Session 9
Algorithms for Model Checking CTL

Contents

1 Algorithm for Model Checking CTL
1.1 Labelling Algorithm

1 Algorithm for Model Checking CTL

ACM Turing Award 2007

Edmund Clarke E. Allen Emerson Joseph Sifakis

For their role in developing Model-Checking into a highly ef-
fective verification technology, widely adopted in the hardware and
software industries (1980-1983)

e Use of Logic CTL (from Ben-Ari, Pnueli and Manna)
e Linear-time labelling algorithm for model checking CTL
e EMC model checker implemented in Franz-Lisp
e The goal was to extend Hoare logic to concurrent systems...
e but it is easier to check if a formula satisfies a model than to ensure the
validity of a formula (post-condition)
Model checking for CTL

The semantics of CTL is state-based

so =@

S0 it is not needed to reasoning over paths as in the case of LTL.

e Given M and ¢ € CTL the algorithm computes the set of states that
satisfy ¢, Sat(p).

e this is accomplished by computing Sat(y) for all sub-formulae of ¢

e then, one only needs to check that sy € Sat(y)

Semantics of CTL

AFp

Semantics of CTL

EGy

AGyp

Model checking for CTL
We only consider a complete set of connectives

{false,~, A, AF,EU, EX}

EGp = —-AF-p
EFp = E[-falseUy]
AGy = —EF-p = -E[-falseU-y]
AXp = —-EX-¢p
AfpUY] = ~(B[-$U(~p A ~0)]) A AFY

because it LTL we have

eUyp = (= U(=p A =)) AF

AlpUy] = —E[-¢U(=¢ A —))] A "EG—)
Using CTL*,

AlpUy] = Al(=pU(=p A =9)) AFY]
“ES[=(=pU(=p A =) AFY]
—E[~0U(=¢ A —¢) V Gy
~(E[pU(=¢ A =¢)] V EG—¢)
—E[(-¢U(=¢ A =)]) A "EG—)

1.1 Labelling Algorithm

Model checking for CTL — Labelling Algorithm

Input: a transition system T = (S, Act, — , AP, I, L) and a CTL formula ¢
Output: Sat(p), i.e., the set of states of T that satisfy ¢,
o T'l=giff I C Sat(yp).

e The algorithm labels each state of 1" with the sub-formulae of ¢ that are
satisfied in that state,

e starting from the smaller ones: first, atomic propositions, boolean formu-
lae and temporal formulae until .

e thus the algorithm proceeds by induction in the structure of ¢

e If ¢ is a sub-formula of ¢ which immediate sub-formulae already label the
states were they are true, one can determine the states labelled by).

Labelling

for i < |y| do
for) € Sub(p) with ¢ = |¢| do
Compute Sat (1))

if I C Sat(y) then return true
return false

where Sub(y) is the set of all sub-formulae of ¢

e The recursive computation of Sat(p) consists in a bottom-up transversal
of the parse tree of ¢

e The nodes of the parse tree are subformulae of
e The leaves are the atomic propositions a € AP or a constant

e The inner nodes are labelled with an operator

Example

¢ = Jd0a A 3(bU 0 -¢)

\VJ N . 7
v Wy
~ -~ -
\1//

Sat(V) (30O

O

Model checking for CTL — Labelling Algorithm
If 9y is

false label no state
p label the states s such that p € L(s)
1 A 1o label the states s that are already labelled by 17 and 5

—)y label the states s that are not labelled with 1,

General idea for temporal connectives

The labelling for the temporal connectives is based on the following equivalences

AGy = ¢ N AXAGy

EGy = ¢ N EXEGyp

AFp = ¢ vV AXAFp

EFp = ¢ VvV EXEFp
AlpUy] = ¢V (pAAXA[pUY))
ElpUy] = ¢V (¢ AEXE[pUy])

but only AF, EU and EX are needed.

Labelling Algorithm — AF

AFyn o If a state s is labelled with ¢ then label it with AFi;.

e Repeat: If all successors of a state s are labelled with AFi, label
that state with AFi);. Until there is no change.

» G)

AFi/)l = ¢1 vV AXAle

Labelling Algorithm — E (¢ U1s)

E(y1Uys) e If a state s is labelled with 19 then label s with E(i1Us).

e Repeat: Label a state s with E(t)1 Utbs) if it is labelled with 11 and if
at least one of its successors is labelled with E(t¢1U)z). Until there

is no change.
E[y1Ute]
1
P E[t1U2] @

E[1Utha] =92 V (1 A EXE[Ug))

EF((a > ¢) A=(a <> b)) = E(trueU(a <> ¢) A =(a <> b))

a) Sat((a <> ¢c) A—(a < b))

Labelling Algorithm — EX1),

EXz1); label with EXt; a state if at least one of its successors is labelled with
Y1

»@
-

The subformulae are: c¢;, co, =¢o and E(—caUcq). The states labeled by —cq are
the ones not labeled by cs.

If a state is labelled with —co and has a successor labelled with E(—c2Ucy) label
that state with E(-c2Uecy).

Yes, so E E(—c2Uc)
Example: Mutual Exclusion sy £ AG(—(ca Acp))?

AG(=(ca Aecr)) = —EF(ca Acp)) = —E(trueU(ce A ¢1))

It is no possible to label any state with co A ¢1, so no state can be labeled
E(trueU(cz A ¢1))

Example: Mutual Exclusion sop = AG(—(c2 A¢1))?

AG(=(ea Aer)) = -EF(ca Acy)) = —E(trueU(ca A 1))

Thus, all states are labeled with —E(trueU(ca A ¢1)) and thus in particular sg.

