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1 Parallelism and Communication

Parallelism and Communication

In general, hardware and software systems are parallel and may communicate
among them. We want to define the system
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Parallelism can be modelled in several ways:

e Interleaving processes (asynchronous).
e Communication by shared variables

e Synchronous product

Handshaking (actions allow to synchronise processes)
e Message passing - communication by channels
Concurrence and Interleaving

e nondeterministic alternation of actions of each component, Let P and @Q
be two components
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e one processor executes several processes that do not interact
e there is a scheduler with a given strategy

e interleaving must be fair

Traffic lights in parallel streets



TrLight, B

(69 TrLighty B

Transition System T'L4|||T Lo

TrLighty ||| TrLights

/.

r(’d qr(’(’n
\ qr(’m green

green red

e ||| interleaving operator
e : sequential execution
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Example

Let abex <+ xz+1,Bbey« y—2and n=(x=0,y="7) then the diagram

of al||B is

a || B =




Note: This works because there is no shared variables. Otherwise the order
matters and one need to use program graphs, e.g. x + = + 1|||z + 2z.

Interleaving of Transition Systems

T, = (Si,ACtZ‘, — i7IiaAPi,Li), 1=1,2

T1|HT2 = (Sl X SQ,ACtl UACtQ, — ,Il X .[27AP1 UAPQ,L)

where the transition relations is defined by
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(s1,52) = <5/1752> (s1,82) = <51,3'2>

and L((s1, $2)) = L(s1) U L(s2

).
For PG; with Vary NVary = 0, T(PG1)|||T(PGs) is the transition system for
simultaneous execution.

Note: corresponds to a cartesian product.

Communication with Shared Variables

Fore+z+1|||]z+2xand x =3

3 states are inconsistent!  Solution: interleaving the program graphs and not
their transition systems (PG1]|||PG2).

Example: let (z = 3)
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Critical Actions

e Actions that act on shared variables are called critical.
e Processes internal actions can use nondeterministic choices
e Critical actions cannot be execute in parallel, and there must exist some

scheduler strategy.

Atomicity

e « € Act represented in a transitions system must be indivisible.

e E.g. if a is a below it cannot be divisible (i.e corresponds only to one
transition)

If the following is a « action it cannot be splitetd by a scheduller.
r—zx+1;
Yy 2z + 1;
if x <12 then
2 (r—2)2xy
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Mutual Exclusion

Whenever concurrent processes share a resource it may be necessary to
ensure that they do not have access to it at the same time. That is called
the critical section

Examples:

— shared variables: simultaneous update cannot occur

— access to devices: e.g. a printer

Problem: find a protocol for determining which process is allowed to enter
its critical section

Expected properties:
Safety: Only one process is in its critical section at any time

Liveness: Whenever any process requests to enter in its critical section
will eventually be permitted to enter

Non-blocking: A process can always request to enter its critical section

Mutual Exclusion with Semaphores

Two processes P; and P, want to access a critical section. P;:

while True do

await y >0doy<+y—1od
critical actions
y<—y+1

P, loop forever

: (* noncritical actions *)
request
critical section
release

: (* noncritical actions *)
end loop
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Shared variable y is a binary semaphore: if y = 0 one of the processes is in the
critical zone; if y = 1 the critical zone is free.
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T (PG| PGy)

Initially y = 1. From 18 states, only 8 states are reachable:

(noncrity, noncrite,y = 1 noncrity, waits,y = 1)

I

(waity, noncrity,y = 1) (waity, waite,y = 1)

(noncrity, crity,y = 0) (erity, noncerity,y = 0)
) A

(waity, erita,y =0 crity, waits, y = 0)

Many states are not reachable, including (crity, crite,y = ...) thus it satisfies
the mutual exclusion property.
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Synchronous Product
T, = (Si,ACti, — i,Ii,APi,Li) for i = 1,2
x: Act; X Acty —  Act
(a,8) = axp

T1®T2:(Sl XSQ,ACt, —),Il XIQ,APluAPQ,L)

where the transition functions is defined by
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(s1,82) “3 (s}, 55)
and L({s1, $2)) = L(s1) U L(s2).

Synchronous Product of Circuits
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Synchronous Product of Circuits(general)
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Handshaking: Synchronous Message Passing

e concurrent processes interact in a synchronous fashion

e both processes share a set of actions H C Act; (handshake) and has to
execute the same action av € H simultaneously

e other actions may be executed in a interleaved fashion

e corresponds also to a channel of size 0 (synchronous message passing)

Booking System- at a supermarket cashier

e Bar code reader (product code) (BCR)
e Booking program (price) (BP)
e receipt printer (Printer)

e BCR||BP||Printer

store scan  prt cmd store print prt cmd
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Handshaking-Synchronous Message Passing
T, = (S;, Act;, — 4, i, AP, L) for i = 1,2 e H C Act; N Acty and 7 ¢ H.
Ty||gTe = (S1 x Sa, Acty U Acty, — ;11 X 1o, APy U AP, L)
where
o L((s1,s2)) = L(s1)U L(s2)

e Sea¢ H
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S1—>181 82—>282

(s1,82) = (sh,s2) (s1,82) —=» (s1,s})
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<817 82> i> <Sllv SI2>

Properties of ||y

o if H = Act; N Acty, Th||To

o ThllpT> = Thll|T>

o T||gTo = To||gTy (commutative)

e in general T1||g (2| T3) # (Th||aT2)||mT3) (is not associative)

o If H = H' it is associative
T:T1||HT2||HT3||HTn WithHQAct1ﬂ~~ﬁActn

e models broadcasting where one process commuticates with several pro-
cesses at the same time

e ||x generalizes to Th||T5 . .. || Ty, with H; ; = Act,NAct; and H; ;N Acty, =
() for k & {i,5}.
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Mutual Exclusion with Arbiter

Process P;

while True do
noncricital actions
request
critical actions
release

— Cnonerit; >

1‘01(};15(}

request

— Cunlock>
release request

Process Arbiter selects P, or P, nondeterministically @

(T || T2)|| syn Arbiter

where Syn = {request, release}

noncrit; noncrity

release

noncntl walty
unlock

noncrit

crity
loc

release

waltl crity
ock

release request

cr|t1 wa|t2
Ioc

Mutual Exclusion with Arbiter (simplified without wait)
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T H| T: Arbiter:

release

noncrit; noncrity

crit; noncrity noncrit; crity

request

crity crity

(T] H| T’_)) H Arbiter :

=Y
[noncritl noncrity unlock]

release

noncrit; crity lock

release

crit; noncrity lock

request request

Railroad Crossing

e when a train approaches sends a signal for the gate to close
e the gate opens after the train sends an exit signal
e we want that the gates ar closed when the train is passing

e Train||Gate||Controler

Y approach Y B
—approac
approach Q raise

lower raise

Train Controller Gate

Is the railroad crossing safe?

12



N
~(Yfar.0,up) )
approach

(({near, 1, up) —
lower enter

—

approach

(near,2, doun) tower __{_{in. 1. up) ) )
e /

enter emit

({in, 2, down)) ({far, 1, up) )

cxit approach lower
raise , ]
T (ar, 3, down)) (Gar, 2, down))
‘approar:h
exit
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[enter, raise
{
I 7 S
({in, 3, down)) (near,0, up) )
exit enter

Tin,0, up)

No, we need to have real time restrictions.
See more:[BKLO08, Chap. 2.2.1-2.2.3,2.2.6]

References

[BKLO8] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen.
Principles of Model Checking. MIT Press, 2008.

13



