Session 3 Temporal Logics LTL

Contents

1	Linear Time	1	L

3

2 Linear-time Temporal Logic, LTL

1 Linear Time

Model Checking

- Given a model M (transition system),
- a (initial) state s and a formula φ of a temporal logic (specification),
- the aim is
- $\mathcal{M}, s \models \varphi$
- i.e. φ is satisfied in the state s of \mathcal{M}
- a *model checker* is a program that decides this problem (i.e. either answers yes or no).

Examples of Properties

Propositional variables can be identified with states of reactive systems.

- It is impossible to get to a state where **started** holds, but **ready** does not hold.
- For any state, if **request** occurs, then it will eventually be acknowledged (**ack**).
- A certain process is **enabled** infinitely often on every execution.
- A process will eventually be permanently deadlocked.

- If a process is enabled infinitely often, then it runs infinitely often.
- From any state it is possible to get to a restart state.

Time

Linear-Time: Time is a set of paths and a path is a sequence of states

Branching-time: Time is represented by a computation tree where the root is the present moment and each path from the root is an execution (sequence of states).

Computation Tree

Path/Execution

 $T = (S, Act, \longrightarrow, AP, I, L)$ is a transition system, a path is a infinity sequence of states s_1, s_2, s_3, \ldots in S, such that $i \ge 1, s_i \in Pre(s_{i+1})$. A path π is represented by

$$\pi = s_1 \longrightarrow s_2 \longrightarrow \cdots$$

or

$$\pi = s_1 s_2 \cdots .$$

Given a path π ,

- $\pi[i] = s_i$ (i.e. the *i*th state in the path)
- $\pi[i...]$ is the suffix that starts at s_i .

The set of paths from a state s can be seen as an infinite *computation tree*.

Temporal Logics

Properties can be specified using first-order logic but it is not efficient. *Temporal logics*

- are extensions of propositional and first-order logics
- use modalities to refer to the behaviour of the executions of reactive systems
- linear(-time) temporal logic (LTL) allows quantification over a path (path formulae)
- computation tree logic (CTL) allows quantification on the paths from a given state but in a restricted way (state formulae)
- logic CTL* allows unbounded quantification over path formulae. Includes LTL and CTL.

2 Linear-time Temporal Logic, LTL

Linear-time Temporal Logic, LTL

AP, set of propositional variables p, q, r, s, \ldots

$$\begin{array}{ll} \varphi & ::= & \mathsf{false} \mid \mathsf{true} \mid p \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid \\ & (\mathbf{X}\varphi) \mid (\mathbf{F}\varphi) \mid (\mathbf{G}\varphi) \mid (\varphi \mathbf{U}\varphi) \mid (\varphi \mathbf{W}\varphi) \mid (\varphi \mathbf{R}\varphi) \end{array}$$

 $\mathbf{X}\varphi \ \varphi$ holds in the *neXt* state (or $\bigcirc \varphi$)

 $\mathbf{F}\varphi \ \varphi$ holds in some Future state (or $\diamond \varphi$, eventually)

 $\mathbf{G}\varphi \ \varphi$ holds Globally in every state (or $\Box \varphi$, always)

 $\varphi \mathbf{U} \psi \ \varphi$ holds Until ψ

 $\varphi \mathbf{W} \psi \varphi$ holds Until ψ or always (Weak until)

 $\varphi \mathbf{R} \psi \ \varphi \ Releases \ \psi$ (ψ holds until φ or always)

Linear-time Temporal Logic, LTL

 $\begin{array}{l} (((\mathrm{F}p) \wedge (\mathrm{G}p)) \rightarrow (p\mathrm{W}r)) \\ ((\mathrm{G}(\mathrm{F}p)) \rightarrow (\mathrm{F}(q \lor p))) \\ (p\mathrm{W}(q\mathrm{W}r)) \end{array}$

Binding Priorities

- Unary connectives (¬, X, F,G) bind most tightly
- Next the connectives U, W and R.
- Then propositional connectives \land and \lor .
- Next, the connective \rightarrow .

