
Session 3
Temporal Logics LTL

Contents

1 Linear Time 1

2 Linear-time Temporal Logic, LTL 3

1 Linear Time

Model Checking

s0
p, q

s1

q, r

s2

r

• Given a model M (transition system),

• a (initial) state s and a formula ϕ of a temporal logic (specification),

• the aim is

• M, s |= ϕ

• i.e. ϕ is satisfied in the state s of M

• a model checker is a program that decides this problem (i.e. either answers
yes or no).

Examples of Properties

Propositional variables can be identified with states of reactive systems.

• It is impossible to get to a state where started holds, but ready does not
hold.

• For any state, if request occurs, then it will eventually be acknowledged
( ack).

• A certain process is enabled infinitely often on every execution.

• A process will eventually be permanently deadlocked.

1



• If a process is enabled infinitely often, then it runs infinitely often.

• From any state it is possible to get to a restart state.

Time

Linear-Time: Time is a set of paths and a path is a sequence of states

‘

Branching-time: Time is represented by a computation tree where the root is
the present moment and each path from the root is an execution (sequence of
states).

Computation Tree

Path/Execution

T = (S,Act, −→ , AP, I, L) is a transition system, a path is a infinity sequence
of states s1, s2, s3, . . . in S, such that i ≥ 1, si ∈ Pre(si+1). A path π is
represented by

π = s1 −→ s2 −→ · · · .

or
π = s1s2 · · · .

Given a path π,

• π[i] = si (i.e. the ith state in the path)

• π[i . . .] is the suffix that starts at si.

The set of paths from a state s can be seen as an infinite computation tree.

2



p, q

rr

rq, r

p, q

q, r

s0

s2

s2

s2

s0

s1

s1

r

s2

r

s2

Temporal Logics

Properties can be specified using first-order logic but it is not efficient.

Temporal logics

• are extensions of propositional and first-order logics

• use modalities to refer to the behaviour of the executions of reactive sys-
tems

• linear(-time) temporal logic (LTL) allows quantification over a path (path
formulae)

• computation tree logic (CTL) allows quantification on the paths from a
given state but in a restricted way (state formulae)

• logic CTL* allows unbounded quantification over path formulae. Includes
LTL and CTL.

2 Linear-time Temporal Logic, LTL

Linear-time Temporal Logic, LTL

3



AP, set of propositional variables p, q, r, s, . . .

ϕ ::= false | true | p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ) |
(Xϕ) | (Fϕ) | (Gϕ) | (ϕUϕ) | (ϕWϕ) | (ϕRϕ)

Xϕ ϕ holds in the neXt state (or ©ϕ)

Fϕ ϕ holds in some Future state (or ✸ϕ, eventually)

Gϕ ϕ holds Globally in every state (or □ϕ, always)

ϕUψ ϕ holds Until ψ

ϕWψ ϕ holds Until ψ or always (Weak until)

ϕRψ ϕ Releases ψ ( ψ holds until ϕ or always)

Linear-time Temporal Logic, LTL

(((Fp) ∧ (Gp)) → (pWr))
((G(Fp)) → (F(q ∨ p)))
(pW(qWr))

Binding Priorities

• Unary connectives (¬, X, F,G) bind most tightly

• Next the connectives U, W and R.

• Then propositional connectives ∧ and ∨.

• Next, the connective →.

Fp ∧Gp → pWr
GFp → F(q ∨ p)
pW(qWr)

Semantics of LTL

© is X; ✸ is F e □ is G

4



Semantics of LTL

Satisfiability

Given M = (S, −→ , L), a formula ϕ and a path π = s1 −→ s2 −→ · · ·
in M, the satisfaction relation |= (i.e. π |= ϕ) is defined inductively in the
structure of ϕ as follows:

1. π |= true

2. π ∕|= false

3. π |= p iff p ∈ L(s1)