Pseudo-code for the labelling algorithm given ¢ e T

function SAT (v)
begin
case
@ is true : return S
¢ is false : return ()

¢ is atomic: return {s € S| ¢ € L(s)}
© is 71 : return S — SAT (1)
© 18 1 A g ¢ return SAT (¢1) N SAT (v2)
@ is p1 Vg : return SAT (1) U SAT (p2)
© is p1 — P9 : return SAT (—¢ V @3)
v is AX¢p; : return SAT (-EX—1)
¢ is EX¢1 : return SATgx (1)
v is A[p1U pa] : return SAT(—(E[—p2U(—¢1 A —2)] V EGgps))
v is E[p1Ups] : return SATgy (1, p2)
¢ is EFp; : return SAT (E(trueUeyy))
v is EGep : return SAT(—AF—¢,)
¢ is AFy : return SATyz (¢1)
¢ is AGyy : return SAT (—EF—¢,)
end case
end function

Pseudo-code for the labelling algorithm

Given a set of states Y, the function pre;(Y) (prey(Y)) determines the set of
states from which it is possible (only it is possible) to make a transition for
states in Y

pres(Y) = {seS|3s',s — s As'eY}
{s € S| Post(s)NY # 0}
{s€S|Vs'(s — §)=5 €Y)}
= {se S| Post(s) CY}

prey(Y)

Then

function SATx (@)
local var XY

begin
X :=SAT (p);
Y :=pres(X);
return Y
end

function SAT,r ()
/* determines the set of states satisfying AFp */
local var X,Y

begin
X =5,
Y :=SAT (p);

/* least fixed point */
repeat until X =Y

10

begin

X =Y,

Y :=Y Upre,(Y)
end
return Y

end

function SATgy (¢, V)
/* determines the set of states satisfying E[oU 9] */
local var W, XY

begin
W := SAT (p);
X =5
Y = SAT (v);

/* least fixed point */
repeat until X =Y
begin
X :=Y;
Y:=YU(WnNpreg(Y))
end
return Y
end

Labelling Algorithm for CTL

Consider AP = {p,q,t,7} and the model T = (S = {qo,q1,¢2,43},{q —
q1,90 = G3, 01 = q1,q1 —> 42,92 — 40,92 —> q3,q3 — Qo }, L(q0) = {p. ¢}, L(q1) =

{r}, L(q2) = {p,t}, L(g3) = {q, 7}).
Determine Sat() where

a) ¢ = AFyq,

b) ¢ = EXEXr

¢) ¢ = AG(EF(pVr)).

Labelling Algorithm

Consider AP = {pvqatvr} and the model T' = ({QO;(]17(]2»(13}7{C]0 — q1,490 —
@B,q1 = @,q = 92,G2 — Go,q2 — 43,93 — o}, L(q) = {p.q}, L(q1) =

11

{r}, L(q2) = {p, t}, L(g3) = {q, 7}).
Post(qo) {q1,q3}
Post(q1) = {q1,q2}
Post(g2) {90, 93}
Post(qz) = {qo}

For Sat(AFq) =Y:
e Sat(q) = {(]07(]3}
Let Y = Sat(q) = {qo,q3}

As prey(Y) = {s | Post(s) € {q0,q3}} = {q2, 43}
we have Y =Y U {q2,¢3} = {90, %2, ¢3}

Repeating we have again prey(Y) = {¢2,q3}, thus Sat(AFq) = Y =
{QO>QQaQ3}

For Sat(EXEXr):
o Sat(r) ={q1,q3}
o Let X = Sat(r) ={q1,q93}
o X =pres(X) = {s| Post(s) N {q1,q3} # 0} = {qo0, 01, g2}

e Repeating, pres(X) = pres({qo, ¢1,¢2}) = {qo0, 41, g2, 43}
e Then Sat(EXEXr) = {qo,q1,¢2,93} = S

AG(EF(pVr)) = —E[trueU—(E[trueU(p V r)])]
For Sat(E[trueU(p V r)])

e Y =Sat(pVr)={q,q,q2,93} =S and W =25

e Then Y = Y U (W N pres(Y)) = S and Sat(EftrueU(p v r)]) = S
Thus Sat(~EftrueU(p v r)]) = 0

eY=0and W=25

e pres(Y) =10

« Y =Y U (W npres(Y)) = 0 = Sat(EftrueU(E[trueU(p v r)])])
Thus Sat(AG(EF(pV 1)) = S

12

Complexity

Given a model T = (S, Act, — , AP, I, L) and a CTL formula ¢, the labelling
algorithm has time complexity

O(f V- (V+E))
where

e f is the number of connectives in ¢
e VV =S| is the number of states in T

e £ =| — | is the number of transitions in T

It can be more efficient if one consider explicitly the case for EG. Then the
complexity can be O(f.(V + E)), thus linear both in the size of the model and
in the size of the formula.

LTL versus CTL

Aspect Linear time Branching time
“behavior” path-based: state-based:
in a state s trace(s) computation tree of s
temporal LTL: path formulae ¢ CTL: state formulae
logic skEp iff existential path quantification Jp
V7 € Paths(s). 7 = ¢ universal path quantification: V¢
complexity of the PSPACE-complete PTIME
model checking
problems O (TS| - exp(|l)) o(Ts| - @)
implementation- trace inclusion and the like simulation and bisimulation
relation (proof is PSPACE-complete) (proof in polynomial time)
fairness no special techniques needed special techniques needed

13

