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1 Introduction

While offering important benefits for modularity, abstraction and composability [9], a key
obstacle to the broad adoption of non-strict functional programming languages, such as
Haskell [18], is the difficulty in predicting operational properties, such as execution time
or space usage. Non-strict semantics is typically implemented by lazy evaluation: delaying
evaluation of sub-expressions until they are actually needed for the overall result. This al-
lows defining structures that are potentially infinite, but for which only a part is needed to
determine the final program result. Furthermore, if an expression is needed more than once,
the result value from the first evaluation can be reused instead of re-evaluating the expres-
sion (implementing graph reduction). The disadvantage is that reasoning about evaluation
costs becomes less compositional than in the usual eager setting. In the latter, the costs of
composition can be approximated by adding up the costs of all individual components. For
lazy evaluation, however, simply adding together the separate costs of producing and con-
suming lazy data structures would give a gross overestimation of costs and often fail to give
a finite bound.

This paper describes a type-based approach for obtaining static cost bounds for lazily
evaluated functional programs. The costs of individual program fragments are expressed
by type annotations derived by an augmented type system. We show that this system can
infer costs of recursive and co-recursive definitions that are linear on the number of of con-
structors in input or output, given assumptions for the costs of primitives and free variables.
The analysis presented here combines two previous independent analyses that respectively
considered the allocation costs of recursive [24] and co-recursive programs [29]. The signif-
icant simplification of the soundness invariants and proof, presented here for the first time,
enabled a smooth combination of the two analyses into a single coherent whole. Further-
more, we generalize the combined analysis to a parametric cost model that allows bounds to
be determined for any syntactically derivable measure, e.g. evaluation steps, function calls,
allocations, etc.

This paper is structured as follows: Section 2 introduces the analysis by presenting cost
bound results for simple examples; Section 3 defines our language and operational seman-
tics; Section 4 presents type rules for deriving annotated types and discusses the prototype
implementation; Section 5 provides key invariants and a detailed proof sketch of soundness;
Section 6 describes an improvement for co-recursive programs using a technique developed
previously [29]; Section 8 concludes and provides some directions for further work.

2 Motivating examples

In order to give an overview of the the analysis, we begin by presenting some simple example
programs with cost bounds inferred for them. For ease of understanding, we use Haskell
syntax for the example code; the translation into our intermediate term syntax (shown later)
is mechanical. We provide the annotated typings produced by our prototype implementation
verbatim and discuss the obtained bounds informally.

Infinite lists Consider two Haskell definitions for a function generating an infinite list of
identical values:

repeat x = let xs = x:xs in xs

repeat’ x = x : repeat’ x
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The two definitions yield identical streams of values; the first one, however, is more efficient:
repeat creates a single cyclic heap node, while repeat’ will allocate many (identical)
nodes as the result stream is traversed. Hence, repeat has constant cost while repeat’ has
a cost linear in the number of elements demanded from the result. This difference in cost is
not immediately apparent, as pointed out in, e.g. [2]. We can observe this difference through
the annotated types for allocation costs as inferred by our prototype analysis:

repeat : T(a) ->@1 Rec{Cons:(T(a),T(#)) | Nil:()}

repeat’ : T(b) ->@2 Rec{Cons:(T(b),T@2(#)) | Nil:()}

Some remarks on the output:

– recursive types Rec{...} are written structurally, i.e. listing all constructors and using
# for recursive references;

– arguments to functions and constructors are wrapped in thunk types T representing pos-
sibly delayed evaluations;

– functions and thunk types are annotated with evaluation costs marked by @; for read-
ability, zeros annotations are omitted.

The type of repeat is annotated with cost of 1 on the function (for allocating a single node);
the result infinite list incurs no further costs (both head and tail thunks are annotated with
zeros). The type of repeat’, however, shows that evaluation costs 2 for the first application
plus 2 for every tail element that is accessed later on.1 We can therefore read the cost bounds:
for some x, evaluating n elements of repeat x has constant cost 1+ 0 · n = 1 whereas
evaluating n elements of repeat’ x costs 2+2 ·n.

Folding lists The next example uses the standard recursive definition of a higher-order fold
function on lists to sum a list of integers:
foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

sum = foldl (+) 0

In a cost model where every reduction step (and not just allocations) costs one unit, both
foldl and also sum should exhibit linear cost on the size of the input list. Our analysis
offers the following annotated types in this case:2

foldl : T(T(Int) -> T(Int) ->@1 Int) ->

T(Int) -> T(Rec{Cons@11:(T(Int),T(#)) | Nil@1:()}) ->@2 Int

sum : T(Rec{Cons@11:(T(Int),T(#)) | Nil:()}) ->@7 Int

The type of foldl is annotated with a positive cost on the outermost arrow. This indicates
that fully applying this function has cost upper-bound of 2. Applying just the first two ar-
guments incurs no cost (we simply write -> instead of ->@0). This is simply because the
curried function requires the three arguments.

Furthermore, the third argument has T@0 everywhere (again @0 is omitted), which means
that the evaluation of the list and each element within costs nothing, i.e. for this function type
to be used, the list and its elements should be cost-free for the underlying metric (e.g. are
already fully evaluated). However, unlike the previous example, Cons and Nil are annotated

1 The extra cost per node accurately models the operational behaviour, but this is only visible at the
lower-level of the intermediate notation (cf. Sect. 3).

2 Other annotated types are possible. Our whole-program analysis only considers the use of foldl within
sum here, leading to the shown annotated type.
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with a positive cost that covers the processing of each constructor within that list. Since a
finite list of length n has n Cons and a single Nil, this means that the cost of applying foldl
is 11 ·n+1 ·1+2. Thus the evaluation cost for applying foldl to a list of length n is 3+11n.
For sum we get the same linear coefficient but a higher a constant: 7+ 11n for a list of n
elements; this is expected since sum is just a wrapper over the recursive worker foldl.

List fusion The next example illustrates how our analysis exposes the cost reduction of
an optimization using the law map f ◦map g = map ( f ◦ g). Replacing the left-hand side
for the right-hand one results in an equivalent program that performs fewer allocations by
avoiding the construction of an intermediate list. We define each side as separate functions
for analysis:

lhs f g xs = map f (map g xs)

rhs f g xs = map (\x -> f (g x)) xs

The types inferred are as follows:

lhs : T(T(a) -> b) -> T(T(c) -> a) ->

T(Rec{Cons@6:(T(c),T(#)) | Nil:()}) ->@5

Rec{Cons:(T(b),T(#)) | Nil:()}

rhs : T(T(a) -> b) -> T(T(c) -> a) ->

T(Rec{Cons@4:(T(c),T(#)) | Nil:()}) ->@2

Rec{Cons:(T(b),T(#)) | Nil:()}

It is immediate from the bounds 5+6n for lhs and 2+4n for rhs that the latter has lower
coefficients and thus consumes fewer resources for all list lengths n. Note that comparing
the total number of allocations (as is done here) is actually desirable for analysing such
optimizations [3] because the intermediate list is could immediately be deallocated as results
are consumed, and thus the residency of the two programs could be identical.

Finally, we remark that we have shown only one of many admissible annotated types in
the examples above. For example, while the total cost remains the same, an arbitrary part of
the cost may be shifted to the result type, as shown by this alternative typing:

lhs : T(T(a) -> b) -> T(T(c) -> a) ->

T(Rec{Cons@3:(T(c),T(#)) | Nil:()}) ->@5

Rec{Cons:(T(b),T@3(#)) | Nil:()}

3 Language and cost semantics

We consider syntactical terms e for initial expressions (the λ -calculus extended with local
bindings and pattern matching); full expressions ê; and weak head normal forms w:3

e ::= x | λx.e | e x | let x = e1 in e2 | letcons x = c(y) in e

| match e0 with {c1(x1)->e1| · · ·|cn(xn)->en}

ê ::= e | c(x)

w ::= λx.e | c(x)

3 Boldface symbols denote possibly-empty sequences of the underlying syntactic categories, e.g. x and y
are sequences of variables.
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H,S,L m
m w ⇓ w,H

(WHNF⇓)

` 6∈ L H[` 7→ ê],S,L∪{`} m
m′ ê ⇓ w,H′[` 7→ ê]

H[` 7→ ê],S,L m+Kvar
m′ ` ⇓ w,H′[` 7→ w]

(VAR⇓)

` is fresh H[` 7→ e1[`/x]],S,L m
m′ e2[`/x] ⇓ w,H′

H,S,L m+Klet
m′ let x = e1 in e2 ⇓ w,H′

(LET⇓)

` is fresh H[` 7→ c(y[`/x])],S,L m
m′ e[`/x] ⇓ w,H′

H,S,L m+Kletcons
m′ letcons x = c(y) in e ⇓ w,H′

(LETCONS⇓)

H,S,L m
m′ e ⇓ λx.e′,H′ H′,S,L m′

m′′ e′[`/x] ⇓ w,H′′

H,S,L
m+Kapp

m′′ e ` ⇓ w,H′′
(APP⇓)

H,S∪ (
⋃n

i=1{xi}∪BV(ei)) ,L
m
m′ e0 ⇓ ck(`̀̀),H

′

H′,S,L m′
m′′ ek[`̀̀/xk] ⇓ w,H′′

H,S,L m+Kmatch
m′′ match e0 with {ci(xi)->ei}n

i=1 ⇓ w,H′′
(MATCH⇓)

Fig. 1 Instrumented operational semantics

Our cost model is based on Sestoft’s revision [23] of Launchbury’s operational semantics
for lazy evaluation [15], since Launchbury’s semantics forms one of the earliest and most
widely-used operational accounts of lazy evaluation for the λ -calculus. The main change in
our presentation is a separate letcons-expression, using a similar notation as La Encina and
Peña [14]; this is done to easily distinguish allocation from simply referencing constructors.

As in Launchbury’s semantics, arguments of function and constructor applications must
be variables. When necessary, complex arguments can be explicitly named using let-bindings;
as in e.g. the STG machine [17], this restriction is required to make in-place update and shar-
ing of results explicit.

Let-expressions bind variables to possibly recursive terms. For simplicity, we consider
only single-variable bindings: multiple bindings can be encoded, if needed, using pairs and
projections.4

Note that constructor applications c(x) are not initial expressions; instead they are in-
troduced through evaluation of a specialized letcons-expression. The operational semantics
is defined for full expressions ê (or simply expressions), that are either initial expressions or
constructor applications. The result of evaluation is an expression w in weak head normal
form (whnf ), i.e. it is a λ -abstraction or a constructor application.

3.1 Operational semantics

Figure 1 defines an operational semantics for lazy evaluation instrumented with a simple
cost counting mechanism, against which we will define and prove our cost analysis. The
rules define an evaluation relation H,S,L m

m′ ê ⇓ w,H′, where ê is a full expression, w is
the evaluation result (in weak head normal form); H and H′ are the initial and final heaps,

4 Depending on the cost model, the encoding could incur some additional operational costs, but these
would also be reflected in the analysis output.
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i.e. mappings from variables to possibly-unevaluated expressions (thunks):

H ::= /0 | H[x 7→ ê]

We assume that heaps assign variables at most once, i.e. the notation H[x 7→ ê] implies that
(x 7→ ê′) 6∈H for all ê′. This allows writing heaps as sets without ambiguity, i.e. we consider
H[x 7→ ê, y 7→ ê′] and H[y 7→ ê′, x 7→ ê] (where x 6= y) as equivalent.

Symbols `,`′ (designated locations) denote variables introduced by the evaluation of let-
and letcons-expressions. The set L contains locations of heap expressions (“thunks”) that
are under evaluation and is used to prevent cyclic evaluation (similar to the “black-hole”
technique used by Launchbury).

