ase, appliation of a relationterm �, uses the funtion BDD term(�; I) to �nd a representation of the relationalterm � (under the interpretation I), then substitutes the argument variables x1,..., xn for the plae-holder variables v1, ..., vn, produing a BDD whih is satis�edi� � holds for x1; :::; xn.The funtion BDD term takes as arguments a relational term � and the BDD rep-resentation of the interpretation I. It returns a BDD whih represents the relationterm in the manner desribed above. The �rst and seond ase in the de�nitionof BDD term, a relation symbol or relation variable, simply return the BDD repre-sentation of the relation in the interpretation or the name of the relation variable,respetively. The third ase, �-abstration, produes a BDD with variables v1, ...,



1750 Edmund M. Clarke and Bernd-Holger Shlingloffvn substituted for the variables v1, ..., vn. This is the representation for an n-aryrelation whih holds i� its arguments satisfy the formula ' when assigned to x1,..., xn. The most interesting ase is the last: the �xed point operator �. To �nd the�xed point of a relational term with respet to a free relation variable X we usethe standard tehnique for �nding the least �xed point of a monotoni funtionalin a �nite domain. First we evaluate BDD term(�; I) to get a BDD r for �. Then weompute the �xed point by a series of approximations X0, X1, ..., beginning withthe empty relation (whih is represented by the BDD onstant 0). To ompute theBDD X i+1 from X i we substitute all ourrenes of the variable X in the BDD rwith X i. Sine the domain is �nite and � is positive in X , the series must onvergeto the least �xed point (f. Lemma 5.4 and Setion 8.3). Convergene is detetedwhen X i+1 = X i. In this ase, X i is the BDD for �X �. Note that testing foronvergene is easy, sine with a hash-table implementation of BDD nodes equalityan be determined in onstant time (f. the algorithm in Fig. 29).The �ke model heker [Biere 1997℄ is one of the �rst tools for model hekingthe relational �-alulus. For eah non-binary domain, an appropriate binary en-funtion BDD form (Formula ', Interpretation I) : Bdd ==� Calulates the BDD of formula ' in the interpretation I �=ase ' ofx 2 V : return Ite(x; 1; 0);(x1 = x2): return Ite(x1; Ite(x2; 1; 0); Ite(x2; 0; 1));?: return 0;('1 ! '2): return BDD imp(BDD form('1, I), BDD form('2, I));9x ': return BDD exists(x, BDD form(', I));�x1:::xn: return BDD term(�, I)fv1 := x1g...fvn := xng;funtion BDD term (RelationalTerm �, Interpretation I) : Bdd ==� Calulates the BDD of term � in the interpretation I �=ase � ofR 2 R: return I(R) =� pointer to BDD for R �=;X 2 V : return X =� name of X �=;�x1:::xn ': return BDD form(', I)fx1 := v1g...fxn := vng;�X �: r := BDD term(�; I); return BDD lfp(r; 0);funtion BDD lfp (BDD r, BDD X i) : BDD ==� Fixpoint iteration of BDD r for � with substitution fX := X ig �=X i+1 := rfX := X ig;if X i+1 = X i then return X ielse return BDD lfp(r, X i+1);Figure 34: Symboli evaluation of formulas and terms



Model Cheking 1751oding is generated automatially. The model is given in a C-like input language.It is ompiled automatially into an internal BDD representation. Sine �ke usesseveral sophistiated heuristis for the alloation of BDD variables, its performaneis omparable to more speialized systems like SMV.11. Partial Order TehniquesWith symboli methods we try to takle the omplexity problem whih arises fromthe parallel omposition of modules by using the BDD data struture whih anhandle very large sets. Partial order methods, on the other hand, try to avoid thegeneration of large sets: they only generate a minimal part of the state spae whihis neessary to evaluate the given formula.Several variants have been suggested: stubborn sets ([Valmari 1990℄), sleep sets([Godefroid 1990, Godefroid and Wolper 1991, Godefroid and Pirottin 1993℄), inter-leaving and ample sets [Katz and Peled 1988, Peled 1993℄, and others. Subsequently,we desribe an algorithm for partial order model heking of linear time temporallogi properties whih is based on [Yoneda, Nakade and Tohma 1989, Valmari 1990℄.For an overview of other methods, see [Clarke, Grumberg, Minea and Peled 1999℄.Partial order methods for branhing time logis and symboli methods have beeninvestigated in [Gerth, Kuiper, Peled and Penzek 1995, Alur, Brayton, Henzinger,Quadeer and Rajamani 1997℄. A somewhat di�erent approah to partial order modelheking by unfolding of Petri nets was suggested in [MMillan 1992, Esparza 1994℄.The interleaving de�nition of parallel program semantis determines the statespae of the global system to be the produt of all state spaes of its parallelomponents. This an lead to wasteful algorithms. In general, eah (nondetermin-isti) exeution of a program generates a partial order, where points are orderedby ausality. In interleaving semantis this partial order is represented by the setof all of its interleaving sequenes.For example, the following elementary Petri net represents a system with twoproesses synhronizing via t0 and t3:
t11 t12

t0

t21 t22

t3This system generates the following partial order:



1752 Edmund M. Clarke and Bernd-Holger Shlinglofft0 t11t21 t12t22 t3 t0 t11t21 t12t22 t3 . . .Some of the interleaving sequenes aret0 t11 t12 t21 t22 t3 :::t0 t11 t21 t12 t22 t3 :::t0 t11 t21 t22 t12 t3 :::t0 t21 t11 t22 t12 t3 :::t0 t21 t11 t12 t22 t3 :::However, it may not be neessary to onsider all of these interleavings to determine,e.g., the truth value of the formulaG+F� t3. The main idea of partial order methodsis to try to inspet only some \representative" interleaving sequenes for the formulain question. Thus, we do not alter the semantis to deal with \real" onurreny(where independent transitions an our at the same time), and we do not extendthe logi to be able to express partial order properties. On the ontrary, we willlimit the expressiveness of temporal logi and use the partial order to improve theeÆieny of model heking.11.1. Stuttering InvarianeGiven an elementary Petri net N and a formula ', we want to �nd whether thereexists a run � of N satisfying '. In general, there are in�nitely many runs throughthe system; therefore we partition them into a �nite number of equivalene lasses,suh that the existene of a satisfying run � implies that every element of theequivalene lass [�℄ satis�es '. Thus we only have to hek a �nite number ofequivalene lasses, and a oarser partition yields a better algorithm.To do so, we need a stuttering invariant temporal logi. Consider a formulawith the atomi propositions fp1; :::; pkg � P . Two natural models M and M0 arestrongly equivalent with respet to fp1; :::; pkg, if they are of the same ardinality,and for all i � 0 and all p 2 fp1; :::; pkg we have wi 2 I(p) i� w0i 2 I 0(p). Apoint wi+1 in M is stuttering w.r.t. fp1; :::; pkg, if for all p 2 fp1; :::; pkg we havewi 2 I(p) i� wi+1 2 I(p). For any model M , (U; I; w0), de�ne the stutter-freekernel Mo w.r.t. fp1; :::; pkg to be the model obtained by eliminating all stutteringstates fromM. More formally,Mo ontains all non-stuttering points fromM, andw � w0 in Mo i� w � w0 in M, or there are stuttering points w1, ..., wn suhthat w � w1 � � � � � wn � w0 in M. Two models M1 and M2 are stutteringequivalent w.r.t. fp1; :::; pkg, if their stutter-free kernels are strongly equivalentw.r.t. fp1; :::; pkg.A formula ' is stuttering invariant or preserved under stuttering, if for any twomodels M1 and M2 whih are stuttering equivalent with respet to the set ofatomi propositions of ' it holds thatM1 j= ' i�M2 j= '. A language is stutteringinvariant, if all of its formulas are stuttering invariant.



