
Conteúdo

1 Model Checking in a Nutshell 1

2 Transition Systems 7

1 Model Checking in a Nutshell

Model checking

• Gödel Prize 2000

For work on model checking with finite automata

• ACM System Software Award 2001

1

• ACM Turing Award 2007

For their role in developing Model-Checking into a highly
effective verification technology, widely adopted in the hardware
and software industries

Model checking

• We start from a model not the real system

• Exhaustively checks the possible states of a model

• Reactive systems/concurrent are described by temporal properties

• A specification is verified if it is satisfied during the execution of the model

Model checking

Model checking is an automated technique that, given a finite-state
model of a system and a formal property, systematically checks
whether this property holds for (a given state in) that model.

What is a Model?

2

What is a Model?

Transition Systems/Automata

• States are labelled with basic propositions

• Transition relation between states

• Action-labelled transitions

Expressivity: all these are transition systems

• Programs

• Concurrent programs

• Hardward circuits

• Embebbed/Cyberphysical systems

What is a Property?

Examples

• Can the system enter in deadlock?

• Can two processes be simultaneously in a critical section?

• On termination, does the program provide the correct value?

• Can the system always reach a given state?

3

Temporal Logic

• Propositional logic

• Temporal operators such as always (G) and eventually (F)

• Interpreted over infinite state sequences (paths/linear)

• Or over (infinite) trees of states (branching)

• A propositional formula can be true in a state but not in another

Concurrency and atomicity

Are the values of x always between 0 and 200? No, it depends on the scheduler:

• suppose x = 200

• the process Dec tests x and control goes to process Reset

• the process Reset tests x and does x = 0

• The control goes to process Dec and we have x = −1

Model checking

• Given a model M (transition system),

• a (initial) state s

• and a formula ϕ of a temporal logic (specification),

• the aim is

• M, s |= ϕ

• i.e. ϕ is satisfied in the state s of M

• a model checker is a program that decides this problem (i.e. either answers
yes or no).

4

The Model Checking Process

Modeling: using a modeling language that allows the simulation of the model

Formalisation of the properties to be checked

Execution of a model checker that verifies if the property is satisfied in the
model

Analysis: • property is satisfied

• if the property does not hold a counterexample is produced and the
model may be refined

• But the model checker can also be out of memory, as the number of
states can be huge (state-space explosion)

Properties

Reachability (reachable states) properties that ensure that a given state is
reachable

Safety properties that has to hold in all the executions and all the states

Liveness some states must be eventually reached

Persistence in all executions from some state on the property has to hold

Fairness a given property must hold infinitely often. Example: no process is
forgotten by the scheduler always

SWOT: Pros

• It is applicable to a wide range of applications such as embedded systems,
software engineering, and hardware design.

• It supports partial verification, i.e., properties can be checked individu-
ally, thus allowing focus on the essential properties first. No complete
requirement specification is needed.

• It is not vulnerable to the likelihood that an error is exposed; this contrasts
with testing and simulation that are aimed at tracing the most probable
defects.

• It provides diagnostic information in case a property is invalidated; this is
very useful for debugging purposes.

5

SWOT: Cons

• It is mainly appropriate to control-intensive applications and less suited for
data-intensive applications as data typically ranges over infinite domains.

• It verifies a system model, and not the actual system (product or pro-
totype) itself

• It checks only stated requirements, i.e., there is no guarantee of comple-
teness.

• It suffers from the state-space explosion problem, i.e., the number of states
needed to model the system accurately may easily exceed the amount of
available computer memory.

• Its usage requires some expertise in finding appropriate abstractions

State explosion- Hubble telescope

Nasa Deep Space-1 Spacecraft (1998)

6

Several errors where discovered with Model checking (including one deadlock)

Other examples

• Security: Needham-Schroeder encryption protocol (error that remained
undiscovered for 17 years unrevealed)

• Transportation systems (train model containing 10476 states)

• Model checkers for C, Java and C++ (used (and developed) by Microsoft,
Digital, NASA)

• Successful application area: device drivers

• Dutch storm surge barrier in Nieuwe Waterweg (Rotterdam)

• Software in the space missiles

• NASA’s Mars Curiosity Rover, Deep Space-1, Galileo

• LARS group@Jet Propulsion Lab

• Facebook @Monoidics (see Calcagno et al., Moving fast with software
verification, 2014)

