
Session 10
Algorithms for Model Checking CTL

1 BDDs: binary decision diagrams

Symbolic Model Checking

• The states of a transition system correspond to the possible values of
variables (of the modelled program) and their number can be exponential
in the number of those variables

• The labelling algorithm uses intensively operations on sets of states and
in particular for computing the sets of successors and predecessors of a
state.

• The success of model checking only possible because it is possible to ma-
nipulate sets in a symbolic manner

• One can represent sets of states in binary encodings that correspond to
Boolean functions

• and an efficient way to represent Boolean functions is using OBDDs (ordered
binary decision diagrams).

• other option is to use SAT solvers

OBDDs:ordered binary decision diagrams

• OBDDs represent Boolean functions

f : {0, 1}n → {0, 1}

• Boolean Operations:

conjunction f · g or f ∧ g

disjunction f + g or f ∨ g

complement f̄ or ¬f
. . .

• A Boolean function f with n arguments can be represented by a truth
table with 2n lines.

• It can also be represented by a propositional formula but that is also not
efficient

1

Boolean Functions and BDDs

Boolean function

Decision tree ‘

BDD

BDD: Binary decision diagrams

A Boolean function can be represented by a DAG with a root and

• decision nodes (intern)

• only two terminal (leaves) nodes: 0 and 1.

• each decision node n is labelled with a propositional variable and has two
sons: dashed arcs (and solid arcs correspond to the possible truth values
of the variable assignments (0 or 1). Its sons are respectively lo(n) and
hi(n)

2

Reduced BDDs

A BDD is reduced if isomorphic subgraphs are identified and do not have nodes
whose sons are isomorphic.

R1 Redundant Tests: both arcs of a node n have the same target node ; n can
be eliminate

R2 Redundant decision nodes: if they are roots of (structurally) identical
subBDDs; one can be eliminated.

This ensures only two leave nodes

BDDs Reduction

x x

z

y y yy

x

z

y y y

x

z

y y

x

Efficiency of BDDs representation

• Compact representation

• Checking Satisfiability: determine if there is a consistent path from the
root that ends in node 1. A path is consistent if for every variable, has
only dashed lines or solid lines leaving nodes labelled by that variable

• Checking Validity: no terminal node 0 is reached by consistent paths.

• Conjunction: given Bf and Bg representing two Boolean functions f and
g, build a BDD for f · g such that each node 1 of Bf is replaced by Bg.

• Disjunction: as before, but replacing all nodes 0 of Bf by Bg (BDD for
f + g)

• Complement: Bf̄ is obtained from Bf , replacing the terminal nodes 0 by
1 and vice-versa.

3

B0, B1, Bx and complement

B1 is the same as B0 but with a 1

Show that the third corresponds to f1(x, y) = x ∨ y and compute BDDs for
f(x, y) = ¬(x ∨ y) and f2(x, y) = x ∧ y.

1.1 Ordered BDDs

OBDD: Ordered Binary Decision Diagrams

Ordered BDD

If the variables occur always in the same order along any path from the root.
This induces an ordering in the set of variables.

Let [x1, . . . , xn] be a ordered list of variables. A BDD B has order [x1, . . . , xn]
if for any occurrence of xi followed by xj along a path in B, we have i < j.

A BDD is ordered if there is an ordering for the list of its variables. Two
orderings of two BDDs B1 and B2 are compatibles if do not exist two variables
x and y such that x < y in B1 but y < x in B2.

Teorema 10.1. A reduced OBDD representing a given Boolean function f is
unique up to isomorphism. That is, two OBDDs B and B′ with compatible
variable orderings represent the same function if they have the identical structure
(canonical form). In that case, they are equivalent.

OBDDs

This two BDDs are equivalent:

4

x

y z

x y x

0 1

y

x

y

z

But only one is ordered: [x, y, z]. For the first it is not possible to find an
ordering: an ordering can only exist if there are no multiple occurrences of a
same variable along a path

Importance of a Canonical Form

Absence of redundant variables (i.e. from which the function does not de-
pend on)

Test for equivalence Two functions f and g with OBDDs having compatible
orderings are equivalent if the reduced OBDDS are isomorphic.

