Session 6

Promela: Process MetaLanguage
Promela

e "PROcess MEtalLAnguage” developed for

e SPIN Model checker (Simple Promela INterpreter) spinroot.com
e in 2002 was awarded the ACM System Software Award

e Promela is a specification language and

e SPIN a simulator and verifier

e A program P is a set of processes

P,...P,

that execute concurrently (asynchonously), with

— shared variables

— channels FIFO or synchronous

e to describe a process is used a language of guarded commands: statements,
communication actions and atomic regions.

e guarded commands: a guard and an action

e see also [Hol03, BAOS]

Statements Subset

proctype name(list of formal parameters) {stmt}
stmt = skip | z:=expr | ¢’z | clexpr |
stmt; ; stmty | atomic{assignments} |
if g =stmt; ... g, =stmt, fi |
do :g;=stmt; ... :g,=stmt, do

e global variables are declared outside processes
e local variables are declared inside processes

e formal parameters are local to processes and can be instantiated by the
caller

e each process state includes the program counter and the values of local
variables

e g; are conditions over the variables

e skip ends in a step and does not changes the state

Statements Subset

proctype name(list of formal parameters) {stmt}
stmt = skip | z:=expr | c?x | clexpr |
stmt; ; stmty | atomic{assignments} |
ign = stmt, fi |

do

if g1 = stmty

do :: g; = stmty i gp = stmt,

e ; or = sequential execution

e any statement in any state can be executable or blocked
e an expression if evaluates to false blocks

e atomic is a statement that cannot be interleaved

e see the operational semantics in [BKLO8] (Cap. 2.2.5).

e other basic statments: printf and assert.

Data Types
Type Size(bits) Example
bit, bool 1 bit turn=1;
byte 8 byte counter;
short 16
int 32
unsigned <32
pid process id, _pid
mtype list of symbolic values
chan channel
Arrays byte colour[5];
typedef Records typedef Point byte x; byte y;

Point p;
px=...

Selection if-fi

if gi=stmty ... :g,=stmt, fi
nondeterministic choice of stmt; for which the guard g; holds in the current
state.
execution is atomic

if none of the guards g¢i,...,g, holds in the current state the process
blocks.

in this case the execution of other process can unblock this process
imperative if-then-else corresponds to

any statement can be a guard

if 1 g = stmt; :: -g = stmty fi,

One can use ::else that avoids blocking if all other guards are false.

active proctype P() {

int a =7, b =5, max;

if

::a>=b -> max = a

::b>a ->max = b

fi;

printf("max %d\n", max);

assert (a>=b -> max ==a : max ==b);
}

A model is a LTS where transitions correspond to action of basic commands:
assingnmets, channel receive and send, print and assert. (See exampel in ispin)

Loop do-od

do =gy =stmt; ... g, =stmt, do
Repeated execution of the nondeterministic choice of guarded commands
which guards are true
if all guards are false the process blocks
the loop ends with the statement break
or if there is a statement ::else

one can also use the goto statement goto label, where label: should label
the instruction to be executed next.

Verification of sequential programs

e Assertions allow to verify sequential programs

e assert(cond)

e a model checker verifies all possible nondeterministic executions

e and if cond does not hold for one execution a counter-example is given.

Verification with SPIN

e For efficiency reasons SPIN generates a verifier in C and after compilation

allows to execute the verification

e spin -a max.pml; gcc -o pan pan.c; ./pan

e Error analysis: spin -t max.pml

e and options -gplv give more details

Promela
program

Generation

Examples

e max.pml

e mdc.pml

e vending.pml

Verifier

(©)

Compilation

Execution

Verifier
(executable)

Trail

Verification of Concurrent Programs

When there is more than one process

e Promela:

— Execution of several copies of P:active [n] P()

Report

— _pid indicates the number of the current process

— _nr_pr indicates the number of active processes

— instead of active

— first process: init { ...}

— use run to execute a specific process inside a process Ex: run(
P(1,5))

