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Abstract

Programming resource-sensitive systems, such as real-time embedded systems, re-

quires guaranteeing both the functional correctness of computations and also that

time and space usage fit within constraints imposed by hardware limits or the envi-

ronment. Functional programming languages have proved very good at meeting the

former logical kind of guarantees but not the latter resource guarantees.

This thesis contributes to demonstrate the applicability of functional program-

ming in resource-sensitive systems with an automatic program analysis for obtaining

guaranteed upper bounds on dynamic space usage of functional programs.

Our analysis is developed for a core subset of Hume, a domain-specific functional

language targeting resource-sensitive systems (Hammond et al. 2007), and presented

as a type and effect system that builds on previous sized type systems (Hughes et al.

1996, Chin and Khoo 2001) and effect systems for costs (Dornic et al. 1992, Reistad

and Gifford 1994, Hughes and Pareto 1999). It extends previous approaches by using

abstract interpretation techniques to automatically infer linear approximations of the

sizes of recursive data types and the stack and heap costs of recursive functions.

The correctness of the analysis is formally proved with respect to an operational

semantics for the language and an inferrence algorithm that automatically recon-

structs size and cost bounds is presented.

A prototype implementation of the analysis and operational semantics has been

constructed and used to experimentally assess the quality of the cost bounds with

some examples, including implementations of textbook functional programming al-

gorithms and simplified embedded systems.
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Chapter 1

Introduction

In this chapter we present an overview of this thesis: we outline our research problem,

namely, obtaining guaranteed bounds for dynamic space consumption of embedded-

systems programmed in a functional language; we define our methodology, namely,

the development of a type-based program analysis; and we illustrate the approach

on a short example (a digital filter). Finally, we highlight the contributions and the

structure of this thesis.

1.1 Motivation

Programming resource-sensitive systems, such as real-time embedded systems, re-

quires guaranteeing both the functional correctness of computations and also that

time and space usage fit within constraints imposed by hardware limits or the envi-

ronment. Functional programming languages have proved very good at meeting the

former logical kind of guarantees but not the latter resource guarantees.

This thesis aims at extending the applicability of functional programming lan-

guages to resource-sensitive systems by developing an automatic program analysis

to provide upper bounds on the time and space upper usage required for functional

programs. While such guarantees are particularly important in embedded or safety-

critical systems, they are are also useful in other resources-sensitive settings, e.g. in

environments supporting the execution of untrusted code received from a network.

The standard computability arguments imply that no algorithm can provide re-

source bounds for all programs of sufficient expressiveness (functional or otherwise).

This thesis contributes with a partial solution, namely, a programming language sub-

set and program analysis capable of obtaining guaranteed upper bounds for stack

1
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and heap costs of non-trivial programs. The correctness of the analysis is formally

proved with respect to an operational semantics for the language and the quality

of the bounds obtained are experimentally verified against some examples, includ-

ing implementations of textbook functional programming algorithms and prototype

embedded systems.

1.2 Resource-sensitive systems

Software is increasingly used in systems that are not general-purpose computers and

whose primary role is to interact with the environment, e.g. in a microprocessor-

controlled washing machine, in the control of an industrial robot or in an aircraft

flight controller. Such software is generically designated as embedded, to signify that

it is part of a larger engineering system which it must support (Burns and Wellings

1996).

Embedded software must satisfy both functionality requirements (that responses

are logically correct) and resource guarantees (that responses are computed within

fixed bounds on time, dynamic memory or energy consumption). In order to meet the

latter non-functional requirements while making efficient use of available hardware,

embedded systems were traditionally programmed in low-level assembly languages.

The increase in complexity of applications means that it is no longer cost-effective

to develop embedded systems solely in assembly language. Today’s embedded sys-

tems are typically developed in higher-level languages such as C, C++, Ada or even

Java with only a very limited part in assembly code. The use of higher-level lan-

guages eases the detection and correction of errors, facilitates portability and re-use

of code and generally increases the speed of development. The price of such facilities

is a loss of predictability of the time and space usage of programs.

For applications that are not critical, the loss of predictability can be mitigated

during testing, e.g. by profiling time and space usage. Testing, however, is very time-

consuming and the results can be invalidated by even minor code changes during

development. Moreover, as pointed out by Dijsktra (1970) more than 30 years ago,

testing can show the presence but never the absence of errors.

The current software development practice for high-integrity systems is to pro-

hibit language features that may lead to unpredictable resource usage: the SPARK

subset of the Ada language excludes recursion and dynamic memory allocation (Finnie

and Amey 2006); the real-time kernel of the ARIANE 5 software was also veri-

fied to exclude dynamic memory allocation (Lacan et al. 1998). However, this is

done at the loss of useful programming techniques and abstractions. For example,
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Stankovic (1988) points out that dynamic memory allocation is essential for the next-

generation of embedded systems. As embedded applications become more complex,

there is an increasing interest in techniques that combine programming languages,

formal methods and implementations to increase the level of programming while still

guaranteeing safety properties of the executed code.

A note on terminology Embedded systems are designated real-time if their

correctness depends on guarantees that outputs are produced within strict time

deadlines. These are further divided into hard real-time and soft real-time according

to the level of criticality: a late response is undesirable but still tolerable in soft

real-time systems; in hard real-time systems a late response is not acceptable. For

example, decoding an audio stream in a digital audio player is a soft real-time task,

while the flight control of a commercial aircraft is a hard real-time task.

Some researchers identify the terms “embedded” and “real-time” and use them

as synonyms (Burns and Wellings 1996); this is perhaps because resources such as

space could be trivially bounded in traditional embedded systems programming, e.g.

using static allocation. However, the desire to use dynamic memory management

techniques in embedded programming means that space bounds are also relevant.

We therefore prefer to use “embedded” for generic resource-sensitive systems and

“real-time” for the time-sensitive ones.

1.3 Functional programming

Functional programming is a style for writing programs where the principal mecha-

nism of computation is the evaluation of expressions. A functional program consists

of equations defining mathematical transformations of inputs to outputs rather than

a sequence of commands that modify the internal state of the machine as in a typical

imperative language such as C, C++ or Java.

Modern functional programming languages, e.g. Standard ML (Milner et al.

1997), Objective Caml (Leroy et al. 2007) and Haskell (Jones 2003) have evolved

to include several features that support the functional programming style:

Functions are first-class values: Functions can be passed as arguments to other

functions, returned as results, or stored in data structures.

