Session 7
Communication by channels

Contents

1 Channels Systems 1

1.1 Synchronous and Asynchronous . . . . . . ... ... ... ....

2 Example: Alternating Bit Protocol 4
3 Transition Systems for Channel Systems 6
4 State-Space Explosion Problem 8
5 Channels in Promela 10

Parallelism and Communication

In general, hardware and software systems are parallel and may communicate
among them. We want to define the system

T[Ty - || T
Parallelism can be modelled in several ways:

e Interleaving processes (asynchronous).
e Communication by shared variables

e Synchronous product

Handshaking (actions allow to synchronise processes)

e Message passing - communication by channels

Communication by channels



I:EZI_ __________ _:I:l
Sender | _________ Receiver
r2s

s2r!MSG E Mse

s2r?MsSG

ACK r2s!ACK

r2s?ACK E ]

! is sending
? is receiving

e a channel has two operations:send and receive.

1 Channels Systems
Communication by channels

e A channel can be a buffer FIFO (shared variable)

e Models communication in networks and communication protocols

e Also, basic for concurrency modelling formalisms

e channel system

e has n processes Pi,..., P,, each one with a program graph PG; with
e conditional transitions g : & or communication actions:

e g : clv transmit the value v along channel ¢

e ¢ : c?x receive a message via channel ¢ and assign it to variable z.
gia g:clv g:c?x
ol S W L= V orl — /.

e communication actions can be synchronous or asynchronous.

Channels

e Let ¢ be a buffer.
e clv puts v in the end of the buffer ¢

e c?x gets the element in the top of the buffer ¢ and assigns it to x



e channel capacity,
cap(c) € NU {00},

indicates the maximum number of messages that ¢ can store (can be finite
or infinite)

e channel type, indicates the type of messages that can be transmitted over
¢, dom(c).

e Let C'han be the set of channels, the seset of communication actions is

Comm = {clv,c?z|ce Chan Av € dom(c) A
x € Var Adom(z) C dom(c)}

1.1 Synchronous and Asynchronous

Synchronous and Asynchronous

e Ex: a channel ¢ that transmits bits has dom(c) = {0, 1}

e If cap(c) = 0 the system corresponds to Handshaking: simultaneous trans-
mission and receipt, synchronous message passing

e If cap(0) > 0 there is a delay between the transmission and the receipt of
a message: asynchronous message passing
Channel System (CS)

CS = [PG1|PGs|-- - |PG,] over (Var,Chan) where PG; are program graphs
over (Var;, Chan)

o Var =J,<;<, Var; set of typed variables
o Chan set of typed channels with capacities cap(-) and domains dom(-)
o PG; = (Loc;, Act;, Ef fect;, < 4, Loco s, go,i)

— ; C Loc; x (Cond(Var;) x (Act; U Commy;)) X Loc;

ot Iy

, g guard
g:clv ,
e / — ,; /' sends the value v over the channel ¢

g:clx . -
e { — ;I receives a message along ¢ and stores it in

o If g = True we can omit g : in the communication actions.



Communication if cap(c) > 0

3
e P, can perform the conditional transition /; & i U iff channel ¢ is not

full and v is stored in the end of the channel ¢ (add(c,v))

?
e P; can execute /; E° 00 if channel ¢ is not empty

J >3
clv
vi|...|Vy — Vi| e |V | V
c?x
v iwv|l.|lvw - Vo A
T X=v

Communication if cap(c) = 0 (rendezvous)

e process P; can transmit a value v over a channel c,
clv ,
if there is another process P; that offers a complementary receive action

c?x

Ej ‘—>]€;

e being the effect of message passing equivalent to z := v.

2 Example: Alternating Bit Protocol

Alternating Bit Protocol (ABP)

channel d

SyIlChl‘OIlOllS

timer

unreliable channel ¢

e channel ¢ is not perfect and can lose sent messages (e.g. large data packets)
e channel d is perfect and sends ”acknowledgment” (e.g. small data packets)
e We want a communication protocol that

e ensures that all distinct transmitted data by S are delivered to R.

e For that S may have to retransmit messages (if timer timeouts)

e and a new message only is sent when it is warranted that the previous one
was received (this is called send and wait)



Alternating Bit Protocol

e S sends a message, one extra bit y and activates the timer.
e if a timeout occurs the same message is sent again

e if R sent y then S restarts the timer and sets y = —y (sending a new
message)

e Without real-time, the timeout is implemented with nondeterminism

Sender

y< 0
while True do
(1) send message + bit y (or lose it) and activate timer
(2) await timeout or ack x
do
if timeout then
goto (1)
else if x==y then
turn off timer; y < —y
else
ignore x

od

Receiver

z+0
while True do
await receive message + bit y
if x ==y then
send ack x; x + —x
else
ignore y