Following Sestoft, we also keep track of bound variables throughout evaluation in a set S
to prevent variable capture; this is used in the freshness condition (to be made precise later)
used in rules LET⇓ and LETCONS⇓. We use BV(ê) to denote the set of variables bound by
lambda, let or match expressions in ê; similarly, FV(ê) denotes the set of free (i.e. unbound)
variables in ê.

Finally, parameters m,m′ are non-negative integers representing the available resources
before and after evaluation; thus, the difference m−m′ is the net evaluation cost. The use of
two annotations instead of a single one (the net cost) simplifies the threading of resources in
composite statements; furthermore, it should also simplify extensions for resource dealloca-
tion (cf. future work in Sect. 8).

Our semantics is parametrized by constants Kvar, Kapp, Klet, Kletcons and Kmatch,
representing the cost assigned to each reduction rule. Specific evaluation rules require that
enough resources are available by constraining the annotations on the turnstile, e.g. m+Kvar

m′

requires at least Kvar resources. Different instantiations of these constants allow modeling
different costs, for example:

– setting all constants to one measures the number of evaluation steps;
– setting Klet= Kletcons= 1 and all other constants to zero measures the total number

of constructors and thunks allocated;
– setting Kapp= 1 and all other constants to zero measures the number of applications.

The purpose of the analysis of Section 4 is to obtain static approximations for m and m′

that will safely allow execution to proceed. For readability, we may omit the resource infor-
mation from judgements when they are not otherwise mentioned, writing simply H,S,L `
e ⇓ w,H′ instead of H,S,L m

m′ e ⇓ w,H′.
For the sake of completeness, we state an auxiliary definition, due to La Encina and

Peña [14], formalising the notion of variable freshness.

Definition 1 (Freshness) A variable x is fresh for judgement H,S,L ` e ⇓ w,H′ if x does
not occur in dom(H), L, S; nor does it occur bound in either e or the range of the heap H.

Discussion of the evaluation rules LET⇓ and LETCONS⇓ are the only rules that augment the
heap with a new expressions bound to a “fresh” location.

The WHNF⇓ rule for weak-head normal forms (λ -expressions and constructors) incurs
no cost. The VAR⇓ and APP⇓ rules are identical to the equivalent ones in Launchbury’s
semantics. The VAR⇓ rule is restricted to locations that are not marked as being under evalu-
ation (enforcing “black-holing” that explicitly excludes some non-terminating evaluations).

The MATCH⇓ rule deals with pattern matching against a constructor. The variables
bound in the matching pattern are replaced in the corresponding branch expression ek by
the locations within the heap (also just variables, but we use the meta-variable ` to range
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over variables within the domain of the heap), which is then evaluated. Regardless of the
actual branch taken, all possibly bound variables are added to S; this is done solely to ensure
the freshness condition in subsequent applications of the LET⇓ and LETCONS⇓ rules.

Note that evaluating let x = e1 in e2 does not evaluate e1; instead it allocates a thunk
and proceeds the evaluation of the body e2. Thus, the cost of the let-expression as a whole
is that that of e2 plus a fixed constant Klet. The only rules that evaluate two expressions are
APP⇓ and MATCH⇓; in both cases the evaluation costs are threaded through the annotations
m,m′,m′′ in the judgments with a suitable constant Kapp or Kmatch added.

4 Type-based analysis

Our type-based analysis combines an effect system [25,20] for higher-order functions and
delayed computations and amortisation [26,16] for recursive functions. Amortised bounds
for recursive functions are obtained by associating potential (i.e. a non-negative number) to
data structures. The key objective is to choose the potential assignment so that it simplifies
the amortised costs, e.g. so that the change in potential by evaluation offsets any variability
in actual costs, thus making the amortised cost constant.

We assign potential to data structures using type annotations: the constructors of (re-
cursive) data types are annotated with positive coefficients that specify the contribution of
each constructor to the overall potential for that data structure. Values of function types
never have any potential assigned to themselves. The annotations contained within argu-
ment and result types indicate only how potential is spent and transformed by applying the
function to the data structures that carry potential. An affine type system [19] then ensures
the crucial soundness property that potential is used at most once. The principal advantage
of our type-based approach is that we can use efficient linear constraint solvers to determine
suitable type annotations, thus automatically inferring the potential function and hence the
amortised bounds.

4.1 Annotated types

The syntax of annotated types includes type variables, function types, thunk types and
possibly-recursive algebraic data types.

A ::= X | A−→p B | Tp(A) | µX .{c1 : (q1,A1)| · · ·|cn : (qn,An)}

Meta-variables A, B,C stand for types, X ,Y for type variables, p, q for cost annotations
(which are non-negative rational numbers) and n a non-negative integer. A vector of (possi-
bly zero) types is denoted by A. Function types A−→p B are annotated with an upper bound p
on the cost of evaluating the function application. Note that type variables are used solely for
denoting recursive references in data types; in particular, the type system is not polymorphic;
this is further clarified at the end of Section 4.3.

Thunk types Tp(A) denote delayed computations yielding a value of type A and are
similarly annotated with an upper bound p on the cost of evaluation to weak head normal
form. For example: assuming a suitable type N for natural numbers, then T1(N) is the type
of a thunk yielding a natural number whose evaluation costs one unit; and T0(N) is the type
of a thunk whose evaluation is free; for the step-counting cost model, this means that the
thunk is in weak-head normal form.
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Note that annotations p and q in, e.g., A−→p B and A−→0 Tq(B), are handled differently
in our type rules; this is in order to model the behaviour of lazy evaluation: the cost of using
a thunk can be shared (because of memoization), whereas the cost of an application must be
paid for each use.

Algebraic data types µX .{c1 : (q1,A1)| · · ·|cn : (qn,An)} are (possibly recursive) la-
belled sum of products Ai where each alternative is identified by a constructor ci and an-
notated with a potential qi; these annotations are used to justify amortised cost bounds for
recursive functions. For example, suitable types for pairs, sums, natural numbers and lists
are as follows:

A×B = µX .{pair : (q,(A,B))} N = µX .{zero : (qz,())|succ : (qs,X)}
A+B = µX .{ inl : (ql ,A)|inr : (qr,B)} L(A) = µX .{nil : (qn,())|cons : (qc,(A,X))}

The annotations q,ql ,qr, etc. in the above types are not fixed; instead they are parameters
that, for specific programs, convey the cost assignment to data structures. For example, a
function with argument type µX .{nil : (qnil ,())|cons : (qcons,(A,X))} admits a cost bound
qnil +n×qcons + c where n is the length of the argument list; the fixed cost c is determined
by other annotations (e.g. in arrow and thunk type). The type system in the Section 4.3 will
enforce sound derivations of such annotated types.

4.2 Sharing and subtyping

Figure 2 shows the syntactical rules for an auxiliary sharing relation A / {B1, . . . ,Bn} be-
tween a type A and a finite multiset of types {B1, . . . ,Bn} that is used to limit contraction in
our type system. Informally, sharing allows distributing the potential in A among B1, . . . ,Bn,
while preserving cost annotations of functions and thunks. Sharing also allows the relaxation
of annotations to subsume subtyping (i.e. potential can decrease while cost may increase).
This relation is used in side conditions to the type rules to constrain types and contexts and
in the soundness proof in Section 5.

The SHAREEMPTY and SHAREVEC rules are trivial. Rule SHAREVAR allows the free
duplication of a type variable. This simplifies the formulation of the rule SHAREDAT for
algebraic data types. Note that this could not be allowed if variables could be instantiated
with arbitrary types.5 However, in our case this is unproblematic because type variables are
not quantified.

The SHAREDAT rule allows potential from the data constructors that comprise A to be
shared among the Bi. The SHAREFUN and SHARETHUNK rules allow any cost for functions
and thunks, respectively, to be replicated. Rules SHAREEMPTYCTX and SHARECTX extend
sharing to a binary relation between typing contexts: a context Γ shares to another context
∆ if, for each variable x the types of x in Γ share to the types of x in ∆ .

The special case of sharing one type to a single other corresponds to a subtyping rela-
tion; we define the shorthand notation A <: B to mean A / {B}. This relation expresses the
relaxation of potentials and costs: A <: B implies that A, B have identical underlying types
but B has lower or equal potential and greater or equal cost than that of A. As usual in struc-
tural subtyping, this relation is contravariant in the left argument of functions (SHAREFUN).
A special case occurs when sharing a type or context to itself: because of non-negativity
A / {A,A} (respectively Γ / {Γ ,Γ }) require that the potential of a value of type A be zero

5 A polymorphic system would need to track sharing constraints for type variables alongside the types.
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A/ /0
(SHAREEMPTY)

X /{X , . . . ,X}
(SHAREVAR)

Bi = µX .
{

c1 : (qi1, Bi1)| · · ·|cm : (qim, Bim)
}

A j /{B1 j, . . . , Bn j} p j ≥ ∑
n
i=1 qi j (1≤ i≤ n, 1≤ j ≤ m)

µX .
{

c1 : (p1, A1)| · · ·|cm : (pm, Am)
}

/{B1, . . . , Bn}
(SHAREDAT)

Ai /{A} B/{Bi} qi ≥ p (1≤ i≤ n)
(A−→p B)/{A1−→q1 B1, . . . , An−→qn Bn}

(SHAREFUN)

A/{A1, . . . ,An} qi ≥ p (1≤ i≤ n)
Tp(A)/{Tq1 (A1), . . . ,T

qn (An)}
(SHARETHUNK)

A j /{B1 j, . . . , Bn j} m = |A|= |Bi| (1≤ i≤ n, 1≤ j ≤ m)

A/{B1, . . . , Bn}
(SHAREVEC)

Γ / /0
(SHAREEMPTYCTX)

A/{B1, . . . ,Bn} Γ /∆

(x : A, Γ )/ (x : B1, . . . ,x : Bn, ∆)
(SHARECTX)

Fig. 2 Sharing relation

(respectively, for values of types in Γ ). The variant A /{A,A′} requires that A′ is a subtype
of A with no potential. We conclude this subsection by a simple observation on sharing:

Lemma 1 Given a type A, we can always find A′ such that A/{A,A′}.

Proof By induction on the structure of the type A and the rules of Figure 2: if A is a function
type then we can choose A′=A; if A is a thunk type Tq(B) then choose A′=Tq(B′) such that
B / {B,B′}; finally, if A is a recursive data types we can choose A′ with identical structure
and zero potential annotations and with sharing arguments.

4.3 Typing rules

Our analysis is presented in Figures 3 and 4 as a proof system that derives judgements of the
form Γ

p
p′ ê : A, where Γ is a typing context, which is a multimap from variables to types6,

ê is a full expression, A is an annotated type and p, p′ are non-negative rational numbers
approximating the resources available before and after the evaluation of ê, respectively. For
simplicity, we will omit these annotations whenever they are not explicitly mentioned. The
type rules use the lower annotations in the turnstile for threading the amount of available
resources through sub-evaluations in rules APP and MATCH. Because our semantics does
not deallocate resources, we do not need lower annotations for left-over or freed resources
on function and thunk types.

