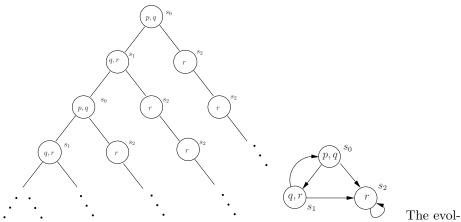
Aula 4

Contents

- 1 Branching-time Logic CTL
- 2 Logic CTL*

1 Branching-time Logic CTL

Branching-time Logic



1

 $\mathbf{10}$

ution of a transition system is a infinite computation tree. LTL implicitly quantifies universally over paths of that tree CTL (*Computation Tree Logic*) allows the existencial quantification over paths of that tree

Computation Tree Logic, CTL

AP, set of propositional variiables, p, q, r, s, \ldots

\mathbf{Syntax}

$$\begin{array}{ll} \varphi & ::= & \mathsf{true} \mid \mathsf{false} \mid p \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid (\mathsf{AX}\varphi) \mid \\ & (\mathsf{EX}\varphi) \mid (\mathsf{AF}\varphi) \mid (\mathsf{EF}\varphi) \mid (\mathsf{AG}\varphi) \mid (\mathsf{EG}\varphi) \mid \mathsf{A}[\varphi \mathsf{U}\varphi] \mid \mathsf{E}[\varphi \mathsf{U}\varphi] \end{array}$$

Temporal Connectives

A means along all paths (from a state)

E means along at least one path (from a state)

$\mathbf{F}, \mathbf{G}, \mathbf{X} \text{ and } \mathbf{U}$ as in LTL

Formulae are interpreted in a state (state formulae)

Computation Tree Logic, CTL

Connectives A and E can only appear together with LTL temporal connectives.

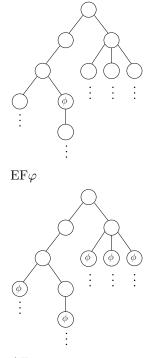
Priority bindings

- Unary connective(¬, AX,EX, AF,EF,AG and EG) has high priority
- Next \land and \lor .
- Next \rightarrow , AU and EU (which are written in prefix and infix notation)

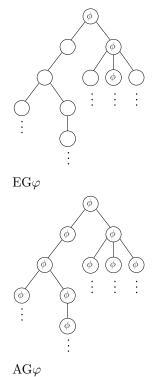
Examples

$$\begin{split} & \operatorname{AG}(p \to \operatorname{EG} r) \\ & \operatorname{EFE}[r \operatorname{U} q] \\ & \operatorname{E}[\operatorname{A}[r \operatorname{U} p] \operatorname{U} q] \\ & \operatorname{A}[\operatorname{AX} \neg p \operatorname{UE}[\operatorname{EX}(p \land q) \operatorname{U} \neg p]] \end{split}$$

Semantics of CTL



Semântica do CTL



Always and Potentially

- $EF\varphi = EtrueU\varphi, \varphi \text{ potentially holds}$
- $AF\varphi = AtrueU\varphi, \varphi \text{ is inevitable}$
- $EG\varphi = \neg AF \neg \varphi, \varphi$ holds potentially always
- $AG\varphi = \neg EF \neg \varphi, \varphi \text{ invariantly holds}$
- $AGAF\varphi$, φ holds infinitely often in all paths

Examples

• Safety: Mutual exclusion

$$AG(\neg c_1 \lor \neg c_2)$$

• Liveness : P_1 and P_2 access the critical section infinitely often

$\mathrm{AGAF}c_1 \wedge \mathrm{AGAF}c_2$

• Starvation freedom:

$$(AGAFw_1 \rightarrow AGAFc_1) \land (AGAFw_2 \rightarrow AGAFc_2)$$

Semantics of CTL

Satisfiability

Given a transition system (model) $\mathcal{M} = (S, \longrightarrow, L)$ (without terminal states), a state $s \in S$, for $\pi \in Paths(s)$ let $\pi = s_1 s_2 s_3 \cdots, s_1 = s$ and $\pi[i] = s_i$ be istate in π .