Model Cheking 1753In general, formulas involving the operator X are not stuttering invariant.For example, the formula X p holds in the model (fw0; w1; w2g; I; w0), whereI(p) = fw0; w1g and w0 � w1 � w2, but not in the stuttering equivalent model(fw0; w2g; I; w0). The next-operator has always been a topi of disussions in tem-poral spei�ation [Lamport 1983℄. Most notions of re�nement of systems do notpreserve properties with next-operators. Reall that X is de�nable with U+, butnot with U� (see Lemma 2.1 and Page 1647). Let LTL�X be the logi built frompropositions p 2 P , boolean onnetives ?, ! and the reexive until operator U�.11.1. Lemma. Any LTL �X formula is stuttering invariant.Proof: Assume that ' is an LTL � X formula, M , (U; I; w0) a model andMo , (Uo; Io; w0) the stuttering-free kernel of ' w.r.t. the propositions in '.Furthermore, for any w 2 U , let wo 2 Uo be the maximal non-stuttering point suhthat wo � w. We show that for any w 2 U(�) (U; I; w) j= ' i� (Uo; Io; wo) j= ':In partiular, sine wo0 = w0, this implies that M j= ' i� Mo j= '. From this,the laim follows immediately: if Mo1 and Mo2 are strongly equivalent w.r.t. theatomi propositions of ', then learly Mo1 j= ' i� Mo2 j= '. If M1 and M2are stuttering equivalent, then the stutter-free kernels Mo1 and Mo2 are stronglyequivalent. Therefore, in this ase M1 j= ' i� Mo1 j= ' i� Mo2 j= ' i� M2 j= '.The proof of (�) is by indution '. For atomi propositions, wi+1 j= p i� wi j= pfor eah point wi+1 whih is stuttering w.r.t. fp; p1; :::; pkg. Therefore w j= p i�wo j= p. For boolean onnetives the statement is obvious. For the U�-operator,we treat only the ase ' = F� = (>U� ); the general ase ' = ( 2U� 1) issimilar. (U; I; w0) j= F� means that there is a w1 � w0 suh that (U; I; w1) j=  .By the indutive hypothesis, this is equivalent to the laim that for some w1 � w0,(Uo; Io; wo1) j=  . This laim in turn holds i� for some v1 2 Uo, v1 � wo0 and(Uo; Io; v1) j=  1. This means that (Uo; Io; wo0) j= F� . Note that this proof is notvalid for the F+-operator, sine it is possible that w1 > w0 but wo1 = w0. 2In [Peled and Wilke 1997℄, a onverse to this lemma is proved:11.2. Theorem. Any LTL formula whih is stuttering invariant is expressible inLTL �X.Stuttering invariane allows to group all stuttering equivalent runs into the sameequivalene lass, thereby reduing the average omplexity of the model heking.Of ourse, the redution will be better if ' uses fewer propositions. Usually, a givenformula mentions only a small subset of the system, allowing the equivalene lassesto be rather large. In partiular, onsider a system with two independent transitionst1 and t2 (a formal riterion of independene is given below). All runs whih di�eronly in the interleaving of t1 and t2 are stuttering equivalent with respet to allatomi propositions not related to t1 or t2. Therefore, eah LTL �X formula notreferring to t1 and t2 has the same truth value for all of these runs.



1754 Edmund M. Clarke and Bernd-Holger Shlingloff11.2. Partial Order Analysis of Elementary NetsFirst, we need an appropriate stuttering-invariant restrited logial language toexpress \interesting" properties of elementary Petri nets. Reall that a state of thenet is just a marking of its plaes. Thus, it is reasonable to use plaes as atomipropositions, where a proposition p is valid in a state i� the plae p is marked inthat marking.Assume that we are given an elementary Petri net and an LTL � X formuladesribing a property of this net. Now, we de�ne when two transitions are inde-pendent of one another. Firstly, independent transitions must neither disable norenable eah other; that is, if t1 is enabled in s and s0 is a suessor of s with respetto the �ring of t1, then t2 is enabled at s i� t2 is enabled at s0, and vie versa for t2�ring. Seondly, if the independent transitions t1 and t2 are both enabled in s, thenthey must be able to ommute; that is, eah exeution obtained by �rst �ring t1and then t2 must be stuttering equivalent (w.r.t. the property under onsideration)to one obtained by �rst �ring t2 and then t1.However, it is not pratial to hek these two properties for all pairs of transitionsin all global states of the system. Therefore, we use a syntati ondition whihensures that some transition is independent from another one.Call a set T of transitions persistent in s, if whatever one does from s whileremaining outside of T does not a�et T . Formally, T is persistent in s i� for allt 2 T and all �ring sequenes t0; t1; :::; tn; t suh that ti 62 T for all 0 � i � n thereexists a stuttering equivalent �ring sequene starting with t.If T is persistent, we do not have to onsider the �ring of transitions outside ofT when onstruting the hildren of the given state in the depth-�rst-searh; therewill be a stuttering equivalent sequene onstruted by the �ring of some t 2 T .However, this de�nition still is not e�etive. There is no eÆient way to omputea minimal persistent set of transitions for a given state. Therefore, we omputean approximation. There is a tradeo� between the amount of time spent in thealulation of minimal persistent sets, and the redution of the state spae obtained.As a general strategy, some simple heuristis an gain a lot, and sophistiatedmethods don't add too muh.We start with a single enabled transition T = ftg and repeat until stabilization toadd all transitions whih an \interfere" with some transition in T . Here \interfere"means that they an enable or disable, or annot ommute with some transition inT .Given any marking m, �rable transition tf and disabled transition t, we haveto �nd a set of �rable transitions suh that the �ring of any transition in this setould lead to the �ring of t before tf . A set NEC(t;m) of transitions is neessaryfor t in m, if NEC(t;m) = ft0 j p 2 t0�g for some p 2 (�t nm). We use a funtionalnotation here, sine NEC(t;m) is determined by the hosen heuristi strategy.Similarly, the set NEC�(t;m) is de�ned to be any set of transitions ontaining twhih is transitively losed under neessity; that is, for any t0 2 NEC�(t;m) suhthat t is disabled in m there exists a set NEC(t0;m) of transitions neessary fort0 suh that NEC(t0;m) � NEC�(t;m). If t is disabled in m, then t annot �re



Model Cheking 1755unless some transitions from NEC�(t;m) �re before.If t is in onit with tf , then the �ring of any transition in NEC�(t;m) ouldeventually enable t; therefore all transitions in NEC�(t;m) have to be �red as alter-natives to the �ring of tf . But, there is still another lass of dependent transitions.We want to obtain stuttering equivalene with respet to the atomi propositionsin '. Therefore, we have to take into aount that ' might �x an order onto the�ring of independent transitions. Usually, ' ontains only a few propositions. Call atransition visible for ', if �t[ t� ontains any plae p appearing in '. If t is visible,the �ring order with other visible transitions is important. A visible transition anbe regarded to be in onit with all other visible transitions. De�ne the onitof t by C(t) = ft0 j �t0 \ �t 6= fgg [ ftg:The extended onit of t is just the onit of t, if t is invisible; otherwise, it is theonit of t plus all other visible transitions. Now a dependent set DEP (tf ;m) oftf is any set of transitions suh for any t in the extended onit of tf there existsa set NEC(t;m) � DEP (tf ;m).Finally, the set of transitions whih are �red should be transitively losed un-der dependeny; thus, let READY (m) be any (smallest) nonempty set of �rabletransitions, suh thatDEP (tf ;m) � READY (m) if tf 2 READY (m):Corretness of this redution method is guaranteed by the following theorem:11.3. Theorem. For any �ring sequene � of the net there exists a �ring sequene�0 generated only by �ring ready transitions suh that � and �0 are equivalent withrespet to all LTL �X safety properties.Consider the depth-�rst model heking algorithm for LTL in Figure 19. Duringthe onstrution of the set of hildren of a state in the depth �rst searh we anneglet all �rable transitions whih are not ready. This an result in a onsiderableaverage ase redution; in fat, for examples with many onurrent and \almost"independent proesses it an logarithmially redue the state spae whih has to betraversed. Though the worst ase omplexity of onstruting a ready set is ubi inthe size of the net, in average examples it is only linear in the number of transitions.The above onstrution an be extended to deal also with liveness and otherlinear temporal logi properties. To do so, we need to assure that whenever a stateis reahed for the seond time, a di�erent ready set is onstruted, to make surethat no eventuality is delayed in�nitely often. For a detailed exposition and anextension to real-time logis, see [Yoneda and Shlinglo� 1997℄.12. Bounded Model ChekingThe model heking algorithms of the previous setions were based on the idea ofalulating the greatest or least �xed point of a ertain ontinuous funtion. Model