6 We use the standard notation x : A to denote the singleton context mapping variable x to type A, and a
comma between two contexts denotes multiset union. Note that contexts are multimaps, as usual in an affine
type system, in order to track each use of a variable.
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x:Tq(A) q+Kvar
0 x : A

(VAR)

Γ , x:Tq(A′) q
0 e1 : A ∆ , x:Tq(A) p

p′ e2 : C x 6∈ Γ ,∆ A/{A,A′}

Γ , ∆
p+Klet

p′ let x = e1 in e2 : C
(LET)

A = µX .{· · ·|c : (q,B)| · · ·} x 6∈ Γ ,∆ A/{A,A′}
Γ , x:T0(A′) 0

0 c(y) : A ∆ , x:T0(A) p
p′ e : C

Γ , ∆
p+q+Kletcons

p′ letcons x = c(y) in e : C
(LETCONS)

Γ , x:A q
0 e : C x 6∈ Γ Γ /{Γ ,Γ }

Γ 0
0 λx.e : A−→q C

(ABS)

Γ
p
p′ e : A−→q C

Γ ,y:A p+q+Kapp
p′ ey : C

(APP)

B = µX .{· · ·|c : (q,A)| · · ·}
y:A[B/X ] 0

0 c(y) : B
(CONS)

|Ai|= |xi| B = µX .{ci : (qi,Ai)}n
i=1

Γ
p
p′ e0 : B ∆ , xi:Ai[B/X ]

p′+qi
p′′ ei : C (1≤ i≤ n)

Γ , ∆
p+Kmatch

p′′ match e0 with {ci(xi)->ei}n
i=1 : C

(MATCH)

Fig. 3 Syntax directed type rules

Γ , x:Tq0 (A) p
p′ e : C

Γ , x:Tq0+q1 (A) p+q1
p′ e : C

(PREPAY)

Γ
p
p′ e : C

Γ , x:A p
p′ e : C

(WEAK)

Γ , x:A1, x:A2
p
p′ e : C A/{A1,A2}

Γ , x:A p
p′ e : C

(SHARE)

Γ
p
p′ e : A q≥ p q− p≥ q′− p′

Γ
q
q′ e : A

(RELAX)

Γ
p
p′ e : A A <: B

Γ
p
p′ e : B

(SUBTYPE)

Γ , x:B p
p′ e : C A <: B

Γ , x:A p
p′ e : C

(SUPERTYPE)

Fig. 4 Structural type rules
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Because variables reference heap expressions, rules dealing with the introduction and
elimination of variables also deal with the introduction and elimination of thunk types: VAR

eliminates assumptions with a thunk type, i.e. of the form x :Tq(A) while LET and LETCONS

introduce assumptions of a thunk type.
Rules LET and LETCONS allow recursive uses of the bound variable x; the side condition

A / {A,A′} ensures that the type A′ assigned to recursive references is a subtype of the
result A with zero potential, since re-using potential through the self-reference would be
unsound. Note also that rule LET requires that the full thunk cost q of e1 to be paid by
recursive references; this is a sound approximation, but can prevent typing many productive
co-recursive definitions. Fortunately, an improved rule has been presented in an earlier work
dealing with co-recursion alone [29]. However, for clarity of presentation, we present the
simpler rule and soundness proof first, and defer the refinement to Section 6.

Rule LETCONS deals with the allocation of a new constructor; this requires paying its
associated potential q. However, merely referencing a constructor incurs no cost (because
constructors are whnfs); hence, rule CONS does not consume resources.

Rule ABS ensures that the cost q of the abstracted expression is captured in the type
annotation for the function. Rule APP requires that this cost is paid for each application.
The side condition Γ /{Γ ,Γ } to ABS requires that the context shares to itself; this is to en-
sure that Γ cannot be assigned potential that could be used multiple times through repeated
applications, since we chose to allow function types to be shared freely (cf. Lemma 5). A
consequence of this side-condition is that only the last argument of a curried function is
allowed non-zero potential.

The MATCH rule deals with pattern-matching over an expression of an algebraic data
type. The rule requires that all branches admit an identical result type C and that resources
p′′ available after execution of any of the branches are equal; fulfilling such conditions may
require relaxing potential and/or cost annotations using the structural rules described below.
Note also that the typing judgement for each branch ei of the match gains the excess potential
qi associated with constructor ci in the type B.

The structural rules of Figure 4 allow the analysis to be relaxed in various ways: RELAX

allows the relaxing of cost bounds; SUBTYPE and SUPERTYPE allow subtyping in the con-
clusion and supertyping in a hypothesis; and finally, the crucial rule PREPAY allows (whole
or part of) the cost of a thunk to be paid in advance, so reducing the cost of further uses of
the same thunk. Note the rule VAR requires the cost of the thunk to be paid for every use,
as in call-by-name evaluation; it is rule PREPAY that allows the cost of a thunk to be shared,
capturing the memoization in call-by-need evaluation.

Finally, we remark that our type system is not polymorphic; in particular, there is no no-
tion of type quantification, hence free type variables in a judgment cannot be freely instan-
tiated. However, we would surmise that, because of the SHAREVAR rule explained earlier,
replacing free type variables with types A that freely share to themselves A / {A,A} (such
as atomic types, function types or data types with zero potential) would lead to another
provable type judgement.

4.4 Worked example

We now present a worked example of a type derivation illustrating how the analysis deals
with lazy evaluation; in particular, we show how the rule PREPAY allows sharing thunk costs.
Consider the following expression (of the λ -calculus enriched with let expressions):

let f = ((λx.x)(λx.x)) in λx. f ( f x) (EX1)
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The application of (EX1) to some argument forces evaluation of the sub-expression bound to
f once even though it is used twice: first, the outer-most application reduces ((λx.x)(λx.x))
to λx.x and updates the result for f ; then the inner-most application re-use the memoized
result. We start by re-writing (EX1) translating nested sub-terms in applications using let-
expressions as required for our language (cf. Section 3):

let f = (let i = λx.x in (λx.x) i) in λx.(let y = f x in f y) (EX1′)

Considering the metric for counting allocations (i.e. uses of rules LET⇓ and LETCONS⇓),
we argue that (EX1′) costs 2 plus the cost of its argument: one use of LET⇓ for the binding
of y and one for the binding of i; because of lazy evaluation, the latter is accounted only
once. Using the type rules of Fig. 3 and 4, we can derive an annotated typing that justifies
our reasoning. We first derive a type just for the sub-term of (EX1′) named f . Since f eval-
uates to the identity function, we expect it to admit a type Tq(A)−→p A for some annotations
p,q≥ 0 and type A; the derivation is as follows:

x:T0(Tq(A)−→q A) 0
0 x : Tq(A)−→q A VAR (1)

0
0 λx.x : T0(Tq(A)−→q A)−→0 Tq(A)−→q A ABS(1) (2)

i:T0(Tq(A)−→q A) 0
0 (λx.x) i : Tq(A)−→q A APP(2) (3)

x:Tq(A) q
0 x : A VAR (4)

i:T0(Tq(A)−→q A) 0
0 λx.x : Tq(A)−→q A ABS(4),WEAK (5)

1
0 let i = λx.x in (λx.x) i : Tq(A)−→q A LET(5,3) (6)

In the derived type Tq(A)−→q A the costs of argument thunk and application are both q;
this is because the function needs the argument.7 The annotation on the turnstile accounts
the cost of evaluating the let binding i (one use of LET⇓). Note that is accounted in the
judgement rather than in the function type; this is crucial to allow sharing this cost.

We now continue deriving a type for the complete expression (EX1′);

f :T0(Tq(A)−→q A) 0
0 f : Tq(A)−→q A VAR (7)

f :T0(Tq(A)−→q A), x:Tq(A) q
0 f x : A APP(7) (8)

f :T0(Tq(A)−→q A), x:Tq(A), y:Tq(A′) q
0 f x : A WEAK(8) (9)

f :T0(Tq(A)−→q A), y:Tq(A) q
0 f y : A VAR,APP (10)

f :T0(Tq(A)−→q A),

f :T0(Tq(A)−→q A), x:Tq(A)
1+q

0 let y = f x in f y : A LET(9,10) (11)

f :T0(Tq(A)−→q A), x:Tq(A) 1+q
0 let y = f x in f y : A SHARE(11) (12)

f :T1(Tq(A)−→q A), x:Tq(A) 2+q
0 let y = f x in f y : A PREPAY(12) (13)

f :T1(Tq(A)−→q A) 0
0 λx. let y = f x in f y : Tq(A)−−→2+q A ABS(13) (14)

1
0 (EX1′) : Tq(A)−−→2+q A LET(WEAK(6),14) (15)

For brevity, we omitted the side condition for the use of structural rule SHARE in line (12):

T0(Tq(A)−→q A)/{T0(Tq(A)−→q A), T0(Tq(A)−→q A)}

7 Note that, because of lazy evaluation, the function could discard the argument and thus the thunk cost
need not always be accounted in the application cost. However, the function in this example is strict.
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This is trivially satisfied because thunk type and functional type always shares to themselves
(cf. rules SHARETHUNK and SHAREFUN in Fig. 2). Also, because the type rule LET always
allows recursive uses, we must employ weakening to introduce a type for y in (9). By Lem. 1
we can choose a subtype A′ of A such that A/{A,A′}.

Proceeding backwards from the conclusion (15), rule LET introduces the assumption for
f using the result of the previous judgment (6). Note that assumption f :T1(Tq(A)−→q A)
captures the delayed cost of evaluation: first f requires one unit to evaluate and then yields a
function costing q units; thus, this could not be expressed as f :T0(Tq(A)−−→1+q A) or simply
f :Tq(A)−−→1+q A.

In line (13) we use the structural rule PREPAY to pay ahead the cost of f before sharing;
the two uses of VAR to reference f in lines (7), (10) become free. Thus the cost of evaluating
f is counted only once and we get a type Tq(A)−−→2+q A expressing the accurate cost of
lazy evaluation: two allocations plus the cost of argument. We could have omitted the use
of PREPAY and still derive an admissible, albeit less precise cost estimate: each use of f
would cost 1 extra unit and the final judgment would be 0

0 (EX1′) : Tq(A)−−→4+q A. This
corresponds to the cost of call-by-name evaluation and thus a sound overestimation of lazy
evaluation.

Because PREPAY is a structural rule, we could instead have employed it after ABS and
before LET, i.e. after line (14); this would lead to the conclusion 2

0 (EX1′) :Tq(A)−−→1+q A.
The overall cost 2+ 1+ q is the same as before, but is accounted differently: the cost of f
is assigned to the judgment rather than the function type; thus, if this judgment was part of
some larger derivation, the cost of f would be payed once instead of for each application.

4.5 Experimental results

We have constructed a prototype implementation of as a type reconstruction algorithm that
takes a (closed) expression and either produces an annotated typing or fails (e.g. when
the cost bounds are not linear). The implementation is fully automatic, i.e. it does not re-
quire any type annotations from the programmer. For convenience, constructors for stan-
dard algebraic data types such as booleans and lists, as well as primitive arithmetic op-
erations on integers were also added to the implementation. A publicly accessible web
version with several editable examples (including the ones presented here) is available at
http://kashmir.dcc.fc.up.pt/cgi/lazy.cgi.

Type reconstruction is performed in three phases:

1. Damas-Milner type inference to obtain an unannotated version of the type derivation;
2. annotate types with fresh variables and traverse the type derivation gathering linear con-

straints according to the type rules of Sect. 4.3;
3. solve the collected constraints using a standard linear programming tool.8

Structural rules are used in the second phase only at specific points: PREPAY is applied
immediately after bound variables are introduced, namely, in the body of a lambda, let-
expression or match alternative;9 this can be done uniformly because the rule allows any
part of the cost to be paid (including zero). Hence, we defer to the constraint solver the
choice of how much individual thunks should be prepaid in order to achieve an overall
optimal solution. SUBTYPE is applied for the argument type of applications and for the

8 We use the GLPK library: http://www.gnu.org/software/glpk.
9 This heuristic choice typically lowers cost overestimation by allowing paying ahead as early as possible;

cf. last paragraph of Sect. 4.4.

http://kashmir.dcc.fc.up.pt/cgi/lazy.cgi
http://www.gnu.org/software/glpk
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result type of matches (losing precision if necessary to obtain compatible types). RELAX

is also always applied after a match to join branches with possibly distinct costs. SHARE

is used for variables that occur in two hypothesis before LET, LETCONS, APP, MATCH;
as in for prepay, this is done uniformly and the choice of how to split potential between
uses is delegated to the constraint solver. This allows applying the type rules of Sect. 4
syntax-directed way. The soundness of the resulting inference algorithm is straightforward;
we conjecture that completeness should also hold. However, we have not formally stated
and proved this.