Strong type system: Values are classified into types; moreover, there is no “void”

type that can be used in absence of a meaningful type for an expression; this
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allows an interpreter or compiler to reject some erroneous programs automat-

ically by checking that types are used consistently; furthermore, for the most

part, type annotations can be automatically inserted by the compiler using

type inference.

Parametric polymorphism: Types may be parameterised over other types; this

allows a function that can be used with values of many types to be assigned

a universally quantified type. The distinct notion of ad-hod polymorphism,

or overloading, concerns using the same names for different implementations

according to context, e.g. numerical operators; the connection between the two

kinds of polymorphism is made via type classes (Wadler and Blott 1989) and

is used in Haskell.

Definitions by equations: Functions can be defined by equations; simple equa-

tional reasoning can be used to derive new programs from old ones or to prove

properties.

Algebraic data types: New data types can be defined as a disjoint sums of prod-

ucts labelled by constructor tags; such definitions can also be recursive; case

analysis with patterns can be used to discriminate constructed values and bind

variables.

Non-strict semantics: Under non-strict semantics an expression is only evaluated

when its result is needed to progress the computation; the evaluation strategy is

therefore driven by data dependencies rather than by the syntactical structure

of the program. While not a universal characteristic of functional languages1,

non-strict semantics allows for more compositional programs by separating the

producers and consumers of data structures (Hughes 1989); in particular, it

allows the manipulation of potentially infinite data structures.

Automatic memory management: Allocation and deallocation of memory is per-

formed automatically by the runtime system; this not only avoids the need for

the programmer to introduce explicit commands for memory management but

also eliminates some errors arising from incorrect uses, e.g. accessing “dan-

gling” references.

The higher conceptual level of functional languages allows writing programs that

are more modular, easier to modify and prove correct. Indeed, programming in func-

tional languages often resembles writing “executable specifications” of the underlying

problem or domain (Hudak and Jones 1994, Jones et al. 2000). The downside is that

1Haskell has a non-strict semantics, but Standard ML and O’Caml do not.
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the implementation has to bridge a larger gap between the functional program and

the underlying hardware than that of a typical imperative language.

The functional programming community has made large progresses in optimising

compilers and profiling tools that enable functional programs to match imperative

ones.2 In the opposite direction, many language features that originated in functional

languages have migrated to mainstream imperative languages such as Java, e.g. au-

tomatic memory management, static type checking and polymorphism. This means

that the performance gap has narrowed and is arguably no longer the most relevant

argument for preferring one language paradigm over the other (Wadler 1998b).

For the specific domain of embedded programming, however, the situation is

quite distinct: efficiency is important, but the foremost concern is not absolute

performance but rather predictability of performance (Stankovic 1988). Functional

languages present particular difficulties because their design abstracts away from the

non-functional characteristics that need to be assured, e.g. time and space costs. We

identify some issues that make it more difficult to reason about the performance of

functional programs:

Higher-order functions: The control-flow of higher-order programs is dynamic

hence more difficult to determine; functional values are implemented as closures

in memory with associated space and time costs.

Data persistence: Purely-functional data structures are persistent (Okasaki 1998),

that is, an update does not modify existing data but instead creates a new

version that coexists with the old one. Even when the data is used in a single-

threaded way, it is difficult to ensure that the implementation will immediately

re-use the old space. By contrast, the update-in-place typical of imperative

data structures is sufficient, in many cases, to ensure bounded space computa-

tion.

Garbage collection: This common technique for automatic memory management

can cause time delays at arbitrary points during execution while the collector

reclaims unreachable data; furthermore, collectors are usually conservative,

that is, they may fail to reclaim all unreachable data, leading to the possi-

bility of memory leaks and making it more difficult to predict actual memory

residency.

2 For example: the Haskell GHC and O’Caml benchmarks in the Computer Language Bench-

marks Game (http://shootout.alioth.debian.org) as of February 2008 are, on average, only

50%–70% slower than the best (imperative) solution and rank better than many other imperative

ones e.g. Java.
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Non-strict semantics: Non-strict (or lazy) evaluation means that the time and

space costs for a function depend not just on its inputs also on the context

in which the result is used; lazy evaluation can also contribute to space leaks

because suspended computations (“thunks”) can contain references to data

objects making them live longer than necessary.

Optimising compilers: The highly declarative nature of functional programs means

that compilers are free to perform various transformations to improve perfor-

mance; however, it is difficult to be sure at the source level which optimisations

are performed and what their impact will be on the time and space behaviour.

Such difficulties have prevented the use of functional languages in applications re-

quiring hard bounds on space and time response. We will address some of these

difficulties in this thesis.

1.4 Aim and methodology

The overall aim of this thesis is to demonstrate the feasibility of combining the high-

level features of functional languages with the strict resource guarantees required by

embedded systems. Given the difficulties in reasoning about time and space costs

outlined in the previous section, we propose the following methodology:

• We focus on Hume, a functionally-based language for programming resource-

sensitive systems (Hammond et al. 2007). Unlike a general-purpose functional

language, Hume is designed to allow predictable time and space behaviour,

both at the language level, e.g. by syntactically separating the coordination

and expression layers of computation, and in the implementation, e.g. by not

requiring a garbage collector.

• We further restrict to a “core” subset of Hume. This simplifies the presen-

tation of the language by omitting redundant features that can be obtained

by translation (e.g. nested pattern matching). It also facilitates the formal

definition of a model of execution costs (an abstract machine) and makes the

relation between language and execution amendable to formal reasoning.

• We develop a type-based static analysis for predicting bounds on dynamic space

costs. Types are pervasive in modern functional programming; adding analysis

information onto types is, therefore, a natural extension. Morever, unlike other

approaches that require the whole program (e.g. data-flow or abstract inter-

pretation), type-based analyses suport modularity, i.e. gathering information

about libraries and modules separate from its uses.
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Fulfilling these points will provide us with the combination of a functional core lan-

guage, execution model and static analysis that guarantees safe bounds on resources.

This paves the way for using high-level abstractions of functional programming lan-

guages in embedded systems whenever they can be statically proved safe rather than

prohibiting them in all situations.

At this point we would like to clarify what we mean by an “automatic analysis”

for resources. Every computer science student learns that the Halting Problem is

algorithmically unsolvable, i.e. that there is no algorithm that decides if an arbitrary

program in a Turing-complete language terminates. Since providing a time bound

entails proving termination, it follows that there can be no algorithm that provides

an upper bound on computation time for an arbitrary program in a Turing-complete

language.3

There are two ways out of this impossibility: either 1) consider a restricted

language that is not Turing-complete; or 2) allow a partial bounding algorithm, i.e.

one that may yield a “don’t know” answer for some programs. In this thesis we will

follow the second option, that is, we will consider a Turing-complete language but

allow the analysis to give uninformative answers.