1756 Edmund M. Clarke and Bernd-Holger Shlingloffheking an also be done by translating temporal logi into lassial logi and usingwell-established automated dedution methods. In partiular, in Subsetion 2.3on Page 1649 we de�ned a translation FOL from linear temporal logi to �rstorder logi. If the model to be heked is �nite, then eah �rst order existentialquanti�er an be replaed by a �nite disjuntion, and every universal quanti�er anbe replaed by a �nite onjuntion of variables. Moreover, as desribed in setion 10,eah �nite model an be oded as a boolean ombination of atomi formulas p(t)and t � t0. Likewise, for sequene-validity, the ondition that a �nite set ft1; : : : tngof points forms a maximal path in a model an be oded as suh a formula.Consider the onjuntion of the propositional translation of the formula and theboolean enoding of the model. This is a formula whih an be tested for satis�a-bility by standard SAT algorithms. In [Biere, Cimatti, Fujita and Zhu 1999, Biere,Cimatti and Zhu 1999℄, the term bounded model heking is introdued for hek-ing sequene-validity of future LTL formulas with this approah. The exeutionsequenes of a Kripke model are enumerated by inreasing length and ombinedwith the translation of the formula. These are onverted into onjuntive normalform and tested for satis�ability by propositional theorem provers. With appropri-ate heuristis, in some ases this method turned out to give even better results thanBDD based methods.12.1. An ExampleBefore giving the tehnial details, we show an example. Consider the Kripke modelin Fig. 35. There are four points in the model. Eah point w is represented by two
00

01 10

11

Figure 35: A two-bit modelstate variables, w , (v1; v0), denoting the value of the high bit and the low bit,respetively. The initial state is (00). Thus the initial state prediate I(w) is de�nedas (:v1 ^ :v0). The only terminal state is (11), thus the terminal state prediateT (w) is (v1 ^ v0). The transition relation is represented by the formula R(w;w0) ,(:v1^:v0^:v01^v00)_(:v1^v0^v01^:v00)_(v1^:v0^:v01^:v00)_(:v1^:v0^v01^v00)



Model Cheking 1757Suppose we are interested in the fat that any exeution eventually reahes state(11). In LTL, this amounts to heking whether F�(v1^v0) is sequene-valid. Equiv-alently, we an hek whether there is a maximal path in the model in whih state(11) is never reahed. That is, we hek whether G�:(v1 ^ v0) is satis�able in themodel. Aording to the de�nition, this is the ase i� there is a path in the modelstarting in an initial point and ending in a terminal point or in a yle, suh thatevery point on the path satis�es :v1 or :v0. In bounded model heking, we restritour attention to paths of length k, that is, paths with k + 1 states. We start withk = 0, and inrement k until a witness is found. Consider the ase where k equals 2.We name the k+1 states as w0, w1, w2. Sine every state is enoded by two booleanvariables, there are six propositional variables altogether: v01 , v00 , v11 , v10 , v21 , v20 . Wenow formulate a set of onstraints on these variables in propositional logi whihguarantee that the path � = (w0, w1, w2) is indeed a witness for G�(:v1 _ :v0).� First, � must start in an initial point. This is expressed by I(w0) as desribedabove: '1 , (:v01 ^ :v00)� Seond, eah wi+1 must be a suessor of wi aording to the transition relation,i.e., R(w0; w1) ^R(w1; w2) must hold. This expands to'2 ,(:v01 ^ :v00 ^ :v11 ^ v10) _ (:v01 ^ v00 ^ v11 ^ :v10) _(v01 ^ :v00 ^ :v11 ^ :v10) _ (:v01 ^ :v00 ^ v11 ^ v10) ^(:v11 ^ :v10 ^ :v21 ^ v20) _ (:v11 ^ v10 ^ v21 ^ :v20) _(v11 ^ :v10 ^ :v21 ^ :v20) _ (:v11 ^ :v10 ^ v21 ^ v20)� Third, the path must be either terminal or end in a loop. That is, either T (w2)holds, or there must be a transition from w2 to one of w0, w1 or w2. Theformula '3 , T (w2) _ R(w2; w0) _ R(w2; w1) _ R(w2; w2) is expanded similarto '2.� Fourth,G�:(v1^v0) must hold in the �rst point of the sequene, i.e., :(v1^v0)must hold for w0, w1 and w2. Therefore, '4 , V2i=0 :(vi1 ^ vi0).It is easy to see that there is a propositional model for ' , '1^'2^'3^'4 i� thereis a maximal path onsisting of three model states validating the given formula.Satis�ability of ' an be heked by SAT proedures like SATO [Zhang 1997℄ orSt�almark's algorithm [St�almark 1989, St�almark and S�aund 1990, Bor�alv 1997℄.Thus, by inreasing the number of states allowed in the searh, we get an alternativemodel heking proedure.In this example, the formula is indeed satis�able. The satisfying assignment or-responds to a ounterexample that is a path from the initial point (00) over (01)to (10) followed by the loop from (10) to (00). If the transition from (10) to (00) ishanged to point (11), then the original formula beomes unsatis�able.12.2. Translation into Propositional LogiAssume that we are given a Kripke model M, an LTL formula  and a bound k.Subsequently, eah wi is a vetor of dlog jMje boolean variables. We will onstruta propositional formula in w0. . .wk whih is (propositionally) satis�able i� there isa maximal path of length k in M validating  .



1758 Edmund M. Clarke and Bernd-Holger ShlingloffThe initial and terminal state prediates I(w) and T (w) and the transition rela-tion R(w;w0) are given by M. The following propositional formula desribes thatthe points to whih the variables w1. . .wk refer form a maximal path in M:[[M℄℄k , I(w0) ^ k_i=1R(wi�1; wi) ^ �T (wk) _ k_l=0R(wk; wl)�Now we de�ne the translation [[ ℄℄ik of a temporal formula  evaluated at pointwi in the sequene (w0 : : : wk). In general, the onstraint imposed by the temporalspei�ation depends on whether the path under onsideration is terminating ornot. Consider the formula ('U+ ) in a terminating path (w0 : : : wk). This formulaholds in point wi i� there is a i < j � k suh that suh that  holds at wj , and' holds at all wm suh that i < m < j. This an be translated by a disjuntionover all possible positions wj at whih  eventually might hold, and a onjuntionfor eah of these positions ensuring that ' holds for all points between wi and wj .That is, in this ase [[('U+ )℄℄ik , Wkj=i+1([[ ℄℄jk ^Vj�1m=i+1[['℄℄mk )Now onsider the ase that the path (w0 : : : wl : : : wk) ends with a loop from wkto wl. The formula ('U+ ) is satis�ed in wi i� one of the following holds:� as for terminating sequenes, there exists some i < j � k suh that  holds atwj , and ' holds at all wm suh that i < m < j, or� there exists some l � j � i suh that  holds at wj , and ' holds at all wm suhthat i < m � k, and ' holds at all wm suh that l � m < j.Figure 36 visualizes these two possibilities.
ww0 l wi wj wk

ww0 l wi wkwjFigure 36: Two possibilities for \until" in a loopThe de�nition of [[ ℄℄ik is by reursion on the struture of  , where the urrentpoint i hanges but the length of the path k stays the same. For this translation,let i � k be natural numbers, and let (Wij=l  ) , ? for l > i.� [[p℄℄ik , p(wi)� [[?℄℄ik , ?� [[('!  )℄℄ik , ([['℄℄ik ! [[ ℄℄ik)



