
DAFNY QUICK REFERENCE*
*NON-EXHAUSTIVE

J. Pascoal Faria

FEUP, MIEIC, MFES, 2019/20

INDEX

Program

organization

Methods

Functions &

predicates

Expressions

Statements

Modules

Type system

Basic types

Collections

Sets

Sequences

Multisets

Maps

Tuples

Inductive data

types

Arrays

Classes

Traits

What is Dafny

Programming styles

Programs &

specifications

Verifier, compiler &

VSCode extension

Specification &

verification constructs

Basic:

requires and ensures

reads, modifies & old

 invariant & decreases

Advanced:

assert & assume

ghost variables &

methods

 lemmas

attributes

WHAT IS DAFNY?

WHAT IS DAFNY?

A powerful programming language & system from Microsoft Research, targeting the development of

verified programs, and used in several real world projects requiring formal verification.

Powerful programming language:

 Multi-paradigm: combines the functional, imperative and object-oriented styles

 Allows writing programs (implementations) and specifications (with several sorts of assertions & annotations)

Powerful programming system:

 Verifier using Z3

 Compiler to C#

 Extension for VSCode

PROGRAMMING STYLES

Functional

 Immutable types (value types)

Side-effect free functions and predicates

…

 Best suited for writing specifications!

Imperative (structured & object-oriented)

Statements

Methods

Modules

Classes

…

 Best suited for writing implementations!

PROGRAMS (IMPLEMENTATIONS) & SPECIFICATIONS

Formal specification of method pre-

and post-conditions (method semantics).

Formal specification of loop variant

and invariant, to help proving that the

implementation is correct.

Other specification & proof constructs:

• assert

• lemma

• ghost

• …

All these constructs are used for

verification purposes (by static analysis),

but don’t go into the executable program!Demo: Div.dfy

VERIFIER, COMPILER & VSCODE EXTENSION

The verifier

continuously checks

the consistency

between specs &

implementation.

It generates “proof

obligations” that

are checked with

the Z3 theorem

prover (that can

also generate

counter-examples).

The compiler

first generates

C# code, and

subsequently an

executable that

can be run

autonomously

(Main method).

Demo: Div.dfy

TYPE SYSTEM

TYPE SYSTEM
Value types - instances are immutable; equality & assignment compare/copy values

 Basic types

 Collection types

 Tuple types

 Inductive (and co-inductive) data types

 Best suited for modeling data types!

Reference types – instances are mutable; equality & assignment compare/copy pointers; allow null (if
type declared with “?”)

 Arrays

 Classes

 Traits

 Best suited (namely classes) for modeling system state!

BASIC TYPES

Description Declaration Operators Example literals

Boolean bool == != ! && || ==> <== <==> true, false

Integer int

== != < <= >= > + - * / % -

-1, 0, 1

Natural nat 0, 1, 2

Real real -3.0, 1.0, 0.577

Character char == != < <= >= > 'a', '\n'

• When combining && and ||, parenthesis are mandatory

• Comparison operators can be chained, as in: 3 == 2+1 == 5-2 < 4

• x.Floor gives the floor of a real number x

ARRAYS

Task Syntax Examples

Declare type array<T>
var a : array<int> := new int[3];

Create instance new T[n]

Update element a[i] := value a[0], a[1], a[2] := 1, 5, 3;

Select element a[i] assert a[0] == 1;

Get length a.Length assert a.Length == 3;

Convert to sequence
a[lo..hi] (lo/hi optional,

lo included, hi excluded)

assert a[..] == [1, 5, 3];

assert a[1..2] == [5];

• Multidimensional arrays are also supported

COLLECTIONS

Description Declaration Example literals (display expressions)

Set set<T> var s : set<int> := {1, 3, 6} (order & duplicates ignored)

Sequence seq<T> var s : seq<int> := [3, 5, 4, 4]

Multiset multiset<T> var m: multiset<int> := multiset{3, 5, 4, 4} (order ignored)

Map map<K, V> var m: map<string, int> := map["one“ := 1, "two“ := 2]

String string “Hello, world\n"

• Dafny also supports potentially infinite sets (iset<T>) and maps (imap<K,V>).

• string is the same as seq<char>

SETS - OPERATORS AND EXPRESSIONS

Set comprehension

predicate value (optional)type (optional)

multiset(s): set conversion to multiset<T>

SEQUENCES - OPERATORS AND EXPRESSIONS

slices

There is no sequence

comprehension expression.

MULTISETS - OPERATORS AND EXPRESSIONS

There is no multiset comprehension expression.

