
Aula 4

Contents

1 Branching-time Logic CTL 1

2 Logic CTL∗ 10

1 Branching-time Logic CTL

Branching-time Logic

p, q

rr

rq, r

p, q

q, r

s0

s2

s2

s2

s0

s1

s1

r

s2

r

s2

s0
p, q

s1

q, r

s2

r

The evol-
ution of a transition system is a infinite computation tree. LTL implicitly quan-
tifies universally over paths of that tree CTL (Computation Tree Logic) allows
the existencial quantification over paths of that tree

Computation Tree Logic, CTL

AP, set of propositional variiables, p, q, r, s, . . .

Syntax

ϕ ::= true | false | p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ) | (AXϕ) |
(EXϕ) | (AFϕ) | (EFϕ) | (AGϕ) | (EGϕ) | A[ϕUϕ] | E[ϕUϕ]

Temporal Connectives

A means along all paths (from a state)

E means along at least one path (from a state)

1

F,G,X and U as in LTL

Formulae are interpreted in a state (state formulae)

Computation Tree Logic, CTL

Connectives A and E can only appear together with LTL temporal connectives.

Priority bindings

• Unary connective(¬, AX,EX, AF,EF,AG and EG) has high priority

• Next ∧ and ∨ .

• Next →, AU and EU (which are written in prefix and infix notation)

Examples

AG(p → EGr)
EFE[rUq]
E[A[rUp]Uq]
A[AX¬pUE[EX(p ∧ q)U¬p]]

Semantics of CTL

φ

EFϕ

φ

φ

φφ φ

AFϕ

2

Semântica do CTL

φ

φ

φ

EGϕ

φ

φ φ

φ φ

φ

φ

φφ φ

AGϕ

Always and Potentially

• EFϕ = EtrueUϕ, ϕ potentially holds

• AFϕ = AtrueUϕ, ϕ is inevitable

• EGϕ = ¬AF¬ϕ, ϕ holds potentially always

• AGϕ = ¬EF¬ϕ, ϕ invariantly holds

• AGAFϕ, ϕ holds infinitely often in all paths

Examples

• Safety : Mutual exclusion

AG(¬c1 ∨ ¬c2)

• Liveness : P1 and P2 access the critical section infinitely often

AGAFc1 ∧AGAFc2

3

• Starvation freedom:

(AGAFw1 → AGAFc1) ∧ (AGAFw2 → AGAFc2)

Semantics of CTL

Satisfiability

Given a transition system (model) M = (S, −→ , L) (without terminal states),
a state s ∈ S, for π ∈ Paths(s) let π = s1s2s3 · · · , s1 = s and π[i] = si be i
state in π.

Given a formula ϕ and a state s, the satisfaction relation s |= ϕ is defined
inductively in the structure of ϕ:

1. s |= true and s ∕|= false

2. s |= p iff p ∈ L(s)

3. s |= ¬ϕ iff s ∕|= ϕ

4. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

5. s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

6. s |= ϕ → ψ iff if s |= ϕ then s |= ψ

7. s |= AXϕ iff for all π ∈ Paths(s), π[2] |= ϕ

8. s |= EXϕ iff exists π ∈ Paths(s), π[2] |= ϕ

Semantics of CTL

Satisfiability

9. s |= AGϕ iff for all paths π ∈ Paths(s), we have for all i ≥ 1 π[i] |= ϕ

φ

φ φ

φ φ

φ

φ

φφ φ

4

10. s |= EGϕ iff exists a path π ∈ Paths(s) such that for all i ≥ 1, π[i] |= ϕ

φ

φ

φ

11. s |= AFϕ iff for all paths π ∈ Paths(s) , exists i ≥ 1 such that π[i] |= ϕ

φ

φ

φφ φ

12. s |= EFϕ iff exists one path π ∈ Paths(s) such that exists i ≥ 1 such that
π[i] |= ϕ

φ

13. M, s |= A[ϕ1Uϕ2] iff for all paths π ∈ Paths(s), we have that ϕ1Uϕ2

holds, i.e. exists i ≥ 1 π[i] |= ϕ2, and for 1 ≤ j < i π[j] |= ϕ1

14. s |= E[ϕ1Uϕ2] iff exists one path π ∈ Paths(s), such that ϕ1Uϕ2 holds,
i.e. exists i ≥ 1 π[i] |= ϕ2, and for 1 ≤ j < i π[j] |= ϕ1.