Test for Validity If f is a tautology its reduced OBDD has a unique node
with the value 1 (B1).

Test for Consequence to test if g implies f , compute the reduced OBDD for
f · ḡ and check if it is B0.

Test for Satisfiability A Boolean function f is satisfiable iff its reduced OBDD
is not B0.

Algorithm for reducing OBDDs: reduce

• reduce(Bf):

• If B as the order [x1, . . . , xl], B has at most l + 1 levels

• Starting bottom-up at terminal nodes,

• Each node n is labelled with i(n) in such a way that two nodes have
the same label iff the respective sub-OBDDs represent the same Boolean
function

– Assign the label #0 to all leaves with value 0 and #1 to all leaves
with value 1.

– If i(lo(n)) = i(hi(n)), then set i(n) to the same label. i.e. node n
can be eliminated as it is redundant.

5

– If there exist a nodem with the same variable xi, such that i(lo(n)) =
i(lo(m)) and i(hi(n)) = i(hi(m)), then i(n) = i(m).

– If none of the cases before apply, assign to n a label with the next
unused integer

• in the end remove nodes with the same label, starting bottom up again,
redirecting the edges accordingly.

Algorithm for reducing OBDDs: reduce

OBDD

For each of the following Boolean functions, determine reduced OBDD’s for each
of the orders [x, y, z] and [z, y, x]

First compute the binary decision tree and then apply the reduce algorithm.

a)

x y z f(x, y, z)
1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1

b) f(x, y, z) = x · (y + z).

6

x

y

z
z

01

x y z f(x, y, z)
1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1

Shannon Expansion

Definição 10.1. Let f be a Boolean formula and x a variable.

1. f [0/x] obtained by replacing all occurrences of x in f by 0

2. f [1/x]obtained by replacing all occurrences of x in f by 1

Lema 10.1 (Shannon Expansion).

f ≡ x̄ · f [0/x] + x · f [1/x]

or, equivalenly, we write

f = x → f [1/x], f [0/x],

that corresponds to the statement if. . .then. . .else and can be also denoted
ite(x, f [0/x], f [1/x]).

Shannon Expansion

For any Boolean binary operator op

f op g = x̄i · (f [0/xi] op g[0/xi]) + xi · (f [1/xi] op g[1/xi])

or, equivalently,

xi → f [1/xi] op g[1/xi], f [0/xi] op g[0/xi],

All Boolean functions can be written with this operator →, considering that
xi → f, f ≡ f . From a formula using only this operator (and the Boolean
constants) a BDD (decision tree) is easily constructed.

7

Algorithm of application for OBDDs

apply(op,Bf ,Bg): where op is a binary Boolean operation.

Idea:

• let v be variable with the highest order in Bf or Bg

• split the problem into two subproblems for v being 0 and v being 1 (Shan-
non expansion for the sub-nodes lo and hi)

• at the leaves apply the Boolean operation op

apply

apply(op,Bf ,Bg): Let rf and rg be the roots of Bf and Bg, respectively. To
compute the OBDD Bf op g (usually not reduced) apply the following steps:

• If both are leaves with values lf and lg, respectively, (in {0, 1}), then
Bf op g = B0 if lf op lg = 0 e Bf op g = B1, otherwise.

• In the remaining cases, at least one of the root nodes is not a leave. If both
roots are xi-nodes, create a xi-node with a dashed arc for the OBDD ap-
ply(op,lo(rf),lo(rg)) and a solid arc for the OBDD apply(op,hi(rf),hi(rg)).
This corresponds to Shannon expansion.

• If rf is xi-node and rg a leave or a xj-node with j > i (ordering [x1, . . . , xn]),
then create a xi-node with a dashed arc for the apply(op,lo(rf),rg) and
a solid arc for the OBDD apply(op,hi(rf),rg). In this case g does not
depend on xi and g ≡ g[0/xi] ≡ g[1/xi].

