Contents

1 Parallelism and Communication 1

1 Parallelism and Communication

Parallelism and Communication

In general, hardware and software systems are parallel and may communicate
among them. We want to define the system

T[Ty - ||T
Parallelism can be modelled in several ways:

e Interleaving processes (asynchronous).
e Communication by shared variables

e Synchronous product

Handshaking (actions allow to synchronise processes)
e Message passing - communication by channels
Concurrence and Interleaving

e nondeterministic alternation of actions of each component, Let P and @Q
be two components

PPQQPQQPPPQQP...

e one processor executes several processes that do not interact
e there is a scheduler with a given strategy

e interleaving must be fair

Traffic lights in parallel streets

TrLight, B

(69 TrLighty B

Transition System T'L4|||T Lo

TrLighty ||| TrLights

/.

r(’d qr(’(’n
\ qr(’m green

green red

e ||| interleaving operator
e : sequential execution

e + nondeterministic choice Ef fect(al|||8,n) = Ef fect((«; 8) + (B;), n
AL
a | B ®\ /®

® ® s the same as

Example

Let abex <+ xz+1,Bbey« y—2and n=(x=0,y="7) then the diagram

of al||B is

a || B =

Note: This works because there is no shared variables. Otherwise the order
matters and one need to use program graphs, e.g. x + = + 1|||z + 2z.

Interleaving of Transition Systems

T, = (Si,ACtZ‘, — i7IiaAPi,Li), 1=1,2

T1|HT2 = (Sl X SQ,ACtl UACtQ, — ,Il X .[27AP1 UAPQ,L)

where the transition relations is defined by

X / X /
1 — 181 S2 — 2 89

(s1,52) = <5/1752> (s1,82) = <51,3'2>

and L((s1, $2)) = L(s1) U L(s2

).
For PG; with Vary NVary = 0, T(PG1)|||T(PGs) is the transition system for
simultaneous execution.

Note: corresponds to a cartesian product.

Communication with Shared Variables

Fore+z+1|||]z+2xand x =3

3 states are inconsistent! Solution: interleaving the program graphs and not
their transition systems (PG1]|||PG2).

Example: let (z = 3)

PG - Y PG, : Y
::.vm::Q r ri=x+1
PG1 |||PG2
3
(Uy
r:=2-x
k/l Uy
ri=x+1
b

Critical Actions

e Actions that act on shared variables are called critical.
e Processes internal actions can use nondeterministic choices
e Critical actions cannot be execute in parallel, and there must exist some

scheduler strategy.

Atomicity

e « € Act represented in a transitions system must be indivisible.

e E.g. if a is a below it cannot be divisible (i.e corresponds only to one
transition)

If the following is a « action it cannot be splitetd by a scheduller.
r—zx+1;
Yy 2z + 1;
if x <12 then
2 (r—2)2xy

Ef fect(a,n)(x) n
Effect(a,n)(y) = 2

Effect(a,n)(z) = {

x)+1
n(z)+1)+1

(n(z) = n(2))? x 1(y), se n(z) < 12
7(z), caso contrario

(
(

Mutual Exclusion

Whenever concurrent processes share a resource it may be necessary to
ensure that they do not have access to it at the same time. That is called
the critical section

Examples:

— shared variables: simultaneous update cannot occur

— access to devices: e.g. a printer

Problem: find a protocol for determining which process is allowed to enter
its critical section

Expected properties:
Safety: Only one process is in its critical section at any time

Liveness: Whenever any process requests to enter in its critical section
will eventually be permitted to enter

Non-blocking: A process can always request to enter its critical section

Mutual Exclusion with Semaphores

Two processes P; and P, want to access a critical section. P;:

while True do

await y >0doy<+y—1od
critical actions
y<—y+1

P, loop forever

: (* noncritical actions *)
request
critical section
release

: (* noncritical actions *)
end loop

PGy PGy :

noncrity noncrity

Jponeriu) [ronerits)
i } / v

yim gl v=y+1 (it)

Loy >0: 5 Voy>0:
Loy=y—l Ly=y—1

Shared variable y is a binary semaphore: if y = 0 one of the processes is in the
critical zone; if y = 1 the critical zone is free.

PG |[|PG

I)Gl]H I)G2 :

yi=y+l T Y=yl
A"’ \\‘
[(wain , noncrity) 1 ,[(noncrity, waits) J
y>0:) Y= ;1/+1\‘f"/‘/~\.__ y>0: |
y=y—1 “a AN e yi=y—1

((crity, noncrity)] [(waity , waits)] [(11011(:1‘1'“,(:1‘1%2) }

y>0:
yi=y—1

(waity, crito)

(crity, waits)

yi=y+l {’ b t/ = y+l

crity, crity)

Forbidden Location {(crity, crita)

T (PG| PGy)

Initially y = 1. From 18 states, only 8 states are reachable:

(noncrity, noncrite,y = 1 noncrity, waits,y = 1)

I

(waity, noncrity,y = 1) (waity, waite,y = 1)

(noncrity, crity,y = 0) (erity, noncerity,y = 0)
) A

(waity, erita,y =0 crity, waits, y = 0)

Many states are not reachable, including (crity, crite,y = ...) thus it satisfies
the mutual exclusion property.

