Session 9 Algorithms for Model Checking CTL

Contents

1	Algorithm for Model Checking CTL		
	1.1 Labelling Algorithm	3	

1 Algorithm for Model Checking CTL

ACM Turing Award 2007

Edmund Clarke

E. Allen Emerson

Joseph Sifakis

For their role in developing Model-Checking into a highly effective verification technology, widely adopted in the hardware and software industries (1980-1983)

- Use of Logic CTL (from Ben-Ari, Pnueli and Manna)
- Linear-time labelling algorithm for model checking CTL
- EMC model checker implemented in Franz-Lisp
- The goal was to extend Hoare logic to concurrent systems...
- but it is easier to check if a formula satisfies a model than to ensure the validity of a formula (post-condition)

Model checking for CTL

The semantics of CTL is state-based

 $s_0 \models \varphi$

so it is not needed to reasoning over paths as in the case of LTL.

- Given \mathcal{M} and $\varphi \in CTL$ the algorithm computes the set of states that satisfy φ , $Sat(\varphi)$.
- this is accomplished by computing $Sat(\psi)$ for all sub-formulae of φ
- then, one only needs to check that $s_0 \in Sat(\varphi)$

Semantics of CTL

Semantics of CTL

Model checking for CTL

We only consider a complete set of connectives

 $\{\mathsf{false}, \neg, \land, AF, EU, EX\}$

because it LTL we have

$$\varphi \mathbf{U} \psi \equiv \neg (\neg \psi \mathbf{U} (\neg \varphi \land \neg \psi)) \land \mathbf{F} \psi$$

$$\mathbf{A}[\varphi \mathbf{U}\psi] \equiv \neg \mathbf{E}[\neg \psi \mathbf{U}(\neg \varphi \land \neg \psi)] \land \neg \mathbf{E}\mathbf{G}\neg \psi$$

Using CTL^* ,

$$\begin{split} \mathbf{A}[\varphi \mathbf{U}\psi] &\equiv \mathbf{A}[\neg(\neg\psi\mathbf{U}(\neg\varphi\wedge\neg\psi))\wedge\mathbf{F}\psi] \\ &\equiv \neg\mathbf{E}\neg[\neg(\neg\psi\mathbf{U}(\neg\varphi\wedge\neg\psi))\wedge\mathbf{F}\psi] \\ &\equiv \neg\mathbf{E}[\neg\psi\mathbf{U}(\neg\varphi\wedge\neg\psi)\vee\mathbf{G}\neg\psi] \\ &\equiv \neg(\mathbf{E}[\neg\psi\mathbf{U}(\neg\varphi\wedge\neg\psi)]\vee\mathbf{E}\mathbf{G}\neg\psi) \\ &\equiv \neg\mathbf{E}[(\neg\psi\mathbf{U}(\neg\varphi\wedge\neg\psi)])\wedge\neg\mathbf{E}\mathbf{G}\neg\psi) \end{split}$$

1.1 Labelling Algorithm

Model checking for CTL – Labelling Algorithm

Input: a transition system $T = (S, Act, \rightarrow, AP, I, L)$ and a CTL formula φ **Output:** $Sat(\varphi)$, i.e., the set of states of T that satisfy φ ,

- $T \models \varphi$ iff $I \subseteq Sat(\varphi)$.
- The algorithm labels each state of T with the sub-formulae of φ that are satisfied in that state,
- starting from the smaller ones: first, atomic propositions, boolean formulae and temporal formulae until φ .
- thus the algorithm proceeds by induction in the structure of φ
- If ψ is a sub-formula of φ which immediate sub-formulae already label the states were they are true, one can determine the states labelled by ψ .

