
Session 8
Algorithms for Model Checking

Contents

1 Algorithms for Model Checking LTL using automata 1

1.1 Automata over Infinite Words – Büchi Automata 3

1.2 Transition Systems and Büchi Automata 6

1.3 Translating LTL formulae to Büchi Automata 7

2 Never Claims in SPIN 13

1 Algorithms for Model Checking LTL using auto-
mata

Algorithms for Model Checking for LTL

Problem: Given a formula ϕ ∈ LTL, a model (transition system)M = (S, −→
, AP, L) and a state s, check if

M, s |= ϕ

• This means, that for all π ∈ Paths(s), π |= ϕ.

• and thus model checking is just a procedure to verify that the following
inclusion holds:

Paths(s) ⊆ {π | π |= ϕ},

• that is
Paths(s) ∩ {π | π |= ϕ} = ∅.

Algorithms for Model Checking for LTL based on Automata

• Build an automata A¬ϕ that has an accepting run π if and only if π |= ¬ϕ,
i.e. π ∕|= ϕ:

L(A¬ϕ) = {trace(π) | π ∕|= ϕ} = {trace(π) | π |= ϕ}.

• Represent (M, s) by an automaton AM,s, that accepts exactly the traces
(paths) of M that start on s:

L(AM,s) = {trace(π) | π ∈ Paths(s)}

1

• Check that
L(A¬ϕ) ∩ L(AM,s) = ∅

If it is true, we have
M, s |= ϕ,

otherwise any trace σ that belongs to the intersection of the two languages

σ ∈ L(A¬ϕ) ∩ L(AM,s)

can be used as a counterexample.

Automata over finite words (NFA)

Σ alphabet, L ⊆ Σ󰂏 language

A = (Σ, S, S0, δ, F) where S0, F ⊆ S, δ : S × Σ → 2S

L(A) = {w ∈ Σ󰂏 | δ(s0, w) ∩ F ∕= ∅ ∧ so ∈ S0}

where δ(s, ε) = s and δ(s, ax) = δ(δ(s, a), x).

s0 s1 s2
a

a
b

a

aaaabababab ∈ L(A)

L((a∗ab(ab)∗) = L(A)

Languages accepted by NFAs are closed under complementation, union, and
intersection.

Automata over Infinite Words (Büchi Automata)

s0 s1 s2
a

a
b

a

The word
w = aaababab . . .

is accepted (only acceptance condition changes...)

2

1.1 Automata over Infinite Words – Büchi Automata

Infinite Words

Given an alphabet Σ, a infinite word over Σ is a infinite sequence

a0a1a2 · · · amam+1 · · ·

of symbols ai ∈ Σ.

The set of infinite words over Σ is represented by Σω. The word

aaabbbaaabbb . . .

can be represented by the expression

(aaabbb)ω

Büchi Automaton

Aω = (Σ, S, S0, δ, F) where S0, F ⊆ S, δ : S × Σ → 2S

Given w = a0a1 . . ., a run on w (rw) is a sequence of states

s0, s1, . . . ,

with s0 ∈ S0 e si+1 ∈ δ(si, ai), i ≥ 0. Let

lim(rw) = {s | s = si for an infinite number of i′s}

i.e., the set of states that occur on rw infinitely often.

A run rw is accepting if lim(rw) ∩ F ∕= ∅
The accepted language of Aω is

L(Aω) = {w ∈ Σω | ∃rw lim(rw) ∩ F ∕= ∅}

i.e. words which runs have infinite many final states.

Büchi Automaton: automaton over infinite words

s0 s1 s2
a

a
b

a

w = aaababab · · · is accepted and

L(Aω) = Lω((a
∗(ab)ω))

3

Closures

Theorem 1. The set of languages accepted by Büchi automata are closed for
union, intersection, and complementation.

Let Ai = (Σ, Si, S
0
i , δi, Fi), i = 1, 2 where S1 and S2 are disjoint.