A second question is what we mean by “guaranteeing bounds” on resources. It is

immediate that every finite (that is, terminating) computation can only consume a

finite amount of time and space; thus a termination proof of a program or function

in a Turing-complete language also proves that it is bounded. In this “extensional”

sense, any total program is bounded because we can simply run it under an instru-

mented interpreter to find out the amount of resources it consumes. However, this

does not give a satisfactory static analysis—it amounts to profiling the program for

each possible input.

What we desire are resource bounds expressed as the composition of simple math-

ematical functions with known growth, e.g. polynomials, rational functions, expo-

nentials, etc. Moreover, we would like to obtain these expressions not as functions

of the input itself but rather of some abstraction such as data size. Such bounds are

useful for a programmer to understand the behaviour of his or her program, but also

for a verification system to automatically ensure before execution that an embedded

system will not run out of memory or miss a deadline.

3 More precisely: a function from Turing-machine descriptions to the number of steps until

termination (arbitrarily defined in the case of non-termination) grows faster than any computable

function (Minsky 1967, pages 146–148).
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1.5 An example: a digital filter

We will illustrate the Hume language approach to embedded systems programming

and our methodology for obtaining cost bounds using a simple example of an idealised

digital filter.

Consider an infinite stream x0, x1, x2, . . . of real-valued samples; a finite impulse

response filter (Pohlmann 1989), or simply FIR filter, has an output stream yn

satisfying equation (1.1)

yn = w0 × xn + w1 × xn−1 + · · ·+ wk−1 × xn−k+1 (1.1)

where w0, . . . , wk−1 are the filter coefficients and k > 0 is the filter order, i.e. the

number of previous input samples required to compute one output sample.

1.5.1 Solutions in Haskell and Hume

We can program the FIR filter in a general purpose functional language using lazy

lists to represent potentially infinite streams of inputs and outputs. Figure 1.1

presents an implementation in Haskell. The input and output stream are modelled

as infinite Haskell lists; the filter itself is a corecursive function that maps an input

stream to an output stream of floating-point samples.4 We use the generic list func-

tions tail, map, zipWith, iterate and sum from the standard Haskell prelude (Jones

2003).

Although it is apparent from equation (1.1) that only k input samples are re-

quired to compute each output, there is no guarantee that the Haskell execution will

deallocate the previous samples as each output is produced. Moreover, even if the

garbage collector does eventually recycle space, no guarantee can be given from the

program text about how much of the input stream is be retained in memory.

This unpredictable behaviour is avoided in Hume by making the corecursive

level of computation explicit as a finite network of processes, called boxes. Each

box has a fixed number of ports and runs indefinitely mapping streams of inputs

to outputs. Computation in each box is specified using a strict, purely-functional

notation. Furthermore, all state information required by a box must be explicitly

represented as an input-output feedback loop; this ensures that all memory can be

re-used at the end of a box execution cycle.
4 Corecursion is a construction principle for infinite data structures, e.g. streams. Whereas recur-

sion deconstructs a well-founded (i.e. finite) data structure, corecursion builds up an infinite codata

structure (Turner 2004). Denotationally, the two notions are dual: recursive definitions correspond

to least-fixed points of a monotone operator, while corecursive ones correspond to greatest-fixed

points (Barwise and Moss 1996).
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import Prelude

-- tail :: [a] -> [a]

-- map :: (a->b) -> [a]->[b]

-- iterate :: (a->a) -> a -> [a]

-- zipWith :: (a->b->c) -> [a] -> [b] -> [c]

-- sum :: [Float] -> Float

-- FIR filter coeficients: (0.5, 2, 0.5)

fir :: [Float] -> [Float]

fir stream = map (dotp [0.5,2,0.5]) (iterate tail stream)

dotp :: [Float] -> [Float] -> Float -- dot product of two lists

dotp xs ys = sum (zipWith (*) xs ys)

Figure 1.1: FIR filter example in Haskell.

The Hume solution for the FIR filter is presented in Figure 1.2 as a single box

with two inputs and two outputs: x is an input sample, xs is a list with the last k

samples y is the filtered output and xs′ is the updated list of samples.

The wire declaration establishes a feedback loop between an input and output of

the box; this is the sole mechanism in Hume for passing state information across box

iterations. The feedback wire between xs and xs′ in the filter example communicates

the list of previous k samples. Note that lists can have arbitrary size; the fact that the

list in the wire xs, xs′ has bounded length is a dynamic property of this particular

program that we can determine by static analysis.

We use two auxiliary functions: init gives the initial segment of a list and dotp

computes the dot product of two lists of samples (as in the Haskell solution). The

Hume version is defined using first-order recursion to make it amendable to our cost

analysis.

1.5.2 Size analysis

In order to implement the Hume program in bounded space we need to guarantee

that the input xs and output xs′ are both bounded. This entails establishing size

bounds on a list (more generally, on any input or output of a box associated with a

recursive data type); we will employ a type-based size analysis for this purpose.

From the recursive definition of init in Figure 1.2, our size analysis will automat-
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type Float = float 32 -- 32-bit floating point numbers

box fir

in (x::Float, xs::[Float])

out (y::Float, xs’::[Float])

match

(x, xs) -> (dotp [0.5,2,0.5] xs, x:init xs)

wire fir.xs fir.xs’ initially [0,0,0]

dotp :: [Float] -> [Float] -> Float -- dot product

dotp [] [] = 0

dotp (x:xs) (y:ys) = x*y + dotp xs ys

init :: [a] -> [a] -- initial segment of a list

init [x] = []

init (x:xs) = x:init xs

Figure 1.2: FIR filter example in Hume.

ically infer the following annotated type:

init : 〈Listn a→ Listm a, n = 1 +m ∧ 0 ≤ m〉 (1.2)

The data type Listn a for lists of a is annotated with a size variable n representing

the length of the list; the type signature as a whole is annotated with a constraint

that expresses size relations. The constraint in (1.2) expresses the input-output size

relation, namely that the output list has one less element than the input list.5

We can use (1.2) to derive a sized type for the expression computing the output

xs′:
Listn Float︷ ︸︸ ︷

x︸︷︷︸
Float

:
Listm Float︷ ︸︸ ︷

init xs︸︷︷︸
Listn Float

where n = 1 +m

The above sized type proves that the length of the buffer of samples is invariant (as

would be expected, since one element is removed for each new one inserted).

