
Session 7
Communication by channels

Contents

1 Channels Systems 1

1.1 Synchronous and Asynchronous 2

2 Example: Alternating Bit Protocol 4

3 Transition Systems for Channel Systems 6

4 State-Space Explosion Problem 8

5 Channels in Promela 10

Parallelism and Communication

In general, hardware and software systems are parallel and may communicate
among them. We want to define the system

T1||T2 · · · ||Tn

Parallelism can be modelled in several ways:

• Interleaving processes (asynchronous).

• Communication by shared variables

• Synchronous product

• Handshaking (actions allow to synchronise processes)

• Message passing - communication by channels

Communication by channels

1

• a channel has two operations:send and receive.

1 Channels Systems

Communication by channels

• A channel can be a buffer FIFO (shared variable)

• Models communication in networks and communication protocols

• Also, basic for concurrency modelling formalisms

• channel system

• has n processes P1,. . . , Pn, each one with a program graph PGi with

• conditional transitions g : α or communication actions:

• g : c!v transmit the value v along channel c

• g : c?x receive a message via channel c and assign it to variable x.

• ℓ
g:α
↩→ ℓ′, ℓ

g:c!v
↩→ ℓ′, or ℓ

g:c?x
↩→ ℓ′.

• communication actions can be synchronous or asynchronous.

Channels

• Let c be a buffer.

• c!v puts v in the end of the buffer c

• c?x gets the element in the top of the buffer c and assigns it to x

2

• channel capacity,
cap(c) ∈ N ∪ {∞},

indicates the maximum number of messages that c can store (can be finite
or infinite)

• channel type, indicates the type of messages that can be transmitted over
c, dom(c).

• Let Chan be the set of channels, the seset of communication actions is

Comm = {c!v, c?x | c ∈ Chan ∧ v ∈ dom(c) ∧
x ∈ V ar ∧ dom(x) ⊆ dom(c)}

1.1 Synchronous and Asynchronous

Synchronous and Asynchronous

• Ex: a channel c that transmits bits has dom(c) = {0, 1}

• If cap(c) = 0 the system corresponds to Handshaking : simultaneous trans-
mission and receipt, synchronous message passing

• If cap(0) > 0 there is a delay between the transmission and the receipt of
a message: asynchronous message passing

Channel System (CS)

CS = [PG1|PG2| · · · |PGn] over (V ar, Chan) where PGi are program graphs
over (V ari, Chan)

• V ar =
󰁖

1≤i≤n V ari set of typed variables

• Chan set of typed channels with capacities cap(·) and domains dom(·)

• PGi = (Loci, Acti, Effecti, ↩→ i, Loc0,i, g0,i)

↩→ i ⊆ Loci × (Cond(V ari)× (Acti ∪ Commi))× Loci

• ℓ
g:α
↩→ i ℓ

′, g guard

• ℓ
g:c!v
↩→ i ℓ

′, sends the value v over the channel c

• ℓ
g:c?x
↩→ i ℓ

′, receives a message along c and stores it in x

• If g = True we can omit g : in the communication actions.

3

Communication if cap(c) > 0

• Pi can perform the conditional transition ℓi
c!v
↩→ i ℓ

′
i iff channel c is not

full and v is stored in the end of the channel c (add(c, v))

• Pj can execute ℓj
c?x
↩→ j ℓ

′
j if channel c is not empty

Communication if cap(c) = 0 (rendezvous)

• process Pi can transmit a value v over a channel c,

ℓi
c!v
↩→ i ℓ

′
i

if there is another process Pj that offers a complementary receive action

ℓj
c?x
↩→ j ℓ

′
j

• being the effect of message passing equivalent to x := v.

2 Example: Alternating Bit Protocol

Alternating Bit Protocol (ABP)

• channel c is not perfect and can lose sent messages (e.g. large data packets)

• channel d is perfect and sends ”acknowledgment” (e.g. small data packets)

• We want a communication protocol that

• ensures that all distinct transmitted data by S are delivered to R.

• For that S may have to retransmit messages (if timer timeouts)

• and a new message only is sent when it is warranted that the previous one
was received (this is called send and wait)

4

Alternating Bit Protocol

• S sends a message, one extra bit y and activates the timer.

• if a timeout occurs the same message is sent again

• if R sent y then S restarts the timer and sets y = ¬y (sending a new
message)

• Without real-time, the timeout is implemented with nondeterminism

Sender

y ← 0
while True do

(1) send message + bit y (or lose it) and activate timer
(2) await timeout or ack x
do
if timeout then

goto (1)
else if x==y then

turn off timer; y ← ¬y
else

ignore x

od

Receiver

x ← 0
while True do

await receive message + bit y
if x == y then

send ack x; x ← ¬x
else

ignore y

Alternating Bit Protocol

• S sends a message along c

〈m0, b0〉, 〈m1, b1〉, . . .

e b0 = 0, b1 = 1, b2 = 0, . . .

