Contents

1 Parallelism and Communication

1 Parallelism and Communication

Parallelism and Communication

In general, hardware and software systems are parallel and may communicate among them. We want to define the system

$$T_1||T_2\cdots||T_n$$

Parallelism can be modelled in several ways:

- Interleaving processes (asynchronous).
- Communication by shared variables
- Synchronous product
- Handshaking (actions allow to synchronise processes)
- Message passing communication by channels

Concurrence and Interleaving

 $\bullet\,$ nondeterministic alternation of actions of each component, Let P and Q be two components

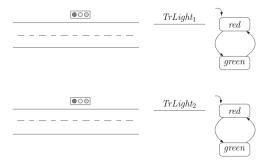
$PPQQPQQPPPQQP \dots$

- one processor executes several processes that do not interact
- there is a scheduler with a given strategy
- interleaving must be *fair*

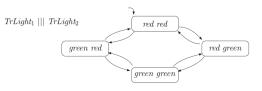
Traffic lights in parallel streets

1

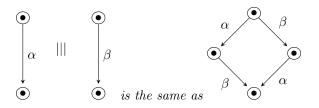
1



Transition System $TL_1|||TL_2|$

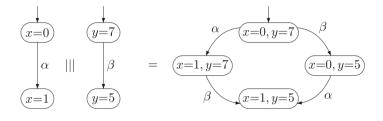


- ||| interleaving operator
- ; sequential execution
- + nondeterministic choice $Effect(\alpha || \beta, \eta) = Effect((\alpha; \beta) + (\beta; \alpha), \eta)$



Example

Let α be $x \leftarrow x+1$, β be $y \leftarrow y-2$ and $\eta = \langle x=0, y=7 \rangle$ then the diagram of $\alpha |||\beta$ is



Note: This works because there is no shared variables. Otherwise the order matters and one need to use program graphs, e.g. $x \leftarrow x + 1 ||| x \leftarrow 2x$.

Interleaving of Transition Systems

 $T_i = (S_i, Act_i, \longrightarrow i, I_i, AP_i, L_i), i = 1, 2$

$$T_1|||T_2 = (S_1 \times S_2, Act_1 \cup Act_2, \longrightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where the transition relations is defined by

$$\frac{s_1 \stackrel{\alpha}{\longrightarrow} _1 s'_1}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s'_1, s_2 \rangle} \quad \frac{s_2 \stackrel{\alpha}{\longrightarrow} _2 s'_2}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s_1, s'_2 \rangle}$$

and $L(\langle s_1, s_2 \rangle) = L(s_1) \cup L(s_2)$.

For PG_i with $Var_1 \cap Var_2 = \emptyset$, $T(PG_1)|||T(PG_2)$ is the transition system for simultaneous execution.

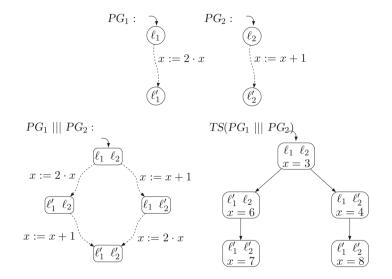
Note: corresponds to a cartesian product.

Communication with Shared Variables

For $x \leftarrow x + 1 \mid\mid\mid x \leftarrow 2x$ and x = 3

3 states are inconsistent! Solution: interleaving the program graphs and not their transition systems $(PG_1|||PG_2)$.

Example: let $\langle x = 3 \rangle$



Critical Actions

- Actions that act on shared variables are called *critical*.
- Processes internal actions can use nondeterministic choices
- Critical actions cannot be execute in parallel, and there must exist some scheduler strategy.

Atomicity

- $\alpha \in Act$ represented in a transitions system must be indivisible.
- E.g. if α is a below it cannot be divisible (i.e corresponds only to one transition)

If the following is a α action it cannot be splited by a scheduller.

 $\begin{array}{l} x \leftarrow x+1;\\ y \leftarrow 2x+1;\\ \text{if } x \leq 12 \text{ then}\\ z \leftarrow (x-z)^2 \times y \end{array}$

$$\begin{split} Effect(\alpha,\eta)(x) &= \eta(x) + 1\\ Effect(\alpha,\eta)(y) &= 2(\eta(x)+1) + 1\\ Effect(\alpha,\eta)(z) &= \begin{cases} (\eta(x) - \eta(z))^2 \times \eta(y), \text{ se } \eta(x) \le 12\\ \eta(z), \text{ caso contrário} \end{cases} \end{split}$$