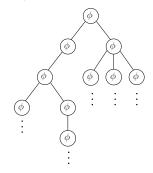
Given a formula φ and a state s, the satisfaction relation $s \models \varphi$ is defined inductively in the structure of φ :

1. $s \models \text{true and } s \not\models \text{false}$ 2. $s \models p \text{ iff } p \in L(s)$ 3. $s \models \neg \varphi \text{ iff } s \not\models \varphi$ 4. $s \models \varphi \land \psi \text{ iff } s \models \varphi \text{ and } s \models \psi$ 5. $s \models \varphi \lor \psi \text{ iff } s \models \varphi \text{ or } s \models \psi$ 6. $s \models \varphi \rightarrow \psi \text{ iff } \text{ iff } s \models \varphi \text{ then } s \models \psi$ 7. $s \models AX\varphi \text{ iff for all } \pi \in Paths(s), \pi[2] \models \varphi$ 8. $s \models EX\varphi \text{ iff exists } \pi \in Paths(s), \pi[2] \models \varphi$

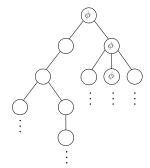
Semantics of CTL

Satisfiability

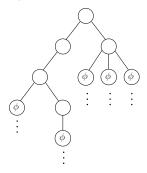
9. $s \models AG\varphi$ iff for all paths $\pi \in Paths(s)$, we have for all $i \ge 1$ $\pi[i] \models \varphi$



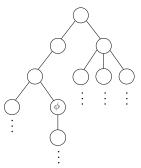
10. $s \models \text{EG}\varphi$ iff exists a path $\pi \in Paths(s)$ such that for all $i \ge 1, \pi[i] \models \varphi$



11. $s\models {\rm AF}\varphi$ iff for all paths $\pi\in Paths(s)$, exists $i\geq 1$ such that $\pi[i]\models\varphi$



12. $s \models EF\varphi$ iff exists one path $\pi \in Paths(s)$ such that exists $i \ge 1$ such that $\pi[i] \models \varphi$



- 13. $\mathcal{M}, s \models \mathbf{A}[\varphi_1 \mathbf{U}\varphi_2]$ iff for all paths $\pi \in Paths(s)$, we have that $\varphi_1 \mathbf{U}\varphi_2$ holds, i.e. exists $i \ge 1 \pi[i] \models \varphi_2$, and for $1 \le j < i \pi[j] \models \varphi_1$
- 14. $s \models E[\varphi_1 U \varphi_2]$ iff exists one path $\pi \in Paths(s)$, such that $\varphi_1 U \varphi_2$ holds, i.e. exists $i \ge 1 \pi[i] \models \varphi_2$, and for $1 \le j < i \pi[j] \models \varphi_1$.

Specification Patterns

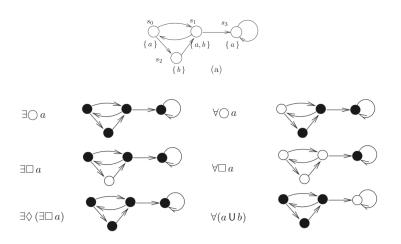
- There exists a reachable state where p holds. EFp
- From all reachable states where p holds it is possible to hold p true until there is a state where q holds. $AG(p \rightarrow EpUq)$
- Whenever there is a state where p holds, it is possible to have q true forevermore. $AG(p \rightarrow EGq)$
- There is a reachable state from which p holds in all reachable states. EFAGp

CTL Semantics for transition systems

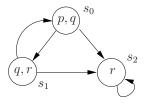
- Given $T = (S, Act, \longrightarrow, AP, I, L)$ and a CTL formula φ ,
- $Sat(\varphi) = \{ s \in S \mid s \models \varphi \}$
- T satisfies φ i.e $T \models \varphi$ iff $\forall s_0 \in I, s_0 \models \varphi$ (i.e $I \subseteq Sat(\varphi)$)

Exemple

Give $Sat(\varphi)$ for the following formulae EXa, AXa, EGa, AGa, EFEGa e A[aUb],