Model Cheking 1759� [[('U+ )℄℄ik , Wkj=i+1([[ ℄℄jk ^Vj�1m=i+1[['℄℄mk ) _Wkl=0 �Vkm=i+1[['℄℄mk ^ R(wk; wl) ^Wij=l �[[ ℄℄jk ^Vj�1m=l[['℄℄mk ��For the last of these lauses, f. Figure 36. Corretness of our translation an bestated as follows.12.1. Theorem. There exists a maximal path of length k generated by M whihinitially validates  i� ([[M℄℄k ^ [[ ℄℄0k) is propositionally satis�able. In other words, is sequene-valid in M i� ([[M℄℄k ! [[ ℄℄0k) is propositionally valid for all k � 0.An upper bound for the length k of the path to be onsidered is jMj � 2j j (forthe omplexity of LTL model heking, see Set. 8.2). In priniple, bounded modelheking ould be extended to other spei�ation logis suh as �TL. In pratie,however, the number of boolean propositions whih are introdued tends to be toobig for urrently available SAT provers.13. AbstrationsEven though BDD representations, partial order methods and SAT proedures allowto apply model heking to rather large systems, one of the main topis still is thesize of the models. To verify an implementation of several thousands of lines of odeby model heking, it is neessary to �nd a suitable abstration.13.1. Abstration funtionsNumerous authors have onsidered the problem of reduing the omplexity of veri�-ation by using abstrations, equivalenes, preorders, et. For example, in [Graf andSte�en 1990℄ a method is desribed for generating a redued version of the globalstate spae, given a desription of how the system is strutured and spei�ationsof how the omponents interat. In [Wolper 1986℄ it is demonstrated how to domodel heking for programs whih are data independent. The method desribedin [Kurshan 1989℄, whih is based on !-language ontainment, was implemented inthe COSPAN system [Har'El and Kurshan 1990, Kurshan 1994℄. In this system, theuser may give abstrat models of the system and spei�ation in order to reduethe omplexity of the test for ontainment. To ensure soundness, the user spei�eshomomorphisms between atual and abstrat proesses. These homomorphisms areheked automatially. We desribe a general framework elaborated in [Long 1993℄.Traditionally, �nite-state veri�ation methods fous on the ontrol ow of thesystem. Symboli methods have made it possible to handle even some systems thatinvolve nontrivial data manipulation, but the omplexity of veri�ation is oftenhigh. However, spei�ations of systems that inlude data paths usually involvefairly simple relationships among the data values in the system. For example, theorretness of a ommuniations protool might be independent of the partiular



1760 Edmund M. Clarke and Bernd-Holger Shlingloffdata transmitted, provided that no two subsequent messages are idential. As an-other example, in verifying the addition operation of a miroproessor, we mightrequire that the value in one register is eventually equal to the sum of the values intwo other registers. The omplexity of the veri�ation an be redued in suh asesby suitable abstrations. An abstration is spei�ed by giving a mapping betweenthe atual data values in the system and a small set of abstrat data values. By ex-tending the mapping to states and transitions, we an produe an abstrat versionof the system under onsideration. The abstrat system is often muh smaller thanthe atual system, and, as a result, it is usually muh simpler to verify propertiesat the abstrat level.R R R Rt0
e0?even(x)
6x :=x div2 t1

e1?odd(x)
6x :=3x+ 1(a) Conrete system

t0; t1; ae t0; t1; ao
e0; t1; ae t0; e1; ao?6 ?�I

(b) AbstrationFigure 37: The dining mathematiiansFor example, onsider the program from Figure 37. This example alled the\dining mathematiians" is from [Dams et al. 1994℄ and is reonsidered in [Merz1997℄. It onsists of two proesses ommuniating via a shared variable x whihranges over the domain Dx of all integers. Initially x is any positive integer. Bothproesses have a \thinking" and an \eating" state and start in the former. That is,the state spae is ft0; e0g�ft1; e1g�Dx, and the initial states are f(t0; t1; d) j d > 0g.Note that both of these sets are in�nite. The system ensures mutual exlusion tothe eating phase and starvation-freeness for both proesses.Assume that we are interested in proving mutual exlusion: AG�:(e0 ^ e1). Wereate a domain Ax of abstrat values for x, with Ax , faz; ae; aog, and de�ne theabstration mapping hx from Dx to Ax as follows.�x(d) ,8><>: az; if d = 0;ae; if d is even, andao; if d is odd:Now we an use just three atomi propositions to express the abstrat value of x:\x b= a0", \x b= ae", and \x b= ao". We an no longer express properties about theexat value of x using these atomi propositions. In many ases though, by judiioushoie of the abstration mapping, knowing just the abstrat value is suÆient.



Model Cheking 1761Two points w0 = (w00; w01; d0) and w1 = (w10; w11; d1) in the original Kripkemodel are equivalent w.r.t. the abstration mapping �, if w00 = w10, w01 = w11 and�x(d1) = �x(d2). That is, two points are equivalent if they have the same label, andthe abstrated variable values in both points are equal. The �-abstration is thequotient of the original model under this equivalene. Sine the abstrat domainAx is �nite, the �-abstration is a �nite Kripke model. Figure 37(b) shows thereahable part of the �-abstration of 37(a). It is easy to see (and an be on�rmedby model heking) that the abstrated system validates AG�:(e0 ^ e1). As wewill see below, this implies that the original systems also guarantees this property.Formally, abstrations are formed by giving surjetions �1, . . . , �n whih mapeah Di onto a set D�i of abstrat values. The surjetion � = (�1; : : : ; �n) thenmaps eah program state to a orresponding abstrat state. As explained above,this mapping may be applied in a natural way to the initial states and the tran-sitions of the program. The resulting transition system is the �-abstration of theoriginal program. Applying abstrations to several or all of the program variables,the spei�ation has a muh smaller number of atomi propositions and points. Forthe abstrated system, various state spae redutions disussed in previous setionsan be applied.One way of obtaining a representation of the �-abstration of a onurrent pro-gram is to build a representation of the original state spae and to onstrut the�-abstration from it. However, if the original state spae is in�nite as in the aboveexample, or it is too large to �t into memory, this may not be feasible. In the�nite state ase, it might be possible to represent the system using BDD-basedmethods, but the omputational omplexity of building the �-quotient from thisrepresentation an still be very high.To irumvent these problems, another way of produing abstrat models in aBDD-based veri�ation tool is to start with a high level desription of the systemand the abstration funtion. The system ould be given, e.g., as a program ina hardware desription language. From this, a BDD for the abstrated system isgenerated diretly. In order to perform the ompilation proess e�etively, an ap-proximation to the �-abstration is generated[Clarke, Grumberg and Long 1994a℄.This approximation might be somewhat larger than the �-abstration, but it anbe built very eÆiently. The tehniques used in this onstrution are similar tothose involved in abstrat interpretation [Cousot and Cousot 1977, Cousot andCousot 1979, Dams 1995℄. This way, it is even possible to use abstrations to verifysystems in whih the data path is not ompletely spei�ed. By modeling the datapath as a olletion of units that perform unspei�ed funtions, the veri�ation ofthe data path and the veri�ation of the ontrol an be largely deoupled.To be able to interpret spei�ation formulas with respet to both the originaltransition system and its abstration, atomi formulas must be those speifying thata program variable has a partiular abstrat value. In Theorem 4.11 we showed thatifM1 is simulated byM2, then any formula in the logi ACTL valid inM2 is alsovalid inM1. An abstration is a speial simulation; thus if anACTL formula is truein the abstrat system, we an onlude that it is also true in the original system. Inaddition, if the equivalene relations indued by the �i are ongruenes with respet