Labelling

for $i \leq |\varphi|$ do for $\psi \in Sub(\varphi)$ with $i = |\psi|$ do Compute $Sat(\psi)$ if $I \subseteq Sat(\varphi)$ then return true return false

where $Sub(\varphi)$ is the set of all sub-formulae of φ

- The recursive computation of $Sat(\varphi)$ consists in a bottom-up transversal of the parse tree of φ
- The nodes of the parse tree are subformulae of φ
- The leaves are the atomic propositions $a \in AP$ or a constant
- The inner nodes are labelled with an operator

Example

$$\Phi = \underbrace{\exists \bigcirc a}_{\Psi} \land \exists (b \cup \exists \Box \neg c) \\ \swarrow \\ \Psi'' \\$$

Model checking for CTL – Labelling Algorithm

If ψ is

false label no state

p label the states s such that $p \in L(s)$

 $\psi_1~\wedge~\psi_2~$ label the states s that are already labelled by ψ_1 and ψ_2

 $\neg \psi_1$ label the states s that are not labelled with ψ_1

General idea for temporal connectives

The labelling for the temporal connectives is based on the following equivalences

but only AF, EU and EX are needed.

Labelling Algorithm – $\mathbf{AF}\psi_1$

 $\mathbf{AF}\psi_1$ • If a state s is labelled with ψ_1 then label it with $\mathbf{AF}\psi_1$.

• Repeat: If all successors of a state s are labelled with $AF\psi_1$, label that state with $AF\psi_1$. Until there is no change.

 $AF\psi_1 \equiv \psi_1 \lor AXAF\psi_1$

Labelling Algorithm – $\mathbf{E}(\psi_1 \mathbf{U} \psi_2)$

 $\mathbf{E}(\psi_1 \mathbf{U}\psi_2)$ • If a state s is labelled with ψ_2 then label s with $\mathbf{E}(\psi_1 \mathbf{U}\psi_2)$.

• Repeat: Label a state s with $E(\psi_1 U \psi_2)$ if it is labelled with ψ_1 and if at least one of its successors is labelled with $E(\psi_1 U \psi_2)$. Until there is no change.

 $\mathbf{E}[\psi_1\mathbf{U}\psi_2]\equiv\psi_2~\vee~(\psi_1~\wedge~\mathbf{EXE}[\psi_1\mathbf{U}\psi_2])$

 $\mathrm{EF}((a \leftrightarrow c) \land \neg(a \leftrightarrow b)) \equiv \mathrm{E}(\mathsf{trueU}(a \leftrightarrow c) \land \neg(a \leftrightarrow b))$

Labelling Algorithm – $\mathbf{E}\mathbf{X}\psi_1$

 $\mathbf{EX}\psi_1$ label with $\mathbf{EX}\psi_1$ a state if at least one of its successors is labelled with ψ_1 .

Example: Peterson algorithm $s_0 \models \mathbf{E}(\neg c_2 \mathbf{U} c_1)$?

The subformulae are: $c_1, c_2, \neg c_2$ and $E(\neg c_2Uc_1)$. The states labeled by $\neg c_2$ are the ones not labeled by c_2 .

Check the states labelled with c_1 and labelled them with $E(\neg c_2Uc_1)$.

If a state is labelled with $\neg c_2$ and has a successor labelled with $E(\neg c_2Uc_1)$ label that state with $E(\neg c_2Uc_1)$.

Yes, $s_0 \models \mathcal{E}(\neg c_2 \mathcal{U} c_1)$

Example: Mutual Exclusion $s_0 \models AG(\neg(c_2 \land c_1))$?

$$AG(\neg(c_2 \land c_1)) \equiv \neg EF(c_2 \land c_1)) \equiv \neg E(trueU(c_2 \land c_1))$$

It is no possible to label any state with $c_2 \wedge c_1$, so no state can be labeled $E(\mathsf{trueU}(c_2 \wedge c_1))$

Example: Mutual Exclusion $s_0 \models \mathbf{AG}(\neg(c_2 \land c_1))$?

 $\mathrm{AG}(\neg(c_2 \wedge c_1)) \equiv \neg \mathrm{EF}(c_2 \wedge c_1)) \equiv \neg \mathrm{E}(\mathsf{trueU}(c_2 \wedge c_1))$

Thus, all states are labeled with $\neg E(\mathsf{trueU}(c_2 \land c_1))$ and thus in particular s_0 .