Example



1. $s_0 \models p \land q$ 2. $s_0 \models \text{EX}r$ 3. $s_0 \models \neg \text{AX}(q \land r)$ 4. $s_0 \models \neg \text{EF}(p \land r)$ 5. $s_0 \models \text{EG}r$ 6. $s_0 \models \text{A}[p\text{U}r]$

Property Specifications

- It is possible to get a state where started holds, but ready is false. $EF(started \land \neg ready)$
- For any state, if trying, then there exists a path where critical holds in the future (non-blocking). $AG(trying \rightarrow EF\ critical)$
- A process is enabled infinitely often on every computation path. AG(AF enabled)
- If a process is enabled infinitely often, then it runs infinitely often Not possible. It is not AGAF enabled → AGAF running
- From any state it is possible to get to a restart state. AGEF restart

Property Specification

- For any state, if request occurs, then it will eventually be acknowledged,
 ack. AG(request → AF ack)
- A process will eventually be permanently deadlocked. *AF*(*AG* deadlock)

Equivalence of CTL Formulae

Two CTL formulae (over AP) are semantically equivalent, $\varphi \equiv \psi$, if any state in any model which satisfies one of them also satisfies the other. It holds that:

Complete Sets of Connectives

Teorema 4.1. The following sets of temporal connectives are complete $\{AU, EU, EX\}$ and $\{EG, EU, EX\}$.

More equivalences

$$\begin{array}{rcl} \mathrm{AG}\varphi &\equiv& \varphi \wedge \mathrm{AXAG}\varphi \\ \mathrm{EG}\varphi &\equiv& \varphi \wedge \mathrm{EXEG}\varphi \\ \mathrm{AF}\varphi &\equiv& \varphi \vee \mathrm{AXAF}\varphi \\ \mathrm{EF}\varphi &\equiv& \varphi \vee \mathrm{EXEF}\varphi \\ \mathrm{A}[\varphi\mathrm{U}\psi] &\equiv& \psi \vee (\varphi \wedge \mathrm{AXA}[\varphi\mathrm{U}\psi] \\ \mathrm{E}[\varphi\mathrm{U}\psi] &\equiv& \psi \vee (\varphi \wedge \mathrm{EXE}[\varphi\mathrm{U}\psi] \end{array}$$

LTL and CTL

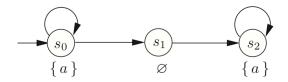
CTL is not strictly more expressive than LTL. For instance

$$Fp \rightarrow Fq$$

cannot be expressed in CTL. It means

All paths where p holds, q also holds.

Note that AF $p\to$ AF q or AG ($p\to$ AF q) have different meanings. FG φ is not AFAG φ



 $s_0 \models FGa$

but

$$s_0 \not\models AFAGa$$

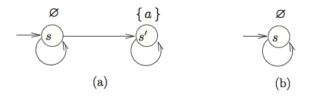
(show that for $\pi = s_0 s_0 s_0 \cdots$ exists a state (s_0) and $s_0 \not\models AGa$.)

But

AGEFa

cannot be expressed in LTL:

From every state it is possible to reach a state where a holds.



AGEFa has no equivalent in LTL

There is no LTL formula φ that is equivalent to AGEFa. Suppose that there exists such a formula. As $\mathcal{M}_{(a)}, s \models \text{AGEFa}$ then $\mathcal{M}_{(a)}, s \models \varphi$ and for all $\pi \in Paths(s), \pi \models \varphi$. In particular for $\pi = sss\cdots$ then $\pi \models \varphi$. Then, we also have $\mathcal{M}_{(b)}, s \models \varphi$. But $\mathcal{M}_{(b)}, s \not\models \text{AGEFa}$, because $s \not\models \text{EFa}$. This is a contradiction.

Also, we have $FXa \equiv XFa \equiv AXAFa$ but

$$FXa \not\equiv AFAXa.$$

Teorema 4.2. Let ψ a CTL formula and φ the LTL formula that is obtained by eliminating all path quantifiers A and E in ψ . Then either

 $\psi\equiv\varphi$

or there does not exists any LTL formula that is equivalent to ψ .