Lastly, constraint solving using a linear programming tool requires an objective func-
tion; here we employ a simple heuristic: minimize the sum of cost annotations in the result
type and the judgement. This means we do not report all solutions (i.e. an annotated typing
plus the set of collected constraints) but only an admissible one, hence the implementation
is a whole-program analysis. In practice, we found this heuristic gives good cost bounds for
a number of small by representative examples.

The following presents some cost bounds inferred for recursive and co-recursive defini-
tions. Instead of Haskell, we now use the concrete syntax of the term language of Sect. 3
(which is the actual input to our implementation). The final example of Fibonacci numbers
serves as motivation for a refinement that will be presented in Sect. 6.

Example 1 (Zipping finite and infinite lists) Consider the standard zipWith function that
combines two lists using an argument function:

zipWith = \f xs ys ->

match xs with

Nil () -> letcons r = Nil() in r

| Cons (x,xs’) -> match ys with

Nil() -> letcons r = Nil() in r

| Cons(y,ys’) -> let t = f x y

in let r = zipWith f xs’ ys’

in letcons s = Cons(t,r) in s

Analysing zipWith for counting applications we obtain the following annotated type:

zipWith : T(T(a) -> T(b) -> c) ->

T(Rec{Cons:(T(a),T(#)) | Nil:()}) ->

T(Rec{Cons@5:(T(b),T(#)) | Nil:()}) ->

Rec{Cons:(T(c),T(#)) | Nil:()}

This type expresses costs in terms of the length n of the second argument to zipWith: for
a list of n Cons the cost is bounded by 5 · n. This corresponds to 2 applications for f and
3 applications for the recursive call to zipWith. This bound is tight if the second list is
shorter than the first one, but in either case it is a sound upper bound.10

The type rules LET/LETCONS constrain the potential of self-referencing values to be
zero (it would be unsound to allow otherwise). Thus, if the second argument of zipWith is
an infinite list the above type would not be admissible and the linear solver would choose an
alternative type, where costs are expressed in terms of the output type:

zipWith : T(T(a) -> T(b) -> c) ->

T(Rec{Cons:(T(a),T(#)) | Nil:()}) ->

10 Note that expressing the bound using the length of the first argument of a curried function is not allowed
because of the ABS rule (cf. Sect. 4.3). This could be overcome simply by un-curring the definition [11].
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T(Rec{Cons:(T(b),T(#)) | Nil:()}) ->

Rec{Cons:(T@2(c),T@3(#)) | Nil:()}

The bound for fully evaluating n elements of the result is 2 · n + 3 · n: evaluating each
head cost 2 (for the curried applications to f) and each tail costs 3 (for the applications
to zipWith). We also obtain bounds for partial evaluations; for example, evaluating just the
n-th element requires traversing n tail thunks plus a single head, and hence costs 2+3 ·n.

Example 2 (Fibonacci numbers) One well-known example of lazy evaluation in Haskell is
the definition of the infinite sequence of Fibonacci numbers as a co-recursive definition.

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

By inlining the definition of tail and using zipWith as before, this translates as:

fibs = (let xs = match fibs with

Cons(x,fibs’) -> zipWith plus fibs fibs’

in letcons xs1 = Cons(1, xs)

in letcons xs0 = Cons(0, xs1)

in xs0)

For simplicity, consider again the metric counting applications (arithmetic operations are
cost-free). Because of lazy evaluation, each successive Fibonacci number can then be ob-
tained in bounded cost. However, a proof of this cannot be derived using the rules of Sect. 4
alone because this co-recursive use of zipWith does not admit a type. To understand why,
let us reason about how the type rules constrain the thunks costs for fibs.

Assume the inputs of zipWith are lists with costs p, q for the tail thunks. Examining
the definition of fibs, we see using rule APP for zipWith plus fibs fibs’ requires the
result tail to cost at least p+q+3: p for evaluating fibs, q for evaluating fibs’ plus 3 for
the curried applications. Combining these requirements generates unsatisfiable constraints
(p = q and p = 3+ p+q) and hence there is no admissible type. Note that this limitation is
inherent in the type system rather than in the implementation.

In Section 6 we will see how to improve the analysis for such co-recursive definitions by
allowing recursive accesses to thunks to pay zero cost. Informally, this is sound because such
accesses must already be in normal form (or else they correspond to unproductive programs,
e.g. let x = x in . . .). This improvement requires only a revision of the type rules LET and
LETCONS. However, the formulation and proof of soundness becomes more complex, and
so we chose to present the simpler system first.

Using the revised type rules, the implementation infers types11 for zipWith and fibs,
proving a cost bound for successive Fibonacci numbers:

fibs : Rec{Cons:(T(Int),T@5(#)) | Nil:()}

In our previous work [29] we show that this technique infers accurate bounds for other
non-trivial co-recursive definitions e.g. the textbook solution to the Hamming problem [2].

Example 3 (Combining recursion and co-recursion) A common pattern in lazy functional
programming is to express computations as composition of higher-order functions com-
bining finite and infinite structures [9]. The next example shows the use zipWith to sum
Fibonacci numbers with values from some other list:

11 The reconstruction algorithm may always use the revised rules, since they subsume the previous ones.
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zipWith’ = ...

sumWithFibs xs = let f = \x y -> x+y in zipWith’ f fibs xs

Here zipWith’ is an identical definition to zipWith that we duplicate simply to allow it to
be assigned a distinct annotated type. In particular, it can be assigned a type with potential
in the second argument:

zipWith’ : T(T(Int) -> T(a) -> Int) ->

T(Rec{Cons:(T(Int),T@5(#)) | Nil:()}) ->

T(Rec{Cons@10:(T(a),T(#)) | Nil:()}) ->@5

Rec{Cons:(T(Int),T(#)) | Nil:()}

sumWithFibs : T(Rec{Cons@10:(T(a),T(#)) | Nil:()}) ->@5

Rec{Cons:(T(Int),T(#)) | Nil:()}

The cost bound for sumWithFibs is given in terms of potential assigned to the input list xs.
Hence, if the input list has length k, the cost is 5+ 10 · k applications. Note that the choice
of transferring potential of the recursive input data to pay the thunk costs of co-recursive
results is performed automatically by the linear solver.

Finally, we remark that such an example could not be analysed by either systems pre-
sented in [24] and [29] alone: it requires the combination of potential and the improved rule
for co-recursion.

5 Soundness

This section establishes the soundness of our analysis with respect to the operational seman-
tics of Section 3. We begin by stating some auxiliary lemmas and preliminary definitions,
notably formalizing the notion of potential from Section 4. We conclude with the soundness
result proper (Theorem 1) and its much simpler conclusion (Corollary 2).

5.1 Auxiliary lemmas

The first lemma allows us to replace variables in type derivations. Note that because of the
lazy evaluation semantics (and unlike the usual substitution lemma for the λ -calculus), we
substitute only variables but not arbitrary expressions.

Lemma 2 (Substitution) If Γ, x:A p
p′ ê : C and y /∈ Γ ∪FV(ê) then Γ ,y:A p

p′ ê[y/x] : C.

Proof By induction on the height of derivation of Γ ,x:A p
p′ ê : C, simply replacing any

occurrences of x for y.

The following two lemmas establish inversion properties for type derivation of constructors
and λ -abstractions.

Lemma 3 (CONS inversion) If Γ ` c(y) : B then also B = µX .{. . .|c : (q,A)| . . .} and
Γ /{y:A[B/X ]}.

Lemma 4 (ABS inversion) If Γ ` λx.e : A−→q C then there exists Γ ′ such that Γ / Γ ′,
Γ ′/{Γ ′,Γ ′}, x /∈ dom(Γ ′) and Γ ′,x:A q

0 e : C.
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Proof (Sketch for both lemmas) A typing with conclusion Γ ` c(y) : B must result from ax-
iom CONS followed by (possibly zero) uses of structural rules. Similarly, a typing Γ ` λx.e :
A−→q C must result from an application of the rule ABS followed by uses of structural rules.
The proof follows by induction on the structural rules, considering each rule separately.

The next auxiliary lemma allows splitting contexts used for typing expressions in whnf
according to a split of the result type.

Lemma 5 (Context Splitting) If A/{A1,A2} and Γ 0
0 w : A, where w is an expression in

whnf; then there exists Γ1,Γ2 such that Γ /{Γ1,Γ2}, Γ1
0
0 w : A1 and Γ2

0
0 w : A2.

Proof (Sketch) The proof follows from an application of Lemma 3 (if w is a constructor)
or Lemma 4 (if w is an abstraction) together with the definition of sharing. Note that in
the latter case, the side condition Γ /{Γ ,Γ } to the ABS type rule ensures that Γ is has no
potential (for otherwise it would be unsound to duplicate it).

Lemma 6 (Transitivity of sharing) If A/ (B∪S) and B/R holds for types A, B and mul-
tisets of types S, R, then A/ (R∪S) holds as well.

Proof (Sketch) The proof is by induction on the derivations of the two sharing relations; in
the non-trivial cases SHAREDAT, SHAREFUN and SHARETHUNK the conclusion follows
directly from the transitivity of ≥.

5.2 Potential

Definition 2 (Potential) The (shallow) potential of an expression ê of type A, written φ(ê : A),
is defined as follows:

φ(ê : A) def
=

{
p , if A = µX .{· · ·|c:(p,B)| · · ·} and ê = c(`̀̀)
0 , otherwise.

For data constructors potential is given by the corresponding annotation in the type. For
unevaluated expressions (i.e. thunks) and λ -abstractions, the potential is always zero.

Note that φ accounts only for the contribution of a single constructor rather than the ac-
cumulated potential that is accessible through the data structure. This is a notable difference
compared to our earlier work on amortised analysis [24,12,13,8], where (accumulated) po-
tential was defined recursively. We recover the accumulated potential for a complete data
structure by collecting all contributions (through all references to its locations) using the
notion of global types (cf. Sect. 5.3). This change allows a significant simplification of the
soundness proof in the lazy setting compared to our earlier work [24].

The next lemma formalizes the intuition that sharing distributes the potential associated
with a type.

Lemma 7 (Potential splitting) If A/{A1, . . . ,An} then φ(ê : A)≥ ∑i φ(ê : Ai).

Proof The result follows immediately from the definitions of sharing (Fig. 2) and potential
(Def. 2).

This lemma has two important special cases that justify the previously-stated intuition that
a type that shares with itself has no potential.
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Corollary 1 For types A,A′ and all ê, we have:

1. If A/{A,A} then φ(ê : A) = 0;
2. If A/{A,A′} then φ(ê : A′) = 0.

Proof Both equalities follow immediately from Lem. 7.

5.3 Global types, contexts and balance

In order to formulate the soundness invariants of our type system, we introduce three aux-
iliary mappings. Let Type and Ctx be the set of annotated types and contexts, respectively,
and Loc be the set of locations. We consider the partial functions

M : Loc−→ Type

C : Loc−→ Ctx

B : Loc−→Q+

which associate locations ` with:

1. the global type M(`) that accounts for the thunk cost and all potential associated with
that location; note that M(`) is always of the form Tq(A) for some cost q and type A;

2. the global context C(`) that is used for typing the expression H(`) with the global type;
3. a non-negative rational number balance B(`) that keeps track of the thunk cost of ` that

has been paid in advance by applications of the PREPAY rule.