5 Although we could present this particular type more succintly, e.g. as List1+m a→ Listm a for

m ≥ 0, such simplifications do not generalise, e.g. when the size constraint expresses inequalities

rather than equalities or when it envolves more than two variables.
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1.5.3 Cost analysis

We want not just to prove that the FIR filter is bounded but also to statically

obtain bounds on the actual time and space costs. Unlike the size information

obtained in the previous section, such properties are not denotational but rather

dependent on a implementation; this means that we must choose some execution

model to reason about costs. In this thesis we consider dynamic space costs, i.e.

stack and heap required by an abstract machine; the machine and cost model will

be formally defined in Chapter 6; for the moment, it suffices to say that it is based

on the well-known SECD machine (Landin 1964).

Our cost analysis is expressed by types annotated with both sizes and effects

representing bounds on the stack and heap costs. For the init function in Figure 1.2

the analysis automatically infers the following:

init : 〈Listn a
s;h−−→ Listm a, n = 1 +m ∧ 0 ≤ m ∧ s ≤ 6n− 3 ∧ h = 3n− 2〉 (1.3)

The function type is annotated with two variables, s and h, that represent the stack

and heap costs of the function body, and a constraint expressing the costs relative to

the sizes of inputs or outputs, i.e. the list lengths; this mechanism allows expressing

costs that depend on the inputs such as those of recursive functions.

Informally, the annotated type (1.3) means that evaluating init of a list of n

values requires 6n− 3 words available on the stack and will consume exactly 3n− 2

heap cells; these results are as would be expected since init is defined by recursion

on the input list and must construct a new list with one fewer value; the constants

in the cost equations are a consequence of the particular data representations of our

abstract machine.

Note that the init function is undefined for the empty list and this is expressed

in the annotated types (1.2) and (1.3): the constraint n = 1 + m ∧m ≤ 0 restricts

valid input list lengths to be strictly positive. We therefore do not need to consider

the case n = 0 in the stack and heap equations in (1.3).

Note also that (1.3) expresses both size and cost information. In fact, we will

conduct a combined size and cost analysis rather than two separate ones. For the

purpose of presentation, however, we will first focus on the size analysis and later

extend it with cost information.

Applying the size and costs analysis to the dotp function of Figure 1.2 we obtain:

dotp : 〈(Listn Float, Listm Float)
s;h−−→ Float, n = m ∧ s ≤ 1 + 7n ∧ h = 2 + 4n〉 (1.4)

The annotated type (1.4) expresses not just bounds on the stack and heap costs

but also that dotp is only defined for input lists of equal length. Note also that
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dotp consumes a linear amount of heap on the length of its inputs; this because we

are assuming an implementation using heap allocated floating point numbers, i.e. a

“boxed” data representation.

1.5.4 Type and cost polymorphism

Annotated types can be universally quantified on type, size and cost variables; for

simplicity we have so far omitted the quantifiers. For example, the type for init with

explicit quantifiers is:

init : ∀n,m, s, h. 〈∀a. Listn a
s;h−−→ Listm a, n = 1 +m ∧ 0 ≤ m

∧ s ≤ 6n− 3 ∧ h = 3n− 2〉
(1.5)

Quantification over the size and cost variables n, m, s, h allows using the function

in different contexts; the input and output sizes as well as costs can be different

for each use. Quantification over the type variable a means that init can be used

with lists of any type, i.e. it is polymorphic on the elements of the list; this is just

the usual parametricity result, i.e. that init does not scrutinise the list elements and

therefore must behave uniformly with lists of arbitrary values.

However, the combination with the quantification on costs s, h implies a stronger

property, namely, that the stack and heap costs of init are also uniform; this is the

case for a naive implementation of lists as linked cells of pointers (or pointer-sized ob-

jects), but not for an optimised implementation that specialises list representations,

or that fuses producer and consumer functions such as init and dotp and therefore

avoids building the list.

This does not mean that our cost analysis is only applicable to naive implemen-

tations; rather, it means that optimisations must be made explicit at the source level

and the analysis extended accordingly. We will exemplify this approach in Chapter 6

for optimisations of tail-calls, data type unboxing and explicit deallocation.

Finally, we remark that type and cost polymorphism gives a natural mechanism

for conducting separate analysis of modules or libraries: the augmented type (1.5)

captures the size and cost analysis of init and can be performed without prior knowl-

edge of its uses.

1.5.5 Analysis of the coordination layer

We now illustrate how the size and costs analysis of the previous functions can

be employed to obtain bounds on the costs for producing each output and for the

communication buffers (in this example, the feedback loop with a list of samples).
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z0 w (z2 = 3 ∧ z0 ≥ 6 ∧ 27 ≥ z0), z0 w (z0 = 5 ∧ z2 = 3),

z0 w (z0 = 4 ∧ z2 = 3), z1 w (z2 = 3 ∧ z1 = 30),

z4 w (z4 ≥ 6 ∧ z2 ≥ 1 ∧ 6 + 4z2 ≥ z4),

z4 w (z4 ≥ 5 ∧ z2 ≥ 1 ∧ 1 + 6z2 ≥ z4),

z4 w (z4 = 4 ∧ z2 ≥ 1), z5 w (4 + 8z2 = z5 ∧ z2 ≥ 1),

z3 w (z2 = z3 ∧ z2 ≥ 1), z4 w z4 = 2, z4 w z4 = 1, z5 w z5 = 16,

z3 w z3 = 3, z6 w z6 = 1, z7 w z7 = 2, z2 w z2 = z3

Wire Size Stack Heap

fir .x : Float − [1, 1] [2, 2]

fir .y : Float − [4, 27] [30, 30]

fir .xs, fir .xs′ : Listz2 Float [3, 3] [1, 19] [16, 28]

Table 1.1: Coordination layer analysis of the Hume filter.

The coordination layer analysis extracts a set of cyclic inequations expressing

lower bounds on the sizes and costs of boxes (these will be formally defined in

Chapter 6). The inequations can then be automatically solved using fixed point

approximation techniques to obtain intervals of sizes and stack and heap costs for

the execution of individual boxes and the communication wires.

The results of the coordination layer analysis are intervals [l, u] where l ∈ Z ∪
{−∞}, u ∈ Z ∪ {+∞} and l ≤ u for both sizes and costs. While we are mostly

interested in upper bounds of costs, lower bounds of sizes convey useful information

and can improve the precision of the analysis.