Mutual Exclusion

- Whenever concurrent processes share a resource it may be necessary to ensure that they do not have access to it at the same time. That is called the *critical section*
- Examples:
 - shared variables: simultaneous update cannot occur
 - access to devices: e.g. a printer
- Problem: find a protocol for determining which process is allowed to enter its critical section
- Expected properties:
- Safety: Only one process is in its critical section at any time
- *Liveness*: Whenever any process requests to enter in its critical section will eventually be permitted to enter
- Non-blocking: A process can always request to enter its critical section

Mutual Exclusion with Semaphores

Two processes P_1 and P_2 want to access a critical section. P_i :

```
while True do

non critical actions

await y > 0 do y \leftarrow y - 1 od

critical actions

y \leftarrow y + 1

P_i loop forever

\vdots (* noncritical actions *)

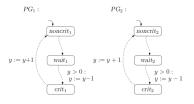
request

critical section

release

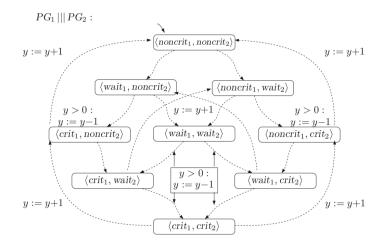
\vdots (* noncritical actions *)
```

end loop



Shared variable y is a binary semaphore: if y = 0 one of the processes is in the critical zone; if y = 1 the critical zone is free.

$PG_1 || |PG_2$



Forbidden Location $\langle crit_1, crit_2 \rangle$

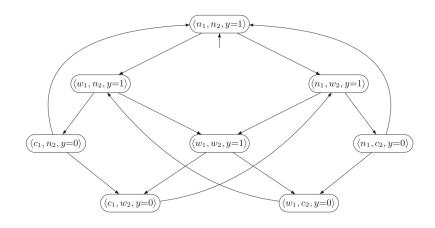
$T(PG_1|||PG_2)$

Initially y = 1. From 18 states, only 8 states are reachable:

$\langle noncrit_1, noncrit_2, y = 1 \rangle$	$\langle noncrit_1, wait_2, y = 1 \rangle$
$\langle wait_1, noncrit_2, y = 1 \rangle$	$\langle wait_1, wait_2, y = 1 \rangle$
$\langle noncrit_1, crit_2, y = 0 \rangle$	$\langle crit_1, noncrit_2, y = 0 \rangle$
$\langle wait_1, crit_2, y = 0 \rangle$	$\langle crit_1, wait_2, y = 0 \rangle$
(1) 1/0 /	1 1 1 1 1 1

Many states are not reachable, including $\langle crit_1, crit_2, y = \ldots \rangle$ thus it satisfies the *mutual exclusion* property.

 $T(PG_1|||PG_2)$



How to decide how to leave the state $\langle wait_1, wait_2, y = 1 \rangle$?

Synchronous Product

$$\begin{split} T_i &= (S_i, Act_i, \ \longrightarrow \ _i, I_i, AP_i, L_i) \text{ for } i = 1, 2 \\ &* : Act_1 \times Act_2 \ \ \rightarrow \ Act \\ &(\alpha, \beta) \ \ \mapsto \ \ \alpha * \beta \end{split}$$

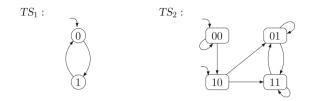
$$T_1 \otimes T_2 = (S_1 \times S_2, Act, \longrightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where the transition functions is defined by

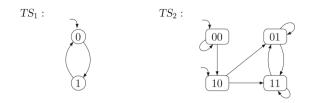
$$\frac{s_1 \ \longrightarrow \ _1 \ s'_1 \ \land \ s_2 \ \longrightarrow \ _2 \ s'_2}{\langle s_1, s_2 \rangle \ \xrightarrow{\alpha * \beta} \ \langle s'_1, s'_2 \rangle}$$

and $L(\langle s_1, s_2 \rangle) = L(s_1) \cup L(s_2).$

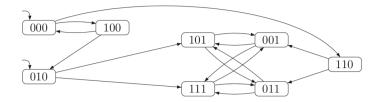
Synchronous Product of Circuits



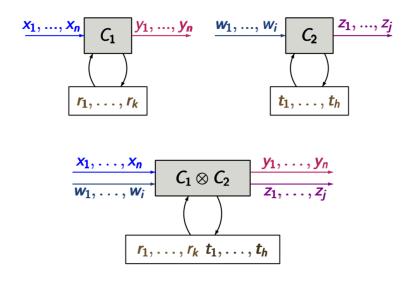
Synchronous Product of Circuits



 $TS_1 \otimes TS_2$:



Synchronous Product of Circuits(general)