2 Transition Systems

Vending Machine

7

Transition System/Automaton/Model

A transition system is a tuple T = (S, Act, −→ , I, AP,L) where

• S set of states

• Act set of actios

• −→ ⊆ S ×Act× S transition relation

• I ⊆ S set of initial states

• AP set of proposicional variables (atomic propositions)

• L : S → 2AP labelling function that associates a state with a set of
propositions (that are true in that state)

Transition System/Automaton/Model

8

• if (s,α, s′) ∈ −→ we write s
α−→ s′

• T may be nondeterministic

• given s, L(s) gives the atomic propositions that are satisfied in s

• we can omit the actions Act if we are only interesed in the structure of
the system (i.e. in reachable states)

• we can omit the initial states

• then a model is just
M = (S, −→ , L)

Vending machine - II

S = {pay, select, soda, beer}
I = {pay}

Act = {insert coin, get soda, get beer, τ}
−→ = {(pay, insert coin, select), (select, τ, beer), . . .}

τ describes actions that are not relevant for the model (e.g. internal actions)

Vending machine– III

• We can assume that AP = S and L(s) = {s} for all s ∈ S

• Or, e.g., AP = {paid, drink} and L(pay) = ∅, L(select) = {paid},
L(soda) = L(beer) = {paid, drink}

9

Successors and Predecessors

Let T = (S,Act, −→ , I, AP, L). For s ∈ S (or C ⊆ S) and α ∈ Act, Post is
the set of direct α-sucessors and Pre of the predecessors:

Post(s,α) = {s′ ∈ S | s α−→ s′}
Pre(s,α) = {s′ ∈ S | s′ α−→ s}

Post(C,α) =

s∈C

Post(s,α)

Pre(C,α) =

s∈C

Pre(s,α)

Post(s) =

α∈Act

Post(s,α)

Pre(s) =

α∈Act

Pre(s,α)

Post(C) =

α∈Act

Post(C,α)

Pre(C) =

α∈Act

Pre(C,α)

Vending Machine III’

Compute Post(select) and Post(Pre(pay)). Post(select) = {beer, soda} and
Post(Pre(pay)) = Post({beer, soda}) = {pay}.

Terminal State

A state s ∈ S is terminal iff Post(s) = ∅.

• For a transition system modeling a sequential computer program, terminal
states occur as a natural phenomenon representing the termination of the
program.

• For reactive systems we usually assume that they do not have terminal
states or if they have it is not a desire property (deadlock).

10

Execution Fragment

Let T = (S,Act, −→ , I, AP, L).

• A finite execution fragment is a alternating sequence of states and actions
ρ such that

ρ = s0α1s1α2s2 . . .αnsn,

and si
αi+1−→ si+1 for all 0 ≤ i ≤ n, n ≥ 0. I.e.

ρ = s0
α1−→ s1

α2−→ s2 · · · αn−→ sn

• The execution fragment is infinite if it is a infinite sequence

ρ = s0α1s1α2s2 . . .

i.e.
ρ = s0

α1−→ s1
α2−→ s2 · · ·

Execution

A execution (fragment) is

• maximal if finite and ends in a terminal state; or if infinite

• initial it starts in an initial state i.e. s0 ∈ I

An execution is a fragment that is initial and maximal

Note: in general we will omit the actions αi (and denote it a path)

π = s0 −→ s1 −→ s2 · · ·

Vending Machine – IV

11

ρ1 = pay
coin−→ select

τ−→ soda
sget−→ pay

coin−→ select
τ−→ soda · · ·

ρ2 = select
τ−→ soda

sget−→ pay
coin−→ select

τ−→ soda · · ·

ρ3 = pay
coin−→ select

τ−→ soda
sget−→ pay

coin−→ select
τ−→ soda.

ρ1 is an execution but ρ3 is not because there is no terminal state; neither is ρ2
as it is not initial.

Reachable States

Let T = (S,Act, −→ , I, AP, L). A state s ∈ S is reachable if there exists a
initial and finite fragment execution that ends in s

ρ = s0
α1−→ s1

α2−→ s2 · · · αn−→ sn = s

Reach(T) is the set of all reachable states in T .

Sequential Hardware Circuits

A sequential circuit with one bit register r, 1 bit input x and 1 bit output y
where the control function for y is λy = ¬(x⊕ r) and the update function for r
is δr = x ∨ r.