These auxiliary mappings are needed only in the soundness proof of the analysis for book-
keeping purposes, but are not part of either the type system nor the operational semantics —
in particular, they are not used for performing the analysis nor do they incur runtime costs.

The projection operation �x for a context Γ is the multiset of types associated with x in
Γ , i.e. Γ�x= {A | x:A ∈ Γ }. Projections extend to global contexts C in the natural way:

C�x= {`1 7→ Γ1, . . . , `n 7→ Γn}�x
def
= Γ1�x , . . . ,Γn�x

Definition 3 (Global subtyping) We extend subtyping to global types and write M <: M′

if and only if dom(M)⊆ dom(M′) and for all `∈ dom(M) we have M(`) =Tq(A), M′(`) =
Tq′(A′) and A <: A′.

This relation will be used to assert a soundness invariant, namely that potential assigned
to global types is preserved by evaluation. However, because of the PREPAY rule, thunk
costs may decrease; thus the definition above ignores such thunk annotations q,q′. Global
subtyping inherits transitivity from Lem. 6 and our definition of subtyping on types.

We can now formulate the principal soundness invariants of our analysis, namely, con-
sistency and compatibility relations between a heap configuration and the global types, con-
texts, and balance.

Definition 4 (Type consistency) A heap state (H,L) is said to be consistent with global
contexts C, global types M and balance B, written C,B ` (H,L) : M, if and only if for all
` ∈ dom(H)\L we have M(`) = Tq(A) and C(`)

q+B(`)
0 H(`) : A. Furthermore if H(`)

is in whnf, then q = 0 and B(`) = 0.
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Informally, the above definition requires that, for every location ` that is not under evalua-
tion, the global type M(`) is justified by a typing of the expression H(`) using the global
context C(`) and the prepaid balance B(`). Note that locations under evaluation are trivially
considered consistent.

Definition 5 (Compatibility) A global type M is compatible with context Γ and global
contexts C, written M/ (Γ ;C), if and only if M(`)/ (Γ�` , C�` ) for all ` ∈ dom(M).

Informally, this definition ensures that the global type M(`) of each location ` accounts for
the joint potential of all references to it in either the local or global contexts.

Note that, although rules LET and LETCONS require assigning types with zero potential
to recursive references, the type consistency and compatibility invariants0 do not prevent
initial configurations containing cyclic heap structures with non-zero potential. However,
the invariants do prevent any external references to such cyclic data from accessing this
potential, as the following example illustrates.12

Example 4 Consider a heap H
def
= {`1 7→ succ(`1)} with a single location `1 inicialized with

a self-referencing constructor. Let N(q) def
= µX .{zero : (0,()) | succ : (q,T0(X)} be the type

of Peano naturals where the parameter q is the potential assigned to the successor.
We show that type consistency and compatibility hold for the following configuration

which assigns arbitrary potential q1 ≥ 0 to the cyclic reference:

M(`1)
def
= T0(N(q1))

C(`1)
def
= {`1:T0(N(q1))}

B(`1)
def
= 0

For type consistency, it is enough to show that

C(`1)
0
0 succ(`1) : N(q1)

which follows directly by rule CONS.
Let Γ be a typing context for some expression that references location `1, i.e. Γ =

{`1:T0(N(q2))} where the potential q2 is to be determined. For compatibility to hold, we
require that

M(`1)/{Γ�`1
, C�`1

}

Substituting the types defined above gives

T0(N(q1))/{T0(N(q2)), T
0(N(q1))}

By rule SHARETHUNK followed by SHAREDAT (Fig. 2), we get

q1 ≥ q2 +q1

which together with non-negativity of annotations implies q2 = 0. Thus, the potential q1
inside the cycle is unconstrained, but any external reference that can be used by the program
must have zero potential.

12 Unlike our earlier work [24], we no longer require a technical lemma for replacing such pathological
configurations. This is because the revised definition of potential is no longer recursive.
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Finally, we define two shorthand aggregation notations; first, for summing the total po-
tential of a heap with respect to the global types and second, for summing the balance of all
locations:

ΦHM
def
= ∑

{
φ(H(`) : A) | ` ∈ dom(H) and M(`) = Tq(A)

}
∑B

def
= ∑{B(`) | ` ∈ dom(B)}

5.4 Soundness of the proof system

We can now state the soundness of our analysis as an augmented type preservation result.

Theorem 1 (Soundness) Let t ∈Q with t ≥ 0 be fixed, but arbitrary; similarly, let ∆ be an
arbitrary context. If the following statements hold

Γ
p
p′ e : A (H1)

C,B ` (H,L) : M (H2)

M/ (Γ ,∆ ;C) (H3)

H,S,L ` e ⇓ w,H′ (H4)

then for all m ∈ N such that

m≥ t + p+ΦHM+∑B (H5)

there exist m′, Γ ′, C′, B′ and M′ such that

M<: M′ (C1)

Γ
′ 0

0 w : A (C2)

C′,B′ ` (H′,L) : M′ (C3)

M′/ (Γ ′,∆ ;C′) (C4)

H,S,L m
m′ e ⇓ w,H′ (C5)

m′ ≥ t + p′+φ(w : A)+ΦH′M
′+∑B′ (C6)

Starting from an empty configuration, the theorem simplifies as follows.

Corollary 2 If p
p′ e : A and /0, /0, /0 ` e ⇓ w,H′ hold, then for all m ∈ N with m ≥ p there

exists m′ ∈N with m−m′≤ p− p′ and the resource-bounded evaluation /0, /0, /0 m
m′ e⇓w,H′

succeeds as well.

Proof (Corollary 2) We invoke Theorem 1 with t = m− p and receive m′ such that the
resource-bounded evaluation succeeds (C5) and by (C6) also m′ ≥ t + p′ = (m− p)+ p′;
rearranging the terms gives m−m′ ≤ p′− p as required.

Informally, the soundness theorem reads as follows: if an expression e admits a type
A (H1), the heap can be typed (H2) (H3) and the evaluation is successful (H4), then the result
whnf also admits type A (C2). Furthermore, potential in global types is preserved (C1), the
final heap can also be typed (C3) (C4) and the static bounds that are obtained from the typing
of e give safe resource estimates for evaluation (H5) (C5) (C6). The arbitrary value t is used
in the APP and RELAX cases to carry over excess potential which is not used immediately
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but will be needed for subsequent evaluations. Similarly, the context ∆ is used in the LET,
LETCONS, APP and MATCH cases to preserve types for variables that are not in the current
scope but are necessary for subsequent evaluations. Conclusion (C1) is crucial for the VAR

case; while the contribution of φ(w : A) within (C6) is used in the MATCH case.
Note that our analysis infers a safety guarantee rather than a liveness one: as in the

underlying type system for the λ -calculus with general recursion, a type derivation in our
system is a proof of partial correctness and does not imply termination/productivity. Hence,
the premise (H4) requires a terminating evaluation (but ignores the resource bounds).

Proof (Theorem 1) The proof is by induction on the lengths of the derivations of (H4) and
(H1) ordered lexicographically, with the derivation of the evaluation taking priority over the
typing derivation. This is required since an induction on the length of the typing derivation
alone would fail for the case of unevaluated thunks, which prolongs the length of the typing
derivation by a typing judgment for the thunk, granted through the type consistency hypoth-
esis. On the other hand, the length of the derivation for the term evaluation never increases,
but may remain unchanged where the last step of the typing derivation was obtained by a
structural rule. In these cases, the length of the typing derivation does decrease, allowing an
induction over lexicographically ordered lengths of both derivations. We proceed by case
analysis of the typing rule used in premise (H1).

Case VAR: We have `:Tq(A) q+Kvar
0 ` : A from the typing hypothesis (H1). From the com-

patibility hypothesis (H3) we get M(`)/ (Tq(A),∆�` ,C�` ) which implies M(`) = Tr(A0)
and A0 /{A,A′} for some types A0,A′ and annotation r with q≥ r.

The evaluation premise (H4) reads as H,S,L ` ` ⇓ w,H′[` 7→ w] for some intermediate
heap H′; by inversion of the only applicable evaluation rule VAR⇓, we obtain ` 6∈ L and

H,S,L∪{`} `H(`) ⇓ w,H′ (16)

From ` /∈ L together with type consistency for ` (H2) we get C(`) r+B(`)
0 H(`) : A0.

We proceed by case analysis on whether H(`) is in whnf or not.

If H(`) is in whnf: The evaluation (16) reduces immediately by WHNF⇓ and we have
w = H(`) and H = H′ =H′[` 7→ w], i.e. the update is without effect. By the type consis-
tency hypothesis for ` we get r = 0, B(`) = 0 and C(`) 0

0 w : A0. Let M′ =M[` 7→T0(A′)];
conclusion (C1) follows directly from M(`) = Tr(A0) and A0 / {A,A′} established earlier.
Again by A0 /{A,A′} and Lem. 5 we get C(`)/{Γ ′1 ,Γ ′2 } and Γ ′1

0
0 w:A as required for (C2),

as well as Γ ′2
0
0 w : A′. By the premise (H2) together with C(`)/{Γ ′1 ,Γ ′2 } and Lem. 6 we get

C′,B ` (H,L) : M′ as required for conclusion (C3). From the compatibility premise (H3)
together with C(`)/ {Γ ′1 ,Γ ′2 } established earlier we can conclude M′ / (Γ ′1 ,∆ ;C′) as re-
quired for (C4). Conclusion (C5) with m′ = m−Kvar follows directly from an application
of rule WHNF⇓ and VAR⇓. It remains to show that (C6) is satisfied for m′ as mandated by
the operational semantics here.

m−Kvar≥ (t +(q+Kvar)+ΦHM+∑B)−Kvar

= t +q+
(
ΦH\`M+φ(w : A0)

)
+∑B

≥ t +q+ΦH\`M+
(
φ(w : A)+φ

(
w : A′

))
+∑B

≥ t +φ(w : A)+ΦHM′+∑B

The first inequality holds by Lem. 7; while the second inequality holds by dropping q, as the
evaluation of w has already been paid for.
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If H(`) is not in whnf: By type consistency for ` we get C(`)
r+B(`)

0 H(`) : A0. Let
M0 =M[` 7→ Tr(A′)], B0 =B[` 7→ 0] and C0 = C[` 7→ /0]. By definition of M0 and subtyp-
ing, it is immediate that M<: M0. We observe also that C0,B0 ` (H,L∪{`}) : M0 follows
from the premise (H2) and because type consistency holds trivially for locations under eval-
uation. Furthermore M0 / (C(`);∆ ,C0) holds, since for all x we have C�x= C(`)�x∪C0�x by
definition.