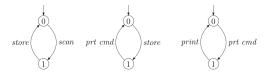


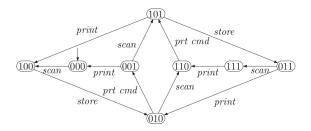
Handshaking: Synchronous Message Passing

- concurrent processes interact in a synchronous fashion
- both processes share a set of actions $H \subseteq Act_i$ (handshake) and has to execute the same action $\alpha \in H$ simultaneously
- other actions may be executed in a interleaved fashion
- corresponds also to a channel of size 0 (synchronous message passing)

Booking System- at a supermarket cashier

- Bar code reader (product code) (BCR)
- Booking program (price) (BP)
- receipt printer (Printer)
- BCR||BP||Printer





Handshaking-Synchronous Message Passing

 $T_i = (S_i, Act_i, \longrightarrow i, I_i, AP_i, L_i) \text{ for } i = 1, 2 \in H \subseteq Act_1 \cap Act_2 \text{ and } \tau \notin H.$

$$T_1||_H T_2 = (S_1 \times S_2, Act_1 \cup Act_2, \longrightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where

- $L(\langle s_1, s_2 \rangle) = L(s_1) \cup L(s_2)$
- Se $\alpha \notin H$,

$$\frac{s_1 \stackrel{\alpha}{\longrightarrow} {}_1 s'_1}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s'_1, s_2 \rangle} \frac{s_2 \stackrel{\alpha}{\longrightarrow} {}_2 s'_2}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s_1, s'_2 \rangle}$$

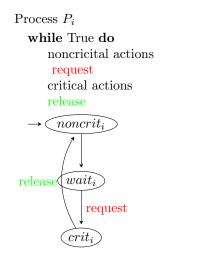
• se $\alpha \in H$

$$\frac{s_1 \stackrel{\alpha}{\longrightarrow} _1 s'_1 \wedge s_2 \stackrel{\alpha}{\longrightarrow} _2 s'_2}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s'_1, s'_2 \rangle}$$

Properties of $||_H$

- if $H = Act_1 \cap Act_2, T_1 || T_2$
- $T_1||_{\emptyset}T_2 = T_1|||T_2$
- $T_1||_H T_2 = T_2||_H T_1$ (commutative)
- in general $T_1||_H(T_2||_{H'}T_3) \neq (T_1||_HT_2)||_{H'}T_3)$ (is not associative)
- If H = H' it is associative
 - $T = T_1 ||_H T_2 ||_H T_3 \cdots ||_H T_n$ with $H \subseteq Act_1 \cap \cdots \cap Act_n$
- models *broadcasting* where one process commuticates with several processes at the same time
- $||_H$ generalizes to $T_1||T_2...||T_n$, with $H_{i,j} = Act_i \cap Act_j$ and $H_{i,j} \cap Act_k = \emptyset$ for $k \notin \{i, j\}$.

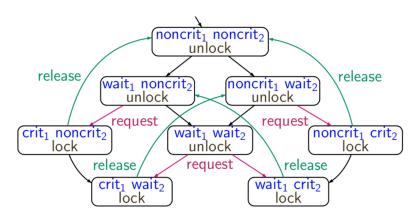
Mutual Exclusion with Arbiter



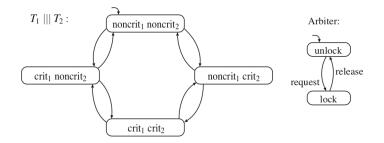
Process Arbiter selects P_1 or P_2 nondeterministically

 $(T_1|||T_2)||_{Syn}Arbiter$

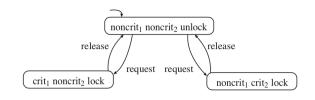
where $Syn = \{request, release\}$



Mutual Exclusion with Arbiter (simplified without wait)

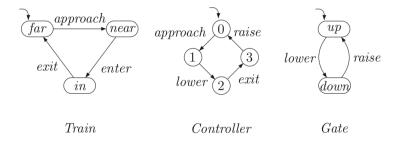


 $(T_1 ||| T_2) ||$ Arbiter :

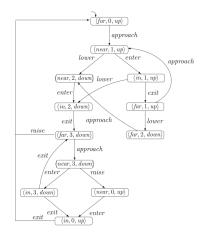


Railroad Crossing

- when a train approaches sends a signal for the gate to close
- the gate opens after the train sends an exit signal
- we want that the gates ar closed when the train is passing
- $\bullet \ Train ||Gate||Controler$



Is the railroad crossing safe?



No, we need to have real time restrictions. See more:[BKL08, Chap. 2.2.1-2.2.3,2.2.6]

References

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of Model Checking. MIT Press, 2008.