$$Fp \land Gp \to pWr$$

$$GFp \to F(q \lor p)$$

$$pW(qWr)$$

Semantics of LTL

 \bigcirc is X; \diamondsuit is F e \square is G

Semantics of LTL

Satisfiability

Given $\mathcal{M} = (S, \rightarrow, L)$, a formula φ and a path $\pi = s_1 \rightarrow s_2 \rightarrow \cdots$ in \mathcal{M} , the satisfaction relation \models (i.e. $\pi \models \varphi$) is defined inductively in the structure of φ as follows:

1. $\pi \models \text{true}$ 2. $\pi \not\models \text{false}$ 3. $\pi \models p \text{ iff } p \in L(s_1)$ 4. $\pi \models \neg \varphi \text{ iff } \pi \not\models \varphi$ 5. $\pi \models \varphi \land \psi \text{ iff } \pi \models \varphi \text{ and } \pi \models \psi$ 6. $\pi \models \varphi \lor \psi \text{ iff } \pi \models \varphi \text{ or } \pi \models \psi$ 7. $\pi \models \varphi \rightarrow \psi \text{ iff } \text{whenever } \pi \models \varphi \text{ then } \pi \models \psi$ 8. $\pi \models X\varphi \text{ iff } \pi[2 \dots] \models \varphi$ 9. $\pi \models G\varphi \text{ iff } \forall i \ge 1, \pi[i \dots] \models \varphi$ 10. $\pi \models F\varphi \text{ iff } \exists i \ge 1, \pi[i \dots] \models \varphi$ 11. $\pi \models \varphi U\psi \text{ iff } \exists i \ge 1, \pi[i \dots] \models \psi \text{ and } \forall 1 \le j < i, \pi[j \dots] \models \varphi$ 12. $\pi \models \varphi W\psi \text{ iff or } \exists i \ge 1, \pi[i \dots] \models \varphi$

13.
$$\pi \models \varphi \mathbb{R} \psi$$
 iff or $\exists i \geq 1, \pi[i \dots] \models \varphi$ and $\forall 1 \leq j \leq i, \pi[j \dots] \models \psi$ or $\forall k \geq 1, \pi[k \dots] \models \psi$

Semantics of LTL

GF and FG

- $\mathrm{GF}\varphi$ means infinitely often
- $FG\varphi$ means from a certain point always

•
$$\pi \models \operatorname{GF} \varphi$$
 iff $\exists j.\pi[j\ldots] \models \varphi$

•
$$\pi \models \mathrm{FG}\varphi \text{ iff } \overleftrightarrow{j.\pi[j\ldots]} \models \varphi$$

where

$$\stackrel{\infty}{\exists} j \equiv \forall k \geq 1 \exists j \geq k$$

and

$$\overset{\infty}{\forall} j \equiv \exists k_0 \geq 1 \forall j \geq k_0$$

Examples

- Safety: Mutual exclusion $G(\neg c_1 \lor \neg c_2)$
- Liveness : P_1 and P_2 access the critical section infinitely often $GFc_1 \wedge GFc_2$
- Starvation freedom: $(GFw_1 \rightarrow GFc_1) \land (GFw_2 \rightarrow GFc_2)$

Satisfiability in a State, LTL

Let $\mathcal{M} = (S, \longrightarrow, L), s \in S$ and φ an LTL formula. We write

$$\mathcal{M}, s \models \varphi,$$

if for all paths π starting in $s \ (\pi \in Paths(s))$, we have $\pi \models \varphi$.