— run returns the pid of the process; it is not a statement

SPIN:

— Random execution (of a certain number of steps):spin pq.pml

Interactive execution: spin -i pq.pml

Construction of a verifier: spin -a pq.pml

. see other options

npr.pml , nprc.pml

Mutual Excusion

naive version with a counter me.pml

with sincronization busy-waiting: me2.pml
with deadlock: mel.pml

with a semaphore: mes.pml

implement Peterson algorithm (Labs)

LTS for mel.pml

4. wantP =1
11.wantQ =1
00

4. wantP =1
12. lwantP
01

4

4. wantP =1
13.wantQ =0
01

[]

5. lwantQ
13.wantQ =0
11

[2

5. lwantQ
11. wantQ = 1
10

re X

6. wantP =0 5. lwantQ
11.wantQ =1 12. lwantP
10 11

J

6. wantP =0
12. lwantP
11

LTL specification

We have the following notation

F - <>
G — |
X = X
U - U

AN = &&
Vo=]

- = |
- = —=>

For instance
GFp

corresponds to [| <> p.

LTL usage in SPIN

e An LTL formula can be specified with the model with 1tl
e or in the command line but it this case it must be negated
o If the formula is GFp then

e spin -a -f ’![]<>p’ name.pml or in general

% spin -a -f <formula_negated> <name>.pml
% gcc -o pan pan.c
%./pan -a -f

e or in a file (also negated)

% spin -a -F forltl.prp > forltl.pml
% spin -a -N forltl.pml <nome>.pml
% gcc —o pan pan.c

%./pan -a -f

In this case, the formula was transformed in a Promela program forltl.pml
with the statement never (never claim).

SPIN Correctness Claims — Safety

e Assertions (assert)

e Absence of deadlock (invalid end states):In every state of every computa-

tion, if no statements are executable, the location counter of each process
must be at the end of the process or at a statement labeled end (end-state
labels) Option -E disables reporting of end-state error

e absence of unreachable code

SPIN Correctness Claims — Liveness

Progress-state labels: check that every potentially infinite execution cycle
permitted by a model passes through at least one of the progress labels in
that model (progress)

accept-state labels : when looking for acceptance cycles (i.e infinite exe-
cutions that pass through a state labeled accept (pan -a).

Never claims: negation of 1tl formulas transformed in a Promela program

Just use LTL formulas

SPIN Correctness Claims

e Weak fairness (stricter version) : if a process reaches a point where it

has an executable statement and executability of that statement never
changes, it will eventually proceed by executing the statement

e Strong fairness (general version) : if the process reaches point where it

has a statement that becomes executable infinitely often it will eventually
proceed by executing the statement

Spin trail-trace with a detected error

~N O O W
N~ DNNOOO

In each step S': P : T where

S step number on the execution trail
P process identifier

T transition identifier of the current step

Use spin -t name.pml Options -p, -1 -v give more information about the trail

References

[BA0O8] Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer,
2008.

[BKLO8] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen.
Principles of Model Checking. MIT Press, 2008.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison Wesley, 2003.

Loop do-od

do :g; =stmt; ... :g,=stmt, do

Repeated execution of the nondeterministic choice of guarded
commands which guards are true

if all guards are false the process blocks
the loop ends with the statement break
or if there is a statement ::else

one can also use the goto statement goto /abel, where label:
should label the instruction to be executed next.

Verification of sequential programs

Assertions allow to verify sequential programs
assert(cond)

a model checker verifies all possible nondeterministic
executions

and if cond does not hold for one execution a counter-example
is given.

