Verificação Formal de Software, 2019/20FCUP

TP MC-5– Büchi Automata and Algorithm for Model Checking for LTL

1. Consider the Büchi automaton

 $\mathcal{A}_{\omega} = (\Sigma = \{a, b\}, \{s_0, s_1, s_2\}, \{s_0\}, \delta, \{s_1, s_2\}),$

where $\delta(s_0, a) = \{s_1, s_2\}, \, \delta(s_0, b) = \{s_1\}, \, \delta(s_1, a) = \{s_2\}, \, \delta(s_1, b) = \{s_1\}, \, \delta(s_2, a) = \delta(s_2, b) = \emptyset.$ Determine $L(\mathcal{A}_{\omega}) \subseteq \Sigma^{\omega}$.

- 2. For each language, build a Büchi automaton that accepts it for $\Sigma = \{a, b, c\}$.
 - (a) $L_1 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains at least one infix } ab \};$
 - (b) $L_2 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains the infix } ab \text{ infinitely often} \}.$
- 3. Consider the system $\mathcal{M} = (S = \{s_0, s_1, s_2\}, \{s_0 \longrightarrow s_1, s_0 \longrightarrow s_2, s_1 \longrightarrow s_2, s_1 \longrightarrow s_0, s_2 \longrightarrow s_2\}, L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\})$, with $AP = \{p, q, r\}$

- (a) Obtain a Büchi automaton for \mathcal{M} with initial state s_0, A_M .
- (b) For each formula φ below
 - i. obtain for $\neg \varphi$ an equivalent formula ψ in negation normal form (i.e. with negations only for the atomic propositions)
 - ii.
obtain a Büchi automaton for the ψ
 - iii. using the model checking algorithm determine if $\mathcal{M}, s_0 \models \varphi$, i.e. arguing that $L(A_M) \cap L(A_{\varphi}) = \emptyset$ or $L(A_M) \cap L(A_{\varphi}) \neq \emptyset$ giving a counterexample (a word that belongs to the intersection)
 - 1. $p \land q$
 - 2. Xr
 - 3. $X(q \land r)$
 - 4. $G\neg(p \wedge r)$
 - 5. GFp
- 4. Let $AP = \{p, q\}$ and let $\Sigma = 2^{\{p,q\}}$.
 - (a) Build a Büchi automaton B_1 for the formula $\neg G(p \rightarrow XFq)$.
 - (b) Consider the transition system over AP, $T = (S = \{s_0, s_1, s_2, s_3\}, \{s_0 \longrightarrow s_1, s_1 \longrightarrow s_2, s_2 \longrightarrow s_0, s_2 \longrightarrow s_3, s_3 \longrightarrow s_0\}, L(s_0) = L(s_1) = L(s_2) = \{\}, L(s_3) = \{p, q\}$. Build a Büchi automaton for T, A_T .
 - (c) Determine if $L(A_T) \cap L(B_1)$ is empty or not. Can you conclude that $T, s_0 \models G(p \rightarrow XFq)$ holds or not?

- 5. Consider the model $T = (S, \rightarrow, L)$ with
 - $S = \{q_1, q_2, q_3, q_4\},$
 - $\rightarrow = \{q_1 \rightarrow q_2, q_2 \rightarrow q_2, q_3 \rightarrow q_1, q_3 \rightarrow q_2, q_3 \rightarrow q_4, q_4 \rightarrow q_3\},\$
 - and $L(q_1) = \{\}, L(q_2) = \{b\}, L(q_3) = \{a\}, L(q_4) = \{a, b\}\}.$
 - (a) Represent (T, q_1) by a Büchi automaton
 - (b) For $\varphi = a U b$ determine a Büchi automaton $A_{\neg \varphi}$.
 - (c) Indicates the language accepted by $A_{\neg\varphi}$.
 - (d) Determine using the model checking algorithm if $T, q_1 \models \varphi$.
 - (e) Repeat the questions above for the formula $a \wedge Fb$ (recall that $F\varphi \equiv trueU\varphi$).)