
Contents

1 Parallelism and Communication 1

1 Parallelism and Communication

Parallelism and Communication

In general, hardware and software systems are parallel and may communicate
among them. We want to define the system

T1||T2 · · · ||Tn

Parallelism can be modelled in several ways:

• Interleaving processes (asynchronous).

• Communication by shared variables

• Synchronous product

• Handshaking (actions allow to synchronise processes)

• Message passing - communication by channels

Concurrence and Interleaving

• nondeterministic alternation of actions of each component, Let P and Q
be two components

PPQQPQQPPPQQP . . .

• one processor executes several processes that do not interact

• there is a scheduler with a given strategy

• interleaving must be fair

Traffic lights in parallel streets

1

Transition System TL1|||TL2

• ||| interleaving operator

• ; sequential execution

• + nondeterministic choice Effect(α|||β, η) = Effect((α;β) + (β;α), η)

• •

|||

• •

α β

is the same as

•

••

•

α β

αβ

Example

Let α be x ← x + 1, β be y ← y − 2 and η = 〈x = 0, y = 7〉 then the diagram
of α|||β is

2

Note: This works because there is no shared variables. Otherwise the order
matters and one need to use program graphs, e.g. x ← x+ 1|||x ← 2x.

Interleaving of Transition Systems

Ti = (Si, Acti, −→ i, Ii, APi, Li), i = 1, 2

T1|||T2 = (S1 × S2, Act1 ∪Act2, −→ , I1 × I2, AP1 ∪AP2, L)

where the transition relations is defined by

s1
α−→ 1 s′1

〈s1, s2〉
α−→ 〈s′1, s2〉

s2
α−→ 2 s′2

〈s1, s2〉
α−→ 〈s1, s′2〉

and L(〈s1, s2〉) = L(s1) ∪ L(s2).

For PGi with V ar1 ∩ V ar2 = ∅, T (PG1)|||T (PG2) is the transition system for
simultaneous execution.

Note: corresponds to a cartesian product.

Communication with Shared Variables

For x ← x+ 1 ||| x ← 2x and x = 3

3 states are inconsistent! Solution: interleaving the program graphs and not
their transition systems (PG1|||PG2).

Example: let 〈x = 3〉

3

Critical Actions

• Actions that act on shared variables are called critical.

• Processes internal actions can use nondeterministic choices

• Critical actions cannot be execute in parallel, and there must exist some
scheduler strategy.

Atomicity

• α ∈ Act represented in a transitions system must be indivisible.

• E.g. if α is a below it cannot be divisible (i.e corresponds only to one
transition)

If the following is a α action it cannot be splitetd by a scheduller.

x ← x+ 1;
y ← 2x+ 1;
if x ≤ 12 then

z ← (x− z)2 × y

4

Effect(α, η)(x) = η(x) + 1

Effect(α, η)(y) = 2(η(x) + 1) + 1

Effect(α, η)(z) =

(η(x)− η(z))2 × η(y), se η(x) ≤ 12

η(z), caso contrário

Mutual Exclusion

• Whenever concurrent processes share a resource it may be necessary to
ensure that they do not have access to it at the same time. That is called
the critical section

• Examples:

– shared variables: simultaneous update cannot occur

– access to devices: e.g. a printer

• Problem: find a protocol for determining which process is allowed to enter
its critical section

• Expected properties:

• Safety: Only one process is in its critical section at any time

• Liveness: Whenever any process requests to enter in its critical section
will eventually be permitted to enter

• Non-blocking: A process can always request to enter its critical section

Mutual Exclusion with Semaphores

Two processes P1 and P2 want to access a critical section. Pi:

while True do
non critical actions
await y > 0 do y ← y − 1 od
critical actions
y ← y + 1

5

Shared variable y is a binary semaphore: if y = 0 one of the processes is in the
critical zone; if y = 1 the critical zone is free.