1762 Edmund M. Clarke and Bernd-Holger Shlingloffto the operations used in the program, then the formula is true in the abstratsystem i� it is true of the original system. [Loiseaux, Graf, Sifakis, Bouajjani andBensalem 1995℄ disusses abstration tehniques whih preserve properties spei�edin �TL.It should be emphasized that the hoie of suitable abstrations �i is an inter-ative step in the veri�ation. Usually, there are several possibilities to abstrat agiven system, all preserving di�erent properties. In our above example, the ho-sen abstration does not allow to prove starvation-freeness of the seond proess.However, this situation is not typial for industrial appliations. In [Clarke, Grum-berg and Long 1994a℄, the following abstrations are used to verify a pipelinedarithmeti/logial unit with over 4000 state bits and 101300 reahable states.� ongruene modulo an integer, for dealing with arithmeti operations;� single bit abstrations, for dealing with bitwise logial operations;� produt abstrations, for omputing abstrations suh as the above; and� symboli abstrations. This is a powerful type of abstration that allows toverify an entire lass of formulas simultaneously.Another approah at implementing abstration funtions is diretly at the level ofthe BDD data struture. Given an abstration funtion, we an redue the size of aBDD by merging nodes that have the same abstrat value. Abstrat BDDs (ABDDs)are a generalization of Residue BDDs (RBDDs, see [Kimura 1995℄). To obtainan ABDD it is not neessary to build the full BDD: ABDDs an be onstruteddiretly from the abstration funtion and the desription of the system. For moreinformation, see [Clarke, Jha, Lu and Minea 1997℄.13.2. Symmetry RedutionsMost large hardware iruits are highly symmetri. For instane, one an �nd sym-metry in memories, ahes, register �les, bus and network protools | any typeof hardware ontaining repliated strutures. For symmetri systems, we an applyspeial abstrations to avoid searhing the entire state spae of the iruit and to re-due the size of the BDDs representing the transition relation[Starke 1991, Emersonand Sistla 1993, Clarke, Filkorn and Jha 1993, Ip and Dill 1993℄.Suppose that we want to represent the boolean funtion (formula) '(v1; :::; vn)of n variables by a BDD. Symmetry in a boolean funtion is modeled in terms ofa permutation group ating on the set of variables of the funtion. We say that 'is invariant under a permutation � on v1, ..., vn, if the value of the funtion doesnot hange when the permutation � is applied to its arguments:'(v1; :::; vn) = '(�(v1); :::; �(vn))The funtion is said to be invariant under a group G of permutations, if it is in-variant under eah permutation � in G. For example, let '(v1; v2; v3; v4) be thefuntion whih tests whether two 2-bit numbers (v1; v3) and (v2; v4) are equal. Thefuntion ' is learly invariant under the transpositions (1 2) and (3 4). The �rst per-mutation orresponds to exhanging input bits v1 and v2. The seond orresponds



Model Cheking 1763to exhanging v3 and v4. The funtion will, of ourse, also be invariant under thegroup generated by the two transpositions.Let Bn be the set of boolean vetors of length n, and let G be a permutationgroup on 1; :::; n. Assume that G ats on Bn in the natural way. For example,applying the transposition (2 3) to (0; 1; 0; 1) yields (0; 0; 1; 1). We say that twovetors v1 and v2 are equivalent with respet to G if there is a permutation � in Gsuh that v1 = v2. Sine G is a group, this relation is an equivalene relation onBn and therefore partitions Bn into a number of equivalene lasses. The numberof equivalene lasses may be muh smaller than the number of boolean vetors inBn.A boolean funtion '(v1; :::; vn) is uniquely determined by the set of vetors in Bnthat ause it to have the value >. If ' is invariant under some group of permutationsG, it may be possible to ompat the BDD representation for ': if any one of theboolean vetors in some equivalene lass determined by G makes ' true, then all ofthe vetors in this equivalene lass will. Consequently, in the BDD representationfor ' it is neessary to keep at most one representative from eah equivalene lass.In many ases this signi�antly redues the size of the BDD for '.Essentially the same idea an be used to redue the size of the state spae thatmust be searhed by the symboli model heking algorithm. Let U be the set ofpossible states of the system, whih are determined by the values of v1, ..., vn. Apermutation of these state variables indues a permutation on the state-spae ofthe system. Let � be the transition relation of the system and � be an equivalenerelation. We say that � respets � if whenever w1 � w01 and w2 � w02, thenw1 � w2 i� w01 � w02. When the transition relation R respets the equivalenerelation � determined by a permutation group, it is possible to redue the statespae to the set of equivalene lasses U� determined by �. The orrespondingtransition relation between these equivalene lasses is ��. Sine we only need onepoint for eah equivalene lass, the model (U�;��) is often muh smaller thanthe original model (U;�).Similar as with abstration funtions, the redued BDD an be onstruted di-retly from a desription of the system and the permutation group. For more in-formation, the reader is referred to [Kannan and Lipton 1986, Clarke, Filkorn andJha 1993℄. It is not lear, though, how the redutions obtained by symmetries in-terats with other abstration tehniques and partial order methods.13.3. Parameterized SystemsA speial ase of a symmetry is that the system onsists of an arbitrary number ofsimilar or idential proesses. Systems of this type are ommonplae { they our inbus protools and network protools, I/O hannels, and many other strutures thatare designed to be extensible by adding similar omponents. A number of methodshave been proposed for extending model heking to suh designs [Clarke, Grumbergand Browne 1986, Wolper and Lovinfosse 1989, German and Sistla 1992, Clarke,Grumberg and Jha 1995℄.