LTL versus CTL

- **Teorema 4.3.** a) There exist LTL formulas for which there is no equivalent CTL formula. For instance, FGa.
- b) There exist CTL formulas for which there is no equivalent LTL formula. For instance, AGEFa.

LTL versus CTL

A spect	Linear time	Branching time
"behavior" in a state <i>s</i>	path-based: trace(s)	state-based: computation tree of s
temporal logic	LTL: path formulae φ $s \models \varphi$ iff $\forall \pi \in Paths(s). \pi \models \varphi$	CTL: state formulae existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	$\begin{array}{l} \text{PSPACE-complete} \\ \mathcal{O}\left(TS \cdot \exp(\varphi)\right) \end{array}$	$PTIME$ $\mathcal{O}(TS \cdot \Phi)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)
fairness	no special techniques needed	special techniques needed

2 Logic CTL^*

 \mathbf{CTL}^*

\mathbf{CTL}^*

Extension of CTL, where it is not mandatory that an LTL operator $\{X, G, F, U\}$ has an associated operador A or E.

- $A[(pUr) \lor (qUr)],$
- $E(GF\varphi)$
- $A[Xp \lor XXp]$

 CTL^* is strictly more expressive than both LTL and CTL, and much less efficient.

Syntax of \mathbf{CTL}^*

State Formulas

Evaluated in a state

 $\varphi \quad ::= \quad \mathsf{true} \mid p \mid (\neg \varphi) \mid (\varphi \ \land \ \varphi) \mid (\mathbf{A}[\alpha]) \mid (\mathbf{E}[\alpha])$

Path Formulas

Evaluated in a path

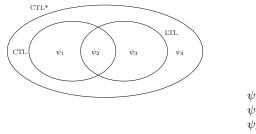
$$\alpha ::= \varphi \mid (\neg \alpha) \mid (\alpha \land \alpha) \mid (\alpha \cup \alpha) \mid (G\alpha) \mid (F\alpha) \mid (X\alpha)$$

Here we consider only a complete set of Boolean connectives $(\{\neg,\wedge\}).$

LTL, CTL and CTL*

A LTL formula α corresponds to $\mathbf{A}[\alpha]$ in $\mathbf{CTL}^*.$ CTL is a fragment of \mathbf{CTL}^* where

$$\alpha \quad ::= \quad (\alpha \mathbf{U}\alpha) \mid (\mathbf{G}\alpha) \mid (\mathbf{F}\alpha) \mid (\mathbf{X}\alpha)$$



$$\begin{array}{rcl} \psi_1 &=& \mathrm{AGEF}p\\ \psi_2 &=& \mathrm{AG}(p \to AFq)\\ \psi_3 &=& \mathrm{A}[\mathrm{GF}p \to Fq]\\ \psi_4 &=& \mathrm{E}[\mathrm{GF}p] \end{array}$$

$$\mathbf{A}[\varphi \mathbf{U}\psi] \equiv \neg \mathbf{E}[\neg \psi \mathbf{U}(\neg \varphi \land \neg \psi)] \land \neg \mathbf{E} \mathbf{G} \neg \psi$$

Using CTL^* ,

$$\begin{split} \mathbf{A}[\varphi \mathbf{U}\psi] &\equiv \mathbf{A}[\neg(\neg\psi\mathbf{U}(\neg\varphi\wedge\neg\psi))\wedge\mathbf{F}\psi] \\ &\equiv \neg\mathbf{E}\neg[\neg(\neg\psi\mathbf{U}(\neg\varphi\wedge\neg\psi))\wedge\mathbf{F}\psi] \\ &\equiv \neg\mathbf{E}[\neg(\nabla\psi\mathbf{U}(\neg\varphi\wedge\neg\psi)\vee\mathbf{G}\neg\psi] \\ &\equiv \neg(\mathbf{E}[\neg\psi\mathbf{U}(\neg\varphi\wedge\neg\psi)]\vee\mathbf{E}\mathbf{G}\neg\psi) \\ &\equiv \neg\mathbf{E}[(\neg\psi\mathbf{U}(\neg\varphi\wedge\neg\psi)])\wedge\neg\mathbf{E}\mathbf{G}\neg\psi) \end{split}$$