• for union one can built A = A1∪A2 = (Σ, S1∪S2, S
0
1 ∪S0

2 , δ1∪δ2, F1∪F2)

• for intersection the usual the product construction for automata over finite
words cannot be used. The accepting states cannot be F1 × F2 as each
automaton can go through an accepting state in different moments. Let

A∩ = (Σ, S1 × S2 × {1, 2}, S0
1 × S0

2 × {1}, δ∩, F1 × F2 × {1})

and (s′, t′, j) ∈ δ((s, t, i), a) if s′ ∈ δ1(s, a), t
′ ∈ δ2(t, a), and i = j but if

i = 1 and s ∈ F1, then j = 2 and if i = 2 and t ∈ F2, then j = 1.

• for the complement, algorithms can be doubly exponential.

ω-Regular Languages

Theorem 2. A ω-language L is accepted by a Büchi automaton A iff L is the
finite union of languages VWω, where V,W ⊆ Σ󰂏 are regular languages (over
finite words) and ε /∈ W .

Proof. ⊆:

• Büchi automata are closed for union

• If L is a regular language and ε /∈ L, then Lω is accepted by a Büchi
automaton

• If L is a regular language and A a Büchi automaton then L · Lω(A) is
accepted by a Büchi automaton

⊇: Lω(A) =
󰁖

s0∈S0,s∈F Ls0s(Lss \ ε)ω

Determinism

A = (Σ, S, S0, δ, F) is deterministic if

|S0| ≤ 1 and |δ(s, a)| ≤ 1

for all s ∈ S and a ∈ Σ.

In this case, determinism is weaker than nondeterminism.

The language (a + b)∗aω is not accepted by a deterministic Büchi automaton.
An NBA is

4

s0 s1
a

a, b a

Note that in a DBA the words an1ban2 · · · bani for ni ≥ 1 must reach different
final states (one for each i) but there can be only a finite number of states
thus there will be for distinct i and j words that reach a same final state. One
concludes that an1b · · · bani(bani+1b · · · banj)ω would belong to L((a+ b)∗aω).

Büchi automata

Consider the Büchi automaton

Aω = (Σ = {a, b}, {s0, s1, s2}, {s0}, δ, {s1, s2}),

where δ(s0, a) = {s1, s2}, δ(s0, b) = {s1}, δ(s1, a) = {s2}, δ(s1, b) = {s1},
δ(s2, a) = δ(s2, b) = ∅.
Determine L(Aω) ⊆ Σω.

Aω

s0 s1

s2

a, b

a
a

b

L(Aω) = L((a+ b)bω)

For each language, build a Büchi automaton that accepts it for Σ = {a, b, c}.

1. L1 = {α ∈ Σω | α contains at least one infix ab};

2. L2 = {α ∈ Σω | α contains the infix ab infinitely often}.

L1 = {α ∈ Σω | α contains at least one infix ab}; s0 s1 s2
a

a, b, c

b

a, b, c

L2 = {α ∈ Σω | α contains the infix ab infinitely often}

s0 s1 s2
a

a, b, c

b

a, b, c

5

Lω(Aω) = ∅ ? e Lω(Aω) = Σω

Theorem 3. The problem of deciding if the accepted language of a Büchi auto-
maton Aω is empty can be decided in linear time.

Proof. Given Aω = (Σ, S, S0, δ, F), Lω(Aω) is nonempty iff there exists s0 ∈ S0

and t ∈ F such that s0 is connected to t e t is connected to himself.

Theorem 4. The problem of deciding if the accepted language of a Büchi auto-
maton Aω is Σω can be decided in exponential time.

Proof. The complementary automaton of a Büchi automaton A is exponentially
larger than A and Lω(A) ∕= Σω ↔ Lω(A) ∕= ∅.

1.2 Transition Systems and Büchi Automata

Transition Systems and Büchi Automata

Let M = (S, −→ , AP, L) be a transition system with no terminal states
(model) over the set AP of propositional variables. A trace

σ = L(s0)L(s1) · · ·

is an infinite sequence of subsets of AP . Given a model M and s0 ∈ S we
associate the NBA

AM = (2AP , S, {s0}, δ, S),

such that s′ ∈ δ(s,A) iff s −→ s′ and A = L(s).