Table 1.1 presents both the constraints and the solutions obtained by our analysis

for the filter example. The upper bounds of the intervals of stack and heap costs can

be used by a compiler to allocate memory statically with the assurance that failure

due to memory exhaustion will not occur.

1.6 Contributions

The main contributions of this thesis are in the area of static analysis of space costs

for functional programs; in order of relevance:

1. A formal type-based automatic analysis for inferring bounds on sizes, stack

and heap costs of Core Hume programs (a first-order, strict functional lan-

guage with recursive data types and functions). This analysis extends previ-

ous approaches by automatically inferring bounds rather than just checking
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prescribed bounds.

2. A formal abstract machine for Core Hume that provides the model of stack

and heap costs against which we validate the analysis. This machine is novel in

employing region-based allocation to implement predictable memory recycling;

this is better suited for reasoning about costs at the language level than existing

implementations, e.g. the prototype Hume abstract machine (Hammond 2003),

because every transition performs a strictly bounded amount of computation;

in particular, our abstract machine does not employ a copying collector for

recycling memory.

3. Extensions to the abstract machine and cost analysis for space optimisations,

namely: tail calls, unboxed data representations and explicit deallocation.

Dealing with optimisations is important not just for general efficiency con-

cerns, but also for predictability, because optimising a program can lower the

space behaviour making it tractable by our analysis.

4. The definition of language-based cost annotations and lifting transformations.

Cost annotations decouple the source-level analysis from the precise cost model

used; this is important from both a conceptual point-of-view but also because

it allows trading precision for a faster analysis.

5. Experimental results assessing the quality of the cost bounds against actual

costs obtained using a profiling implementation of the abstract machine. Our

examples include standard functional algorithms on lists and trees and some

prototype embedded systems.

This thesis also contributes to the area of size type analysis (Hughes et al. 1996,

Chin and Khoo 2001):

1. We extend previous approaches with user-defined sizes; this makes it possible

to infer sizes (as well as costs) for algorithms on non-linear data structures,

e.g. binary trees;

2. We identify an error in the soundness proof of Chin and Khoo (2001) in as-

suming completeness of the lattice of constraints and present a revised proof

for our sized type system.

Finally, this thesis contributes to research in the Hume language with the formal

definition of a core subset and abstract machine. The Core Hume language and

abstract machine can form the basis for an intermediate compiler language for Hume

programs where memory management costs are explicit rather than delegated to the
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runtime system; this would be better suited for ultimately extending the analysis to

provide time bounds required for real-time embedded systems programming.

This thesis only partially achieves the aim outlined in Section 1.4; three important

restrictions were made:

• we focus on a subset of the Hume programming language (Core Hume); the

principal semantic restriction is that Core Hume is a first-order language;

• we develop an analysis that predicts dynamic space, e.g. stack and heap usage,

but not time;

• our analysis is restricted to obtaining size and cost bounds expressible as linear

arithmetic constraints.

The restriction to linear arithmetic constraint is motivated by the desire for an

automatic analysis: the linear fragment of arithmetic is decidable and implementa-

tions of efficient solvers are available (Pugh 1992, Bagnara et al. 2006); these will

enable us to employ fixed-point approximation techniques to automatically infer size

and cost equations for recursive functions.

The restriction to space is methodological: our approach to cost analysis is

language-based, that is, we will define the analysis and execution model in a syntax-

directed way. For the latter we will employ an abstract machine which avoids ex-

cessive details of a real implementation and is more amendable to formal proofs.

The costs derived from the abstract machine should be transposable to any concrete

realisation by a suitable choice of storage units.

It would, of course, be possible to consider time costs by simply counting tran-

sitions of our abstract machine and develop the analysis accordingly; however, the

assumption of uniform time for machine transitions is likely not to correlate reliably

with real-time and a more precise model of time would inevitably require many more

implementation details.

We shall therefore pursue an analysis for ensuring bounds on dynamic space costs

only; this is arguably a more fundamental problem: all resource-sensitive systems

require bounded space whereas only real-time systems require static time guarantees.

We also will discuss possible extensions for extending our analysis to infer realistic

timing information in Chapter 8.

1.7 Organisation of this thesis

The remaining chapters of this thesis are organised as follows:
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Chapter 2 reviews some background on static program analysis, focusing on two

approaches used in Chapters 5 and 6, namely, type and effect systems and

abstract interpretation. This chapter reviews how are analyses specified and

how is their correctness established with respect to some semantic description

of the programming language.

Chapter 3 reviews previous work in determining bounds for time and space usage

of functional programs. These are split into separate approaches: automatic

complexity analysis (Section 3.1), type and effect systems for time (Section 3.2),

sized types (Section 3.3), dependent types (Section 3.4), amortised analysis

(Section 3.5) and other related work (Section 3.6).

Chapter 4 reviews Hume, a functionally-inspired language for programming em-

bedded systems and presents the Core Hume subset that will be subject of

our size and cost analysis. We formally describe the syntax of the expression

and coordination layers of the language, the underlying type system and the

denotational semantics for expressions; the semantics of the coordination layer

is delayed until Chapter 6.

Chapter 5 presents a size analysis for Core Hume programs based on a sized type

system; this purely denotational size information is a preliminary step towards

obtaining cost bounds for recursive programs. The size analysis is proved

sound against the denotational semantics of Chapter 4. We also present an

algorithm for reconstructing sized types automatically and dicuss limitations

of the analysis regarding quality of the size information obtained.

Chapter 6 presents operational semantics for expressions using an abstract ma-

chine and for processes (boxes) using a transition system. These operational

semantics serve as a formal model for space costs of programs. We then extend

the size analysis of Chapter 5 with cost annotations and cost effects modelling

these space costs. The soundness of the analysis is formulated with respect to

a denotational semantics instrumented with costs. Finally, we present exten-

sions for common space optimisations and show how to extend the analysis for

the coordination layer.

Chapter 7 presents an experimental assessment of the cost analysis of Chapter 6

comparing predicted costs and actual costs obtained from execution profiles.

We consider some textbook functional algorithms on lists and trees and some

prototype embedded systems.

Chapter 8 summarises our results, the limitations of our approach and presents

some directions for further research.



Chapter 2

Program analysis

In this chapter we review some of the background on techniques for static program

analysis, that is, for computing sound approximations of the dynamic behaviour

of programs. We focus on the two approaches that we will employ in Chapters 5

and 6, namely type and effect systems and abstract interpretation, and review how

are analyses specified and how is their correctness established with respect to the

semantics of the programming language.