• simmetricaly for rg

Algoritmos para OBDDs: apply(+, Bf , Bg)

8

Algoritmos para OBDDs: apply

Algoritmos para OBDDs: apply

Algorithm of restriction for OBDDs: f [val/x]

restrict(val,x,Bf):

• To compute the OBDD Bf [0/x] redirect the arcs that point to a x-node n
for the node lo(n) and remove the node n. Reduce.

9

• To compute the OBDD Bf [1/x] redirect the arcs that point to a x-node n
for the node hi(n) and remove the node n. Reduce.

f = x1 · y1 + x2 · y2 + x3 · y3

restrict(0, x3, Bf) and restrict(1, x3, Bf)

Algorithm exists for OBDDs

∃x.f is true if f is could be made true putting x to 0 or 1, i.e. if there exists a
value for x that makes f true. Dually ∀x.f is defined

10

∃x.f ≡ f [0/x] + f [1/x]

exists(x,Bf) = apply(+, Bf [0/x], Bf [1/x])

∀x.f ≡ f [0/x] · f [1/x]
forall(x,Bf) = apply(·, Bf [0/x], Bf [1/x])

Note: OBDD for exists(x,Bf) can be obtained from Bf replacing each the node
x (n) by the OBDD apply(+, lo(n), hi(n)). It als o generalizes to ∃x1, . . . ∃xn.f .

exists(x3, Bf) = apply(+, restrict(0, x3, Bf), restrict(1, x3, Bf))

exists(x2, exists(x3, Bf))

11

Boolean Formulae and OBDDs

Boolean formula f OBDD Bf that represents

0 B0

1 B1

x Bx

f̄ swap 0 and 1 inBf

f + g apply (+, Bf , Bg)

f · g apply (· , Bf , Bg)

f ⊕ g apply (⊕, Bf , Bg)

f [1/x] restrict (1, x, Bf)

f [0/x] restrict (0, x, Bf)

∃x.f apply (+, Bf [0/x], Bf [1/x])

∀x.f apply (· , Bf [0/x], Bf [1/x])

Computational Complexity for OBDDs

Algorithm Input OBDD(s) Output OBDD Time complexity

reduce B reduced B O(|B| · log |B|)
apply Bf , Bg (reduced) Bf op g (reduced) O(|Bf | · |Bg|)
restrict Bf (reduced) Bf [0/x] or Bf [1/x] (reduced) O(|Bf | · log |Bf |)
∃ Bf (reduced) B∃x1.∃x2....∃xn.f (reduced) NP-complete

Exercise

12

Consider the functions f(x, y) = x+ y, g(x, y) = x · y e h(x, y, z) = x · y + z · x.

• Determine reduced OBDD’s Bf , Bg and Bh with the order [x, y, z].

• Determine Bf .

• Determine Bf+g applying for that the algorithm apply a Bf e Bg e re-
duzindo em seguida.

• Determine B∃yh and B∀yh.

Transition systems using OBDDs

Let T = (S, −→ , I, AP, L) be a model with |AP | = n.

• Each state s ∈ S can be represented by the set of propositional variables
L(s), i.e. by a Boolean tuple

(v1, . . . , vn)

such that vi = 1 if xi ∈ L(s) and vi = 0, otherwise.

• This implies that L has to be injective, which is easily achieved introducing
new propositional variables.

• Each state s can be associated to a OBDD of the Boolean function

fs(x1, . . . xn) = l1 · l2 · · · ln

where li = xi if xi ∈ L(s) and x̄i, otherwise (i.e., a valuation for xi,
i = 1..n).

