
Session 9
Algorithms for Model Checking CTL

Contents

1 Algorithm for Model Checking CTL 1

1.1 Labelling Algorithm . 3

1 Algorithm for Model Checking CTL

ACM Turing Award 2007

For their role in developing Model-Checking into a highly ef-
fective verification technology, widely adopted in the hardware and
software industries (1980-1983)

• Use of Logic CTL (from Ben-Ari, Pnueli and Manna)

• Linear-time labelling algorithm for model checking CTL

• EMC model checker implemented in Franz-Lisp

• The goal was to extend Hoare logic to concurrent systems...

• but it is easier to check if a formula satisfies a model than to ensure the
validity of a formula (post-condition)

Model checking for CTL

The semantics of CTL is state-based

s0 |= ϕ

so it is not needed to reasoning over paths as in the case of LTL.

1

• Given M and ϕ ∈ CTL the algorithm computes the set of states that
satisfy ϕ, Sat(ϕ).

• this is accomplished by computing Sat(ψ) for all sub-formulae of ϕ

• then, one only needs to check that s0 ∈ Sat(ϕ)

Semantics of CTL

φ

EFϕ

φ

φ

φφ φ

AFϕ

Semantics of CTL

φ

φ

φ

EGϕ

2

φ

φ φ

φ φ

φ

φ

φφ φ

AGϕ

Model checking for CTL

We only consider a complete set of connectives

{false,¬, ∧ ,AF,EU,EX}

EGϕ ≡ ¬AF¬ϕ
EFϕ ≡ E[¬falseUϕ]

AGϕ ≡ ¬EF¬ϕ ≡ ¬E[¬falseU¬ϕ]
AXϕ ≡ ¬EX¬ϕ

A[ϕUψ] ≡ ¬(E[¬ψU(¬ϕ ∧ ¬ψ)]) ∧AFψ

because it LTL we have

ϕUψ ≡ ¬(¬ψU(¬ϕ ∧ ¬ψ)) ∧ Fψ

A[ϕUψ] ≡ ¬E[¬ψU(¬ϕ ∧ ¬ψ)] ∧ ¬EG¬ψ

Using CTL∗,

A[ϕUψ] ≡ A[¬(¬ψU(¬ϕ ∧ ¬ψ)) ∧ Fψ]

≡ ¬E¬[¬(¬ψU(¬ϕ ∧ ¬ψ)) ∧ Fψ]

≡ ¬E[¬ψU(¬ϕ ∧ ¬ψ) ∨G¬ψ]
≡ ¬(E[¬ψU(¬ϕ ∧ ¬ψ)] ∨ EG¬ψ)
≡ ¬E[(¬ψU(¬ϕ ∧ ¬ψ)]) ∧ ¬EG¬ψ)

1.1 Labelling Algorithm

Model checking for CTL – Labelling Algorithm

3

Input: a transition system T = (S,Act, −→ , AP, I, L) and a CTL formula ϕ

Output: Sat(ϕ), i.e., the set of states of T that satisfy ϕ,

• T |= ϕ iff I ⊆ Sat(ϕ).

• The algorithm labels each state of T with the sub-formulae of ϕ that are
satisfied in that state,

• starting from the smaller ones: first, atomic propositions, boolean formu-
lae and temporal formulae until ϕ.

• thus the algorithm proceeds by induction in the structure of ϕ

• If ψ is a sub-formula of ϕ which immediate sub-formulae already label the
states were they are true, one can determine the states labelled by ψ.

Labelling

for i ≤ |ϕ| do
for ψ ∈ Sub(ϕ) with i = |ψ| do

Compute Sat(ψ)

if I ⊆ Sat(ϕ) then return true
return false

where Sub(ϕ) is the set of all sub-formulae of ϕ

• The recursive computation of Sat(ϕ) consists in a bottom-up transversal
of the parse tree of ϕ

• The nodes of the parse tree are subformulae of ϕ

• The leaves are the atomic propositions a ∈ AP or a constant

• The inner nodes are labelled with an operator

Example

4

Model checking for CTL – Labelling Algorithm

If ψ is

false label no state

p label the states s such that p ∈ L(s)

ψ1 ∧ ψ2 label the states s that are already labelled by ψ1 and ψ2

¬ψ1 label the states s that are not labelled with ψ1

General idea for temporal connectives

The labelling for the temporal connectives is based on the following equivalences

AGϕ ≡ ϕ ∧ AXAGϕ

EGϕ ≡ ϕ ∧ EXEGϕ

AFϕ ≡ ϕ ∨ AXAFϕ

EFϕ ≡ ϕ ∨ EXEFϕ

A[ϕUψ] ≡ ψ ∨ (ϕ ∧AXA[ϕUψ])

E[ϕUψ] ≡ ψ ∨ (ϕ ∧ EXE[ϕUψ])

but only AF, EU and EX are needed.

Labelling Algorithm – AFψ1

AFψ1 • If a state s is labelled with ψ1 then label it with AFψ1.