2.1 Overview

Program analysis concerns the study of automatic techniques for obtaining predic-

tive information about the dynamic behaviour of programs. The usual requirement

is that program analysis should obtain sound information with respect to the pro-

gram semantics, that is, obtain approximations that hold for all executions. This

means that any approximation must be conservative, i.e. err by over-estimation of

the dynamic behaviour.

The traditional motivation for program analysis is to gather information for en-

abling optimisations in compilers. More recently, program analysis has been applied

for verifying that software respect both safety properties (“something bad will not

happen”) and liveness properties (“something good will happen”) (Owicki and Lam-

port 1982). Applications of program analysis in this context include aiding detecting

errors, validating software received from sub-contractors, allowing execution of for-

eign code in an untrusted environment and aiding in transformations of data formats

(e.g. the Y2K problem).

A complete survey of program analysis is beyond the scope of this thesis; we refer

17
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the reader to the textbook of Nielson, Nielson and Hankin (1999) for a comprehensive

presentation of the area.

2.2 Type and effect systems

Type and effect systems are program analysis that extend types with annotations

describing properties of values or evaluations (Nielson and Nielson 1999).

Analyses based on effects were first introduced to control the combination of

imperative features with functional languages (Lucassen 1987, Lucassen and Gifford

1988, Talpin and Jouvelot 1994); in this setting, effects are abstract descriptions of

impure side-effects occurring during evaluation, e.g. accesses to imperative references

or input-output actions. Other uses of type and effects analysis include exception

tracking, inferring region annotations (Talpin and Jouvelot 1992, Tofte and Birkedal

1998), analysing communication in concurrent systems (Amtoft et al. 1999) and

predicting execution costs (Dornic et al. 1992, Reistad and Gifford 1994, Hughes

and Pareto 1999); the latter will be reviewed in detail in Chapter 3.

2.2.1 A simply-typed language

For concreteness we will consider an analysis for tracking exceptions raised during

evaluation of a simple applicative language; our presentation is based on Nielson

et al. (1999, chap. 5). The syntax of terms is the simply-typed lambda-calculus

extended with constants, conditionals and exception raising and handling:

e ::= c | x | λx. e | (e1 e2)

| if e0 then e1 else e2 | raise ε | handle ε as e1 in e2 (2.1)

Exceptions are identified by tokens ε taken from some finite set; they can be raised by

the evaluation of a raise expression and handled by the expression ‘handle ε as e1 in e2’;

the latter evaluates to e2 unless the exception ε is raised, in which case it evaluates

to e1. For simplicity, we have omitted primitive operations and recursive function

definitions; the extension of the analysis for the latter is presented in Nielson et al.

(1999, chap. 5).

The semantics of expressions is given in Table 2.1 by a call-by-value big-step

evaluation relation e −→ v meaning that expression e evaluates to the value v; values

are a proper subset of expressions, namely: constants, (closed) lambda-abstractions

or raised exceptions.

v ::= c | λx. e | raise ε (2.2)
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c −→ c

λx. e −→ λx. e

raise ε −→ raise ε

e1 −→ raise ε

(e1 e2) −→ raise ε

e1 −→ λx. e′ e2 −→ raise ε

(e1 e2) −→ raise ε

e1 −→ λx. e′ e2 −→ v2 e′[x 7→v2] −→ v

(e1 e2) −→ v
v2 6= raise ε

e0 −→ raise ε

if e0 then e1 else e2 −→ raise ε

e0 −→ true e1 −→ v1

if e0 then e1 else e2 −→ v1

e0 −→ false e2 −→ v2

if e0 then e1 else e2 −→ v2

e2 −→ raise ε e1 −→ v

handle ε as e1 in e2 −→ v

e2 −→ v

handle ε as e1 in e2 −→ v
v 6= raise ε

Table 2.1: Big-step semantics for exceptions.
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Γ ` c : τc

Γ ∪ {x : τ} ` x : τ

Γ ` raise ε : τ

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` (e1 e2) : τ

Γ ∪ {x : τ ′} ` e : τ

Γ ` λx. e : τ ′ → τ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` handle ε as e1 in e2 : τ

Table 2.2: Underlying type system rules.

We use the notation e[x 7→e′] to substitute a variable x for e′ in an expression e. It

will be the case that e′ is a closed expression (i.e. without free variables) whenever

we use substitutions so that we need not concern with the possibility of variable

capture.

The objective of the exception analysis is to approximate what exceptions (if

any) the evaluation of an expression may yield.

2.2.2 Underlying type system

The type and effect analysis will extend a standard type system with annotations.

This underlying type system includes types of integers, booleans and functions:

τ ::= int | bool | τ1 → τ2

The typing relation is presented as judgements Γ ` e : τ where Γ is a set of assump-

tions for free variables (i.e. pairs x : τ). We use τc for the type of a constant c (an

integer or boolean). The typing rules are presented in Table 2.2.
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2.2.3 Effects and annotated types

The key idea of type and effect systems is to annotate function types with an effect ϕ

that delimits side-effects that may be triggered during the evaluation of the function.

For the exception analysis, effects represent finite sets of exception tokens. We will,

however, define effects inductively to facilitate the subsequent presentations of effect

polymorphism and inference algorithms in Sections 2.2.7 and 2.2.8, respectively.

ϕ ::= ∅ | {ε} | ϕ1 ∪ ϕ2 (2.3)

Equality of effects is taken modulo axioms for commutativity, associativity and idem-

potency of ∪ and with null element ∅. We will also sometimes abuse notation and

write effects as finite sets {ε1, . . . , εn}.

The syntax of annotated types is

τ ::= int | bool | τ1
ϕ−→ τ2 (2.4)

where int and bool are the types of constants and τ1
ϕ−→ τ2 is the type of a function

that may raise exceptions only in ϕ. For example, the integer division operation

can be given the annotated type int
∅−→ int

{div0}−−−−→ int meaning that it might raise a

division-by-zero exception.1 By contrast, the addition operation can be given the

type int
∅−→ int

∅−→ int manifesting that it cannot raise exceptions.

2.2.4 Subeffecting and subtyping

Effects can be ordered by a subeffecting relation ⊆. Informally, ϕ ⊆ ϕ′ means that

ϕ can be safely approximated by ϕ′. For the simple example of exception analysis,

the subeffecting relation is just set-containment.