1764 Edmund M. Clarke and Bernd-Holger ShlingloffAfter using a model heker to determine the orretness of a system on�guredwith a �xed number of proessors or other omponents, it is natural to ask whetherthis number is enough in some sense to represent a system with any number ofomponents. This question was approahed in [Browne, Clarke and Grumberg 1989℄,who extended CTL to a logi alled indexed CTL. This logi allows the restriteduse of proess quanti�ers as in the formula Vi 'i, whih means that the formula 'holds for all proesses i. Restriting the use of these quanti�ers and eliminating thenext-time operator makes it impossible to write a formula whih an distinguishthe number of proesses in a system. By establishing an appropriate relationshipbetween a system with n proesses and a system with n + 1 proesses, one anguarantee that all systems satisfy the same set of formulas in the indexed logi.This method was used to establish the orretness of a mutual exlusion algorithmby exhibiting a bisimulation relation between an n-proess system and a 2-proesssystem, and applying model heking to the 2-proess system.One disadvantage of the indexing method is that the bisimulation relation mustbe proved \by hand" in an ad ho manner. Finite state methods annot be used tohek it beause it is a map between states of a �nite state proess and a proess withan arbitrary number of states. A method without this disadvantage was proposedin [Kurshan and MMillan 1989℄, and independently in [Wolper and Lovinfosse1989℄. This method uses a proess Q to at as an invariant, as the number ofproesses inreases. If P represents one proess in the system, then by showingthat the possible exeutions of P omposed with Q are ontained in the possibleexeutions of Q, we an onlude by indution that Q adequately represents asystem of any �nite number of proesses. Sine both P omposed with Q and Q are�nite state proesses, the ontainment relation an be heked automatially. Thismethod has been applied in [MMillan and Shwalbe 1992℄ to the Enore Gigamaxahe onsisteny protool. By slightly generalizing the model of one proessor, aninvariant proess for this system ould be obtained whih stands for any number ofproessors on a bus.These indution tehniques have been generalized by a number of authors(e.g., [Marelly and Grumberg 1991℄). However, the main problem in all of theseveri�ation methods is that of onstruting the invariant proess. Currently, theinvariant proess must be generated interatively. Counterexamples produed bymodel heking tools are helpful for guiding the onstrution, but it would be use-ful to have automated tehniques for this purpose. To make these methods generallyaepted, more results on the ombination of model heking and indutive theoremproving and powerful heuristis are neessary.14. Compositionality and Modular Veri�ationAs explained in Setion 9, most iruits and protools are modeled as networks ofommuniating parallel proesses. The omplexity of these models grows exponen-tially in the number of proesses; thus, monolithi veri�ation of suh designs anbe hard. Therefore, it may be neessary to verify small omponents separately and,



Model Cheking 1765from that, derive the orretness of the whole design, without building a model forthe entire system. This so-alled ompositionality paradigm has been investigatedby a number of authors [deRoever, Langmaak and Pnueli 1998℄.14.1. Model Cheking and Theorem ProvingAssume a proess onsisting of a parallel omposition of several subproesses, whereall subproesses have assoiated formulas speifying their properties. Whenever aproperty of a parallel omposition is to be proven, we an �rst prove for eah om-ponent that the orresponding property holds, and then infer in an adequate proofsystem that the global property of the omposition also holds. Model heking anbe used to verify the individual omponents; then theorem proving tehniques anbe used to derive global properties of their parallel omposition. The ompositionstep substantially simpli�es the veri�ation problem, sine it avoids building theglobal state spae. Thus, the ompositionality paradigm is a promising perspetivefor the ombination of model heking with theorem proving.Moreover, this approah supports the hierarhial design proess. One an workout spei�ations for all parts of a omplex system and prove that if every ompo-nent satis�es its spei�ation, then the whole system is orret. When the system isimplemented it is suÆient to verify eah omponent separately. It is also possibleto hange the atual implementation of some omponent without having to repeatthe veri�ation of the entire system as soon as the new implementation meets itsloal requirements.For instane, onsider the problem of verifying a ommuniations protool thatis modelled by three proesses: a transmitter, some type of network, and a reeiver.Suppose that the spei�ation for the system is that data is eventually transmittedorretly from the sender to the reeiver. Suh a spei�ation might be deomposedinto three loal properties. First, the data should eventually be transferred orretlyfrom the transmitter to the network. Seond, the data should eventually be trans-ferred orretly from one end of the network to the other. Finally, the data shouldeventually be transferred orretly from the network to the reeiver. We might beable to verify the �rst of these loal properties using only the transmitter and thenetwork, the seond using only the network, and the third using only the networkand the reeiver. By deomposing the veri�ation in this way, we never have toompose all of the proesses and therefore avoid the state explosion phenomenon.Whereas model heking for the veri�ation of the individual omponents is awell-understood tehnique, for the derivation of global system properties from loalomponents properties an appropriate alulus is needed. There are two possibilitiesfor implementing a proof system for suh a alulus. The �rst is to inorporate thealulus into a general purpose theorem prover. For example, there are embeddingsof Lamport's temporal logi of ations (TLA) into the theorem provers LARCH,PVS and Isabelle (see, e.g., [Abadi, Lamport and Merz 1996℄). However, the om-putational omplexity inherent in suh an approah may prevent the resulting toolfrom being appliable for large industrial designs.



1766 Edmund M. Clarke and Bernd-Holger ShlingloffThe seond possibility is to build a speial purpose theorem prover for the hosenalulus. Several suggestions for a onrete framework following this approah havebeen made. The proof system of [Stirling 1987℄ is, probably, the most ompositionalin the sense that it learly redues the veri�ation problem to the veri�ation ofomponents. However, the logi whih is used in this paper is too weak to be ofmuh interest in pratie. In [Andersen, Stirling and Winskel 1994℄ the parallelomposition operator was eliminated basially by enoding one of the subproessesinto the formula. In the worst ase this results in an exponential blow-up in the sizeof the formula, and the total omplexity remains the same as for non-ompositionalmodel heking. The proof system of [Dam 1995℄ is omplete for �nite-state pro-esses. However, it uses a silent � ation for all synhronizations, and in the � -rulethere have to be as many premises as there are ations in the model. Therefore,one an only have a �xed set of ations.The STeP system [Bj�rner, Browne, Chang, Col�on, Kapur, Manna, Simpa andUribe 1995, Bj�rner, Browne, Chang, Col�on, Kapur, Manna, Sipma and Uribe 1996℄implements another approah to ombining model heking and theorem provingunder a single framework. However, the user must deide what has to be modelheked and what to be derived in a theorem prover. It would be desirable to reatethe veri�ation agenda automatially, suh that the user will only have to supplysome intermediate properties and possibly assist the theorem prover during a proofsearh.14.2. Compositional Assume-Guarantee ReasoningIdeally, ompositional reasoning exploits the natural deomposition of a omplexsystem into simpler omponents, handling one omponent at a time. In pratie,however, when a omponent is veri�ed it may be neessary to assume that theenvironment behaves in a ertain manner. If the other omponents in the systemguarantee this behavior, then we an onlude that the veri�ed properties are validin the entire system. These properties an be used to dedue additional globalproperties of the system.The assume-guarantee paradigm (f. e.g., [Pnueli 1984℄) uses this method. Typi-ally, a formula is a triple h iMh'i where  and ' are temporal formulas and Mis a program. The formula is valid if whenever M is part of a system satisfying  ,the system must also satisfy '. A typial proof shows that h iMh'i and h>iM0h ihold and onludes that h>iM k M0h'i is valid. This proof strategy an also beexpressed as an inferene rule: h iMh'ih>iM0h ih>iM kM0h'iThe soundness of an assume-guarantee rule of this form is straightforward. Amore powerful form that also involves pure temporal reasoning is:



