1. Determinar o grafo de programa do seguinte fragmento de programa, indentificando as localizações no código e associando ações às respectivas instruções. Supor no inicio x = 1 e y = 2.

```
while x < 5 do x := x + 1 y := y + x
```

- 2. Considera dois sistemas de transição para semáforos de trânsito com duas luzes r_i (vermelha) ou g_i (verde), $T_i = (\{r_i, g_i\}, \{r_i, g_i\}, \{(r_i, g_i, g_i), (g_i, r_i.r_i)\}, \{r_i\}, \{r_i, g_i\}, L = \{(r_i, r_i), (g_i, g_i)\})$ para i = 1, 2. Considera as seguintes propriedades:
 - i) Os dois semáforos nunca estão com a luz verde simultaneamente
 - ii) O semáforo T_1 tem a luz verde um número infinito de vezes.
 - (a) Determina um sistema de transições para um controlador C que permita que no sistema de transições $T_1||T_2||C$ (paralelismo síncrono) as duas propriedades anteriores se verifiquem.
 - (b) Determina (desenhando um diagrama) o sistema de transições $T_1||T_2||C$
 - (c) Especifica as propriedades acima como propriedades LT e para cada uma dessas propriedades indica se é um invariante, de segurança, de vivacidade ou nenhuma delas.
- 3. (Exclusão Mútua II) O programa seguinte é um protocolo de exclusão mútua de dois processos de Pnuelli. Existe uma única variável s que pode tomar os valores 0 ou 1, tendo inicialmente o valor 1. Para além disso cada processo tem uma variável Booleana local y que inicialmente é 0. O programa para o processo P_i para i=1,2 é o seguinte:

```
while true do
```

```
// seccao nao critica (y_i, s) := (1, i) wait until ((y_{1-i} = 0) \lor (s \neq i)); // seccao critica y_i := 0
```

onde $(y_i, s) := (1, i)$ é uma atribui 1 a y_i e i a s, num único passo (ação atómica).

- (a) Determina o grafo de programa de um processo P_i (considerando localizações diferentes para as secções não crítica e a crítica) e o correspondente sistema de transições.
- (b) Constrói o sistema de transições $TS(P_1|||P_2)$ sobre o espaço de estados (l_i, l_j, y_1, y_2, s) . Sugestão: Para diminuir o número de estados, sempre que se tenha uma transição para $(l_i, l_j, y_1, y_2, 0)$ considerar o estado $(l_j, l_i, y_2, y_1, 1)$.
- (c) Verifica se o algoritmo garante a propriedade da exclusão mútua.