Exercice 3.1. Consider the system $\mathcal{M} = (S = \{s_0, s_1, s_2\}, \{s_0 \longrightarrow s_1, s_0 \longrightarrow s_2, s_1 \longrightarrow s_2, s_1 \longrightarrow s_0, s_2 \longrightarrow s_2\}, L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$). Determine which relations are true

- 1. $\mathcal{M}, s_0 \models p \land q$
- 2. $\mathcal{M}, s_0 \models Xr$
- 3. $\mathcal{M}, s_0 \models X(q \land r)$

Solution of Exercise 3.1

- 1. For all $\pi \in Paths(s_0)$, $\pi \models p \land q$ iff $p \in L(s_0)$ and $q \in L(s_0)$, which is true thus $\mathcal{M}, s_0 \models p \land q$.
- 2. For all $\pi \in Paths(s_0)$, $\pi \models Xr$ iff $r \in L(\pi[2])$, which is true as $\pi[2]$ is either s_1 or s_2 . Thus $\mathcal{M}, s_0 \models Xr$.
- 3. Considering the previous answer, $\mathcal{M}, s_0 \not\models X(q \land r)$ as $q \notin L(s_2)$.
- 4. As all states are reachable from s_0 , we need to check that in all states s either $p \notin L(s)$ or $r \notin L(s)$, which is true. Thus, $\mathcal{M}, s_0 \models G \neg (p \land r)$.
- 5. Using the notation introduced before we have to proof that $\exists j.\pi[j...] \models p$, for all $\pi \in Paths(s_0)$. But for $\pi = s_0s_2s_2s_2\cdots$ that is not true as for j > 1 $\pi[j] = s_2$ and $p \notin L(s_2)$. For this $\pi, \pi \not\models \text{GF}p$, and thus $\mathcal{M}, s_0 \not\models \text{GF}p$.
- 6. We need to proof that for all $\pi \in Paths(s_0)$, $\pi \models GFp \to GFr$. For $\pi = s_0 s_2 s_2 s_2 \ldots$, as $\pi \not\models GFp$ we have $\pi \models GFp \to GFr$. The same is true for $\pi = (s_0 s_1)^* s_2 s_2 \cdots$ (where * means any finite prefix $s_0 s_1 \cdots s_0 s_1$,
 - $n \ge 0$). Finally for $\pi = s_0 s_1 s_0 s_1 \cdots$, $\pi \models \operatorname{GF} p$, but also $\pi \models \operatorname{GF} r$ (for all $k \ge 1, \pi[k \ldots] \models \operatorname{F} r$ i.e. exists $j \ge k$ such that $\pi[j] = s_2$ and $\pi[j \ldots] \models r$)

Equivalence of LTL Formulas

Definition 1. Two formulas are semantically equivalent $\varphi_1 \equiv \varphi_2$, if for all models and paths $\pi, \pi \models \varphi_1$ iff $\pi \pi \models \varphi_2$

Exercice 3.2. Show that

$$\begin{array}{lll} F(\varphi \lor \psi) & \equiv & F\varphi \lor F\psi \\ F(\varphi \land \psi) & \not\equiv & F\varphi \land F\psi \\ G(\varphi \land \psi) & \equiv & G\varphi \land G\psi \\ G(\varphi \lor \psi) & \not\equiv & G\varphi \lor G\psi \end{array}$$

Solution of Exercise 3.2

Let \mathcal{M} be a model and $\pi \in Paths(\mathcal{M})$. Then $\pi \models F(\varphi \lor \psi$ iff exists $j \ge 1$ such that $\pi[j \ldots] \models \varphi \lor \psi$, i.e. $\pi[j \ldots] \models \varphi$ or $\pi[j \ldots] \models \psi$ iff exists $j \ge 1$ such that $\pi[j \ldots] \models \varphi$ or exists $j \ge 1$ such that $\pi[j \ldots] \models \psi$ iff $\pi \models F\varphi$ or $\pi \models F\psi$. Now to proof that $F(\varphi \land \psi) \not\equiv F\varphi \land F\psi$, consider the model of Exercise 3.1 and $\pi = s_0s_1s_0s_1\cdots$. Then $\pi \models Fp$ and $\pi \models Fr$, but $\pi \not\models F(p \land r)$. In a similar way one proves the two remaining equivalences.