Pseudo-code for the labelling algorithm given φ e T

function SAT (φ) begin case φ is true : return S φ is false : return \emptyset

```
 \begin{array}{l} \varphi \text{ is atomic: return } \{s \in S \mid \varphi \in L(s)\} \\ \varphi \text{ is } \neg \varphi_1: \text{ return } S - \text{SAT}(\varphi_1) \\ \varphi \text{ is } \varphi_1 \land \varphi_2: \text{ return SAT}(\varphi_1) \cap \text{SAT}(\varphi_2) \\ \varphi \text{ is } \varphi_1 \lor \varphi_2: \text{ return SAT}(\varphi_1) \cup \text{SAT}(\varphi_2) \\ \varphi \text{ is } \varphi_1 \rightarrow \varphi_2: \text{ return SAT}(\neg \varphi \lor \varphi_2) \\ \varphi \text{ is } AX\varphi_1: \text{ return SAT}(\neg EX \neg \varphi_1) \\ \varphi \text{ is } AX\varphi_1: \text{ return SAT}(\neg EX \neg \varphi_1) \\ \varphi \text{ is } A[\varphi_1 U \varphi_2]: \text{ return SAT}(\neg (E[\neg \varphi_2 U(\neg \varphi_1 \land \neg \varphi_2)] \lor EG \neg \varphi_2)) \\ \varphi \text{ is } E[\varphi_1 U \varphi_2]: \text{ return SAT}(E(\text{true}U\varphi_1)) \\ \varphi \text{ is } EF\varphi_1: \text{ return SAT}(E(\text{true}U\varphi_1)) \\ \varphi \text{ is } EF\varphi_1: \text{ return SAT}(\neg AF \neg \varphi_1) \\ \varphi \text{ is } AF\varphi_1: \text{ return SAT}(\neg EF \neg \varphi_1) \\ \varphi \text{ is } AG\varphi_1: \text{ return SAT}(\neg EF \neg \varphi_1) \\ end \text{ case} \\ end \text{ function} \end{array}
```

Pseudo-code for the labelling algorithm

Given a set of states Y, the function $pre_{\exists}(Y)$ ($pre_{\forall}(Y)$) determines the set of states from which it is possible (only it is possible) to make a transition for states in Y:

$$pre_{\exists}(Y) = \{s \in S \mid \exists s', s \longrightarrow s' \land s' \in Y\} \\ = \{s \in S \mid Post(s) \cap Y \neq \emptyset\} \\ pre_{\forall}(Y) = \{s \in S \mid \forall s'(s \longrightarrow s') \Rightarrow s' \in Y)\} \\ = \{s \in S \mid Post(s) \subseteq Y\}$$

Then

```
\begin{array}{l} \text{function SAT}_{\text{EX}}\left(\varphi\right)\\ \text{local var }X,Y\\ \text{begin}\\ X:=\text{SAT}\left(\varphi\right);\\ Y:=\text{pre}_{\exists}(X);\\ \text{return }Y\\ \text{end} \end{array}
```

function SAT_{AF} (φ) /* determines the set of states satisfying AF φ */ local var X, Y begin X := S; Y := SAT(φ); /* least fixed point */ repeat until X = Y

```
\begin{array}{l} \mathbf{begin} \\ X:=Y; \\ Y:=Y\cup \mathbf{pre}_\forall(Y) \\ \mathbf{end} \\ \mathbf{return} \ Y \\ \mathbf{end} \end{array}
```

```
function SAT<sub>EU</sub> (\varphi, \psi)

/* determines the set of states satisfying E[\varphi U \psi] */

local var W, X, Y

begin

W := SAT(\varphi);

X := S;

Y := SAT(\psi);

/* least fixed point */

repeat until X = Y

begin

X := Y;

Y := Y \cup (W \cap pre_{\exists}(Y))

end

return Y

end
```