• Repeat: If all successors of a state s are labelled with AFψ1, label
that state with AFψ1. Until there is no change.

5

✓
✒

✏
✑✓

✒
✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

cmrmn.
AFψ1

AFψ1

AFψ1

AFψ1 AFψ1

AFψ1

AFψ1

AFψ1 ≡ ψ1 ∨ AXAFψ1

Labelling Algorithm – E(ψ1Uψ2)

E(ψ1Uψ2) • If a state s is labelled with ψ2 then label s with E(ψ1Uψ2).

• Repeat: Label a state s with E(ψ1Uψ2) if it is labelled with ψ1 and if
at least one of its successors is labelled with E(ψ1Uψ2). Until there
is no change.

✓
✒

✏
✑✓

✒
✏
✑✓

✒
✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

cmrmn.
ψ1

ψ1

E[ψ1Uψ2]
E[ψ1Uψ2]

E[ψ1Uψ2]

E[ψ1Uψ2] ≡ ψ2 ∨ (ψ1 ∧ EXE[ψ1Uψ2])

EF((a ↔ c) ∧ ¬(a ↔ b)) ≡ E(trueU(a ↔ c) ∧ ¬(a ↔ b))

6

a) Sat((a ↔ c) ∧ ¬(a ↔ b))

Labelling Algorithm – EXψ1

EXψ1 label with EXψ1 a state if at least one of its successors is labelled with
ψ1. ✓

✒
✏
✑✓

✒
✏
✑✓

✒
✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

cmrmn.

ψ1
ψ1

EXψ1

Example: Peterson algorithm s0 |= E(¬c2Uc1)?

s0
n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

The subformulae are: c1, c2, ¬c2 and E(¬c2Uc1). The states labeled by ¬c2 are
the ones not labeled by c2.

7

s0
n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Check the states labelled with c1 and labelled them with E(¬c2Uc1).

If a state is labelled with ¬c2 and has a successor labelled with E(¬c2Uc1) label
that state with E(¬c2Uc1).

8

Yes, s0 |= E(¬c2Uc1)

Example: Mutual Exclusion s0 |= AG(¬(c2 ∧ c1))?

AG(¬(c2 ∧ c1)) ≡ ¬EF(c2 ∧ c1)) ≡ ¬E(trueU(c2 ∧ c1))

s0
n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

It is no possible to label any state with c2 ∧ c1, so no state can be labeled
E(trueU(c2 ∧ c1))

Example: Mutual Exclusion s0 |= AG(¬(c2 ∧ c1))?

AG(¬(c2 ∧ c1)) ≡ ¬EF(c2 ∧ c1)) ≡ ¬E(trueU(c2 ∧ c1))

Thus, all states are labeled with ¬E(trueU(c2 ∧ c1)) and thus in particular s0.

Pseudo-code for the labelling algorithm given ϕ e T

function SAT (ϕ)
begin

case
ϕ is true : return S
ϕ is false : return ∅

9

ϕ is atomic: return {s ∈ S | ϕ ∈ L(s)}
ϕ is ¬ϕ1 : return S − SAT (ϕ1)
ϕ is ϕ1 ∧ ϕ2 : return SAT (ϕ1) ∩ SAT (ϕ2)
ϕ is ϕ1 ∨ ϕ2 : return SAT (ϕ1) ∪ SAT (ϕ2)
ϕ is ϕ1 → ϕ2 : return SAT (¬ϕ ∨ ϕ2)
ϕ is AXϕ1 : return SAT (¬EX¬ϕ1)
ϕ is EXϕ1 : return SATEX(ϕ1)
ϕ is A[ϕ1Uϕ2] : return SAT(¬(E[¬ϕ2U(¬ϕ1 ∧ ¬ϕ2)] ∨ EG¬ϕ2))
ϕ is E[ϕ1Uϕ2] : return SATEU(ϕ1,ϕ2)
ϕ is EFϕ1 : return SAT (E(trueUϕ1))
ϕ is EGϕ1 : return SAT(¬AF¬ϕ1)
ϕ is AFϕ1 : return SATAF (ϕ1)
ϕ is AGϕ1 : return SAT (¬EF¬ϕ1)

end case
end function

Pseudo-code for the labelling algorithm

Given a set of states Y , the function pre∃(Y) (pre∀(Y)) determines the set of
states from which it is possible (only it is possible) to make a transition for
states in Y :

pre∃(Y) = {s ∈ S | ∃s′, s −→ s′ ∧ s′ ∈ Y }
= {s ∈ S | Post(s) ∩ Y ∕= ∅}

pre∀(Y) = {s ∈ S | ∀s′(s −→ s′) ⇒ s′ ∈ Y)}
= {s ∈ S | Post(s) ⊆ Y }

Then

function SATEX (ϕ)
local var X,Y
begin

X := SAT (ϕ);
Y := pre∃(X);
return Y

end

function SATAF (ϕ)
/* determines the set of states satisfying AFϕ */
local var X,Y
begin