4. π |= ¬ϕ iff π ∕|= ϕ

5. π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ

6. π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ

7. π |= ϕ → ψ iff whenever π |= ϕ then π |= ψ

8. π |= Xϕ iff π[2 . . .] |= ϕ

9. π |= Gϕ iff ∀i ≥ 1,π[i . . .] |= ϕ

10. π |= Fϕ iff ∃i ≥ 1,π[i . . .] |= ϕ

11. π |= ϕUψ iff ∃i ≥ 1,π[i . . .] |= ψ and ∀ 1 ≤ j < i, π[j . . .] |= ϕ

12. π |= ϕWψ iff or ∃i ≥ 1,π[i . . .] |= ψ e ∀ 1 ≤ j < i, π[j . . .] |= ϕ or
∀k ≥ 1, π[k . . .] |= ϕ

5



13. π |= ϕRψ iff or ∃i ≥ 1,π[i . . .] |= ϕ and ∀ 1 ≤ j ≤ i, π[j . . .] |= ψ or
∀k ≥ 1, π[k . . .] |= ψ

Semantics of LTL

GF and FG

• GFϕ means infinitely often

• FGϕ means from a certain point always

• π |= GFϕ iff
∞
∃ j.π[j . . .] |= ϕ

• π |= FGϕ iff
∞
∀ j.π[j . . .] |= ϕ

where ∞
∃ j ≡ ∀k ≥ 1∃j ≥ k

and ∞
∀ j ≡ ∃k0 ≥ 1∀j ≥ k0

Examples

• Safety : Mutual exclusion G(¬c1 ∨ ¬c2)

• Liveness : P1 and P2 access the critical section infinitely often GFc1∧GFc2

• Starvation freedom: (GFw1 → GFc1) ∧ (GFw2 → GFc2)

Satisfiability in a State, LTL

Let M = (S, −→ , L), s ∈ S and ϕ an LTL formula. We write

M, s |= ϕ,

if for all paths π starting in s (π ∈ Paths(s)), we have π |= ϕ.

Exercice 3.1. Consider the system M = (S = {s0, s1, s2}, {s0 −→ s1, s0 −→
s2, s1 −→ s2, s1 −→ s0, s2 −→ s2}, L(s0) = {p, q}, L(s1) = {q, r}, L(s2) =
{r}). Determine which relations are true

1. M, s0 |= p ∧ q

2. M, s0 |= Xr

3. M, s0 |= X(q ∧ r)

6



4. M, s0 |= G¬(p ∧ r)

5. M, s0 |= GFp

6. M, s0 |= GFp → GFr

s0
p, q

s1

q, r

s2

r

Solution of Exercise 3.1

1. For all π ∈ Paths(s0), π |= p ∧ q iff p ∈ L(s0) and q ∈ L(s0), which is
true thus M, s0 |= p ∧ q.

2. For all π ∈ Paths(s0), π |= Xr iff r ∈ L(π[2]), which is true as π[2] is
either s1 or s2. Thus M, s0 |= Xr.

3. Considering the previous answer, M, s0 ∕|= X(q ∧ r) as q /∈ L(s2).

4. As all states are reachable from s0, we need to check that in all states s
either p /∈ L(s) or r /∈ L(s), which is true. Thus, M, s0 |= G¬(p ∧ r).

5. Using the notation introduced before we have to proof that
∞
∃ j.π[j . . .] |=

p, for all π ∈ Paths(s0). But for π = s0s2s2s2 · · · that is not true as
for j > 1 π[j] = s2 and p /∈ L(s2). For this π, π ∕|= GFp, and thus
M, s0 ∕|= GFp.

6. We need to proof that for all π ∈ Paths(s0), π |= GFp → GFr. For
π = s0s2s2s2 . . ., as π ∕|= GFp we have π |= GFp → GFr. The same is
true for π = (s0s1)

∗s2s2 · · · (where ∗ means any finite prefix s0s1 · · · s0s1󰁿 󰁾󰁽 󰂀
n

,

n ≥ 0). Finally for π = s0s1s0s1 · · · , π |= GFp, but also π |= GFr (for all
k ≥ 1, π[k . . .] |= Fr i.e. exists j ≥ k such that π[j] = s2 and π[j . . .] |= r )