Model Cheking 1767h 1iM1h'1ih 2iM2h'2i�1 ^ '1 !  2�1 ^ '2 !  1'1 ^ '2 ! �2h�1iM1 k M2h�2iIn the omposed system M1 k M2, the module M2 is part of the environmentofM1 and vie versa.M2 guarantees via '2 that the assumption  1 ofM1 is met,provided that its own assumption  2 holds.M1, in turn, guarantees the assumptionof M2, provided that its assumption holds.As shown in [Pnueli 1984℄, areless appliation of this rule may lead to a irularreasoning and, thus, may result in an erroneous onlusion. To avoid this, Pnuelisuggested assoiating a parameter over some well{founded set with eah temporalformula in the assume-guarantee rule. The rule then allows for a temporal for-mula to be dedued only from formulas with smaller parameters. For an abstrataount of omposition, see [Merz 1997℄. Several tools have been developed thatpermit this type of reasoning to be automated [Josko 1993, Long 1993, Grumbergand Long 1994℄. The tools provide a mahinery for heking automatially the va-lidity of formulas of the form h iMh'i. These tools, however, su�er from two mainde�ienies.Firstly, they do not provide any mehanism to avoid or to loate irular reason-ing. Thus, they ount on the user \ommon sense" for orret appliation of themethod. An open problem is to develop an algorithm for heking non-irularityin assume-guarantee reasoning. This ould bridge the gap between the abstratassume-guarantee paradigm and its omputerized version.Seondly, in order to obtain a powerful method, the preorder and the semantisof the logis should both inlude a notion of fairness. This is essential for modellingsystems (hardware or ommuniation protools) at the appropriate level of abstra-tion. Unfortunately, no eÆient tehnique exists to hek or ompute fair preorderbetween models. In [Grumberg and Long 1994℄, it is suggested how to hek thefair preorder in some simple ases. In the general ase, the problem is PSPACE-hard [Kupferman and Vardi 1996℄. A notion of fair preorder that, on the one hand,is suitable for omputerized assume-guarantee reasoning, and on the other hand,an be heked eÆiently, would make ompositional reasoning less error prone andould widen the appliability of this type of reasoning.15. Further TopisThere are several extensions to eah of the topis presented here, and in many areasthere is a lot of ongoing ativity. Current researh an be lassi�ed into two maintraks:� improve eÆieny and appliability of present model heking tehniques, and



1768 Edmund M. Clarke and Bernd-Holger Shlingloff� extend the realm of appliation and merge model heking with other formalmethods.A number of papers on industrial ase studies, advaned heuristis, and improvedalgorithms and data strutures follows the �rst trak. The seond trak enompassespapers on model heking for in�nite state systems, integration with simulation andtesting, as well as model heking for real-time, probabilisti and seurity relatedappliations.15.1. Combination of HeuristisPartial order tehniques attempt to alleviate the state explosion problem by on-struting a redued state spae to be searhed by the model heking algorithm.Originally introdued in the ontext of untimed models, they have been expandedto handle real time systems [Yoneda and Shlinglo� 1997, Sloan and Buy 1997℄. Inturn, symboli tehniques have been applied to model heking for real-time sys-tems. It seems to be a hallenging task to ombine the advantages of partial orderredution with a symboli representation for real-time system veri�ation. One ofthe intrinsi diÆulties is that the partial order redution, as desribed in setion 11,needs to have aess to the searh history, whih is trivially implemented for expliitstate searh but has no immediate orrespondene in the symboli ase. Reent ad-vanes [Alur et al. 1997, Kurshan, Levin, Minea, Peled and Yenigun 1997℄ haveshown that this tehnique an be ombined with symboli model heking, whihin many ases allows muh larger state spaes to be handled. One of these meth-ods [Kurshan et al. 1997℄ allows partial order redution to be performed statially,by analyzing the state graph of eah asynhronous system omponent. Existingpartial order methods for real-time models are dynami in the sense that they usetiming information obtained during the state spae searh. However, probably asigni�ant part of the dependeny information an be obtained statially as well,making the ombination with symboli tehniques possible [Minea 1999℄.Partial order methods mostly have been investigated within the ontext of(stutter-invariant) linear temporal logi model heking. The method redues theomplex part of the model heking problem, namely the size of the model. Thetableau for an LTL spei�ation is usually small. However, the state explosion prob-lem is even more prevalent in the ase of onformane heking and (bi-)simulationbetween automata. A problem here is how to apply partial order redution simul-taneously to both models.A key fator that a�ets the eÆieny of partial order redution is the numberof visible transitions, i.e., transitions that may hange a prediate in the hekedproperty. With more and more omplex spei�ations, the number of visible tran-sitions inreases and less redution an be ahieved. Some approahes to alleviatethis problem have been proposed in [Peled 1993℄. One possibility is to take advan-tage of the struture of the spei�ation and rewrite it as a ombination of simplerproperties. However, no optimal solution is known to date.Other issues that are important in onjuntion with the ombination of heuris-



Model Cheking 1769tis are abstration and ompositionality. It is still unknown how the eÆienyimprovement gained by symboli representation and partial order analysis interatwith abstration tehniques and ompositional reasoning. To be able to verify evenbigger systems, it is important to develop methods and tools that allow to ombinethe bene�ts of several methods.15.2. Real Time SystemsWithin the last few years, several attempts have been made to apply formal analysismethods also to real time systems . The ideas and tehniques presented so far arewell-suited for the veri�ation of systems in whih only ausal aspets of time areimportant. In some appliations it is desirable to onsider quantitative aspets oftiming behavior. We say that a system has to satisfy hard real time onstraints, if itsorretness depends on the value or progress of \the real" lok. In hard real-timesystems, not only the relative order of events is important, but also their absoluteduration with respet to a (oneptual) global lok. For example, in a traÆ lightontroller, it might not be suÆient to show that if a pedestrian pushes a button,then eventually the green lights will be on. To allow approahing ars to pass, thelight should stay red after the button has been pushed for at least 10 seonds. Toavoid that pedestrians start rossing at red, it should also hange not later than30 seonds after the request. In this example, we assume that both the pedestrianand the traÆ light ontroller have the same measure of the duration of a seond.Of ourse, it is possible to model the global lok as separate onurrent part ofthe system. Then this global lok synhronizes the loal loks of both pedestrianand traÆ light ontroller. Thus, it is possible to onsider real-time veri�ation asspeial ase of the untimed methods desribed above. However, in hard real-timesystems, global time is ubiquitous, therefore this approah may not be the mosteÆient.It is important to note that \hard real time" does not mean \as fast as possible".As the above example shows, preditability of timing behavior an also mean thatsome events do not our before a ertain amount of time has elapsed. As anotherexample, onsider a real-time protool, where all neessary omputation steps mustbe performed in exatly a �xed time slot. Currently, hard real time systems aredesigned with trial and error: if a omponent is too fast, an idle waiting loop isinorporated; if it is too slow, more expensive hardware is used. This proedure hasseveral disadvantages. Firstly, it an add intriate hardware-software dependeniesto a system. Therefore the migration to new hardware generations is ompliated.Seondly, the exeution time of single statements an vary depending on inputdata, nondeterministi sheduling, ahe behavior, et. Timing measurement annot guarantee that the atual timing will be within required boundaries. Finally, inappliations like the design of asynhronous iruits, an arbitrary delay of signalsan be expensive.In real time veri�ation, lok values usually are assumed to be nonnegative real,rational or natural numbers. As opposed to untimed systems, there is no gener-