Subeffecting can be used to ensure that a type and effect system is a “conservative

extension” of the underlying type system, i.e. to be able to derive an analysis for any

expression that is typeable in the underlying type system. Consider, for example,

the expression

λy. if y > 0 then (λx. if x > 0 then raise pos else x)

else (λx. if x < 0 then raise neg else x)
(2.5)

The two x-abstractions may raise distinct exceptions and so admit different anno-

tated types:

(λx. if x > 0 then raise pos else x) : int
{pos}−−−→ int

(λx. if x < 0 then raise neg else x) : int
{neg}−−−→ int

1 Note that currying allows distinguishing the effects of partial and full applications: the former

cannot raise exceptions, while the later can.
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Without subeffecting expression (2.5) would not admit an effect annotated type even

though it is admits a type in the underlying type system. Subeffecting will allow us

to “enlarge” the effects of both abstractions to

(λx. if x > 0 then raise pos else x) : int
{neg, pos}−−−−−−→ int

(λx. if x < 0 then raise neg else x) : int
{neg, pos}−−−−−−→ int

and obtain the type

int
∅−→ int

{neg, pos}−−−−−−→ int

for the whole expression (2.5).

Since types are annotated with effects, subeffecting induces a subtyping relation

6 on annotated types. Informally, τ 6 τ ′ means that τ can be safely approximated

by τ ′. The subtyping relation is formally defined by rules (2.6):

τ 6 τ
τ ′1 6 τ1 τ2 6 τ

′
2 ϕ ⊆ ϕ′

τ1
ϕ−→ τ2 6 τ

′
1
ϕ′

−→ τ ′2

(2.6)

Note that subtyping is shape conformant (or structural) i.e. if τ 6 τ ′ then τ and

τ ′ have the same underlying type but possibly distinct annotations; this is unlike

more general kinds of subtyping that relate types with distinct constructors (e.g. a

relation such as int 6 float modelling coercion between numeric types).

Also note that the definition (2.6) is covariant on the right of the arrow but

contravariant on the left, i.e. the subtyping order is reversed in the function domain.

This is indeed the correct definition regardless of the precise semantics of side-effects;

the intuition for this is that A
ϕ−→ B is interpreted as an implication A =⇒ (B ∧ϕ)

and 6 as logical consequence.

Finally, we remark that subeffecting alone is sufficient to ensure that the excep-

tion analysis is a conservative extension of the underlying type system; this is be-

cause the only type annotations are effects, unlike more complex type-based analysis

(Amtoft et al. 1999, Reistad and Gifford 1994, Hughes and Pareto 1999). However,

adding subtyping can still be useful to improve precision: while subeffecting requires

enlarging effects at the point of definition, subtyping allows enlarging types at the

points of use, thus limiting any precision loss to specific contexts.

2.2.5 Type and effect rules

The type and effect analysis is formulated in Table 2.3 as a set of typing rules that

derive judgements with the form

Γ ` e : τ & ϕ
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Γ ` c : τc & ∅ (2.7)

Γ ∪ {x : τ} ` x : τ & ∅ (2.8)

Γ ` raise ε : τ & {ε} (2.9)

Γ ` e1 : bool & ϕ1 Γ ` e2 : τ & ϕ2 Γ ` e3 : τ & ϕ3

Γ ` if e1 then e2 else e3 : τ & ϕ1 ∪ ϕ2 ∪ ϕ3

(2.10)

Γ ` e1 : τ ′
ϕ0−→ τ & ϕ1 Γ ` e2 : τ ′ & ϕ2

Γ ` (e1 e2) : τ & ϕ0 ∪ ϕ1 ∪ ϕ2

(2.11)

Γ ∪ {x : τ ′} ` e : τ & ϕ

Γ ` λx. e : τ ′
ϕ−→ τ & ∅

(2.12)

Γ ` e1 : τ & ϕ1 Γ ` e2 : τ & ϕ2

Γ ` handle ε as e1 in e2 : τ & ϕ1 ∪ (ϕ2 \ {ε})
(2.13)

Γ ` e : τ & ϕ

Γ ` e : τ & ϕ′
if ϕ ⊆ ϕ′ (2.14)

Table 2.3: Type and effect rules for exception analysis.
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where Γ is a set of type assumptions for free identifiers, e is an expression, τ is

an annotated type and ϕ is the effect associated with e. We describe each rule

informally:

• Rules (2.7) and (2.8) specify the type and an empty effect ∅ for constants

and identifiers: under a call-by-value semantics evaluation of these expressions

cannot raise exceptions.

• Rule (2.9) specifies the most precise effect for an explicit raise, namely, the

singleton exception raised; note that the result type τ is arbitrary.

• Rule (2.10) overestimates the effect of a conditional as the union of the effects

of all sub-expressions.

• Rule (2.11) specifies the combination of effects for an application: the result

is a union of the effects ϕ1, ϕ2 for evaluating both sub-expressions plus the

“latent effect” ϕ0 for the function itself.

• Conversely, rule (2.12) transposes the effect ϕ of an expression e into the anno-

tation in the arrow type for the abstraction λx. e. The evaluation the lambda-

abstraction has an empty effect; this is because the effects of the function are

delayed until the point of application.

• Rule (2.13) specifies the type and effect of the handle construct: an exception

ε raised in e2 is caught and therefore the result effect masks it using an “effect-

difference” operation ϕ2 \ {ε} (the definition is straightforward and we omit

it). Note that exceptions other than ε raised in e2 or those raised by e1 are

propagated to the outer scope.

• Rule (2.14) allows subeffecting only; it would be possible to allow subtyping

as well (as in Nielson et al. 1999):

Γ ` e : τ & ϕ

Γ ` e : τ ′ & ϕ′
if τ 6 τ ′ and ϕ ⊆ ϕ′

We do not consider the extended rule here to avoid the treatment of subtyping

in the inference algorithm. In any case, subtyping would only improve preci-

sion; subeffecting alone is sufficient to ensure that the exception analysis is a

conservative extension of the underlying type system.

2.2.6 Semantic correctness

The correctness of the type and effect analysis can be formulated as a “subject

reduction” property: if a type and effect can is inferred for an expression, it is also

admissible for the result of evaluation.
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For the particular exception analysis, this is formulated in the following theorem.

Theorem 2.1 If ∅ ` e : τ & ϕ and e −→ v, then ∅ ` v : τ & ϕ.

In particular, if ∅ ` e : τ & ϕ and e −→ raise ε, then applying the above theorem we

obtain ∅ ` raise ε : τ & ϕ. By inspection of Table 2.3 we can see that the only type

rules that could be applied to raise are (2.9) and (2.14). We conclude that {ε} ⊆ ϕ,

i.e. the analysis obtains an upper-approximation of the exceptions raised.