• when R receives 〈m, b〉 sends the control bit b that receives from the chan-
nel d

• when S receives b, S transmits a new message m′ with the bit ¬b.

5

• If, however, S has to wait too long for a message from R, S timeouts and
retransmits 〈m, b〉 (here the simulation is done using nondeterminism)

• b is the alternating bit

PG for Sender

Chan = {c, d, tmr on, tmr off, timeout}
V ar = {x, y,mi}

PG for Receiver and Timer

ABP = [S|T imer|R]

• rendezvous (synchronous message passing) between S and T imer

• asynchronous message passing between S and R

6

3 Transition Systems for Channel Systems

Transition System for CS

Let CS = [PG1|PG2| · · · |PGn] over (V ar, Chan).

PGi = (Loci, Acti, Effecti, ↩→ i, Loc0,i, g0,i)

One can define the associated transition system T (CS) where

• states are 〈ℓ1, . . . , ℓn, η, ζ〉

• ℓi location in PGi

• η ∈ Eval(V ar) current values of the variables

• ζ : Chan →
󰁖

c∈Chan dom(c)󰂏 current content of the various channels

• for c ∈ Chan, ζ(c) ∈ dom(c)󰂏

• and len(ζ(c)) ≤ cap(c)

• Eval(Chan) is the set of all ζ.

Transition System for CS

Let CS = [PG1|PG2| · · · |PGn] over (V ar, Chan).

PGi = (Loci, Acti, Effecti, ↩→ i, Loc0,i, g0,i)

• initial states: components ℓi ∈ Loc0,i

• initially all channels are empty (ζ0(c) = ε, c ∈ Chan) and len(ε) = 0.

• ζ(c) = v1v2 · · · vk, with v1 the channel top

• len(ζ) = k

• ζ[c := w1, w2, . . . , wk] is the environment equal to ζ but with ζ(c) =
w1w2 · · ·wk

ζ[c := w1, w2, . . . , wk](c
′) =

󰀫
ζ(c′) se c′ ∕= c

w1w2 · · ·wkif c
′ = c

T (CS)

T (CS) = (S,Act, −→ , I, AP, L)

• S = (Loc1 × · · ·× Locn)× Eval(V ar)× Eval(Chan)

7

• Act =
󰁏

0<1≤n Acti ⊕ {τ}, disjoin union

• I = { 〈ℓ1, . . . , ℓn, η, ζ0〉 | ∀0 < i ≤ n(ℓi ∈ Loc0,i ∧ η |= g0,i) }

• AP =
󰁏

0<1≤n Loci⊕Cond(V ar), onde could added conditions over chan-
nels: emptyP(c), fullP(c), etc

• L(〈ℓ1, . . . , ℓn, η, ζ〉) = {ℓ1, . . . , ℓn} ∪ { g ∈ Cond(V ar) | η |= g }

• transition relation −→ with the rules for actions α ∈ Acti and messages
passing.

Interleaving for α ∈ Acti

ℓi
g:α
↩→ i ℓ

′
i ∧ η |= g

〈ℓ1, . . . , ℓi, . . . , ℓn, η, ζ〉
α−→ 〈ℓ1, . . . , ℓ′i, . . . , ℓn, η′, ζ〉

with η′ = Effect(α, η).

Message Passing for c ∈ Chan and cap(c) > 0

• receive a value along c and store in x

ℓi
g:c?x
↩→ i ℓ

′
i ∧ η |= g ∧ ζ(c) = v1 · · · vk ∧ k > 0

〈ℓ1, . . . , ℓi, . . . , ℓn, η, ζ〉
τ−→ 〈ℓ1, . . . , ℓ′i, . . . , ℓn, η′, ζ ′〉

with η′ = η[x := v1] e ζ ′ = ζ[c := v2 · · · vk].

• transmit a message v ∈ dom(c) over c

ℓi
g:c!v
↩→ i ℓ

′
i ∧ η |= g ∧ ζ(c) = v1 · · · vk ∧ k < cap(c)

〈ℓ1, . . . , ℓi, . . . , ℓn, η, ζ〉
τ−→ 〈ℓ1, . . . , ℓi, . . . , ℓn, η′, ζ ′〉

with ζ ′ = ζ[c := v1 · · · vkv].