Sequential Hardware Circuits

• Suppose the initial value r = 0,

• S = Eval(x, r) is the set of possible values of x and r

• I = {〈x = 0, r = 0〉, 〈x = 1, r = 0〉}

• Actions are irrelevant

12

• Transitions result from the evaluation of λy e δr. For instance

• 〈x = 0, r = 1〉 −→ 〈x = 1, r = 1〉 if the new input bit 1.

• AP = {x, y, z} and each state is labelled with the variables that are true in
that state. E.g. L(〈x = 0, r = 1〉) = {r} and L(〈x = 1, r = 1〉) = {x, y, r}

• We can express the property:”the output bit y is 1 infinitely often”

Every sequential circuit can be represented by a transition system.

Sequential Circuits (general)

Consider a sequential circuit with n input bits x1, . . . , xn, y1, . . . , ym output bits
and r1, . . . , rk one bit registers. The input bits x1, . . . xn have nondeterministic
values in {0, 1} and the registers rj have initial values c0,j ∈ {0, 1} for 1 ≤
j ≤ k. The transition system that represents this circuit is TS = (S,Act, −→
, I, AP, L) such that

• S = Eval(x1, . . . , xn, r1, . . . , rk)

• I = {(a1, . . . , an, c0,1, . . . , c0,k) | a1, . . . an ∈ {0, 1}}

• Act = {τ}

• AP = {x1, . . . , xn, y1, . . . , ym, r1, . . . , rk}

• L : S → 2AP . where

L(a1, . . . , an, c1, . . . , cn) = {x1 | ai = 1} ∪ {rj | cj = 1}
∪{yi | s |= λyi(a1, . . . , an, c1, . . . , ck) = 1},

where λyi
: S → {0, 1} is the Boolean function obtained from the circuit for each

yi. The transitions are determined by the transition function of the registers
δrj that results from the circuit such that

(a1, . . . , an, c1, . . . , ck)
τ−→ (a′1, . . . , a

′
n, c

′
1, . . . , c

′
k),

where c′j = δrj (a1, . . . , an, c1, . . . , ck) and a′is are nondeterministically decided.

Software Programs and Conditional Transitions

if x mod 2 = 1 then
x ← x+ 1

else
x ← 2x

• To model program fragments with data structures we need to consider
conditional transitions.

• For that one needs to associate a program graph (an operational seman-
tics) from which a transition system can be build

13

Program Graph

Let V ar be a set of typed variables which values are given by an evaluation
function η ∈ Eval(V ar), being dom(x) the type of x ∈ V ar. In a program
graph:

• nodes are control components, i.e. a location ℓ is the point of the program
that is being executed. In that point the evaluation function η simulates
the state of the memory

• edges are labelled with conditions over the variables and by actions;

• A condition g ∈ Cond(V ar) where Cond(V ar) is the set of Boolean con-
dictions over V ar with atomic formulae

x̄ ∈ D̄

being x̄ = (x1, . . . , xn) e D̄ ⊆ dom(x1)× · · ·× dom(xn).

• Let (−3 < x− x′ ≤ 5) ∧ (x ≤ 2x′) ∧ y = green then dom(x) = dom(x′) =
Z and e.g. dom(y) = {red, green}. The condition (−3 < x − x′ ≤ 5
corresponds to

(x, x′) ∈ {(n,m) ∈ N2 | −3 < n−m ≤ 5}

. And y = green to y ∈ {green}.

• the effect of act action (command) is a function

Effect : Act× Eval(V ar) → Eval(V ar)

.

• If α is x ← x+ 1 and η(x) = 3 then Effect(α, η)(x) = 4.

Program Graph

A program graph PG over a set V ar of typed variables is a tuple (Loc,Act, Effect, ↩→
, Loc0, g0)

• Loc, set of locations (program points)

• Act, set of actions (commands)

• Eval(V ar) set of variable evaluations

• Effect : Act× Eval(V ar) → Eval(V ar)

• ↩→ ⊆ Loc× Cond(V ar)×Act× Loc condicional transition relation

• Loc0 ⊆ Loc set of initial locations

14

• g0 ∈ Cond(V ar) initial condition

If (ℓ, g : α, ℓ′) ∈ ↩→ we write ℓ
g:α
↩→ ℓ′ and g is a guard, which can be omitted

if it is a tautology. If the guard is not true the transition is not taken and the
system blocks.

