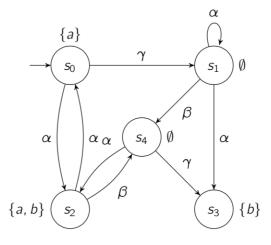
Verificação Formal de Software, 2019/20 $_{\rm FCUP}$

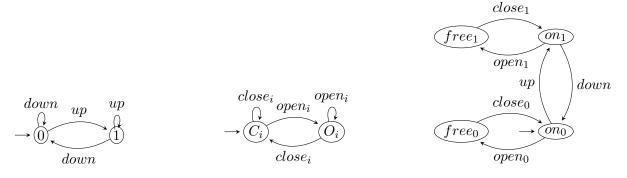
TP MC-1– Transition Systems and Communication between Processes

1. Consider the following transition system T_1 :



- (a) Formally define T_1 .
- (b) Specify a finite and an infinite execution in T_1 .
- (c) Compute $Pre(s_i)$ and $Post(s_i)$ for $i \in \{0, 1, 2, 3, 4\}$. Draw the first 4 levels of the computation tree starting at the initial state s_0 (ommitting the actions).
- 2. Consider an elevator in a two-story building and the following components: a cabin that goes up and down depending on the current floor; a door in each floor that can be open and closed and a controller that commands the doors and the cabin. The state $free_i$ of the controller corresponds to the situation that the cabin is in floor *i* with the door open; and the state on_i if the cabin is in floor *i* with the door closed. The transition systems of each components are described below.

Figura 1: The cabin on the left, the doors 0 and 1 on the center and the controller on the right.



(a) Compute the synchronous message passing (handshaking)

 $cabin||door_0||door_1||controller$

- (b) Informally specify and verify the following properties
 - a) The door on a given floor cannot open while the cabin is on a different floor
 - b) The cabin cannot move while one of the doors is open
- 3. Determine the program graph and the transition system of each program fragment considering the locations and the conditions associated to each command.
 - (a) Suppose that initially x = 2

```
if x > 2 then

x \leftarrow 0

x \leftarrow x + 1
```

(b) Suppose that initially x = 1 and y = 2.

```
while x < 3 do

x \leftarrow x + 1

y \leftarrow y + x
```

4. (Mutual Exclusion - Peterson Algorithm) Consider two processes with shared boolean variables b_1 , b_2 and integer variable x which can take the values 1 or 2. Initially $b_1 = b_2 = False$. If both processes want to enter the critical section (waiting) the value of variable x decides which of the two processes may enter its critical section: if x = i then P_i enters. The value of b_i is set if P_i wants to access the critical section.

For process P_1 we have:

```
while True do

noncricital actions

atomic(b_1 \leftarrow True; x \leftarrow 2)

wait until x = 1 \lor b_2 = False

critical actions

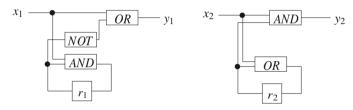
atomic(b_1 \leftarrow False)
```

and for P_2

```
while True do
noncricital actions
atomic(b_2 \leftarrow True; x \leftarrow 1)
wait until x = 2 \lor b_1 = False
critical actions
atomic(b_2 \leftarrow False)
```

- (a) Define the program graphs for two processes P_1 and P_2 . Each graph PG_i has three locations n_i , w_i , c_i , corresponding to the colours green (noncritical), blue (wait) and red (critical).
- (b) Compute $T(PG_1||PG_2)$. Note: only the reachable part and of b_i can be ommitted. Initially $b_1 = b_2 = False$.
- (c) Check that mutual exclusion is ensured.
- (d) Check that every process that wants to access the critical section, enters it.
- (e) Implement in Promela and test with Spin.

5. (a) Let C_1 and C_2 be the following sequential circuits, each with one 1 bit register r_i , i = 1, 2.



- (a) Suppose that initially that $r_1 = 0$ and $r_2 = 0$, determine the transition systems associated with $C_1 \in C_2$. The values of the input bits are nondeterministically determined (i.e. each possible value must be considered).
- (b) Determine the transition system of the synchronous product $C_1 \otimes C_2$. Recall that the synchronous product of two systems (omiting the actions) $T_i = (S_i, \longrightarrow_i, I_i, AP_i, L_i)$ for i = 1, 2 is $T_1 \otimes T_2 = (S_1 \times S_2, \longrightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$, with $L(\langle s_1, s_2 \rangle) = L(s_1) \cup L(s_2)$ and

$$\frac{s_1 \longrightarrow {}_1 s'_1 \land s_2 \longrightarrow {}_2 s'_2}{\langle s_1, s_2 \rangle \longrightarrow \langle s'_1, s'_2 \rangle}$$