Specification Patterns

5

• There exists a reachable state where p holds. EFp

• From all reachable states where p holds it is possible to hold p true until
there is a state where q holds. AG(p → EpUq)

• Whenever there is a state where p holds, it is possible to have q true
forevermore.AG(p → EGq)

• There is a reachable state from which p holds in all reachable states.
EFAGp

CTL Semantics for transition systems

• Given T = (S,Act, −→ , AP, I, L) and a CTL formula ϕ,

• Sat(ϕ) = { s ∈ S | s |= ϕ }

• T satisfies ϕ i.e T |= ϕ iff ∀s0 ∈ I, s0 |= ϕ (i.e I ⊆ Sat(ϕ))

Exemple

Give Sat(ϕ) for the following formulae EXa, AXa, EGa, AGa, EFEGa e A[aUb],

Example

s0
p, q

s1

q, r

s2

r

6

1. s0 |= p ∧ q

2. s0 |= EXr

3. s0 |= ¬AX(q ∧ r)

4. s0 |= ¬EF(p ∧ r)

5. s0 |= EGr

6. s0 |= A[pUr]

Property Specifications

• It is possible to get a state where started holds, but ready is false.
EF(started ∧ ¬ready)

• For any state, if trying, then there exists a path where critical holds
in the future (non-blocking).AG(trying → EF critical)

• A process is enabled infinitely often on every computation path. AG(AF enabled)

• If a process is enabled infinitely often, then it runs infinitely often Not
possible. It is not AGAF enabled → AGAF running

• From any state it is possible to get to a restart state.AGEF restart

Property Specification

• For any state, if request occurs, then it will eventually be acknowledged,
ack. AG(request → AF ack)

• A process will eventually be permanently deadlocked. AF(AG deadlock)

Equivalence of CTL Formulae

Two CTL formulae (over AP) are semantically equivalent, ϕ ≡ ψ, if any state
in any model which satisfies one of them also satisfies the other.

It holds that:

¬AFϕ ≡ EG¬ϕ
¬EFϕ ≡ AG¬ϕ
¬AXϕ ≡ EX¬ϕ
AFϕ ≡ A[trueUϕ]

EFϕ ≡ E[trueUϕ]

A[ϕUψ] ≡ ¬(E[¬ψU(¬ϕ ∧ ¬ψ)]) ∧ ¬EG¬ψ (∗)

7

Complete Sets of Connectives

Teorema 4.1. The following sets of temporal connectives are complete {AU,EU,EX}
and {EG,EU,EX}.

More equivalences

AGϕ ≡ ϕ ∧ AXAGϕ

EGϕ ≡ ϕ ∧ EXEGϕ

AFϕ ≡ ϕ ∨ AXAFϕ

EFϕ ≡ ϕ ∨ EXEFϕ

A[ϕUψ] ≡ ψ ∨ (ϕ ∧AXA[ϕUψ]

E[ϕUψ] ≡ ψ ∨ (ϕ ∧ EXE[ϕUψ]

LTL and CTL

CTL is not strictly more expressive than LTL. For instance

Fp → Fq

cannot be expressed in CTL. It means

All paths where p holds, q also holds.

Note that AF p → AF q or AG(p → AFq) have different meanings.

FGϕ is not AFAGϕ

s0 |= FGa

but
s0 ∕|= AFAGa

(show that for π = s0s0s0 · · · exists a state (s0) and s0 ∕|= AGa.)

But
AGEFa

cannot be expressed in LTL:

8

From every state it is possible to reach a state where a holds.