1770 Edmund M. Clarke and Bernd-Holger Shlingloffally aepted representation of sets or regions of timing values. Common tools usedi�erene bound matries [Dill 1989℄ and lok regions [Alur, Couroubetis andDill 1990, Alur 1991℄ to represent timing onstraints. Real time systems often aremodelled with timed automata [Alur 1998, Alur and Dill 1990℄ or timed transitionsystems [Henzinger, Manna and Pnueli 1992℄. For an overview on real time log-is and models, see [Alur and Henzinger 1992℄. Reahability and model hekingalgorithms for these models are given in [Alur et al. 1990℄. Generally, the omplex-ity of verifying real-time systems is muh higher than that for untimed systems.Moreover, timing onstruts are often represented using an expliit state represen-tation. Consequently, the number of states that an be handled is relatively small(105 � 107). Thus, at present, only highly abstrated examples (e.g., [Arher andHeitmeyer 1996℄) an be veri�ed automatially by model heking tools like Kro-nos [Yovine 1997, Yovine 1998℄ or Uppaal [Larsen, Petterson and Yi 1997, Aeto,Bergueno and Larsen 1998℄.It is a hallenging researh task to �nd a paradigm separating the real-time om-ponent from the funtional and reative omponent in the spei�ation of typialreal-time requirements. This ould make model heking an integral omponent inthe development of reative real-time systems.15.3. Probabilisti Model ChekingSome safety-ritial systems have a stohasti behavior. This may be either dueto the fat that some part of the outside world, whih is stohasti in nature, ismodelled as part of the system, or beause of hardware failures whih may happenstohastially. Available model hekers usually model the probabilisti behavior ofsuh systems non-deterministially, missing the ability to assess how probable somesystem behavior is.A number of theoretial papers have been written on probabilisti veri�ation.EÆient algorithms have been given by several authors; for example, there is anLTL model heking algorithm whih is exponential in the size of the formula andpolynomial in the size of the Markov hain [Couroubetis and Yannakakis 1995℄.However, urrently there are no probabilisti model heking tools available whihan verify systems of realisti size. The bottlenek is the onstrution of the statespae and the neessity to solve huge systems of linear equations. A more eÆientalternative ould be to perform the probability alulations using Multi-TerminalBinary Deision Diagrams (MTBDDs).MTBDDs [Bahar, Frohm, Gaona, Hahtel, Maii, Pardo and Somenzi 1993,Clarke, Fujita, MGeer, Yang and Zhao 1993℄ di�er from BDDs in that the leavesmay have values other than 0 and 1; in this ase the leaves ontain transition proba-bilities. MTBDDs an be used to represent D{valued matries eÆiently. Considera 2m � 2m{matrix A. Its elements aij , an be viewed as the values of a fun-tion fA : f0; : : : 2m � 1g � f0; : : :2m � 1g ! D, where fA(i; j) = aij . Using thestandard enoding  : Bm ! f0; : : :2m � 1g of boolean sequenes of length lessthan m into the integers, this funtion may be interpreted as a D{valued boolean



Model Cheking 1771funtion f : Bm ! D where f(x; y) = fA((x); (y)) for x = (x0 : : : xm�1) andy = (y0 : : : ym�1). This transformation now allows matries to be represented asMTBDDs. In order to obtain an eÆient MTBDD{representation, the variables of fare permuted. Instead of the MTBDD for f(x0 : : : xm�1; y0 : : : ym�1), the MTBDDobtained from f(x0; y0; x0; y0; : : : xm�1; ym�1) an be used. This onvention imposesa reursive struture on the matrix from whih eÆient reursive algorithms for allstandard matrix operations an be derived.MTBDDs an be integrated with a symboli model heker and have the poten-tial to outperform other matrix representations beause they are very ompat. Forexample, in [Hahtel, Maii, Pardo and Somenzi 1996℄ symboli algorithms were de-veloped to perform steady-state probabilisti analysis for systems with �nite statemodels of more than 1027 states. While it is diÆult to provide preise time om-plexity estimates for probabilisti model heking using MTBDDs, the suess ofBDDs in pratie indiates that this is likely to be a worthwhile approah.The standard model used in probabilisti model heking are �nite state disrete-time Markov hains ([Hansson and Jonsson 1989, Couroubetis and Yannakakis1995, Aziz, Singhal, Balarin, Brayton and Sangiovanni-Vinentelli 1995, Aziz, San-wal, Singhal and Brayton 1996℄). This model is a powerful notation for the depend-ability analysis of fault-tolerant real-time ontrol systems, performane analysis ofommerial omputer systems and networks, and operation of automated manufa-turing systems.To speify properties of �nite state disrete-time Markov hains, Probabilis-ti Real Time Computation Tree Logi (PCTL) was introdued in [Hansson andJonsson 1989℄. PCTL augments CTL with time and probability; it is a very ex-pressive logi and o�ers simple model heking algorithms that an be implementedusing symboli tehniques in a straightforward manner [Baier, Clarke, Hartonas-Garmhausen, Kwiatkowska and Ryan 1997℄.However, in order to make model heking a standard method for probabilistiveri�ation, more experienes with industrial size examples, typial requirementsand eÆient tools are neessary.15.4. Model Cheking for Seurity ProtoolsSeurity protools are another promising area for the appliation of model hekingtehniques. The inreasing amount of on�dential information (suh as monetarytransations) sent over inseure ommuniation links (suh as the internet) requiresmore and more sophistiated enryption protools. Like hardware designs, theseprotools an have subtle bugs whih are diÆult to �nd. It may be possible touse the same exhaustive searh tehniques as in model heking to verify seurityprotools. By examining all possible exeution traes of the protool in the pres-ene of a maliious adversary with well de�ned apabilities, it may be possible todetermine if an attak on the protool ould be suessful.Typially, seurity protools an be thought of as a set of prinipals whih sendmessages to eah other. The hope is that by requiring agents to produe a se-



1772 Edmund M. Clarke and Bernd-Holger Shlingloffquene of formatted and enrypted messages, the seurity goals of the protool anbe ahieved. For example, if a prinipal A reeives a message enrypted with akey known only by prinipal B, then prinipal A should be able to onlude thatprinipal B reated the message. However, it would be inorret to onlude thatprinipal A is talking to prinipal B. An adversary ould be replaying a messageoverheard during a previous onversation between A and B. If the aim is to keep themessage seret, then as long as the adversary does not learn the key, this seurityproperty is satis�ed. If, however, the aim is to authentiate B to A, then learlythis is not satis�ed sine the message was not neessarily sent by B.Sine the reasoning behind the orretness of these protools an be sub-tle, researhers have tried turning to formal methods to prove protools orret.In [Burrows, Abadi and Needham 1989℄, a logi of belief is developed in whih oneould formally reason about seurity protools by stating axioms about the protooland trying to derive theorems about its seurity. [Kindred and Wing 1996℄ addedsome automation to this proess by generating theory hekers for these logis.In [Meadows 1994℄, a di�erent approah is taken by modelling a seurity protoolin terms of a set of rewrite rules. These rules apture the way that the adversary anlearn new information using enryption and deryption, and by reeiving replies tomessages sent to partiipants of the protool. In [Woo and Lam 1993℄, the authorspropose a model for authentiation and provide a number of inferene rules thatould be used for proving properties in this model. The paper [Mithell, Mithelland Stern 1997℄ investigated the use of Mur', a previously existing model heker,for verifying seurity protools.A speial purpose model heker for authenti�ation protools ould ontain twoorthogonal omponents. The �rst is a state exploration omponent. Eah honestagent an be desribed by the sequene of ations that it takes during a run ofthe protool, and an be viewed as a �nite-state mahine. A trae of the ationsperformed by the asynhronous omposition of these state mahines orrespondsto a possible exeution of the protool by the agents. By performing an exhaustivesearh of the state spae of the omposition, it an be determined if various seurityproperties are violated.The seond omponent would be the message derivation engine whih is usedto model what the adversary is allowed to do. It an be implemented as a simplenatural dedution theorem prover for onstruting valid messages. The adversaryan interept messages, misdiret messages, and generate new messages using en-ryption, deryption, onatenation (pairing), and projetion. Eah time a messageis sent, the adversary interepts the message and adds it to the set of assumptionsit an use to derive new messages. Whenever an honest agent reeives a message,the message must have been generated by the derivation engine.A �rst prototypial implementation shows that this framework an be suess-fully used to analyze threats and exhibit possible attaks in authentiation proto-ols. It is also general enough to handle other kinds of seurity protools suh askey exhange and eletroni ommere. Moreover, ombining model heking withother automated dedution tehniques ould make it possible to verify both theenryption algorithm and the atual implementation at the same time. However,



Model Cheking 1773for a widespread use it is additionally neessary to integrate the model hekingapproah with other, more well-established seurity design methods.AknowledgmentsWe would like to thank Wolfgang Heinle for help with initial versions of this hapter,the editor for his patiene with us during its preparation, and the referees for manyuseful omments and suggestions.
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