Message passing synchronous for c ∈ Chan and cap(c) = 0

ℓi
g1:c?x
↩→ i ℓ

′
i ∧ η |= g1 ∧ η |= g2 ∧ ℓj

g2:c!v
↩→ j ℓ

′
j ∧ i ∕= j

〈ℓ1, . . . , ℓi, . . . , ℓj , . . . ℓn, η, ζ〉
τ−→ 〈ℓ′1, . . . , ℓ′i, . . . , ℓ′j , . . . ℓ′n, η′, ζ〉

with η′ = η[x := v].

8

4 State-Space Explosion Problem

How many states has a transistion system

... of a channel system with:

• 2 processes with 2 locations

• 2 Boolean variables

• 2 channels of capacity 10 of type Boolean

• ?

2× 2× 2× 2× (1 + 2 + 22 + · · ·+ 210) = 24(211 − 1)2 > 224

if the channels are unbound, cap(c) = ∞, the number of states is ∞.

ABP

T (ABP)

• Timer can timeout on each transmission of data by S thus the number of
messages over c can be infinite,

9

• thus T (ABP) can be infinite

• fragment of execution where a message is lost

Ignoring retransmissions

State-Space Explosion Problem

A transition system can be very large

• infinite if the variables has infinite domains (e.g.N) or infinite data struc-
tures as stacks)

• finite with an exponential growth of the state space in terms of the number
of components or the number of variables and channels

• |Loc1| · · · |Loc2|
󰁔

x∈V ar |dom(x)|.
󰁔

c∈Chan |dom(c)|cap(c)

• L locations per component K channels of bits with capacity k and M
variables with |dom(x)| ≤ m the number of states is

•
Ln ·mM · 2K·k

• Example: ABP if cap(c) = cap(d) = 10, dom(c) = dom(m) = {0, 1} e
|LocT | = 2, |LocR| = 6, |LocS | = 8 the number of states is

2× 6× 8× 410 × (211 − 1) > 3.225.

10

5 Channels in Promela

Channels in Promela

• allows the definition of channels where each message has several fields each
one of a certain type.

• capacity = 0 for synchronous channels

• ch!1 sends 1 (blocks if ch is full)

• ch?x receives a value and stores in x (blocks if ch is empty)

• normally declared globally

• if local they disappear when the process terminates

• can be passed as parameters of processes

• for receiving the variable x can be anonymous ch?

• arrays of channels: chan [2] = [3] of {byte, bool}

• full, nfull, empty, nempty are Boolean functions to test the state of
the channels

• len number of messages in a channel

Rendezvous

• Client-Server: cs1.pml , cs2.pml, cs3.pml, cs4.pml

chan request = [0] of {byte }

active proctype Server() {

byte client;

end:

do

:: request ? client ->

printf(client)

od

}

active [2] proctype Client() {

request ! _pid

}

11

Buffers

• check if the channels are full or empty: cs5.pml

chan request = [0] of { byte, chan };

chan reply [2] = [2] of { byte };

active [2] proctype Server() {

byte client;

chan replyChannel;

do

:: empty(request) -> printf("No requests for %d\n",_pid)

:: request ? client, replyChannel ->

printf("Client %d to server %d\n",client, _pid);

replyChannel ! _pid

od

}

Buffers

active [2] proctype Client() {

byte server;

do

:: full(request) ->

printf("Client %d waiting for channel \n", _pid);

:: request ! _pid, reply[_pid-2];

reply[_pid-2] ? server;

printf("Response received from the server %d for the

client %d\n",server, _pid);

od

}

Conditional

chan ch1 = [16] of { byte, int, chan, byte }

• ch1!exp1,exp2,exp3

• ch1?var1,var2,var3

• ch1!exp1(exp2,exp3)

• ch1?var1(var2,var3)

• ch1?[var1,var2,var3] : eval to 1 if matches the values of the channel and
0 otherwise; no side effect (so no race conditions in case var1, var2, var3
shared by other processes).

12

Alternating bit protocol - abp1.pml

mtype ={msg,ack};

chan to_sender = [2] of { mtype, bit };

chan to_receiver = [2] of {mtype, bit};

active proctype Sender(){

bool y, x;

do

:: true ->

send: to_receiver!msg(y);

to_sender?ack(x);

if

:: y==x -> y= 1-y;

:: timeout

fi

od

}

timeout boolean predefined global variable that is true if no statement is ex-
ecutable in aany activ process

Alternating bit protocol

active proctype Receiver(){

bool x;

do

:: true ->

rec: to_receiver?msg(x);

to_sender!ack(x);

:: timeout -> to_sender!ack(x);

od

}

#define sent Sender@send

#define recv Receiver@rec

ltl A1 { []<> sent }

ltl A2 { []<> recv }

ltl A3 {[](recv -> (recv U (!recv &&((! recv) U sent))))}

13