AGEFa has no equivalent in LTL

There is no LTL formula ϕ that is equivalent to AGEFa. Suppose that there
exists such a formula. As M(a), s |= AGEFa then M(a), s |= ϕ and for all
π ∈ Paths(s), π |= ϕ. In particular for π = sss · · · then π |= ϕ. Then, we
also have M(b), s |= ϕ .But M(b), s ∕|= AGEFa, because s ∕|= EFa. This is a
contradiction.

Also, we have FXa ≡ XFa ≡ AXAFa but

FXa ∕≡ AFAXa.

Teorema 4.2. Let ψ a CTL formula and ϕ the LTL formula that is obtained
by eliminating all path quantifiers A and E in ψ. Then either

ψ ≡ ϕ

or there does not exists any LTL formula that is equivalent to ψ.

LTL versus CTL

Teorema 4.3. a) There exist LTL formulas for which there is no equivalent
CTL formula. For instance, FGa.

b) There exist CTL formulas for which there is no equivalent LTL formula. For
instance, AGEFa.

LTL versus CTL

9

316 Computation Tree Logic

Aspect Linear time Branching time

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s

temporal LTL: path formulae ϕ CTL: state formulae
logic s |= ϕ iff existential path quantification ∃ϕ

∀π ∈ Paths(s). π |= ϕ universal path quantification: ∀ϕ

complexity of the PSPACE–complete PTIME
model checking

problems O (|TS| · exp(|ϕ|)) O(|TS| · |Φ|)

implementation- trace inclusion and the like simulation and bisimulation
relation (proof is PSPACE-complete) (proof in polynomial time)

fairness no special techniques needed special techniques needed

Table 6.1: Linear-time vs. branching-time in a nutshell.

• The model-checking algorithms for linear and branching temporal logics are quite
different. This results, for instance, in significantly different time and space com-
plexity results.

• The notion of fairness can be treated in linear temporal logic without the need for
any additional machinery since fairness assumptions can be expressed in the logic.
For various branching temporal logics this is not the case.

• The equivalences and preorders between transition systems that “correspond” to
linear temporal logic are based on traces, i.e., trace inclusion and equality, whereas
for branching temporal logic such relations are based on simulation and bisimulation
relations (see Chapter 7).

Table 6.1 summarizes the main differences between the linear-time and branching-time
perspective in a succinct way.

2 Logic CTL∗

CTL∗

CTL∗

Extension of CTL, where it is not mandatory that an LTL operator {X, G,F,U}
has an associated operador A or E.

• A[(pUr) ∨ (qUr)],

• E(GFϕ)

• A[Xp ∨ XXp]

CTL∗ is strictly more expressive than both LTL and CTL, and much less effi-
cient.

Syntax of CTL∗

State Formulas

Evaluated in a state

ϕ ::= true | p | (¬ϕ) | (ϕ ∧ ϕ) | (A[α]) | (E[α])

10

Path Formulas

Evaluated in a path

α ::= ϕ | (¬α) | (α ∧ α) | (αUα) | (Gα) | (Fα) | (Xα)

Here we consider only a complete set of Boolean connectives ({¬,∧}).

LTL, CTL and CTL∗

A LTL formula α corresponds to A[α] in CTL∗. CTL is a fragment of CTL∗

where

α ::= (αUα) | (Gα) | (Fα) | (Xα)

ψ1 ψ2 ψ3 ψ4

ψ1 = AGEFp
ψ2 = AG(p → AFq)
ψ3 = A[GFp → Fq]
ψ4 = E[GFp]

A[ϕUψ] ≡ ¬E[¬ψU(¬ϕ ∧ ¬ψ)] ∧ ¬EG¬ψ

Using CTL∗,

A[ϕUψ] ≡ A[¬(¬ψU(¬ϕ ∧ ¬ψ)) ∧ Fψ]

≡ ¬E¬[¬(¬ψU(¬ϕ ∧ ¬ψ)) ∧ Fψ]

≡ ¬E[¬ψU(¬ϕ ∧ ¬ψ) ∨G¬ψ]
≡ ¬(E[¬ψU(¬ϕ ∧ ¬ψ)] ∨ EG¬ψ)
≡ ¬E[(¬ψU(¬ϕ ∧ ¬ψ)]) ∧ ¬EG¬ψ)

11