X := S;
Y := SAT (ϕ);

/* least fixed point */
repeat until X = Y

10

begin
X := Y ;
Y := Y ∪ pre∀(Y)

end
return Y

end

function SATEU (ϕ,ψ)
/* determines the set of states satisfying E[ϕUψ] */
local var W,X, Y
begin

W := SAT (ϕ);
X := S;
Y := SAT (ψ);

/* least fixed point */
repeat until X = Y
begin

X := Y ;
Y := Y ∪ (W ∩ pre∃(Y))

end
return Y

end

Labelling Algorithm for CTL

Consider AP = {p, q, t, r} and the model T = (S = {q0, q1, q2, q3}, {q0 →
q1, q0 → q3, q1 → q1, q1 → q2, q2 → q0, q2 → q3, q3 → q0}, L(q0) = {p, q}, L(q1) =
{r}, L(q2) = {p, t}, L(q3) = {q, r}).

Determine Sat(ϕ) where

a) ϕ = AFq,

b) ϕ = EXEXr

c) ϕ = AG(EF(p ∨ r)).

Labelling Algorithm

Consider AP = {p, q, t, r} and the model T = ({q0, q1, q2, q3}, {q0 → q1, q0 →
q3, q1 → q1, q1 → q2, q2 → q0, q2 → q3, q3 → q0}, L(q0) = {p, q}, L(q1) =

11

{r}, L(q2) = {p, t}, L(q3) = {q, r}).

q0 q1

q2q3

Post(q0) = {q1, q3}
Post(q1) = {q1, q2}
Post(q2) = {q0, q3}
Post(q3) = {q0}

For Sat(AFq) = Y :

• Sat(q) = {q0, q3}

• Let Y = Sat(q) = {q0, q3}

• As pre∀(Y) = {s | Post(s) ⊆ {q0, q3}} = {q2, q3}

• we have Y = Y ∪ {q2, q3} = {q0, q2, q3}

• Repeating we have again pre∀(Y) = {q2, q3}, thus Sat(AFq) = Y =
{q0, q2, q3}

For Sat(EXEXr):

• Sat(r) = {q1, q3}

• Let X = Sat(r) = {q1, q3}

• X = pre∃(X) = {s | Post(s) ∩ {q1, q3} ∕= ∅} = {q0, q1, q2}

• Repeating, pre∃(X) = pre∃({q0, q1, q2}) = {q0, q1, q2, q3}

• Then Sat(EXEXr) = {q0, q1, q2, q3} = S

AG(EF(p ∨ r)) = ¬E[trueU¬(E[trueU(p ∨ r)])]

For Sat(E[trueU(p ∨ r)])

• Y = Sat(p ∨ r) = {q0, q1, q2, q3} = S and W = S

• Then Y = Y ∪ (W ∩ pre∃(Y)) = S and Sat(E[trueU(p ∨ r)]) = S

Thus Sat(¬E[trueU(p ∨ r)]) = ∅

• Y = ∅ and W = S

• pre∃(Y) = ∅

• Y = Y ∪ (W ∩ pre∃(Y)) = ∅ = Sat(E[trueU¬(E[trueU(p ∨ r)])])

Thus Sat(AG(EF(p ∨ r))) = S

12

Complexity

Given a model T = (S,Act, −→ , AP, I, L) and a CTL formula ϕ, the labelling
algorithm has time complexity

O(f · V · (V + E))

where

• f is the number of connectives in ϕ

• V = |S| is the number of states in T

• E = | −→ | is the number of transitions in T

It can be more efficient if one consider explicitly the case for EG. Then the
complexity can be O(f.(V + E)), thus linear both in the size of the model and
in the size of the formula.

LTL versus CTL

316 Computation Tree Logic

Aspect Linear time Branching time

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s

temporal LTL: path formulae ϕ CTL: state formulae
logic s |= ϕ iff existential path quantification ∃ϕ

∀π ∈ Paths(s). π |= ϕ universal path quantification: ∀ϕ

complexity of the PSPACE–complete PTIME
model checking

problems O (|TS| · exp(|ϕ|)) O(|TS| · |Φ|)

implementation- trace inclusion and the like simulation and bisimulation
relation (proof is PSPACE-complete) (proof in polynomial time)

fairness no special techniques needed special techniques needed

Table 6.1: Linear-time vs. branching-time in a nutshell.

• The model-checking algorithms for linear and branching temporal logics are quite
different. This results, for instance, in significantly different time and space com-
plexity results.

• The notion of fairness can be treated in linear temporal logic without the need for
any additional machinery since fairness assumptions can be expressed in the logic.
For various branching temporal logics this is not the case.

• The equivalences and preorders between transition systems that “correspond” to
linear temporal logic are based on traces, i.e., trace inclusion and equality, whereas
for branching temporal logic such relations are based on simulation and bisimulation
relations (see Chapter 7).

Table 6.1 summarizes the main differences between the linear-time and branching-time
perspective in a succinct way.

13