Labelling Algorithm for CTL

Consider $AP = \{p, q, t, r\}$ and the model $T = (S = \{q_0, q_1, q_2, q_3\}, \{q_0 \rightarrow q_1, q_0 \rightarrow q_3, q_1 \rightarrow q_1, q_1 \rightarrow q_2, q_2 \rightarrow q_0, q_2 \rightarrow q_3, q_3 \rightarrow q_0\}, L(q_0) = \{p, q\}, L(q_1) = \{r\}, L(q_2) = \{p, t\}, L(q_3) = \{q, r\}).$

Determine $Sat(\varphi)$ where

- a) $\varphi = AFq$,
- b) $\varphi = \text{EXEX}r$
- c) $\varphi = \operatorname{AG}(\operatorname{EF}(p \lor r)).$

Labelling Algorithm

$$\{r\}, L(q_2) = \{p, t\}, L(q_3) = \{q, r\}).$$

$$Post(q_0) = \{q_1, q_3\}$$

$$Post(q_1) = \{q_1, q_2\}$$

$$Post(q_2) = \{q_0, q_3\}$$

$$Post(q_3) = \{q_0\}$$

For Sat(AFq) = Y:

- $Sat(q) = \{q_0, q_3\}$
- Let $Y = Sat(q) = \{q_0, q_3\}$
- As $pre_{\forall}(Y) = \{s \mid Post(s) \subseteq \{q_0, q_3\}\} = \{q_2, q_3\}$
- we have $Y = Y \cup \{q_2, q_3\} = \{q_0, q_2, q_3\}$
- Repeating we have again $pre_{\forall}(Y) = \{q_2, q_3\}$, thus $Sat(AFq) = Y = \{q_0, q_2, q_3\}$

For Sat(EXEXr):

- $Sat(r) = \{q_1, q_3\}$
- Let $X = Sat(r) = \{q_1, q_3\}$
- $X = pre_{\exists}(X) = \{s \mid Post(s) \cap \{q_1, q_3\} \neq \emptyset\} = \{q_0, q_1, q_2\}$
- Repeating, $pre_{\exists}(X) = pre_{\exists}(\{q_0, q_1, q_2\}) = \{q_0, q_1, q_2, q_3\}$
- Then $Sat(EXEXr) = \{q_0, q_1, q_2, q_3\} = S$

 $AG(EF(p \lor r)) = \neg E[trueU \neg (E[trueU(p \lor r)])]$ For $Sat(E[trueU(p \lor r)])$

- $Y = Sat(p \lor r) = \{q_0, q_1, q_2, q_3\} = S$ and W = S
- Then $Y = Y \cup (W \cap pre_{\exists}(Y)) = S$ and $Sat(E[trueU(p \lor r)]) = S$

Thus $Sat(\neg E[trueU(p \lor r)]) = \emptyset$

- $Y = \emptyset$ and W = S
- $pre_{\exists}(Y) = \emptyset$
- $Y = Y \cup (W \cap pre_{\exists}(Y)) = \emptyset = Sat(\mathbb{E}[\mathsf{trueU}\neg(\mathbb{E}[\mathsf{trueU}(p \lor r)])])$

Thus $Sat(AG(EF(p \lor r))) = S$

Complexity

Given a model $T = (S, Act, \rightarrow, AP, I, L)$ and a CTL formula φ , the labelling algorithm has time complexity

$$O(f \cdot V \cdot (V + E))$$

where

- f is the number of connectives in φ
- V = |S| is the number of states in T
- $E = | \longrightarrow |$ is the number of transitions in T

It can be more efficient if one consider explicitly the case for EG. Then the complexity can be O(f.(V + E)), thus linear both in the size of the model and in the size of the formula.

LTL versus CTL

A spect	Linear time	Branching time
"behavior" in a state s	path-based: trace(s)	state-based: computation tree of s
temporal logic	LTL: path formulae φ $s \models \varphi$ iff $\forall \pi \in Paths(s). \pi \models \varphi$	CTL: state formulae existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	$\begin{array}{l} \text{PSPACE-complete} \\ \mathcal{O}\left(TS \cdot \exp(\varphi)\right) \end{array}$	$PTIME$ $\mathcal{O}(TS \cdot \Phi)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)
fairness	no special techniques needed	special techniques needed