Hypothesis (H5) instantiates as follows:

m−Kvar≥
(

t +(q+Kvar)+ΦHM+∑B
)
−Kvar

= t +q+ΦHM+∑B

≥ t +
(
r+B(`)

)
+ΦHM0 +∑B0

which follows by q≥ r and re-arranging the parcels.
We can now apply the induction to the evaluation of H(`) with type A0 and obtain:

M0 <: M′ (17)

Γ
′ 0

0 w : A0 (18)

C′,B′ ` (H′,L∪{`}) : M′ (19)

M′/ (Γ ′,∆ ;C′) (20)

H,S,L∪{`} m−Kvar
m′ H(`) ⇓ w,H′ (21)

m′ ≥ t +0+φ(w : A0)+ΦH′M
′+∑B′ (22)

Note that applying induction to the global type gave a stronger typing than required for the
result (18). We will now recover the required typing using Lem. 7 for splitting contexts; the
remaining potential associated through A′ allows us to establish memory consistency for the
remaining aliases. So by A0 /{A,A′} from above, (18) and Lem. 5 we get Γ ′/{Γ ′1 ,Γ ′2 } and
Γ ′1

0
0 w:A as required for (C2), as well as Γ ′2

0
0 w:A′. From the later together with (19) we

get the required for (C3):

C′[` 7→ Γ
′

2 ],B
′[` 7→ 0] ` (H′[` 7→ w],L) : M′

Conclusion (C1) follows by transitivity of subtyping from M<: M0 established earlier
and M0 <: M′ given by (17). From (20) we have M′/ (Γ ′1 ,Γ

′
2 ,∆ ;C′) which by definition is

equivalent to M′/(Γ ′1 ,∆ ;C′[` 7→Γ ′2 ]), as required for (C4). Conclusion (C5) follows directly
from (21) by application of VAR⇓.

It remains to show that the bound for m′ obtained from (22) satisfies the requirements of
conclusion (C6); our proof obligation is:

t +0+φ(w : A0)+ΦH′M
′+∑B′ ≥ t +0+φ(w : A)+ΦH′[ 7̀→w]M

′+∑B′[` 7→ 0]

which follows in two parts: First, we have ∑B′ = ∑B′[` 7→ 0] +B′(`) ≥ ∑B′[` 7→ 0] be-
cause the balance is non-negative. Second, let M′(`) = T(A′′) for some type A′′ and some
unimportant thunk cost annotation, then we observe

φ(w : A0)+ΦH′M
′ ≥ φ(w : A)+φ

(
w : A′

)
+ΦH′M

′

≥ φ(w : A)+φ
(
w : A′′

)
+ΦH′M

′ = φ(w : A)+ΦH′[ 7̀→w]M
′

where the first inequality follows from A0 /{A,A′} and Lem. 7. The second inequality fol-
lows, since by (17) we have A′ <: A′′; thus using the definition of subtying and Lem. 7 we
therefore gain φ(w : A′)≥ φ(w : A′′). The final equality then follows because H′(`) is not a
whnf, hence does not contribute to the sum of potential.



Type-Based Cost Analysis for Lazy Functional Languages 23

Case LET: The typing and evaluation premises (H1) and (H4) instantiate as

Γ ,∆ ′ p+Klet

p′ let x = e1 in e2 : C (23)

H,S,L m+Klet
m′ let x = e1 in e2 ⇓ w,H′ (24)

From (23) and Substitution we get ∆ ′, `:Tq(A) p
p′ e2[`/x] : C. By (24) and inversion of

rule LET⇓ we get H0,S,L
m
m′ e2[`/x] ⇓ w,H′ where ` is a fresh location and for H0 =

H
[
` 7→ e1[`/x]

]
. We intend to apply the induction hypothesis for the evaluation of e2[`/x],

so we must establish the required premises first. Note that we do not invoke the induction
hypothesis for the subterm e1, since it is not evaluated at this point, but just stored within
the heap.

Let B0 =B[` 7→ 0], M0 =M[` 7→ Tq(A)] and C0 = C[` 7→ (Γ , `:Tq(A′))] for some type
A′ such that provided by the premises of (H1), effectively having all potential removed. In
order to establish type consistency C0,B0 ` (H0,L) : M0 for the extended heap, note that
existing locations are unaffected, since ` is fresh. For the new location `, it is enough to show
that Γ , `:Tq(A′) q+B0(`)

0 e1[`/x] : A. This follows directly from (H1) by the Substitution
Lemma 2, replacing x with the fresh name ` throughout.

The required compatibility M0 / (∆ ′, `:Tq(A),∆ ;C0) follows from premise (H3) and
Tq(A)/ {Tq(A),Tq(A′)}, where the latter follows A / {A,A′} from the premises of (H1)
again. Premise (H5) reads as

m+Klet≥ t +(p+Klet)+ΦHM+∑B

whereas for applying the induction hypothesis we need

m≥ t + p+ΦH0 M0 +∑B0

This follows in three steps: First, subtract Klet from both sides. Second, we have ΦH0 M0 =
φ(e1[`/x] : A)+ΦHM, but note that φ(e1[`/x] : A) = 0, since e1 cannot be a constructor.
and the potential is zero in all other cases by Def. 2; hence ΦH0 M0 = ΦHM. Third, we
have ∑B= ∑B0 by definition.

Applying the induction hypothesis then yields all required conclusions directly without
any alterations, except for (C1); the latter follows by transitivity of subtyping from M<:M0
(by definition of M0) and M0 <: M′ (by the induction result).

Case LETCONS: This case shares many similarities with the previous case; the crucial dif-
ference lies in establishing (H5) for the application of the induction hypothesis, which re-
quires dealing with CONS directly.

Premise (H1) now instantiates as Γ ,∆ ′ p+q+Kletcons

p′ letcons x = c(y) in e : C which
implies ∆ ′, `:T0(A) p

p′ e[`/x] : C by the Substitution Lemma 2; and premise (H4) instan-
tiates as H,S,L m+Kletcons

m′ letcons x = c(y) in e ⇓ w,H′ (H4), with rule LETCONS⇓ re-
quiring H0,S,L

m
m′ e[`/x] ⇓ w,H′ to hold, where ` is a fresh location and H0 = H

[
` 7→

c(y[`/x])
]
. We intend to apply the induction hypothesis for these statements, so we must

establish the required premises first. Note that we cannot invoke the induction hypothesis
for the constructor, since the theorem only applies to initial expressions, but not augmented
expressions.

To establish type consistency for the extended heap H0, we set B0 = B[` 7→ 0], M0 =
M[` 7→ T0(A)] and C0 = C[` 7→ (Γ , `:T0(A′))] for some type A′ with A / {A,A′} provided
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by the premises of (H1). Type consistency for existing locations is unaffected by these ex-
tensions, since ` is fresh. For the new location ` we require that Γ , `:T0(A′) 0

0 c(y[`/x]) : A
holds, which we have from premise (H1) by the application of Substitution (Lem. 2), replac-
ing x with ` throughout.

The required compatibility M0 /(∆ ′, `:T0(A),∆ ;C0) follows from the premise (H3) and
T0(A)/{T0(A),T0(A′)}, where the latter follows again by A/{A,A′} from (H1).

Premise (H5) reads as

m+Kletcons≥ t +(p+q+Kletcons)+ΦHM+∑B

By definition ΦH0 M0 = φ(c(y[`/x]) : A)+ΦHM= q+ΦHM; furthermore, ∑B0 = ∑B

by definition. Combining these three with the inequality before yields as required

m≥ t + p+ΦH0 M0 +∑B0

Applying the induction hypothesis then yields all required conclusions directly without any
alterations, except for (C1); the latter follows by transitivity of subtyping from M <: M0
(by definition of M0) and M0 <: M′ (by the induction result).

Case ABS: The typing premise (H1) is Γ 0
0 λx.e : A−→q C. The evaluation premise (H4) is

H,S,L ` λx.e ⇓ λx.e,H. Assume m satisfying (H5); let Γ ′ = Γ , C′ = C,M′ =M,B′ =B

and m′ = m we trivially obtain (C1), (C2), (C3), (C4), (C5). It remains to show that the
bound (C6) is satisfied when m′ = m. From the premise (H5) we know

m ≥ t +0+ΦHM+∑B = t +0+φ(λx.e : A−→q C)+ΦHM′+∑B′

which follows by the Def. 2, which assigns zero potential for lambda expressions; and the
above noted equalities. This already concludes the proof of the ABS case.

Case APP: The typing premise (H1) instantiates as Γ , `:A p+q+Kapp

p′ e ` : C and the eval-
uation premise (H4) as H,S,L ` e ` ⇓w,H′′. By inversion of rules APP and APP⇓ we obtain

Γ
p
p′ e : A−→q C (25)

H,S,L ` e ⇓ λx.e′,H′ (26)

H′,S,L ` e′[`/x] ⇓ w,H′′ (27)

By premise (H5) we assume

m+Kapp≥ t +(p+q+Kapp)+ΦHM+∑B

which we can rearrange to m ≥ (t + q) + p+ΦHM+∑B in order to apply the induc-
tion hypothesis for expression e, also using judgments (25) and (26). We thereby obtain
Γ ′,M′,C′,B′ and m′ such that:

M<: M′ (28)

Γ
′ 0

0 λx.e′ : A−→q C (29)

C′,B′ ` (H′,L) : M′ (30)

M′/ (Γ ′, `:A, ∆ ;C′) (31)

H,S,L m
m′ e ⇓ λx.e′,H′ (32)

m′ ≥ (t +q)+ p′+ΦH′M
′+∑B′ (33)
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Applying Lem. 4 (ABS inversion) to judgement (29), we get Γ ′0 such that Γ ′0 ,x:A q
0 e′ : C

and Γ ′/Γ ′0 . By substitution (Lem. 2) we get Γ ′0 , `:A
q
0 e′[`/x] : C. Compatibility for Γ ′0 still

holds from (31) together with the side condition Γ ′/Γ ′0 and transitivity of sharing (Lem. 6).
Rearranging (33) we have m′ ≥ (t+ p′)+q+ΦH′M

′+∑B′ and therefore we can apply the
induction hypothesis to the evaluation of e′[`/x] and obtain:

M′ <: M′′ (34)

Γ
′′ 0

0 w : C (35)

C′′,B′′ ` (H′′,L) : M′′ (36)

M′′/ (Γ ′′,∆ ;C′′) (37)

H′,S,L m′
m′′ e′[`/x] ⇓ w,H′′ (38)

m′′ ≥ (t + p′)+0+φ(w : C)+ΦH′′M
′′+∑B′′ (39)

From (28) and (34) and the transitivity of subtyping we conclude M <: M′′. From (32)
and (38) and rule APP⇓ we obtain H,S,L

m+Kapp

m′′ e` ⇓ w,H′′. Statements (35), (36), (37)
and (39) establish the remaining proof obligations. This concludes the proof of the APP case.

Case CONS: This case does not apply because the theorem applies to initial expressions
only (not full expressions).