Vending Machine - V

Suppose that the machine counts the number of beverages and returns the
money if it is empty.

• V ar = {nsoda, nbeer} with domain {0, . . . ,max}.

• Then η ∈ Eval(V ar) is any function that assigns nsoda and nbeer a value
in that domain.

• Loc = {start, select}

• Loc0 = {start}

• Act = {bget, sget, coin, ret coin, refill}

•

Effect(coin, η) = Effect(ret coin, η) = η

Effect(sget, η) = η[nsoda = nsoda− 1]

Effect(bget, η) = η[nbeer = nbeer − 1]

Effect(refill, η) = η[nsoda = max, nbeer = max]

• g0 é (nsoda = max ∧ nbeer = max)

Vending Machine with counting

• we have the following transitions ↩→ :

• start
true:coin

↩→ select

• start
true:refill

↩→ start

• select
nsoda>0:sget

↩→ start

• select
nbeer>0:bget

↩→ start

• select
nsoda=0∧nbeer=0:ret coin

↩→ start

PG is not a transition system but can be unfolded to one given the values of
the variables (e.g. max = 2). Suppose that • is one beer and ◦ one soda.

15

Vending Machine with Counting

Transition System of a Program Graph

• the states are pairs of control components, i.e. locations ℓ and a evaluation
function η (it simulates the memory and the program counter). I.e 〈ℓ, η〉

• the initial states are the states that satisfy the initial condition

• AP has the locations (to know where the program is) and the Boolean
conditions over the variables. Ex (x ≤ 5) ∧ (ℓ ∈ {1, 2}

• The transitions are such that if ℓ
g:α
↩→ ℓ′ is a conditional transition in PG

and η |= g then there exists a transition by α from 〈ℓ, η〉 to 〈ℓ′, Effect(α, η)〉

Transition System of a Program Graph

Let PG = (Loc,Act, Effect, ↩→ , Loc0, g0), the transition system associated is
T (PG) = (S,Act, −→ , I, AP, L) where

• S = Loc× Eval(V ar)

• −→ ⊆ S ×Act× S defined by

ℓ
g:α
↩→ ℓ′ ∧ η |= g

〈ℓ, η〉 α−→ 〈ℓ′, Effect(α, η)〉

16

where η |= g means that g is true for the evaluation η.

• I = { 〈ℓ, η〉 | ℓ ∈ Loc0, η |= g0 }

• AP = Loc ∪ Cond(V ar)

• L(〈ℓ, η〉) = {ℓ} ∪ { g ∈ Cond(V ar) | η |= g }

Example

while x > 0 do
x ← x− 1
y ← y + 1

Build a program graph identifying locations and actions.

The program graph can be:

ℓ1 ℓ3

ℓ2

x ≤ 0:skip

x > 0:x ← x− 1

y ← y + 1

Let α = x ← x− 1, β = y ← y + 1

ℓ1 ℓ3

ℓ2

if x ≤ 0 then exit

if x > 0 then α

β

Example

Determine the transition system if we start with x = 2, y = 0 and α = x ← x−1,
β = y ← y + 1.

17

ℓ1 ℓ3

ℓ2

if x ≤ 0 then exit

if x > 0 then α

β

ℓ1, x = 2, y = 0

ℓ2, x = 1, y = 0

ℓ1, x = 1, y = 1

ℓ2, x = 0, y = 1

ℓ1, x = 0, y = 2

ℓ3, x = 0, y = 2

α

β

α

β

exit

Referências

[BA08] Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer,
2008.

[BBF+01] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen. Systems and Software Verification. Springer-
Verlag, 2001.

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen.
Principles of Model Checking. MIT Press, 2008.

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and reasoning about systems. CUP, 2004.

[Var94] M. Vardi. An automata-theoretic approach to linear temporal logic.
In Banff ’94, 1994.

[Var06] Moshe Vardi. Automata-theoretic techniques for temporal reasoning.
In Patrick Blackburn, Johan van Benthem, and Frank Wolter, edi-
tors, Handbook of Modal Logic. Elsevier, 2006.

[VW07] M. Vardi and T. Wilke. Automata: From logics to algorithms. In
WAL 07, pages 645–753, 2007.

18

