
Session 6

Promela: Process MetaLanguage

Promela

• ”PROcess MEtaLAnguage” developed for

• SPIN Model checker (Simple Promela INterpreter) spinroot.com

• in 2002 was awarded the ACM System Software Award

• Promela is a specification language and

• SPIN a simulator and verifier

• A program P̄ is a set of processes

P1, . . . Pn

that execute concurrently (asynchonously), with

– shared variables

– channels FIFO or synchronous

• to describe a process is used a language of guarded commands: statements,
communication actions and atomic regions.

• guarded commands: a guard and an action

• see also [Hol03, BA08]

Statements Subset

proctype name(list of formal parameters) {stmt}

• global variables are declared outside processes

• local variables are declared inside processes

• formal parameters are local to processes and can be instantiated by the
caller

1

• each process state includes the program counter and the values of local
variables

• gi are conditions over the variables

• skip ends in a step and does not changes the state

Statements Subset

proctype name(list of formal parameters) {stmt}

• ; or ⇒ sequential execution

• any statement in any state can be executable or blocked

• an expression if evaluates to false blocks

• atomic is a statement that cannot be interleaved

• see the operational semantics in [BKL08] (Cap. 2.2.5).

• other basic statments: printf and assert.

Data Types

Type Size(bits) Example

bit, bool 1 bit turn=1;
byte 8 byte counter;
short 16
int 32

unsigned ≤ 32

pid process id, pid
mtype list of symbolic values
chan channel

Arrays byte colour[5];
typedef Records typedef Point byte x; byte y;

Point p;
p.x =. . .

2

Selection if-fi

• nondeterministic choice of stmti for which the guard gi holds in the current
state.

• execution is atomic

• if none of the guards g1, . . . , gn holds in the current state the process
blocks.

• in this case the execution of other process can unblock this process

• imperative if-then-else corresponds to

• any statement can be a guard

• One can use ::else that avoids blocking if all other guards are false.

active proctype P() {

int a = 7, b = 5, max;

if

:: a >= b -> max = a

:: b >= a -> max = b

fi;

printf("max %d\n", max);

assert (a>=b -> max ==a : max ==b);

}

A model is a LTS where transitions correspond to action of basic commands:
assingnmets, channel receive and send, print and assert. (See exampel in ispin)

Loop do-od

• Repeated execution of the nondeterministic choice of guarded commands
which guards are true

• if all guards are false the process blocks

• the loop ends with the statement break

• or if there is a statement ::else

• one can also use the goto statement goto label, where label: should label
the instruction to be executed next.

3

Verification of sequential programs

• Assertions allow to verify sequential programs

• assert(cond)

• a model checker verifies all possible nondeterministic executions

• and if cond does not hold for one execution a counter-example is given.

Verification with SPIN

• For efficiency reasons SPIN generates a verifier in C and after compilation
allows to execute the verification

• spin -a max.pml; gcc -o pan pan.c; ./pan

• Error analysis: spin -t max.pml

• and options -gplv give more details

Examples

• max.pml

• mdc.pml

• vending.pml

Verification of Concurrent Programs

When there is more than one process

• Promela:

– Execution of several copies of P :active [n] P()

4

– pid indicates the number of the current process

– nr pr indicates the number of active processes

– instead of active

– first process: init { . . . }
– use run to execute a specific process inside a process Ex: run(

P(1,5))

– run returns the pid of the process; it is not a statement

• SPIN:

– Random execution (of a certain number of steps):spin pq.pml

– Interactive execution: spin -i pq.pml

– Construction of a verifier: spin -a pq.pml

– ... see other options

– npr.pml , nprc.pml

Mutual Excusion

• naive version with a counter me.pml

• with sincronization busy-waiting: me2.pml

• with deadlock: me1.pml

• with a semaphore: mes.pml

• implement Peterson algorithm (Labs)

LTS for me1.pml

5

LTL specification

We have the following notation

F → <>

G → []

X → X

U → U

∧ → &&

∨ → ||
¬ → !

→ → − >

For instance
GFp

corresponds to [] <> p.

LTL usage in SPIN

• An LTL formula can be specified with the model with ltl

• or in the command line but it this case it must be negated

• If the formula is GFp then

• spin -a -f ’![]<>p’ name.pml or in general

% spin -a -f <formula_negated> <name>.pml

% gcc -o pan pan.c

%./pan -a -f

• or in a file (also negated)

% spin -a -F forltl.prp > forltl.pml

% spin -a -N forltl.pml <nome>.pml

% gcc -o pan pan.c

%./pan -a -f

In this case, the formula was transformed in a Promela program forltl.pml

with the statement never (never claim).

6

SPIN Correctness Claims – Safety

• Assertions (assert)

• Absence of deadlock (invalid end states):In every state of every computa-
tion, if no statements are executable, the location counter of each process
must be at the end of the process or at a statement labeled end (end-state
labels) Option -E disables reporting of end-state error

• absence of unreachable code

SPIN Correctness Claims – Liveness

• Progress-state labels: check that every potentially infinite execution cycle
permitted by a model passes through at least one of the progress labels in
that model (progress)

• accept-state labels : when looking for acceptance cycles (i.e infinite exe-
cutions that pass through a state labeled accept (pan -a).