MAPS - OPERATORS AND EXPRESSIONS

Map comprehension has a syntax similar to set comprehension, as in:

predicate Value corresponding to keykey

type

(optional)

TUPLES

Task Syntax Examples

Declare a tuple type with

component types T, U, …
(T, U, …) type Point = (real, real)

Create a tuple with

component values t, u, …
(t, u, …) var p: Point := (1.0, -1.0);

Select the i-th component

(starting in 0) of a tuple x
x.i assert p.0 == 1.0;

INDUCTIVE DATA TYPES
Task Syntax Examples

Declare type
datatype D<T> = Ctor1 |

Ctor2 | …

datatype List<T> = Nil | Cons(head: T, tail: List<T>)

datatype Semaphore = Green | Yellow | Red

Construct instance (explicit constructor call)
var list1 := Cons(5, Nil);

var sem1 := Green;

Update instance d[CtorParam := Value] list1 := list1[head := 1];

Constructor check d.Ctor? function Length(x: List<T>) : nat {

if x.Cons? then 1 + Length(x.tail) else 0

}Field selector d.CtorParam

Case analysis

Match expression

(for a match statement, use “=> stmt;”

instead of “=> expression”)

{} are optional

function Length(x: List<T>) : nat {

match x {

case Nil => 0

case Cons(h, t) => 1 + Length(t) }

}

CLASSES (1)
class Account {

var balance : real;

constructor (balance: real) {this.balance := balance; }

method deposit(amount: real) modifies this { balance := balance + amount ;}

method withdraw(amount: real) modifies this { balance := balance - amount ;}

method getBalance() returns (res : real) { return balance; }

}

method Main() {

var a := new Account(10.0);

a.deposit(5.0);

var b := a.getBalance();

assert b == 15.0;

}

fields

constructors

methods

• Classes may extend other classes or traits.

• Methods may be declared static.

• Classes may also include functions and predicates.

• Constructors may be anonymous (as above) or have a name.

• The supertype for all reference types is object.

• Immutable fields are declared with const instead of var.

CLASSES (2)
class Account {

var balance : real;

predicate Valid()

reads this

{balance >= 0}

constructor (balance: real)

requires balance >= 0

ensures Valid()

{ this.balance := balance; }

method withdraw(amount: real)

requires Valid() && 0 < amount <= balance

modifies this

ensures Valid()

{ balance := balance - amount ;}

method getBalance() returns (res : real)

requires Valid()

{ return balance; }

}

A common convention is to have a
predicate named Valid that
describes the class invariant,
required by all (public) methods and
ensured by all (public) constructors
and modifier methods.

With the :autocontracts attribute,
Dafny takes care automatically of
the class invariant enforcement
(requires/ensured Valid()) and frame
generation (reads/modifies).

TRAITS

Traits are abstract classes, so cannot have constructors and cannot be directly instantiated.

May have abstract methods, declared by omitting the body {…}; only abstract methods

may be redeclared in classes that extend the trait.

extends

PROGRAM ORGANIZATION
& BASIC SPECIFICATION & VERIFICATION CONSTRUCTS

METHODS
nameattributes

type

params in-parameters out-parameters

precondition (boolean expression)

postcondition (boolean expression)

objects whose fields may be updated by the method

variant function (to prove termination of recursive methods)

imperative style (statement or sequence of statements)

• Precondition: condition on the input params and initial object state that must hold on entry.

• Postcondition: condition on the output params and final object state (possibly in relation with input

params and initial object state) that must hold on exit (assuming the precondition holds on entry).

• Initial object states are accessed with old(…).

• Newly created objects may be indicated in additional clause fresh(obj).

• Together, the pre and postcondition define the method semantics.

• Methods marked as ghost don’t go into the executable code.

FUNCTIONS AND PREDICATES
nameattributes

type

parameters parameters
result

type

precondition

postcondition (usually not needed)

objects (includes arrays) whose fields the function body may depend on

variant function (for recursive functions)

functional style (expression without side-efefects)

• By default, functions are ghost (don’t go into the executable). To make a function non-

ghost, declare it is as function method.

• Functions that return a bool result may instead be declared with the predicate keyword,

removing the declaration of the result type.

• The function result is accessed in the postcondition as F(a, b, c) (like a function invocation).

EXPRESSIONS

Name Syntax Example

Conditional

expression
if condition then value-if-true else value-if-false if x > y then x else y

Universal

quantifier

forall x:X, y:Y, … :: P(x, y, …) ==> Q(x, y, …)

(P – finite search scope; Q – property to check)
forall k :: 0<=k<|a| ==> a[k]=x

Existential

quantifier

exists x: X, y: Y, … :: P(x, y, …) && Q(x, y, …)

(P – finite search scope; Q – property to check)
exists k :: 0<=k<|a| && a[k]==x

Let

expression

var v := value; expression-on-v

var v :| predicate-on-v; expression-on-v

var sum := x + y; sum * sum

var x :| 0 <= x <= 100; x * x

(In addition to expressions already presented)

STATEMENTS (1/2)

Name Syntax / examples Notes

Variable

declaration

var x, y : int;

var x := 1;

Explicit type

Inferred type

Update

x := 1;

x, y := y, x; // swap

y :| y in Y;

Simple assignment

Multiple (parallel) assignment

Assign such that (choice)

If if condition { statement(s) } [else {statement(s)}] { } are mandatory

Multibranch

if

if { case Cond1 => stmt1;

case Cond2 => stmt2; …}

Guard conditions are unordered and at

least one needs to evaluate to true.