As the set of accepting states is S (all states are accepting), any path π is an
accepting run and thus the accepted language of AM are exactly the set of traces
of M,

Lω(AM) = {σ | σ ∈ Traces(M)}.

Example

Consider the model T = (S,→, {a, b}, {q1}, L) with

• S = {q1, q2, q3, q4},

• →= {q1 → q2, q2 → q2, q3 → q1, q3 → q2, q3 → q4, q4 → q3},

• and L(q1) = {}, L(q2) = {b}, L(q3) = {a}, L(q4) = {a, b}).

The model T can by represented by the determińıstic Büchi automaton

AT = (2{a,b}, {q1, q2, q3, q4}, δ, {q1}, S)

6

where

δ(q1, {}) = {q2}
δ(q2, {b}) = {q2}
δ(q3, {a}) = {q1, q2, q4}

δ(q4, {a, b}) = {q3}

T

q1 q2

q4 q3
AT

q1 q2

q4 q3

{}
{b}

{a}

{a}
{a}

{a,b}

1.3 Translating LTL formulae to Büchi Automata

LTL and Büchi Automata

• Each LTL formula ϕ can be associated with a Büchi automaton ϕ, Aϕ,

• The accepted language Lω(Aϕ) is exactly the set of traces (paths) that
satisfy the formula ϕ.

• Considering Σ = 2AP it is easy to associate LTL formulas to Büchi auto-
mata

• But, note that this method is computationally inefficient.

• a ∈ Σ corresponds to a valuation of the propositional variables of AP .

• For a propositional formula ϕ (only with ∧, ∨ and ¬) let

Σϕ = {a ∈ Σ | a |= ϕ}

.

• If AP = {p, q}, Σ = {{}, {p}, {q}, {p, q}}, and Σp∨q = {{p}, {q}, {p, q}}.

Propositional formula and Büchi Automata

7

For example if p ∈ AP ,

Σp = {a ∈ Σ | p ∈ a}
Σ¬p = Σ \ Σp

Σp∧q = Σp ∩ Σq

Σp∨q = Σp ∪ Σq

Σp→q = Σ \ Σp ∪ Σq

Given two states s and s′ and ϕ a propositional formula, let

s
Σϕ→ s′ = {s a→ s′ | a ∈ Σϕ}

This means that s
Σϕ→ s′ is an abbreviation of a set of transitions. We also can

just write s
ϕ→ s′.

If AP = {p, q}, Σ = {{}, {p}, {q}, {p, q}} and

q1 q2
p ∨ q

¬q

or

q1 q2
Σp∨q

Σ¬q

correspond to

q1 q2
{p}, {q}, {p, q}

{}, {p}

LTL formulae and Büchi Automata

Here are some examples of automata corresponding to simple LTL formulae
(where p can be substituted by any propositional formula)

8

p s0 s1
Σp

Σ

Xp s0 s1 s2
Σ Σp

Σ

Fp s0 s1
Σp

Σ Σ

Gp s0

Σp

LTL formulae and Büchi Automata

FGp s0 s1
Σp

Σ Σp

GFp

s0 s1

Σp
Σ¬p Σp

Σ¬p

G(p → Fq)

s0 s1

Σp∧¬q
Σ¬p∨q Σ¬q

Σq

9

pUq s0 s1
Σq

Σp Σ

pWq s0 s1
Σq

Σp Σ

pRq s0 s1
Σp∧q

Σ¬p∧q Σ

• Because Büchi automata are closed under union, intersection and comple-
mentation, an automaton can be constructed for any LTL formula.

• However due to the fact that complementation yields an exponential blowup
of the number of states of the resulting automaton this näıve method is
not used in practical model checkers. In general, either generalised or
alternating Büchi automata are used.