Case MATCH: The typing and evaluation premises are

Γ ,∆ ′ p+Kmatch

p′′ match e0 with {ci(xi)->ei}n
i=1 : C (40)

H,S,L `match e0 with {ci(xi)->ei}n
i=1 ⇓ w,H′′ (41)

From (40) by inversion of the rule MATCH we get:

B = µX .{ci : (qi,Ai)}n
i=1 (42)

Γ
p
p′ e0 : B (43)

∆
′, xi:Ai[B/X ] p′+qi

p′′ ei : C (44)

By inversion of rule MATCH⇓ we get 1≤ k ≤ n such that:

H,S∪
⋃

i{xi}∪BV(ei),L ` e0 ⇓ ck(`̀̀),H
′ (45)

H′,S,L ` ek[`̀̀/xk] ⇓ w,H′′ (46)

We apply induction for expression e0 using (43) and (45) for m ≥ t + p+ΦHM+∑B

as given by the premise to the MATCH case and subtracting Kmatch on both sides. Type
consistency remains unaltered and compatibility follows immediately by associativity13 of
multiset union for contexts. We obtain:

M<: M′ (47)

Γ
′ 0

0 ck(`̀̀) : B (48)

C′,B′ ` (H′,L) : M′ (49)

M′/ (Γ ′,∆ ′,∆ ;C′) (50)

H,S,L m
m′ e0 ⇓ ck(`̀̀),H

′ (51)

m′ ≥ t + p′+φ(ck(`̀̀) : B)+ΦH′M
′+∑B′ (52)

13 Treating ∆ ′ as a part of ∆ instead of Γ , in order to preserve ∆ ′ for the second induction.
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From (44) for i = k together with Lemma 2 (substitution) we obtain

∆
′, `̀̀:Ak[B/X ] p′+qk

p′′ ek[`̀̀/xk] : C (53)

In order to apply induction for expression ek[`̀̀/xk] using typing (53) and evaluation (46)
we need to show that the bound (52) satisfies the subsequent premise (H5). By (42) and
the definition of potential we get φ(ck(`̀̀) : B) = qk; substituting in (52) yields m′ ≥ (t +
p′)+qk +ΦH′M

′+∑B′ as required. Type consistency follows directly from the results of
the previous induction. From (48) and Lem. 3 (CONS inversion) we get Γ ′ / {`̀̀:Ak[B/X ]};
together with (50) establishes compatibility. The second induction step yields:

M′ <: M′′ (54)

Γ
′′ 0

0 w : C (55)

C′′,B′′ ` (H′′,L) : M′′ (56)

M′′/ (Γ ′′,∆ ′;C′′) (57)

H′,S,L m′
m′′ ek[`̀̀/x] ⇓ w,H′′ (58)

m′′ ≥ t + p′′+φ(w : C)+ΦH′′M
′′+∑B′′ (59)

The required results follow by transitivity of subtyping and application of the MATCH⇓ rule.
This concludes the subcase MATCH.

Case PREPAY: The typing premise instantiates as Γ , `:Tq0+q1(A) p+q1
p′ e : C. By inversion

of the rule PREPAY we get:
Γ , `:Tq0(A) p

p′ e : C (60)

Let Tr(A′) =M(`). By the definition of sharing and compatibility (H3) we have Tr(A′)/
{Tq0+q1(A)} and hence q0+q1 ≥ r. Define k = max(r−q1,0), and M0 =M[` 7→Tk(A′)].14

We have ΦHM = ΦHM0 because potential ignores thunk annotations. Furthermore, let
B0 = B[` 7→ q1 +B(`)], i.e. B0 is equal to B except for location ` where it increases by
q1. Assuming m as in premise (H5), it still satisfies the requirements for applying induction
to (60) with the modified M0 and B0:

m ≥ t +(p+q1)+ΦHM+∑B = t + p+ΦHM0 +∑B0

In order to reestablish both global compatibility and type consistency for M0 and B0, note
that only the global type of location ` changes. Assume that ` /∈L, since otherwise the claim
is satisfied trivially. From the consistency premise (H2) we have

C(`)
r+B(`)

0 H(`) : A′ (61)

By the definition of k and B0, we get k+B0(`) = max(r−q1,0)+(B(`)+q1)≥ r+B(`);
hence by RELAX we get the required consistency for `.

Compatibility remains unchanged for all locations besides `; for ` we only need to
show that the reference `:Tq0(A) satisfies the invariant. From q0 + q1 ≥ r, as noted ear-
lier, we get q0 ≥ r− q1 which, together with non-negativity of annotations, implies q0 ≥
max(r− q1,0) = k. From this we recover compatibility for the context Γ , `:A. Since the
other premises remain unchanged, we can therefore apply induction and obtain precisely
the results required for the conclusion of this case.

14 Note that it is possible to prepay a location more than once or more than necessary; hence we use
truncated subtraction to ensure that the thunk annotation remains non-negative.
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Γ , x:T0(A′′) q
0 e1 : A ∆ , x:Tq(A) p

p′ e2 : C x 6∈ Γ ,∆ A/{A,A′} A′′C A′

Γ , ∆
p+Klet

p′ let x = e1 in e2 : C
(LET†)

A = µX .{· · ·|c : (q,B)| · · ·} A/{A,A′} x 6∈ Γ ,∆ A′′C A′

Γ , x:T0(A′′) 0
0 c(y) : A ∆ , x:T0(A) p

p′ e : C

Γ , ∆
p+q+Kletcons

p′ letcons x = c(y) in e : C
(LETCONS†)

Fig. 5 Revised let and letcons type rules

Case RELAX: By the second premise of RELAX follows q− p≥ 0 and thus we can choose
t ′ = t +q− p. We apply the induction hypothesis to Γ

p
p′ e : A for this t ′. Since RELAX is

a structural rule, all statements apart from (H1) and (H5) remain unchanged. The induction
thus yields all required conclusions verbatim, except for (C6). Instead, the induction yields

m′ ≥ t ′+ p′ +φ(w : A)+ΦH′M
′+∑B′

= (t +q− p)+ p′ +φ(w : A)+ΦH′M
′+∑B′

≥ t +q′ +φ(w : A)+ΦH′M
′+∑B′

with the last inequality following from the last premise of the RELAX rule: q− p≥ q′− p′.

The few remaining cases are straightforward. We thus conclude the proof of Theorem 1.

6 Improving precision for co-recursion

To improve the precision of the analysis for co-recursive programs we can employ the tech-
nique of our previous work [29]. We now present a combined system which merges both our
analysis techniques for recursion (Section 4) and co-recursion in one unified system.

6.1 Revised type rules

The combination modifies only the type rules for let- and letcons-expressions allowing lower
thunk costs for self-references (Fig. 5). The intuition is that self-references in recursive def-
initions should already be evaluated (otherwise it would correspond to a non-productive
computation), and are never assigned potential (since they are always a part of a cyclic struc-
ture). Hence, the self-reference x:Tq(A′) in the context for the newly bound expression e1 is
replaced in the revised type rules by x:T0(A′′), where A′′ allows lowering the thunk cost for
the recursive type; this is expressed by a separate type relation C, defined as follows.

Definition 6 ACB iff A = B or there exists a recursive type C with free variable Y such that
A = µX .C[Tq(X)/Y ], B = µX .C[Tq′(X)/Y ] and q≤ q′.

For example, given a suitable type N for naturals, consider the types of infinite streams
A = µX .{cons : (q,(N,T0(X)))} and B = µX .{cons : (q,(N,T1(X)))}, i.e. the two types
are identical except that A has lower thunk cost annotation for the recursive reference X ; we
then have ACB.

Note that the revised rules apply both to infinite structures (co-data) and recursive defini-
tions (functions). For function types,C is simply the identity and then the LET† rule behaves
as the previous LET. Thus the revised rules strictly subsume the previous ones.
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H@w is defined
H,S,L m

m w ⇓I w,H
(WHNF⇓I )

` 6∈ L H[` 7→ ê],S,L∪{`} m
m′ ê ⇓I w,H′[` 7→ ê]

H[` 7→ ê],S,L m+Kvar
m′ ` ⇓I w,H′[` 7→ w]

(VAR⇓I )

`,`′ are fresh H
[
` 7→ e1[`

′/x], `′ 7→ ind(`)
]
,S,L m

m′ e2[`/x] ⇓I w,H′

H,S,L m+Klet
m′ let x = e1 in e2 ⇓I w,H′

(LET⇓I )

`,`′ are fresh H
[
` 7→ c(y[`′/x]), `′ 7→ ind(`)

]
,S,L m

m′ e[`/x] ⇓I w,H′

H,S,L m+Kletcons
m′ letcons x = c(y) in e ⇓I w,H′

(LETCONS⇓I )

H,S,L m
m′ e ⇓I u,H′ H′@u = λx.e′ H′,S,L m′

m′′ e′[`/x] ⇓I w,H′′

H,S,L
m+Kapp

m′′ e ` ⇓I w,H′′
(APP⇓I )

H,S∪ (
⋃n

i=1{xi}∪BV(ei)) ,L
m
m′ e0 ⇓I u,H′

H′@u = ck(`̀̀) H′,S,L m′
m′′ ek[`̀̀/xk] ⇓I w,H′′

H,S,L m+Kmatch
m′′ match e0 with {ci(xi)->ei}n

i=1 ⇓I w,H′′
(MATCH⇓I )

Fig. 6 Indirection semantics

6.2 Soundness

Proving the soundness of the revised type rules requires distinguishing self-references from
ordinary ones, in particular, justifying lower costs for the former. However, the compatibility
invariant of the proof of Sect. 5 requires that every use of a variable pays the cost specified in
its global type. To reconcile these requirements, we can apply the approach of our previous
work [29]: use an intermediate operational semantics to establish soundness of the type sys-
tem; and show a cost correspondence between the intermediate and original semantics. For
brevity, we do not repeat the proof of correspondence between the two operational semantics
here.

The intermediate operational semantics uses indirections for self-references. An indirec-
tion behaves similarly to a variable (i.e. it refers a heap expression). However, evaluation of
an indirection will not trigger the evaluation of a thunk: instead, it succeeds immediately if
and only if the referred expression is already in whnf; thus indirections are always cost-free.

We augment the syntax of initial expressions and results of evaluations with an extra
form for indirections:

ê ::= · · · | ind(x)
w ::= λx.e | c(x) | ind(x)

Figure 6 presents the intermediate operational semantics as a relation H,S,L m
m′ e ⇓I w,H′

where the components play identical roles as the semantics of Section 3. Note that indirec-
tions are allowed both as full expressions ê or results w; they may also occur in heaps H or
H′.

The WHNF⇓I rule is revised to allow indirections as results. Indirections are used to
mark recursive self-references, and thus this revised rule allows justifying lower costs for
such cases in the soundness proof. The VAR⇓I rule is identical to the previous one. The
revised rule for let-expressions LET⇓I substitutes the bound variable in e1 by an indirection
instead of a self-reference; this will allow the costs of (co-)recursive uses to be distinguished
in the soundness proof.
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The revised rules WHNF⇓I , APP⇓I and MATCH⇓I make use of a auxiliary partial func-
tion H@w for de-referencing a result w with respect to a heap H. For constructors and
abstractions this function is the identity; and in the case of indirections it dereferences a
heap location. It is undefined for other expressions.

H@λx.e def
= λx.e H@c(x) def

= c(x) H@ind(`)
def
= H(`) if ` ∈ dom(H)

We also introduce a typing rule IND for indirections:

A/{A,A′} A′′C A′

x:Tq(A) 0
0 ind(x) : A′′

(IND)

The following lemma establishes a useful property of indirection typing, namely, that
the result type shares to itself and hence has zero potential.

Lemma 8 If Γ ` ind(x) : B then φ(ê : B) = 0.

Proof The typing derivation of Γ ` ind(x) : B. must result from an application of rule IND

followed by zero or more structural rules. From rule IND we get φ(ê : A′′) = 0 from the side-
conditions A/{A,A′} and A′′CA′ together with Corollary 1. For the structural rule SUBTYPE

the conclusion type B must be a subtype of the hypothesis A, hence by Lem. 7 if φ(ê : A) = 0
then φ(ê : B) = 0. All the remaining structural rules do not modify the conclusion type, thus
the result follows by induction.

This will be needed in the soundness proof solely for establishing well-typing of inter-
mediate heap configurations (since indirections do not occur in the initial expression). The
type rule is similar to VAR except for allow lower costs both on the judgment and in self-
references to a recursive type; and requires zero potential15. Consequently, we extend Def. 2
(potential) for indirections by φ(ind(x) : B) = 0, since indirections are never assigned any
potential.

The soundness statement for the revised system remains exactly the same as Theorem 1,
except for replacing the evaluation relation ⇓ by ⇓I; still assuming a terminating evaluation
as before. We therefore just refer to the original statements, if these remain unchanged.