Equivalence of LTL Formulas

Teorema 3.1. We have

$$\begin{array}{rcl} \neg(\varphi \wedge \psi) & \equiv & \neg \varphi \vee \neg \psi \\ \neg(\varphi \vee \psi) & \equiv & \neg \varphi \wedge \neg \psi \\ \neg G\varphi & \equiv & F \neg \varphi \\ \neg F\varphi & \equiv & G \neg \varphi \\ \neg X\varphi & \equiv & X \neg \varphi \\ \neg(\varphi U\psi) & \equiv & \neg \varphi R \neg \psi \\ \neg(\varphi R\psi) & \equiv & \neg \varphi U \neg \psi \\ X(\varphi U\psi) & \equiv & (X\varphi) U(X\psi) \\ F(\varphi \vee \psi) & \equiv & F\varphi \vee F\psi \\ G(\varphi \wedge \psi) & \equiv & G\varphi \wedge G\psi \end{array}$$

 $\neg(\varphi \mathbf{U}\psi) \equiv \neg\varphi \mathbf{R}\neg\psi$

If $\pi \not\models \varphi \mathbf{U} \psi$ then

- or $\forall i, \pi[i \dots] \models \neg \psi$
- or $\exists i \geq 0, \pi[i \dots] \models \neg \varphi$ and $\forall 0 \leq j \leq i, \pi[j \dots] \models \neg \psi$
- that is $\pi \models \neg \varphi \mathbf{R} \neg \psi$

More Equivalences

$$\begin{array}{rcl} \mathbf{F}\varphi &\equiv \mbox{trueU}\varphi \\ \mathbf{G}\varphi &\equiv \mbox{falseR}\varphi \\ \varphi\mathbf{U}\psi &\equiv \mbox{}\varphi\mathbf{W}\psi \wedge \mathbf{F}\psi \\ \varphi\mathbf{W}\psi &\equiv \mbox{}\varphi\mathbf{U}\psi \vee \mathbf{G}\varphi \\ \varphi\mathbf{W}\psi &\equiv \mbox{}\psi\mathbf{R}(\varphi \vee \psi) \\ \varphi\mathbf{R}\psi &\equiv \mbox{}\psi\mathbf{W}(\varphi \wedge \psi) \\ \varphi\mathbf{U}\psi &\equiv \mbox{}\psi \vee (\varphi \wedge \mathbf{X}(\varphi\mathbf{U}\psi)) \\ \mathbf{F}\varphi &\equiv \mbox{}\varphi \vee \mathbf{X}\mathbf{F}\varphi \\ \mathbf{G}\varphi &\equiv \mbox{}\varphi \wedge \mathbf{X}\mathbf{G}\varphi \end{array}$$

Exercice 3.3. Proof the above equivalences.

Complete sets of connectives for LTL

A set of connectives is complete if the remaining can be defined from the elements of that set.

Teorema 3.2. The following sets of temporal connectives are complete for LTL: $\{U, X\}, \{R, X\}$ and $\{W, X\}$.

Exercice 3.4. Show that $\{U, X\}$ is complete for LTL.

Solution of Exercise 3.4

We need to show how the connectives F, G, W adn R can be written using $\{U, X\}$ and proosicional connectives.

 $\begin{array}{lll} \mathbf{F}\varphi &\equiv & \mathsf{trueU}\varphi \\ \mathbf{G}\varphi &\equiv & \neg\mathsf{trueU}\neg\varphi \\ \varphi\mathbf{W}\psi &\equiv & \varphi\mathbf{U}\psi\vee\mathbf{G}\varphi \text{ and use the previous one} \\ \varphi\mathbf{R}\psi &\equiv & \psi\mathbf{W}(\varphi\wedge\psi) \text{ and use the previous one} \end{array}$

Property Specification

- Is is impossible to get to a state where started holds, but ready does not hold. G¬(started ∧ ¬ready)
- For any state, if request occurs, then it will eventually be acknowledged,
 ack. G(request → Fack)

- A certain process is enabled infinitely often on every execution. *GFenabled*
- A process will eventually be permanently deadlocked. FGdeadlock
- If a process is enabled infinitely often, then it runs infinitely often GFenabled $\rightarrow GF$ run
- From any state it is possible to get to a restart state. It is not possible to express in LTL