Binding

guard
if x :| P(x) {…} [else {…}]

If a value x exists that satisfies P(x), the

“then” part is executed with such a x.

STATEMENTS (2/2)
Name Syntax / examples Notes

While

while guard-condition

invariant loopInvariant

decrases loopVariant

{

statement(s)

}

The loop invariant(s) must hold on entry, on exit, and

before/after each iteration.

The loop variant is a strictly decreasing function,

integer (or similar), non-negative.

Forall

forall x:X, y:Y, …| P(x, y, …)

[ensures Q(x, y, …)]

{body}

Executes the body in parallel for all quantified values

in the specified range (P), in 3 use cases:

• Assign - simultaneous assignment of array elements

or object fields;

• Call - calls to a ghost method without side effects;

• Proof – with “ensures” expression to be proved by

the body.

Return
return x+1;

return min, max;

Simple return

Multiple return

MODULES

Modules may import other modules for

code reuse.

abstract module Sorting {

type T = int

predicate isSorted(a: array<T>) reads a {…}

predicate isPermutation(a: seq<T>, b: seq<T>) {…}

method sort(a: array<T>)

modifies a

ensures isSorted(a) && isPermutation(a[..], old(a[..]))

}

module BubbleSort refines Sorting {

method sort(a: array<T>) {…}

}

module TestSorting {

import opened BubbleSort

…

method Main() {

var a := new int[5];

a[0], a[1], a[2], a[3], a[4] := 9, 4, 6, 3, 8;

sort(a);

printArray(a);

}

}

Modules provide a way to group
together related types, classes,
methods, functions, and other modules,
as well as control the scope of
declarations (like namespaces).

It is possible to abstract over modules to

separate an implementation from an

interface (refinement relationship,

possibly strengthening postconditions).

Refine

Import

Demo BubbleSort.dfy

ADVANCED SPECIFICATION &
VERIFICATION CONSTRUCTS

ASSERT AND ASSUME
The “requires”, “ensures” & “invariant” clauses declare assertions that must hold on specific

parts of the program and are statically checked by Dafny.

Other assertions may be declared with the assert statement (e.g., for testing, debugging, or

proof purposes).

When Dafny is unable to check a proof obligation, providing assertions in the proof path

may help Dafny conducting the proof, by breaking it down into smaller steps.

The assume statement instructs Dafny to accept as true (without verification) the given

expression; useful for incremental development and debugging purposes, need to be

converted to “assert” statements or removed before executable code generation.

Premisses

(e.g., precondition)

Conclusions

(e.g., postcondition)

assert C1; assert C2; …

proof path

GHOST VARIABLES

Used only for specification & verification purposes (don’t go into the executable code).

Example to prove loop termination

(done behind the scenes by Dafny):

Demo: Factorial2.dfy

LEMMAS

Sometimes there are steps of logic required to prove a program correct, but they are

too complex for Dafny to discover and use on its own.

When this happens, we can often give Dafny assistance by providing a lemma.

This is done by declaring a method with the lemma keyword.

Lemmas are implicitly ghost methods.

Lemmas need to be explicitly invoked (like method calls) when needed.

The header describes the property (for all values

of parameters, if pre-conditions are satisfied, then

the post-conditions hold).

The body gives the proof steps.

lemma Name(parameters)

requries pre-conditions

ensures post-conditions

{

proof steps (with assert, calc, forall,

conditionals, other lemma invocations, etc.)

}

LEMMAS - EXAMPLES

Demo1: Div_Lemmas.dfy

Demo3: PriorityQueue.dfy

Demo2: QuickSort.dfy

ATTRIBUTES

Attributes are annotations in the code, according to the syntax {:attribute value}, that

can be used to control the behavior of the Dafny verifier and compiler.

Examples:

Disables static verification for this method

Lemma may be proved by induction on “a” Demo: Power.dfy

REFERENCES & FURTHER READING

Dafny Tutorials, https://rise4fun.com/Dafny/tutorial

Dafny Lecture Notes (see copy in Moodle)

Dafny Reference Manual (see copy in Moodle)

Dafny extension for Visual Studio Code,

https://marketplace.visualstudio.com/items?itemName=correctnessLab.dafny-vscode

https://rise4fun.com/Dafny/tutorial
https://marketplace.visualstudio.com/items?itemName=correctnessLab.dafny-vscode