Equivalence of LTL Formulas

Definition 1. Two formulas are semantically equivalent ϕ1 ≡ ϕ2, if for all
models and paths π, π |= ϕ1 iff π π |= ϕ2

Exercice 3.2. Show that

F(ϕ ∨ ψ) ≡ Fϕ ∨ Fψ

F(ϕ ∧ ψ) ∕≡ Fϕ ∧ Fψ

G(ϕ ∧ ψ) ≡ Gϕ ∧Gψ

G(ϕ ∨ ψ) ∕≡ Gϕ ∨Gψ

7



Solution of Exercise 3.2

Let M be a model and π ∈ Paths(M. Then π |= F(ϕ ∨ ψ iff exists j ≥ 1 such
that π[j . . .] |= ϕ ∨ ψ, i.e. π[j . . .] |= ϕ or π[j . . .] |= ψ iff exists j ≥ 1 such
that π[j . . .] |= ϕ or exists j ≥ 1 such that π[j . . .] |= ψ iff π |= Fϕ or π |= Fψ.
Now to proof that F(ϕ∧ ψ) ∕≡ Fϕ∧Fψ, consider the model of Exercise 3.1 and
π = s0s1s0s1 · · · . Then π |= Fp and π |= Fr, but π ∕|= F(p∧ r). In a similar way
one proves the two remaining equivalences.

Equivalence of LTL Formulas

Teorema 3.1. We have

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

¬Gϕ ≡ F¬ϕ
¬Fϕ ≡ G¬ϕ
¬Xϕ ≡ X¬ϕ

¬(ϕUψ) ≡ ¬ϕR¬ψ
¬(ϕRψ) ≡ ¬ϕU¬ψ
X(ϕUψ) ≡ (Xϕ)U(Xψ)

F(ϕ ∨ ψ) ≡ Fϕ ∨ Fψ

G(ϕ ∧ ψ) ≡ Gϕ ∧Gψ

¬(ϕUψ) ≡ ¬ϕR¬ψ

If π ∕|= ϕUψ then

• or ∀ i, π[i . . .] |= ¬ψ

• or ∃i ≥ 0,π[i . . .] |= ¬ϕ and ∀ 0 ≤ j ≤ i, π[j . . .] |= ¬ψ

• that is π |= ¬ϕR¬ψ

More Equivalences

8



Fϕ ≡ trueUϕ

Gϕ ≡ falseRϕ

ϕUψ ≡ ϕWψ ∧ Fψ

ϕWψ ≡ ϕUψ ∨Gϕ

ϕWψ ≡ ψR(ϕ ∨ ψ)

ϕRψ ≡ ψW(ϕ ∧ ψ)

ϕUψ ≡ ψ ∨ (ϕ ∧X(ϕUψ))

Fϕ ≡ ϕ ∨XFϕ

Gϕ ≡ ϕ ∧XGϕ

Exercice 3.3. Proof the above equivalences.

Complete sets of connectives for LTL

A set of connectives is complete if the remaining can be defined from the ele-
ments of that set.

Teorema 3.2. The following sets of temporal connectives are complete for LTL:
{U,X}, {R,X} and {W,X}.

Exercice 3.4. Show that {U,X} is complete for LTL.

Solution of Exercise 3.4

We need to show how the connectives F,G,W adn R can be written using {U,X}
and proosicional connectives.

Fϕ ≡ trueUϕ

Gϕ ≡ ¬trueU¬ϕ
ϕWψ ≡ ϕUψ ∨Gϕ and use the previous one

ϕRψ ≡ ψW(ϕ ∧ ψ) and use the previous one

Property Specification

• Is is impossible to get to a state where started holds, but ready does not
hold. G¬(started ∧ ¬ready)

• For any state, if request occurs, then it will eventually be acknowledged,
ack. G(request → Fack)

9



• A certain process is enabled infinitely often on every execution. GFenabled

• A process will eventually be permanently deadlocked. FGdeadlock

• If a process is enabled infinitely often, then it runs infinitely often

GFenabled → GFrun

• From any state it is possible to get to a restart state. It is not possible
to express in LTL

10


