
Advanced Functional Programming Exam

DCC/FCUP — June 20th, 2015

• This exam comprises five (5) questions in four (4) pages
• You may use the provided Appendix sheet for Haskell library documentation
• Write your answers on an exam sheet; you may re-order your answers

provided they are clearly marked

Question 1 (20%)

Recall the type systems presented in the course.

1. Find the principal type of the term M ≡ (λx.x(λx.x)z)(λfx.fx).

2. Using the Damas-Milner type system, infer a type for let f =
(λx.x) in (ff)x.

3. Consider the following class declaration:

class a:C<=Eq where f: c -> c -> bool

Which of the following types are valid instances of C (assume the existence
of the projection function fst and of an equality class Eq)? Justify.

inst int:C where f = \x->\y->x
inst bool:C where f = \x->\y->y
inst pair:(C,C)C where f = \x->\y->fst(x)==y

1



Question 2 (20%)

The mapM function from the Control.Monad library generalizes the standard list
map for applying a monadic function over a list and collecting results; its most
general type is:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

Write a recursive definition of mapM; you may use do-notation or monadic >>=
and return but not any other higher-order monadic functions.

Question 3 (20%)

Consider the following (erroneous) definition of a monad that keeps track of the
number of applications of the bind operator >>=.

newtype M a = M { runM :: (a, Int) }

instance Monad M where
return x = M (x,0)
m >>= k = let (x,c) = runM m

(y,c')= runM (k x)
in M (y, 1+c+c')

Show that the monad laws do not hold for this definition, and hence M is not a
monad. (Sugestion: it is enough to show that one of the laws fails).

2



Question 4 (20%)

Consider the following datatype for arithmetic expressions without variables:

data Expr = Const Integer
| Add Expr Expr
| Mul Expr Expr
| Neg Expr

1. Write a QuickCheck generator for the Expr type, i.e. a function
genExpr :: Int -> Gen Expr where integer argument is an upper-bound
on the size of the result expression (for some suitable notion of “size”).

2. Using genExpr make an instance of the Arbitrary type class for expres-
sions.

3. Assume now that you are given an evaluation function eval :: Expr -> Integer
for expressions. Write some QuickCheck properties for testing its correct-
ness; you should write at least four distinct properties.
(Sugestion: express algebraic properties such as A + B = B + A or
A+ (B + C) = (A+B) + C.)

3



Question 5 (20%)

Consider a variant of the DSEL for turtle graphics presented in the lectures.

type Turtle a

instance Monad Turtle

forward :: Double -> Turtle () -- turtle movement
right :: Double -> Turtle () -- right rotation (degrees)
heading :: Turtle Double -- get the current heading
position :: Turtle (Int,Int) -- get the current position
distance :: Turtle Double -- get total distance traveled
runTurtle :: Turtle a -> a -- run function

The distance function should return the total distance traveled by the turtle;
note that negative forward movement should also increase the distance traveled
(e.g. as in a car’s mileage meter)

The runTurtle function should execute the turtle commands and yield the result
value. For example:

> runTurtle (forward 100 >> right 90 >> forward 100 >> position)
(100,-100)
> runTurtle (forward 100 >> forward (-50) >> distance)
150

Implement this DSL using a shallow embedding. Note that runTurtle should
not perform any drawings (since its result type is not IO) — it should just
simulate the turtle’s behaviour.

4


	Advanced Functional Programming Exam
	DCC/FCUP — June 20th, 2015
	Question 1 (20%)
	Question 2 (20%)
	Question 3 (20%)
	Question 4 (20%)
	Question 5 (20%)