Alternating Bit Protocol

e S sends a message along ¢
<m0a b0>, <m17 bl>7 e
ebO:Oa b1:1, b2:0,

e when R receives (m,b) sends the control bit b that receives from the chan-
nel d

e when S receives b, S transmits a new message m’ with the bit —b.



e If however, S has to wait too long for a message from R, S timeouts and
retransmits (m, b) (here the simulation is done using nondeterminism)

e b is the alternating bit

PG for Sender

cl{m,0) d?x
!
snd msg(0) st tmr(0) 'tmr o
r=1: timeout? T =
tmr off! timeout? tmr off!

d?x cl{m, 1)
Chan = {c¢,d,tmr_on,tmr_of f,timeout}
Var = {z,y,m;}

PG for Recetver and Timer

ct(m,y)

— tmr off ?
dl y=1 y=0 d!0 timeout! on?
snd ack(1) =1 wait(])
c?(m, y)
ABP = [S|Timer|R]

e rendezvous (synchronous message passing) between S and Timer

e asynchronous message passing between S and R



3 Transition Systems for Channel Systems
Transition System for C'S
Let CS = [PG1|PGs|---|PGy] over (Var,Chan).
PG, = (Loc;, Acti, Ef fect;, — i, Loco, go,i)
One can define the associated transition system T'(CS) where

e states are (¢1,...,4,,7,C)

e /; location in PG;

1 € Eval(Var) current values of the variables

¢:Chan —

* .
ccChan dom(c)* current content of the various channels

for ¢ € Chan, ¢(c) € dom(c)*

and len(¢(c)) < cap(c)

e Fwval(Chan) is the set of all ¢.

Transition System for CS
Let CS = [PG1|PGs|---|PGy] over (Var,Chan).

PG; = (Loc;, Acti, Ef fect;, — 4, Locg i, go,i)

initial states: components ¢; € Locy ;

e initially all channels are empty ((o(c) =€, ¢ € Chan) and len(c) = 0.

¢(c) = vivg - - - vg, with vy the channel top

len(¢) =k

e ([c := wi,ws,...,wg] is the environment equal to ¢ but with {(¢) =
WwiWws -« -+ Wk

Cle = wr,wa, ..., wg](c) = {C(Cl) se 75'0 /
wwy - wiif ¢ =¢
T(CS)

T(CS) = (S, Act, — ,I, AP, L)

e S=(Locy X -+ x Locy) x Eval(Var) x Eval(Chan)



o Act =@y 1<, Act; ® {7}, disjoin union
o I ={{(l1,...,0n,m, (o) | VO <i<n(l; € Locy; A= gos) }

e AP =@ 1, Loc;®Cond(Var), onde could added conditions over chan-
nels: emptyP(c), fullP(c), etc

o L({l1,....0n,n,C))={l1,....L,} U{ g€ Cond(Var) | nkEg}
e transition relation — with the rules for actions a € Act; and messages
passing.

Interleaving for a € Act;

Ei ‘i)aifg/\’U':g
<£17"'7£i7"'7£na777c> i) <£17"'5€{L‘7"'7£nanlac>
with ' = Ef fect(a,n).

Message Passing for ¢ € Chan and cap(c) > 0

e receive a value along ¢ and store in «

4 g:—cfxifg/\n|:g/\C(c):U1~-~vk/\k:>0
<£17"'7€ia"'7£nan7g> ;> <£17"'7€/Z""'7£na77/7<l>

with ' =nlz:=v1] e ' =[c:=vo---vg].

e transmit a message v € dom(c) over ¢

l; g!viﬂg/\n|:g/\<(c):1)1'~vk/\k<cap(c)
<€17"'7‘€i7"'7€’n7777<> L> <€17"'7€i7"‘7€n777/7</>

with ¢’ = {[c:= vy -+ - vv].

Message passing synchronous for ¢ € Chan and cap(c) =0

gi:c?x

:clv . .
U= s UANEgG AN Eg N &y U NI F ]
Crvee iy by, Q) 5 (el U U )

with ' = nlz :=v].




4 State-Space Explosion Problem

How many states has a transistion system

.. of a channel system with:

e 2 processes with 2 locations
e 2 Boolean variables

e 2 channels of capacity 10 of type Boolean

o 7

2x2x2x2x (142422 4...4210) =242t _1)2 > 9%

if the channels are unbound, cap(c) = oo, the number of states is co.

