Verificação Formal de Software, 2019/20 FCUP

TP MC-6– Algorithm of Model Checking for CTL, OBDDs and symbolic model checking

1. Consider $AP = \{a, b, c\}$ and the model $T = (S = \{s_0, s_1, s_2, s_3, s_4\}, \{s_0 \to s_1, s_1 \to s_3, s_1 \to s_4, s_2 \to s_2, s_3 \to s_2, s_4 \to s_4\}, L(s_0) = \{a\}, L(s_1) = \{a, b\}, L(s_2) = \{c\}, L(s_3) = \{b, c\}, L(s_4) = \{c\}$). Use the labelling algorithm to determine the states $s \in S$ such that $s \models \psi_i$, for i = 1, 2, 3.

$$\begin{array}{rcl} \psi_1 &=& \mathrm{EF}(\mathrm{AG}c) \\ \psi_2 &=& \mathrm{A}(a\mathrm{U}(\mathrm{AF}c)) \\ \psi_3 &=& \mathrm{AG}(\mathrm{AF}(\mathrm{AX}c)) \end{array}$$

- 2. Consider the model $\mathcal{M} = (S = \{s_0, s_1, s_2, s_3\}, \{s_0 \to s_2, s_0 \to s_1, s_1 \to s_1, s_1 \to s_2, s_1 \to s_3, s_2 \to s_0, s_2 \to s_1, s_2 \to s_2, s_3 \to s_0, s_3 \to s_3\}, L(s_0) = \{x_1, x_2\}, L(s_1) = \{x_1\}, L(s_2) = \{\}, L(s_3) = \{x_2\}).$
 - (a) Using the order $[x_1, x_2]$, determine (reduced) OBDD's for representing the sets of states $\{s_0, s_1\} \in \{s_0, s_2\}$.
 - (b) Determine the truth table for the transition function using the order $[x_1, x'_1, x_2, x'_2]$.
 - (c) Draw a (reduced) OBDD for the transition function.
 - (d) Apply the the labelling algorithm (adapted to the OBDD's representation and using the order $[x_1, x_2]$) to the model \mathcal{M} , to determine the sets of states where the following formulae are true.
 - EX x_2 ;
 - AG $(x_1 \lor x_2)$;
 - $\operatorname{E}(x_2 \operatorname{U} x_1)$.
- 3. For each of the following Boolean functions, determine reduced OBDD's for each of the orders [x, y, z] and [z, y, x]

First compute the binary decision tree and then apply the REDUCE algorithm.

	x	y	z	f(x, y, z)
	1	1	1	0
	1	1	0	1
	1	0	1	1
a)	1	0	0	0
	0	1	1	0
	0	1	0	1
	0	0	1	0
	0	0	0	1
b)	f(x	x, y,	z) :	$= x \cdot (y + \overline{z}).$

4. Consider the functions f(x,y) = x + y, $g(x,y) = \overline{x} \cdot \overline{y} \in h(x,y,z) = x \cdot y + \overline{z} \cdot \overline{x}$.

(a) Determine reduced OBDD's B_f , B_q and B_h with the order [x, y, z].

- (b) Determine $B_{\overline{f}}$.
- (c) Determine B_{f+g} applying for that the algorithm apply a $B_f \in B_g$ e reduzindo em seguida.
- (d) Determine $B_{\exists yh}$ and $B_{\forall yh}$.