Theorem 2 (Revised soundness) Let t ∈Q with t ≥ 0 be fixed, but arbitrary; similarly, let
∆ be an arbitrary context. If statements (H1) (H2) (H3) and the revised hypothesis

H,S,L ` e ⇓I w,H′ (H4′)

hold, then for all m ∈ N such that (H5) holds, there exists m′, Γ ′, C′, B′ and M′ such that
follows (C1) (C2) (C3) (C4) (C6) and the revised conclusion

H,S,L m
m′ e ⇓I w,H′ (C5′)

Proof (Sketch) The proof is largely similar to the previous one so we present a sketch that
highlights the differences in crucial cases.

15 This requirement is new, since [29] did not consider potential.
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Case LET: The typing and evaluation premises (H1) and (H4′) instantiate as

Γ ,∆ ′ p+Klet

p′ let x = e1 in e2 : C (62)

H,S,L m+Klet
m′ let x = e1 in e2 ⇓I w,H′ (63)

From (62) and Substitution we get ∆ ′, `:Tq(A) p
p′ e2[`/x] : C. By (63) and inversion of

rule LET⇓I we get H0,S,L
m
m′ e2[`/x] ⇓ w,H′ where `,`′ are fresh locations and for H0 =

H
[
` 7→ e1[`

′/x], `′ 7→ ind(`)
]
. We intend to apply the induction hypothesis for the evaluation

of e2[`/x], so we must establish the required premises first. We define:

B0 =B[` 7→ 0, `′ 7→ 0]

M0 =M[` 7→ Tq(A), `′ 7→ T0(A′′)]

C0 = C[` 7→ (Γ , `′:T0(A′′)), `′ 7→ `:Tq(A′)]

where the types A′,A′′ are provided by the premises of (H1) with A / {A,A′} and A′′C A′.
Note that A′/{A′,A′} and A′′/{A′′,A′′} are a trivial consequences. In order to establish type
consistency for the extended heap, note that existing locations are unaffected, since ` and `′

are fresh. For the new location `, it is enough to show that Γ , `′:T0(A′′) q+B0(`)
0 e1[`

′/x] :
A. This follows by inversion of (H1) and by substitution of x with the fresh name `′. To
establish consistency for `′ it suffices to show `:Tq(A′) B0(`

′)
0 ind(`) : A′′ which follows

from the IND type rule and A′′C A′ and A′/{A′,A′′} as already noted above.
The compatibility for ` requires that Tq(A)/ {Tq(A),Tq(A′)} which trivially follows

from A/{A,A′}. For `′ compatibility requires just T0(A′′)/{T0(A′′)} which is immediate.
Note ΦH0 M0 = φ(e1[`/x] : A)+φ(ind(`) : A′′)+ΦHM; by definition, φ(e1[`/x] : A)=

φ(ind(`) : A′′) = 0 (since neither of these expressions are constructors). Hence ΦH0 M0 =
ΦHM. Similarly, we have ∑B= ∑B0 (because the new locations have zero balance). The
remaining steps for this case are then identical to the previous proof of Theorem 1.

Case MATCH: The typing and evaluation premises (H1) and (H4′) instantiate as

Γ ,∆ ′ p+Kmatch

p′′ match e0 with {ci(xi)->ei}n
i=1 : C (64)

H,S,L `match e0 with {ci(xi)->ei}n
i=1 ⇓I w,H′′

From (64) by inversion of the rule MATCH we get:

B = µX .{ci : (qi,Ai)}n
i=1 (65)

Γ
p
p′ e0 : B (66)

∆
′, xi:Ai[B/X ] p′+qi

p′′ ei : C (67)

By inversion of rule MATCH⇓I we get 1≤ k ≤ n such that:

H,S∪
(⋃

i{xi}∪BV(ei)
)
,L ` e0 ⇓I u,H′ (68)

H′@u = ck(`̀̀) (69)

H′,S,L ` ek[`̀̀/xk] ⇓I w,H′′ (70)

We apply induction for expression e0 using (66) and (68) for m ≥ t + p+ΦHM+∑B as
given by (H5) and subtracting Kmatch on both sides. Type consistency remains unaltered
and compatibility follows immediately by associativity of multiset union for contexts. We
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obtain several important statments, of which the following differ as compared to the previous
proof:

Γ
′ 0

0 u : B (71)

H,S,L m
m′ e0 ⇓I u,H′ (72)

m′ ≥ t + p′+φ(u : B)+ΦH′M
′+∑B′ (73)

From (67) for i = k together with Lemma 2 (substitution) we obtain

∆
′, `̀̀:Ak[B/X ] p′+qk

p′′ ek[`̀̀/xk] : C (74)

In order to apply induction for expression ek[`̀̀/xk] using typing (74) and evaluation (70)
we need to show that the bound (73) satisfies the subsequent premise (H5). By (69), u is
either a constructor or an indirection referencing a constructor. In the first case, the proof
proceeds exactly as in the proof of Theorem 1. Otherwise, assume that u is an indirection;
applying Lem. 8 to the typing (71) yields φ(ck(`) : B) = 0. Therefore by (65) and the defini-
tion of sharing (Fig. 2), we get that qk = 0. Also, by definition of potential for indirections,
φ(u : B) = 0; hence:

m′ ≥ t + p′+φ(u : B)+ΦH′M
′+∑B′

= t + p′+0+ΦH′M
′+∑B′ = t + p′+qk +ΦH′M

′+∑B′

This allows us to apply the induction hypothesis to (67) once more, just as in the previous
proof of the MATCH case, then proceeding exactly as before.

The remaining cases are similar to the corresponding ones in the proof of Theorem 1; this
concludes the proof sketch for Theorem 2.

7 Related work

Pioneering work on cost analysis for higher-order functional programs with lazy evalua-
tion was done by Sands [21,22]. This approach used evaluation contexts [30] and projec-
tions [32] to capture the degree of evaluation of data structures; it can be used to aid manual
reasoning about program costs but is not directly automatable for use in a compiler or static
analysis tool.

The use of amortisation for complexity analysis of imperative data structures goes back
to Tarjan [26]. Okasaki [16] extended this technique to functional data structures, in particu-
lar, showing how lazy evaluation can be used to combine amortised bounds with persistence.
The prepay rule in our system plays an analogous role to Okasaki’s notion of “discharging
debits”. The main difference is that our analysis is automatic and applies to complete pro-
grams rather than data structures in isolation; this is achieved by assigning potential in a
type-directed way and by a sub-structural type system (e.g. an affine system with the ex-
plicit sharing rule) to ensure that potential is used at most once.

Benzinger [1] developed an automated complexity analysis for functional programs syn-
thesized using the Nuprl proof system. However, this system deals only with call-by-name
rather than lazy evaluation/call-by-need. The system uses type-based decomposition and
polynomialization to express the costs of higher-order arguments and generates recurrence
equations; these are solved using the Mathematica computer algebra system (CAS). Using
a general-purpose CAS allows deriving non-linear (and even non-polynomial) bounds, but
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obtaining simplified results may require interaction with an expert user (unlike the linear
programming techniques we employ). Thus, the approach is not as automatable as the one
presented here.

Several authors have proposed symbolic profiling approaches, where programs are an-
notated with additional cost parameters. For example, Wadler [31] has used a state monad
to count reduction costs through a tick-counting operation. Building on this work, Daniels-
son [4] developed a library for expressing complexity costs using dependent types in Agda.
Our use of thunk cost annotations to express the cost of lazy data structures is inspired by
this work; the idea of pre-paying costs also appears here (although in Danielsson’s system it
is a manually-introduced term rather than a structural type rule whose effect is automatically
decided later by the linear solver). Unlike our system, no potential is associated to data struc-
tures (ensuring its safe use would require a linear or affine type system); instead the costs
of recursive functions must be expressed in terms of explicit size annotations rather than
changes in potential. Finally, unlike the work presented here, this system allows checking
complexity but not automatic inference.

Hughes and Pareto [10] have combined a sized type system with cost effects to stati-
cally check space bounds for a small functional language. The system allows checking (but
not inferring) stack and heap resource bounds of an abstract machine using dynamically-
allocated regions. Vasconcelos [28] developed a size and cost analysis for Core Hume, a
minimal functionally-inspired language, using abstract interpretation techniques to compute
a safe approximation to size and cost bounds automatically. Both these approaches consid-
ered only strict and first-order languages.

Hofmann and Jost [8] proposed a type system for static prediction of heap resources for
a strict first-order functional language; this was only later recognized as an automatic amor-
tised analysis. The key contribution that enabled automation was the assignment of potential
in a type-directed way, using weights for constructors. Potential functions are thus expressed
as linear combinations of the number of uses of each constructor and allows finding suit-
able coefficients using a standard linear programming solver. The approach was extended to
higher-order functions and limited polymorphism in later work [12]. Our earlier work [24]
builds on this line of research extending it to a lazily-evaluated language rather than a strict
one; a subsequent development [29] focused on improving the precision of analysis for the
co-recursive fragment of the language.

An important extension of the technique to infer multivariate polynomial bounds was
achieved by Hoffmann et al. in [5]. It is crucial to note that a standard linear programming
solver is still sufficient to infer asymptotically tight polynomial bounds for a large num-
ber of programs; a realistic case study examining OCaml standard libraries can be found
in a preprint available from Hoffmann’s homepage. Furthermore, Hoffmann and Shao [6]
showed how to apply the technique to parallel first-order programs.

8 Conclusions and further work

This paper has described a type-based automatic analysis that is capable of inferring upper
bounds on the costs for lazily evaluated programs. This allows us to understand and reason
about resource usage of non-strict functional languages, which has historically been a key
obstacle to their wider use. The main contributions of this paper are:

1. the combination of two previous type-based analyses [24,29] that increases the range of
programs that can be effectively analysed;
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2. the generalization to a parametric cost model;
3. a detailed soundness proof based on a novel approach for accounting potential of heaps

per location rather than recursively.

The key aspects of our approach are amortisation (especially its application to avoid duplica-
tion of thunk evaluation costs) and the tracking of self-references. This is essential to model
the graph reduction techniques that are used in typical lazy functional language implemen-
tations. Our experimental results show accurate and effective bounds on the resource usage
for a number of non-trivial examples, including higher-order recursive and co-recursive pro-
grams on finite and infinite lists.

Directions for further work: first, we have not considered any issues of resource deallo-
cation. Previous work in the strict setting [8,12] indicate that this should be possible. A key
issue is how to expose deallocation in a syntax-directed way, e.g. using regions [27].

Second, we have only considered a simply-typed system here. This means that our anal-
ysis is monovariant, i.e. distinct uses are aliased by a single (simple) annotated type. This
suffices for analysing whole-programs, provided we re-run the analysis for different uses
for best precision (e.g. duplicating definitions as in the sumWithFibs example of Sect. 4.5).
This could easily be avoided by explicitly capturing and copying constraints for each use
as was done in [11]. Extending our system with type and effect polymorphism would make
the analysis fully modular. While technically more difficult, we believe that the standard
approaches of type and effect systems [25] should be applicable to our setting. A modular
analysis would also pave the way for dealing with a larger programs in a real programming
language such as Haskell.

Third, only linear cost functions were considered here. Work by Hoffmann et al. for
strict languages [5] shows that it is possible to extend amortised analysis approaches to cover
multivariate polynomial cost bounds, extending the utility of the work. Adopting these tech-
niques to lazy evaluation ought to be relatively straightforward, albeit technically complex.

Lazy evaluation can be seen as allowing a controlled form of mutation in a functional
setting; it would therefore be interesting to explore whether the approach taken here for
assigning potential to heaps would also apply to amortised cost analyses for mutation in the
strict setting, e.g. ML-like references or mutable arrays [7]. Finally, work shows that the
used techniques extend to parallel programs [6] as well, so it would be exciting to combine
this with the lazy setting as well.
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