• The set of states {s1, . . . , sm} can be represented by the OBDD for the
Boolean function:

l11 · l12 · · · · · l1n + · · ·+ lm1 · lm2 · · · · · lmn

Example I

s2

x1
s0

x2

s1

13

sets of representation by representation by
states Boolean values Boolean function

∅ 0
{s0} (1, 0) x1 · x̄2

{s1} (0, 1) x̄1 · x2

{s2} (0, 0) x̄1 · x̄2

{s0, s1} (1, 0), (0, 1) x1 · x̄2 + x̄1 · x2

{s0, s2} (1, 0), (0, 0) x1 · x̄2 + x̄1 · x̄2

{s1, s2} (0, 1), (0, 0) x̄1 · x2 + x̄1 · x̄2

S = {s0, s1, s2} (1, 0), (0, 1), (0, 0) x1 · x̄2 + x̄1 · x2 + x̄1 · x̄2

Compact Representation using OBDDs

The Boolean functions representing sets of states can be compactly represented
by OBDDs.

For instance the state {s0, s1}, corresponds to

x1 · x̄2 + x̄1 · x2

pode ser representado por:

x2

x1 x1

x2 x2

Set Operations using OBDDs

For implementing the labelling algorithm using OBDDs we need to express set
operations:

• To test if s ∈ S′ this means that the valuation represented by s satisfies
BS′ , i.e. we need to test that Bs ·BS′ is satisfiable (i.e the reduced OBDD
is not B0).

• Intersection, union and complementation are implemented as the Boolean
operations ·, +, and ¯ respectively and

• with OBDDs using the function apply.

Representing the Transition Relation using OBDDs

14

• The transition relation −→ is a subset of S × S.

• Then a transition s −→ s′ can be represented by a pair of Boolean
vectors

((v1, . . . , vn), (v
′
1, . . . , v

′
n)),

• to represent elements of the second component we use a copy of the atomic
propositions x′

1, . . . , x
′
n

• the Boolean function is

(l1 · l2 · · · ln).(l′1 · l′2 · · · l′n)

such that li is defined as above and l′i = x′
i se xi ∈ L(s′), l′i = x̄′

i, otherwise.

• The transition relation is represented by the disjunction of these formulae

• from that one can build a OBDD for −→ .

[x1, x2, x
′
1, x

′
2] [x1, x

′
1, x2, x

′
2]

x1 x2 x′
1 x′

2 −→
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

x1 x′
1 x2 x′

2 →
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

f −→
left = x̄1 · x̄2 · x̄′

1 · x̄′
2 + x̄1 · x̄2 · x′

1 · x̄′
2 + x1 · x̄2 · x̄′

1 · x′
2 + x̄1 · x2 · x̄′

1 · x̄′
2

f −→
right = x̄1 · x̄′

1 · x̄2 · x̄′
2 + x̄1 · x̄′

1 · x2 · x̄′
2 + x̄1 · x′

1 · x̄2 · x̄′
2 + x1 · x̄′

1 · x̄2 · x̄′
2

15

Representing the Transition Relation using OBDDs

Using the truth table on the right (where the unprimed and primed variables
are interleaved) we obtain the following OBDD for −→ of Example I:

x2 x2

x
′

2
x
′

2

x1

x
′

1
x
′

1

Representation of pre∃ and pre∀ in OBDDs

• finally we need OBDDs for the functions

pre∃(X) = {s ∈ S | ∃s′ s −→ s′ ∧ s′ ∈ X}
pre∀(X) = {s ∈ S | ∀s′(s −→ s′) ⇒ s′ ∈ X)}

• which can be obtained using BX and B −→ .

• As pre∀(X) = S \ pre∃(S \X), it is enough to for consider pre∃(X):

– consider BX′

– determine exists(󰂓x′,apply(·,B −→ ,BX′)).

• where in general ∃󰂓xf represents ∃x1 . . . ∃xnf , for 󰂓x = (x1, . . . , xn), i.e.
there exists a valuation for 󰂓x that turns f true

• in this case, such valuation corresponds to a state s′ (l′1 · l′2 · · · l′n) such
that B −→ · BX′ represents the set of states, s (l1 · l2 · · · ln), such that
(l1 · l2 · · · ln) · (l′1 · l′2 · · · l′n) is true.

Compute Sat(EXx1) using OBDDs

• We have that Sat(x1) = {s0}

• and we need to compute pre∃(Sat(x1)).