Algorithm of Model Checking for LTL

The problem of checking if a model satisties a formula ϕ, M, so |= ϕ reduces to
decide if

Lω(AM) ⊆ Lω(Aϕ)

Or equivalently,
Lω(AM) ∩ Lω(Aϕ) = ∅

where

The automaton for intersection can have |S|.2O(|ϕ|) states.

Thus model checking can be achieved in time O(|S|.2O(|ϕ|)). As the specification
is is general short, the algorithms are relatively efficient.

Algorithm of Model Checking for LTL, using Generalised Büchi Auto-
mata

10

Exerćıcio 8.1. Consider the system M = (S = {s0, s1, s2}, {s0 −→ s1, s0 −→
s2, s1 −→ s2, s1 −→ s0, s2 −→ s2}, L(s0) = {p, q}, L(s1) = {q, r}, L(s2) =
{r}), with AP = {p, q, r} Determine which relations are true

1. M, s0 |= p ∧ q

2. M, s0 |= Xr

3. M, s0 |= X(q ∧ r)

4. M, s0 |= G¬(p ∧ r)

5. M, s0 |= GFp

6. M, s0 |= GFp → GFr

s0
p, q

s1

q, r

s2

r

⋄

We have Σ = {∅, {p}, {r}, {q}, {p, q}, {p, r}, {q, r}, {p, q, r}}.
The automaton for M, s0 is AM,s0

11

s0

s1 s2

{p,q}
{p,q}

{r}

{q,r}

{q,r}

i. We have ¬(p ∧ q) ≡ (¬p ∨ ¬q) and

Σ(¬p∨¬q) = {a ∈ Σ | a |= (¬p ∨ ¬q)}
= {∅, {p}, {r}, {q}, {p, r}, {q, r}}

ii. The corresponding Büchi automaton is A(¬p∨¬q)

AM,s0 A¬p∨¬q

s0

s1 s2

{p,q}
{p,q}

{r}

{q,r}

{q,r} q0 q1
Σ(¬p∨¬q)

Σ

iii. It is easy to see that

Lω(AM) ∩ Lω(A(¬p∨¬q)) = ∅

as the first symbol of any accepting word (run) in AM is {p, q} and any
accepting word in A(¬p∨¬q) cannot start with {p, q}.

The automaton for M, s0 is AM,s0 (on the right) and on the left AX¬r is the
automaton for ¬Xr ≡ X(¬r) .

AM,s0 AX¬r

s0

s1 s2

{p,q}
{p,q}

{r}

{q,r}

{q,r} q0 q1 q2
Σ Σ¬r

Σ

It is easy to see that
Lω(AM,s0) ∩ Lω(AX¬r) = ∅

as the second symbol of any word (run) in AM,s0 contains r. Alternatively one
could build the automaton for intersection and test for emptiness.

i. We have ¬X(q ∧ r) ≡ X(¬q ∨ ¬r)

12

ii. As before, AX(¬q∨¬r) is

q0 q1 q2
Σ Σ(¬q∨¬r)

Σ

iii. It is easy to see that

Lω(AM) ∩ Lω(AX(¬q∨¬r)) ∕= ∅

as the word {p, q}({r})ω belongs to the intersection and is a counterexample.

i. We have ¬G¬(p ∧ r) ≡ F(p ∧ r)

ii. We have Σp∧r = Σp ∩ Σr = {{p, r}, {p, q, r}}. The automaton AF(p∧r) can
be

q0 q1
Σp∧r

Σ Σ

iii. We have
Lω(AM) ∩ Lω(AFp∧r) = ∅

as no (infinite) run in AM as either the symbol {p, r} or {p, q, r}.

i. We have ¬GFp ≡ FG¬p

ii. We have Σ¬p = Σ \ Σp = {{}, {q}, {r}, {q, r}}. The automaton AFG¬p can
be

q0 q1
Σ¬p

Σ Σ¬p

iii. It is easy to see that

Lω(AM) ∩ Lω(AFG(¬p)) ∕= ∅

as the word {p, q}({r})ω belongs to the intersection and is a counterexample.