• Never claims: negation of ltl formulas transformed in a Promela program

• Just use LTL formulas

SPIN Correctness Claims

• Weak fairness (stricter version) : if a process reaches a point where it
has an executable statement and executability of that statement never
changes, it will eventually proceed by executing the statement

• Strong fairness (general version) : if the process reaches point where it
has a statement that becomes executable infinitely often it will eventually
proceed by executing the statement

Spin trail-trace with a detected error

1:0:14

2:0:15

3:0:16

4:2:7

5:2:8

6:1:0

7:2:9

In each step S : P : T where

7

S step number on the execution trail

P process identifier

T transition identifier of the current step

Use spin -t name.pml Options -p, -l -v give more information about the trail

References

[BA08] Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer,
2008.

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen.
Principles of Model Checking. MIT Press, 2008.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison Wesley, 2003.

8

Loop do-od

• Repeated execution of the nondeterministic choice of guarded
commands which guards are true

• if all guards are false the process blocks

• the loop ends with the statement break

• or if there is a statement ::else

• one can also use the goto statement goto label, where label:
should label the instruction to be executed next.

Verification of sequential programs

• Assertions allow to verify sequential programs

• assert(cond)

• a model checker verifies all possible nondeterministic
executions

• and if cond does not hold for one execution a counter-example
is given.

Verification with SPIN

• For efficiency reasons SPIN generates a verifier in C and after
compilation allows to execute the verification

• spin -a max.pml; gcc -o pan pan.c; ./pan

• Error analysis: spin -t max.pml

• and options -gplv give more details

Verification with SPIN

• For efficiency reasons SPIN generates a verifier in C and after
compilation allows to execute the verification

• spin -a max.pml; gcc -o pan pan.c; ./pan

• Error analysis: spin -t max.pml

• and options -gplv give more details

Verification with SPIN

• For efficiency reasons SPIN generates a verifier in C and after
compilation allows to execute the verification

• spin -a max.pml; gcc -o pan pan.c; ./pan

• Error analysis: spin -t max.pml

• and options -gplv give more details

Verification with SPIN

• For efficiency reasons SPIN generates a verifier in C and after
compilation allows to execute the verification

• spin -a max.pml; gcc -o pan pan.c; ./pan

• Error analysis: spin -t max.pml

• and options -gplv give more details

Examples

• max.pml

• mdc.pml

• vending.pml

Verification of Concurrent Programs

When there is more than one process

• Promela:
• Execution of several copies of P :active [n] P()
• pid indicates the number of the current process
• nr pr indicates the number of active processes
• instead of active
• first process: init { . . . }
• use run to execute a specific process inside a process Ex: run(

P(1,5))
• run returns the pid of the process; it is not a statement

• SPIN:
• Random execution (of a certain number of steps):spin
pq.pml

• Interactive execution: spin -i pq.pml
• Construction of a verifier: spin -a pq.pml
• ... see other options
• npr.pml , nprc.pml

Mutual Excusion

• naive version with a counter me.pml

• with sincronization busy-waiting: me2.pml

• with deadlock: me1.pml

• with a semaphore: mes.pml

• implement Peterson algorithm (Labs)

LTS for me1.pml

LTL specification

We have the following notation

F → <>

G → []

X → X

U → U

∧ → &&

∨ → ||
¬ → !

→ → − >

For instance
GFp

corresponds to [] <> p.

LTL usage in SPIN

• An LTL formula can be specified with the model with ltl

• or in the command line but it this case it must be negated

• If the formula is GFp then

• spin -a -f ’![]<>p’ name.pml or in general

% spin -a -f <formula_negated> <name>.pml

% gcc -o pan pan.c

%./pan -a -f

• or in a file (also negated)

% spin -a -F forltl.prp > forltl.pml

% spin -a -N forltl.pml <nome>.pml

% gcc -o pan pan.c

%./pan -a -f

In this case, the formula was transformed in a Promela
program forltl.pml with the statement never (never
claim).

SPIN Correctness Claims – Safety

• Assertions (assert)

• Absence of deadlock (invalid end states):In every state of
every computation, if no statements are executable, the
location counter of each process must be at the end of the
process or at a statement labeled end (end-state labels)
Option -E disables reporting of end-state error

• absence of unreachable code

SPIN Correctness Claims – Liveness

• Progress-state labels: check that every potentially infinite
execution cycle permitted by a model passes through at least
one of the progress labels in that model (progress)

• accept-state labels : when looking for acceptance cycles (i.e
infinite executions that pass through a state labeled accept

(pan -a).

• Never claims: negation of ltl formulas transformed in a
Promela program

• Just use LTL formulas

SPIN Correctness Claims

• Weak fairness (stricter version) : if a process reaches a point
where it has an executable statement and executability of that
statement never changes, it will eventually proceed by
executing the statement

• Strong fairness (general version) : if the process reaches point
where it has a statement that becomes executable infinitely
often it will eventually proceed by executing the statement

Spin trail-trace with a detected error

1:0:14

2:0:15

3:0:16

4:2:7

5:2:8

6:1:0

7:2:9

In each step S : P : T where

S step number on the execution trail

P process identifier

T transition identifier of the current step

Use spin -t name.pml Options -p, -l -v give more information
about the trail