16

• which corresponds to the OBDD for exists(x′
1, exists(x

′
2,apply(·, B −→ , Bs′0

)).

• For Bs′0
we have

x′
1

x′
2

10

apply(·, B −→ , Bs′0
)

x1

x′
1

x2

x′
2

1 0

exists(x′
2,apply(·, B −→ , Bs′0

))

We substitute the node x′
2 by apply(+, B0, B1) = B1

x1

x′
1

x2

1 0

Sat(EXx1)

Finally we have the OBDD for exists(x′
1, exists(x

′
2,apply(·, B −→ , Bs′0

)).

17

x1

x2

1 0

which is exactly the OBDD for the set of states {s2} showing that Sat(EXx1) =
{s2}

Example II

Consider the model M = (S = {s0, s1, s2, s3}, {s0 → s2, s0 → s1, s1 → s1, s1 →
s2, s1 → s3, s2 → s0, s2 → s1, s2 → s2, s3 → s0, s3 → s3}, L(s0) = {x1, x2}, L(s1) =
{x1}, L(s2) = {}, L(s3) = {x2}.

1. Using the order [x1, x2], determine (reduced) OBDD’s for representing the
sets of states {s0, s1} e {s0, s2}.

2. Determine the truth table for the transition function using the order
[x1, x

′
1, x2, x

′
2].

3. Draw a (reduced) OBDD for the transition function.

4. Apply the the labelling algorithm (adapted to the OBDD’s representation
and using the order [x1, x2]) to the model M, to determine the sets of
states where the following formulae are true.

• EX x2;

• AG (x1 ∨ x2);

• E (x2 U x1).

Set Representations

Consider the model M = (S = {s0, s1, s2, s3}, {s0 → s2, s0 → s1, s1 → s1, s1 →
s2, s1 → s3, s2 → s0, s2 → s1, s2 → s2, s3 → s0, s3 → s3}, L(s0) = {x1, x2}, L(s1) =
{x1}, L(s2) = {}, L(s3) = {x2}.
Using the order [x1, x2], determine (reduced) OBDD’s for representing the sets
of states {s0, s1} e {s0, s2}

{s0} | x1.x2

{s1} | x1.x̄2

{s2} | x̄1.x̄2

{s0, s1} | x1.x2 + x1.x̄2

{s0, s2} | x1.x2 + x̄1.x̄2

18

For x1.x2+x1.x̄2

x1

x2x2

01
reduce

x1

01

For x1.x2 + x̄1.x̄2 is already reduced

x1

x2x2

01

Determine the truth table for the transition function using the order [x1, x
′
1, x2, x

′
2].

We have for {s0}, x1.x2, {s1}, x1.x̄2, {s2}, x̄1.x̄2 and {s3}, x̄1.x2.

s0 → s2 x1.x2.x̄′
1.x̄

′
2

s0 → s1 x1.x2.x
′
1.x̄

′
2

s1 → s1 x1.x̄2.x
′
1.x̄

′
2

s1 → s2 x1.x̄2.x̄′
1.x̄

′
2

s1 → s3 x1.x̄2.x̄′
1.x

′
2

s2 → s0 x̄1.x̄2.x
′
1.x

′
2

s2 → s1 x̄1.x̄2.x
′
1.x̄

′
2

s2 → s2 x̄1.x̄2.x̄′
1.x̄

′
2

s3 → s0 x̄1.x2.x
′
1.x

′
2

s3 → s3 x̄1.x2.x̄′
1.x

′
2

The truth table is

19

x1 x′
1 x2 x′

2 →
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1

0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1

1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0

1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

Draw a (reduced) OBDD for the transition function.

x1

x′
1 x′

1

x2x2
x2

x′
2

x′
2

0 1

BDD software

• There are many libraries that implement OBDD

• https://github.com/johnyf/tool_lists/blob/master/bdd.md

• Most popular:

• CUDD (exists for several programming languages)

• you can also implement your own...

• A web interface: http://formal.cs.utah.edu:8080/pbl/BDD.php

20

References

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and reasoning about systems. CUP, 2004.

21