2 Never Claims in SPIN

Never Claims

• Spin translates each negation of LTL formula into a never claim that is
a Promela program (Büchi automaton) that states something that never
should happen.

13

• A never claim runs in parallel with the model and the first to terminate
wins. If the never claim wins the formula is not satisfied.

• The execution of the verifier can be seen as a game with two players: the
never claim and the model.

• the model wins if it is never true the negation of the claim of the LTL
formula. This means exactly that there are no trace of the model that
satisfy the negation of the LTL formula.

• In this case, the verifier terminates when all state-space is searched.

• the never claim wins if it can be found an execution where the negation
of the formula is true.

• in this case the never claim terminates

A never claim for a Safety property

$spin -f "![] p"

never { /* ! [] p */

T0_init : /* init */

if

:: (1) -> goto T0_init

:: (!p) -> goto accept_all

fi;

accept_all : /* 1 */

skip }

New syntax

For example, for ltl P1 [] (critical < 2) we have

never P1 { /* !([] ((critic <2))) */

T0_init:

14

do

:: atomic {(!(((critic<2)))) ->

assert(!(!(((critic<2)))))}

:: (1) -> goto T0_init

od;

accept_all:

skip }

Running the verifier Pan

If you run

$ spin -search -ltl P0 mesltl.pml

(as with -a and compiled to pan)

• $./pan : runs the verifier

• $./pan -d: list of states and transitions

• $./pan -D: draws automata in dot format

• which can be visualized with dot:

• dot -Tpng dot.out -o dot.png

• for other options see http://spinroot.com/spin/Man/Pan.html.

$spin -f "[]p"

never { /* []p */

accept_init:

T0_init:

do

:: ((p)) -> goto T0_init

od;

}

Labels starting with accept indicate accepting states.

A never claim for a liveness property

$ spin -f ’!<>p’

never { /* !<>p */

accept_init:

15

T0_init:

do

:: (! ((p))) -> goto T0_init

od;

}

If p is true the never claim blocks (and ”loses” as it is
not possible to show that []!p). If p is never true, the never claim passes
infinitely often by the init state which is accepting (acceptance condition of
Büchi automata). Thus <> p is not true and the never claim wins (the property
does not hold).

A never claim for GFp

$ spin -f ’![]<>p’

never { /* !GF p */

T0_init : /* init */

if

:: (1) -> goto T0_init

:: (!p) -> goto accept_S2

fi;

accept_S2 : /* 1 */

if

:: (!p) -> goto accept_S2

fi;

}

Until

16

ltl P {pUq}

never { /* p U q */

T0_init : /* init */

if

:: (p) -> goto T0_init

:: (q) -> goto accept_all

fi;

accept_all : /* 1 */

skip

}

Labels starting with accept indicate accepting states.

A more complicated example...with simplifications

$spin -f ’[]<>(p U q)’

never { /* []<>(p U q) */

T0_init:

do

:: ((q)) -> goto accept_S9

:: (1) -> goto T0_init

od;

accept_S9:

do

:: (1) -> goto T0_init

od;

}

17

Note that GF(pUq) ≡ GFq

Converters from LTL to automata and never claims

• ltl2ba, http://www.lsv.fr/~gastin/ltl2ba/

• Spot, https://spot.lrde.epita.fr/app/

• Buchi store, http://buchi.im.ntu.edu.tw/index.php/help/index/

References

[BA08] Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer,
2008.

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen.
Principles of Model Checking. MIT Press, 2008.

[Var94] M. Vardi. An automata-theoretic approach to linear temporal logic.
In Banff ’94, 1994.

[Var06] Moshe Vardi. Automata-theoretic techniques for temporal reasoning.
In Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors,
Handbook of Modal Logic. Elsevier, 2006.

[VW07] M. Vardi and T. Wilke. Automata: From logics to algorithms. In
WAL 07, pages 645–753, 2007.

18