PG1|||PG2

Forbidden Location 〈crit1, crit2〉

T (PG1|||PG2)

Initially y = 1. From 18 states, only 8 states are reachable:

〈noncrit1, noncrit2, y = 1〉 〈noncrit1, wait2, y = 1〉
〈wait1, noncrit2, y = 1〉 〈wait1, wait2, y = 1〉
〈noncrit1, crit2, y = 0〉 〈crit1, noncrit2, y = 0〉

〈wait1, crit2, y = 0〉 〈crit1, wait2, y = 0〉

Many states are not reachable, including 〈crit1, crit2, y = . . .〉 thus it satisfies
the mutual exclusion property.

6

T (PG1|||PG2)

How to decide how to leave the state〈wait1, wait2, y = 1〉?

Synchronous Product

Ti = (Si, Acti, −→ i, Ii, APi, Li) for i = 1, 2

∗ : Act1 ×Act2 → Act

(α,β) → α ∗ β

T1 ⊗ T2 = (S1 × S2, Act, −→ , I1 × I2, AP1 ∪AP2, L)

where the transition functions is defined by

s1
α−→ 1 s′1 ∧ s2

β−→ 2 s′2

〈s1, s2〉
α∗β−→ 〈s′1, s′2〉

and L(〈s1, s2〉) = L(s1) ∪ L(s2).

Synchronous Product of Circuits

7

Synchronous Product of Circuits

Synchronous Product of Circuits(general)

8

Handshaking : Synchronous Message Passing

• concurrent processes interact in a synchronous fashion

• both processes share a set of actions H ⊆ Acti (handshake) and has to
execute the same action α ∈ H simultaneously

• other actions may be executed in a interleaved fashion

• corresponds also to a channel of size 0 (synchronous message passing)

Booking System- at a supermarket cashier

• Bar code reader (product code) (BCR)

• Booking program (price) (BP)

• receipt printer (Printer)

• BCR||BP ||Printer

9

Handshaking-Synchronous Message Passing

Ti = (Si, Acti, −→ i, Ii, APi, Li) for i = 1, 2 e H ⊆ Act1 ∩Act2 and τ /∈ H.

T1||HT2 = (S1 × S2, Act1 ∪Act2, −→ , I1 × I2, AP1 ∪AP2, L)

where

• L(〈s1, s2〉) = L(s1) ∪ L(s2)

• Se α /∈ H,

s1
α−→ 1 s′1

〈s1, s2〉
α−→ 〈s′1, s2〉

s2
α−→ 2 s′2

〈s1, s2〉
α−→ 〈s1, s′2〉

• se α ∈ H
s1

α−→ 1 s′1 ∧ s2
α−→ 2 s′2

〈s1, s2〉
α−→ 〈s′1, s′2〉

Properties of ||H

• if H = Act1 ∩Act2, T1||T2

• T1||∅T2 = T1|||T2

• T1||HT2 = T2||HT1 (commutative)

• in general T1||H(T2||H′T3) ∕= (T1||HT2)||H′T3) (is not associative)

• If H = H ′ it is associative

T = T1||HT2||HT3 · · · ||HTn with H ⊆ Act1 ∩ · · · ∩Actn

• models broadcasting where one process commuticates with several pro-
cesses at the same time

• ||H generalizes to T1||T2 . . . ||Tn, with Hi,j = Acti∩Actj and Hi,j∩Actk =
∅ for k /∈ {i, j}.

10

Mutual Exclusion with Arbiter

Process Pi

while True do
noncricital actions
request
critical actions
release

noncriti

waiti

criti

request

release

Process Arbiter selects P1 or P2 nondeterministically

unlock

lock

requestrelease

(T1|||T2)||SynArbiter

where Syn = {request, release}

Mutual Exclusion with Arbiter (simplified without wait)

11

Railroad Crossing

• when a train approaches sends a signal for the gate to close

• the gate opens after the train sends an exit signal

• we want that the gates ar closed when the train is passing

• Train||Gate||Controler

Is the railroad crossing safe?

12

No, we need to have real time restrictions.

See more:[BKL08, Chap. 2.2.1-2.2.3,2.2.6]

References

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen.
Principles of Model Checking. MIT Press, 2008.

13