ABP
cl{m,0) d?r
o) @)
r=1
r=1: timeout? T =
tmr off! timeout ? tmr off!
Gt e
d?x cl(m, 1)
c?m,y) |
i : =0
wait(0) pr msg(0) Y (snd ack(()D ( off >
tmr off ?
d'l y=1 y=0 d'0 timeout! ) on?
wait(1) on
T(ABP)

e Timer can timeout on each transmission of data by S thus the number of
messages over ¢ can be infinite,



e thus T(ABP) can be infinite

e fragment of execution where a message is lost

sender S timer receiver R channel ¢ channel d event
snd msg(0) off wait (0) 1%} 1%}
st tmr(0) off wait (0) %} %} loss of message
wait (0) on wait (0) %} 1%}
snd msg(0) off wait (0) (%] (%] timeout
Ignoring retransmissions
sender S timer receiver R channel ¢ channel d  event
snd msg(0)  off wait (0) 5} %}
st tmr(0) off wait (0) (m, 0) %] message with bit 0
transmitted
wait (0) on wait(0) (m,0) 1]
snd msg(0)  off wait (0) (m,0) & timeout
st tmr(0) off wait (0) (m,0) (m,0) @ retransmission
st tmr(0) off pr msg(0)  (m,0) %] receiver reads
first message
st tmr(0) off snd ack(0)  (m,0) 7]
st tmr(0) off wait(1) (m, 0) 0 receiver changes

into mode-1

st tmr(0) off pr msg(l) @ 0 receiver reads
retransmission

st tmr(0) off wait(1) %} 0 and ignores it

State-Space Explosion Problem
A transition system can be very large

e infinite if the variables has infinite domains (e.g.N) or infinite data struc-
tures as stacks)

finite with an exponential growth of the state space in terms of the number
of components or the number of variables and channels

|Locy| - - - |Loca| [T, evar ldom(2). [ Toconan \dom(c)\c“p(c)

e [ locations per component K channels of bits with capacity k¥ and M
variables with |dom(z)| < m the number of states is

L. mM 9Kk

Example: ABP if cap(c) = cap(d) = 10, dom(c) = dom(m) = {0,1} e
|Locr| = 2, |Locgr| = 6, |Locs| = 8 the number of states is

2x6x8x40x (2" —1) > 3.2%.

10



5 Channels in Promela
Channels in Promela

chan ch = [capacity] of { typename, ..., typename }
e allows the definition of channels where each message has several fields each
one of a certain type.
e capacity = O for synchronous channels
e chll sends 1 (blocks if ch is full)
e ch?z receives a value and stores in z (blocks if ch is empty)
e normally declared globally
e if local they disappear when the process terminates
e can be passed as parameters of processes
e for receiving the variable x can be anonymous ch?_
e arrays of channels: chan [2] = [3] of {byte, bool}

e full, nfull, empty, nempty are Boolean functions to test the state of
the channels

e len number of messages in a channel

Rendezvous
e Client-Server: csl.pml , cs2.pml, c¢s3.pml, csd.pml

chan request = [0] of {byte }

active proctype Server() {

byte client;

end:

do

:: request ? client ->
printf(client)

od

}

active [2] proctype Client() {

request ! _pid

}

11



Buffers
e check if the channels are full or empty: cs5.pml

chan request = [0] of { byte, chan };
chan reply [2] = [2] of { byte };

active [2] proctype Server() {
byte client;
chan replyChannel;
do
: empty(request) -> printf("No requests for %d\n",_pid)
: request 7 client, replyChannel ->
printf("Client %d to server %d\n",client, _pid);
replyChannel ! _pid
od
}

Buffers

active [2] proctype Client() {
byte server;
do
: full(request) ->
printf("Client ’%d waiting for channel \n", _pid);

request ! _pid, reply[_pid-2];
reply[_pid-2] ? server;
printf ("Response received from the server %d for the

client %d\n",server, _pid);
od

Conditional

chan chl = [16] of { byte, int, chan, byte }

e chllexpl,exp2,exp3
e chil?varl,var2,var3
e chl!expl(exp2,exp3)
e chil?varl(var2,var3)

e chil?[varl,var2,var3] : eval to 1 if matches the values of the channel and
0 otherwise; no side effect (so no race conditions in case varl,var2,var3
shared by other processes).

12



Alternating bit protocol - abpl.pml

mtype ={msg,ack};
chan to_sender = [2] of { mtype, bit };
chan to_receiver = [2] of {mtype, bit};

active proctype Sender(O{
bool y, x;
do
i true ->
send: to_receiver!msg(y);
to_sender?ack(x);

if

roy==x -> y= 1-y;
:: timeout

fi

od

timeout boolean predefined global variable that is true if no statement is ex-
ecutable in aany activ process

Alternating bit protocol

active proctype Receiver(){

bool x;
do
i1 true ->
rec: to_receiver?msg(x);

to_sender!ack(x);
:: timeout -> to_sender'ack(x);
od

#define sent Sender@send
#define recv Receiver@rec
1tl A1 { [I<> sent }

1tl A2 { [1<> recv }
1tl A3 {[J(xrecv -> ( recv U (!'recv &&(( ! recv) U sent))))}

13



