Session 3
Temporal Logics LTL

Contents
1 Linear Time 1
2 Linear-time Temporal Logic, LTL 3

1 Linear Time

Model Checking

.
\@5

e Given a model M (transition system),

e a (initial) state s and a formula ¢ of a temporal logic (specification),
the aim is

M,sEp

e i.e. ¢ is satisfied in the state s of M

e a model checker is a program that decides this problem (i.e. either answers
yes or 1o).
Examples of Properties

Propositional variables can be identified with states of reactive systems.

e It is impossible to get to a state where started holds, but ready does not
hold.

e For any state, if request occurs, then it will eventually be acknowledged
(ack).

e A certain process is enabled infinitely often on every execution.

e A process will eventually be permanently deadlocked.

e If a process is enabled infinitely often, then it runs infinitely often.

e From any state it is possible to get to a restart state.

Time
Linear-Time: Time is a set of paths and a path is a sequence of states

*—0o o o0 °

So S1 S2 S3 S4

Branching-time: Time is represented by a computation tree where the root is
the present moment and each path from the root is an execution (sequence of
states).

S3 S4 S5

Computation Tree

Path/Execution

T =(S,Act, — , AP, I, L) is a transition system, a path is a infinity sequence
of states s1,s2,Ss3,... in S, such that ¢ > 1, s; € Pre(s;y1). A path 7 is
represented by

mT™T=8 —> Sg —> ---

or
T = 8182 .

Given a path 7,

e 7[i] = s; (i.e. the ith state in the path)

e 7[i...] is the suffix that starts at s;.

The set of paths from a state s can be seen as an infinite computation tree.

@ ’

/\CK

/\ \ \

Temporal Logics

Properties can be specified using first-order logic but it is not efficient.

Temporal logics

are extensions of propositional and first-order logics

use modalities to refer to the behaviour of the executions of reactive sys-
tems

linear(-time) temporal logic (LTL) allows quantification over a path (path
formulae)

computation tree logic (CTL) allows quantification on the paths from a
given state but in a restricted way (state formulae)

logic CTL* allows unbounded quantification over path formulae. Includes
LTL and CTL.

2 Linear-time Temporal Logic, LTL

Linear-time Temporal Logic, LTL

AP, set of propositional variables p, q,r, s, ...

e u= false|true|p|(=p) [(e A@) (V)| (p—p)|
(Xo) [(Fp) | (Ge) | (pUp) | (¢We) | (pRep)

X¢ ¢ holds in the neXt state (or Q)

Fy ¢ holds in some Future state (or Oy, eventually)
Gy ¢ holds Globally in every state (or O, always)
pUvy ¢ holds Until ¢

©W1 @ holds Until ¢ or always (Weak until)

R ¢ Releases 1 (4 holds until ¢ or always)

Linear-time Temporal Logic, LTL

(((Fp) A (Gp)) — (pWT))
((G(Fp)) — (F(q Vp)))
(pW(qWr))

Binding Priorities
e Unary connectives (-, X, F,G) bind most tightly
e Next the connectives U, W and R.

e Then propositional connectives A and V.

e Next, the connective —.

FpAGp — pWr
GFp — F(qV p)
pW(gWr)

Semantics of LTL
OisX;¢isFelis G

atomic prop. a ()

arbitrary a arbitrary arbitrary arbitrary

next step Oa () —{_ S - J

a A —b aA-b a A -b b arbitrary

until aUb (O—) O O ~O =

—a - - a arbitrary
eventually a o C O O
a a a a a
always Oa O——C C O O

Semantics of LTL

Satisfiability

Given M = (S, — ,L), a formula ¢ and a path m = 57 — s3 —>
in M, the satisfaction relation = (i.e. 7 | ¢) is defined inductively in the
structure of ¢ as follows:

1. 7 [true

2. 7 £ false

3. mEpilpe L(s)

4. mE—piff £ @

b.rEe ANYiffriEpandn =9

6. TV yiffrEpord

7. m = ¢ — 1 iff whenever 7 = ¢ then 7 = 4

. mEXpiff n2...]E ¢

9. =G iff Vi > 1,7fi...] =

10. T =Feiff i > Lali.. | =g

1. rEeUp T F>1L,wi...]EvandV1i<j<in[j..]Ee
12. 7 = oWy iffor 3i > Lafi..] Ev eVl <j<inlj..] =¢or

VE>1,nk...]E¢e

8. mE Ry iff or Fi > I,nfi...] Eand V1 < j < i, 7w[j...] E ¢ or
VE>1,wlk...] =
Semantics of LTL

GF and FG

e GFy means infinitely often

o FGp means from a certain point always

. W)ZGF@iHOHOj.W[j...]':@

o 1= FGyiff vV jr[j..]l

where -
Jj=Vk>13j >k
and
o0
YV j=3ko > 1Vj > kg
Examples

e Safety: Mutual exclusion G(—cy V —¢g)
e Liveness: Py and P; access the critical section infinitely often GFc; AGFco

o Starvation freedom: (GFw; — GFe¢p) A (GFwy — GFeg)

Satisfiability in a State, LTL
Let M = (S, — ,L), s € S and ¢ an LTL formula. We write

M, s = o,

if for all paths 7 starting in s (7w € Paths(s)), we have 7 |= ¢.