T (PG| PGa)

(n1,n2,y=1)

(“)1’ - Jl g y:l>

(w1, w2,y=1)

How to decide how to leave the state(waity, waity,y = 1)7

Synchronous Product
T, = (Si,ACti, — i,Ii,APi,Li) for i = 1,2
x: Act; X Acty — Act
(a,8) = axp

T1®T2:(Sl XSQ,ACt, —),Il XIQ,APluAPQ,L)

where the transition functions is defined by

Q B
81—>18/1/\82—)28/2

(s1,82) “3 (s}, 55)
and L({s1, $2)) = L(s1) U L(s2).

Synchronous Product of Circuits

TS : TS; :

Synchronous Product of Circuits

TS : TSy :
B

TS, ® TSy :

Synchronous Product of Circuits(general)

X1, .--9Xp Yi,---3¥Yn wy, ..., w; 2]y .03 Zf

n,...,rg t,...,ty

X1y ..., Xn Yi,---s¥n
GG

Wi,...,W; Z1y---5, %

L)

Mny,...;fct,...,ty

Handshaking: Synchronous Message Passing

e concurrent processes interact in a synchronous fashion

e both processes share a set of actions H C Act; (handshake) and has to
execute the same action av € H simultaneously

e other actions may be executed in a interleaved fashion

e corresponds also to a channel of size 0 (synchronous message passing)

Booking System- at a supermarket cashier

e Bar code reader (product code) (BCR)
e Booking program (price) (BP)
e receipt printer (Printer)

e BCR||BP||Printer

store scan prt cmd store print prt cmd

store

Handshaking-Synchronous Message Passing
T, = (S;, Act;, — 4, i, AP, L) for i = 1,2 e H C Act; N Acty and 7 ¢ H.
Ty||gTe = (S1 x Sa, Acty U Acty, — ;11 X 1o, APy U AP, L)
where
o L((s1,s2)) = L(s1)U L(s2)

e Sea¢ H
’ « «
/ /
S1—>181 82—>282

(s1,82) = (sh,s2) (s1,82) —=» (s1,s})

escacH
e ’ o ’
814)151/\824>282

<817 82> i> <Sllv SI2>

Properties of ||y

o if H = Act; N Acty, Th||To

o ThllpT> = Thll|T>

o T||gTo = To||gTy (commutative)

e in general T1||g (2| T3) # (Th||aT2)||mT3) (is not associative)

o If H = H' it is associative
T:T1||HT2||HT3||HTn WithHQAct1ﬂ~~ﬁActn

e models broadcasting where one process commuticates with several pro-
cesses at the same time

e ||x generalizes to Th||T5 . .. || Ty, with H; ; = Act,NAct; and H; ;N Acty, =
() for k & {i,5}.

10

Mutual Exclusion with Arbiter

Process P;

while True do
noncricital actions
request
critical actions
release

— Cnonerit; >

1‘01(};15(}

request

— Cunlock>
release request

Process Arbiter selects P, or P, nondeterministically @

(T || T2)|| syn Arbiter

where Syn = {request, release}

noncrit; noncrity

release

noncntl walty
unlock

noncrit

crity
loc

release

waltl crity
ock

release request

cr|t1 wa|t2
Ioc

Mutual Exclusion with Arbiter (simplified without wait)

11

T H| T: Arbiter:

release

noncrit; noncrity

crit; noncrity noncrit; crity

request

crity crity

(T] H| T’_)) H Arbiter :

=Y
[noncritl noncrity unlock]

release

noncrit; crity lock

release

crit; noncrity lock

request request

Railroad Crossing

e when a train approaches sends a signal for the gate to close
e the gate opens after the train sends an exit signal
e we want that the gates ar closed when the train is passing

e Train||Gate||Controler

Y approach Y B
—approac
approach Q raise

lower raise

Train Controller Gate

Is the railroad crossing safe?

12

N
~(Yfar.0,up))
approach

(({near, 1, up) —
lower enter

—

approach

(near,2, doun) tower __{_{in. 1. up)))
e /

enter emit

({in, 2, down)) ({far, 1, up))

cxit approach lower
raise ,]
T (ar, 3, down)) (Gar, 2, down))
‘approar:h
exit
/" (near, 3, doun)
[enter, raise
{
I 7 S
({in, 3, down)) (near,0, up))
exit enter

Tin,0, up)

No, we need to have real time restrictions.
See more:[BKLO08, Chap. 2.2.1-2.2.3,2.2.6]

References

[BKLO8] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen.
Principles of Model Checking. MIT Press, 2008.

13