Verification with SPIN

® For efficiency reasons SPIN generates a verifier in C and after
compilation allows to execute the verification

Promela Generation Verifier Compilation Verifier
program Q) (executable)

Execution

Trail Report

Verification with SPIN

® For efficiency reasons SPIN generates a verifier in C and after
compilation allows to execute the verification

® spin -a max.pml; gcc -o pan pan.c; ./pan

Promela Generation Verifier Compilation Verifier
program Q) (executable)

Execution

Trail Report

Verification with SPIN

For efficiency reasons SPIN generates a verifier in C and after
compilation allows to execute the verification

spin -a max.pml; gcc -o pan pan.c; ./pan

Error analysis: spin -t max.pml

Promela Generation Verifier Compilation Verifier
program Q) (executable)

Execution

Trail Report

Verification with SPIN

For efficiency reasons SPIN generates a verifier in C and after
compilation allows to execute the verification

spin -a max.pml; gcc -o pan pan.c; ./pan
Error analysis: spin -t max.pml

and options —gplv give more details

Promela Generation Verifier Compilation Verifier
program Q) (executable)

Execution

Trail Report

Examples

® max.pml
® mdc.pml

e vending.pml

Verification of Concurrent Programs

When there is more than one process

® Promela:
® Execution of several copies of P:active [n] P()
_pid indicates the number of the current process
_nr_pr indicates the number of active processes
instead of active
first process: init { ...}
use run to execute a specific process inside a process Ex: run(
P(1.5))
® run returns the pid of the process; it is not a statement

® SPIN:
® Random execution (of a certain number of steps):spin
pq.pml
Interactive execution: spin -i pq.pml
Construction of a verifier: spin -a pq.pml
. see other options
npr.pml , nprc.pml

Mutual Excusion

naive version with a counter me.pml

with sincronization busy-waiting: me2.pml
with deadlock: mel.pml

with a semaphore: mes.pml

implement Peterson algorithm (Labs)

LTS for mel.pml

4. wantP =1
1. wantQ = 1
00
4. wantP =1
12. lwantP
01
4
4. wantP =1
13.wantQ =0
01
[]
5. lwantQ
13.wantQ =0
11
¥
5. lwantQ
11. wantQ = 1
10
re 1
6. wantP =0 5. lwantQ
11. wantQ = 1 12. lwantP
10 11
4
6. wantP =0
12. lwantP
11

LTL specification

We have the following notation

For instance

corresponds to [| <> p.

< > C X o mm

- <>
-
- X
— U
- &&
= |
— |
- —>
GFp

LTL usage in SPIN

An LTL formula can be specified with the model with It
or in the command line but it this case it must be negated
If the formula is GFp then

spin -a -f ’![]<>p’ name.pml or in general

% spin -a -f <formula_negated> <name>.pml

% gcc -o pan pan.c

%./pan -a -f

or in a file (also negated)

% spin -a -F forltl.prp > forltl.pml

% spin -a -N forltl.pml <nome>.pml

% gcc -o pan pan.c

%./pan -a -f

In this case, the formula was transformed in a Promela

program forltl.pml with the statement never (never
claim).

SPIN Correctness Claims — Safety

® Assertions (assert)

® Absence of deadlock (invalid end states):In every state of
every computation, if no statements are executable, the
location counter of each process must be at the end of the
process or at a statement labeled end (end-state labels)
Option -E disables reporting of end-state error

® absence of unreachable code

SPIN Correctness Claims — Liveness

Progress-state labels: check that every potentially infinite
execution cycle permitted by a model passes through at least
one of the progress labels in that model (progress)

accept-state labels : when looking for acceptance cycles (i.e
infinite executions that pass through a state labeled accept
(pan -a).

Never claims: negation of Itl formulas transformed in a
Promela program

Just use LTL formulas

SPIN Correctness Claims

e Weak fairness (stricter version) : if a process reaches a point
where it has an executable statement and executability of that
statement never changes, it will eventually proceed by
executing the statement

e Strong fairness (general version) : if the process reaches point
where it has a statement that becomes executable infinitely
often it will eventually proceed by executing the statement

Spin trail-trace with a detected error

~N O O W N
N~ NNO OO

In each step S: P: T where

S step number on the execution trail
P process identifier
T transition identifier of the current step

Use spin -t name.pml Options -p, -I -v give more information
about the trail