Exercice 3.1. Consider the system M = (S = {so, 51,52}, {s0 — s1,80 —
82,81 —> 82,81 —> 80,82 — a2}, L(so) = {p,q}, L(s1) = {q. 7}, L(s2) =
{r}). Determine which relations are true

1. M,solEp A q

2. M,so = Xr
3. M,so = X(g A 1)

4.
5.

6.

M;so = G-(p A T)
M, sy = GFp
M, so = GFp — GFr

Solution of Exercise 3.1

1.

For all m € Paths(so), m =p A qiff p € L(so) and ¢ € L(sp), which is
true thus M, sp =p A q.

. For all m € Paths(sg), 7 = Xr iff r € L(n[2]), which is true as 7[2] is

either s1 or s3. Thus M, sg = Xr.

. Considering the previous answer, M, sg = X(q A r) as q ¢ L(s2).

. As all states are reachable from sy, we need to check that in all states s

either p ¢ L(s) or r ¢ L(s), which is true. Thus, M,sg = G=(p A 7).

. Using the notation introduced before we have to proof that 3 jrli.] E

p, for all m € Paths(sg). But for m = 50828282+ that is not true as
for j > 1 7[j] = s2 and p ¢ L(s2). For this m, 7 = GFp, and thus
M, S0 l# GFp.

. We need to proof that for all # € Paths(sy), 7 = GFp — GFr. For

T = $0S28282 ..., as 7 [~ GFp we have 7 = GFp — GFr. The same is
true for m = (sps1)*s282 - -+ (where * means any finite prefix sgsy - - - ss1,

—_———
n > 0). Finally for m = sps18081 -+, ® = GFp, but also 7 = GFr (for all
k>1,wlk...] EFrie. exists j > k such that 7[j] = sg and 7[j...] = 1)

Equivalence of LTL Formulas

Definition 1. Two formulas are semantically equivalent ¢ = 9, if for all
models and paths 7, 7 = 1 iff 7 7 = o

Exercice 3.2. Show that

Flovy) = FpVv Py
Flony) # FoAFy
GlpAY) = GpA Gy
GleVvy) # GoVv Gy

~

Solution of Exercise 3.2

Let M be a model and 7 € Paths(M. Then 7 = F(p Vv ¢ iff exists j > 1 such
that 7[j...] E @V, ie. 7w[j...] E porwj..] E ¢ iff exists j > 1 such
that 7[j...] |E o or exists j > 1 such that #[j...] E ¢ iff 7 | Fy or 7 | Fu.
Now to proof that F(p A1) # Fo AF, consider the model of Exercise 3.1 and
T = 80815051 --. Then 7 =Fp and 7 = Fr, but 7 £ F(pAr). In a similar way

one proves the two remaining equivalences.

Equivalence of LTL Formulas

Teorema 3.1. We have

(o Ap)
—(p V)
-Gy

~(¢U¥) = ~pR~)
If 7 = Ut then

o or Vi, rli...| £

eor i >0,7fi...] F-pandV0<j<i w[j..] =

e that is 7 = R

More Equivalences

R~
U=y
(Xo) UXy)
Fov Fy
Go N Gy

Fp = truelUp
Gy = falseRyp
Uy = oWy AFY
oWy = Uy V Gy
oWy = YR(p V)
PRy = PW(p AY)
eUp = PV (p AX(pU¥))
Fo = ¢V XFp
Gy = oAXGyp

Exercice 3.3. Proof the above equivalences.

Complete sets of connectives for LTL

A set of connectives is complete if the remaining can be defined from the ele-
ments of that set.

Teorema 3.2. The following sets of temporal connectives are complete for LTL:
{U, X}, {R, X} and {W, X}.

Exercice 3.4. Show that {U, X} is complete for LTL.

Solution of Exercise 3.4

We need to show how the connectives F, G, W adn R can be written using {U, X}
and proosicional connectives.

Fp = trueUp
Gp = —trueU—p
Wy = Uy V Gy and use the previous one

YRy = ¢YW(p A1) and use the previous one

Property Specification

e Is is impossible to get to a state where started holds, but ready does not
hold. G—(started A —ready)

e For any state, if request occurs, then it will eventually be acknowledged,
ack. G(request — Fack)

A certain process is enabled infinitely often on every execution. GFenabled
A process will eventually be permanently deadlocked. FGdeadlock

If a process is enabled infinitely often, then it runs infinitely often
GFenabled — GFrun

From any state it is possible to get to a restart state. It is not possible
to express in LTL

10