The proof of Theorem 2.1 is by induction on the big-step reduction e −→ v

together with a standard “substitution lemma” to allow replacing variables with

expressions of the correct type. We omit the proof which is similar to the one

presented in Nielson et al. (1999, pages 295–297).

2.2.7 Type and effect polymorphism

For simplicity the language and type rules considered so far did not include poly-

morphic definitions. We will now add let-bound polymorphism by extending terms

with an expression let x = e1 in e2 and a type rule that allows quantified types for x

in e2. Moreover, it is possible to use polymorphism to obtain a more precise analysis

by quantifying over effects as well as types. The extended syntax of terms and types

is

e ::= · · · | let x = e1 in e2

ϕ ::= β | ∅ | {ε} | ϕ1 ∪ ϕ2

τ ::= α | int | bool | τ1
ϕ−→ τ2

σ ::= τ | ∀γ. σ

γ ::= α | β

α ::= a | b | c | . . .

β ::= ′0 | ′1 | ′2 | . . .

where α are type variables, β are effect variables and σ are quantified types (i.e. type

schemes).

Table 2.4 lists the new type rules for the let-expression 2.15 and for introduction

and elimination of type quantifiers (2.16), (2.17), (2.18); the rules of Table 2.3 remain

unchanged.
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Γ ` e1 : σ1 & ϕ1 Γ ∪ {x : σ1} ` e2 : τ2 & ϕ2

Γ ` let x = e1 in e2 : τ2 & ϕ1 ∪ ϕ2

(2.15)

Γ ` e : σ & ϕ

Γ ` e : ∀γ. σ & ϕ
if γ does not occur free in Γ and ϕ (2.16)

Γ ` e : ∀α. σ & ϕ

Γ ` e : σ[α 7→ τ ′] & ϕ
(2.17)

Γ ` e : ∀β. σ & ϕ

Γ ` e : σ[β 7→ ϕ′] & ϕ
(2.18)

Table 2.4: Extensions for type and effect polymorphism.

Example 2.2 Consider a program that starts with the definition of a higher-order

composition function,

let compose = λf. λg. λx. f (g x) in e

where the expression e is the remaining part of the program. Using type and effect

polymorphism, we can derive a quantified type for compose

∀a∀b∀c ∀′0∀′1. (b
′0−→ c) ∅−→ (a

′1−→ b) ∅−→ a
′0∪′1−−−→ c

which specifies the “most general” annotated type with instances such as

(int
∅−→ int) ∅−→ (int

∅−→ int) ∅−→ int
∅−→ int

and

(int
{neg}−−−→ bool) ∅−→ (int

{pos}−−−→ int) ∅−→ int
{neg, neg}−−−−−−→ bool .

Note that with type but not effect polymorphism we would only be able to derive

a type for compose annotated with the effects of all uses; this would lead to an

over-estimation where each use shares the effects of all others.

By contrast, quantification on effects allows the analysis of polymorphic functions

to be polyvariant : each application is given a range of effects specific to its arguments;

this is particularly important for generic functions such as higher-order combinators

that are typically used in very different contexts.

Note also that effect polymorphism allows expressing the analysis of compose

without advance knowledge of its uses. This means that the analysis is compositional :

it does require that the whole program be present and can be applied to separately-

compiled modules or libraries. �
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We remark that the addition of polymorphism to the exception analysis is unchar-

acteristically simple. In general, the combination of polymorphism and imperative

side-effects (e.g. references) requires restrictions on the use of the generalisation rule

to retain soundness of type inference (Tofte 1988, Wright 1995).

2.2.8 Inference algorithms

Tables 2.3 and 2.4 present the type and effect analysis as proof systems that require

guessing suitable types for sub-expressions; to obtain an automatic analysis we need

an algorithm for type and effect reconstruction.

A first problem is the presence of non-structural type rules such as those for

subeffecting (2.14), subtyping, generalisation (2.16) and instantiation (2.17), (2.18):

these rules can occur in arbitrary points of a derivation and therefore some “canoni-

cal” choice has to be made; this is usually done by establishing a proof normalisation

result, i.e. that uses of non-structural rules can be restricted to specific syntax points

without incurring a loss of typeability.

Let-bound polymorphism is a suitable choice for normalising the uses of generali-

sation and instantiation: generalise all suitable type and effect variables of let-bound

identifiers2 and instantiate all quantified variables just after the use of a variable.

Subeffecting can be normalised by allowing over-approximation of effects in all rules,

i.e. by adding an arbitrary effect . . .∪ϕ′ to the conclusions of (2.7), (2.8), (2.9) and

(2.12).

Type inference for type and effect systems with subeffecting but not subtyping

can be implemented as an extension of the well-known algorithm W of Damas (1985).

The key insight is to restrict types to the subset of simple types τ̂ whose annotations

must be variables:

τ̂ ::= α | int | bool | τ̂1
β−→ τ̂2

To allow expressing complex effects (i.e. non-variables) the algorithm collects sepa-

rate lower-bound constraints C over effect variables:

C ::= ∅ | {β ⊇ ϕ} | C1 ∪ C2

ϕ ::= ∅ | β | {ε} | ϕ1 ∪ ϕ2

The reason for restricting the algorithm to simple types is that these form a free

algebra in which equality constraints can be solved by first-order unification (Robin-

son 1971) just as in ordinary Damas-Milner type inference. By contrast, the algebra
2That is, those that do not occur free in the type assumption or effect.
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U(int, int) = id

U(bool, bool) = id

U(τ̂1
β−→ τ̂2, τ̂

′
1
β′

−→ τ̂ ′2) = let θ0 = [β 7→β′]

θ1 = U(θ0τ̂1, θ0τ̂
′
1)

θ2 = U(θ1θ0τ̂2, θ1θ0τ̂
′
2)

in θ2 ◦ θ1 ◦ θ0

U(α, τ̂) = U(τ̂ , α) =

{
[α 7→ τ̂ ] if α does not occur in τ̂

fails otherwise

U(τ̂ , τ̂ ′) fails in all other cases

Table 2.5: Unification of simple types.

of effects is non-free (e.g. ∪ is associative, commutative and has a empty element ∅).
By segregating effects to separate constraints, it becomes possible to use the simple

unification to solve type equalities and deal with the non-free algebra of effects in a

separate constraint solver.

Table 2.6 presents an excerpt of the reconstruction algorithm as judgements

Γ̂ `RA e : (τ̂ , ϕ, C, θ)

where Γ̂ is a set of (simple) type assumptions, e is an expression and the output is

a 4-tuple of: a simple type τ̂ , an effect ϕ, a set of lower-bound constraints C and

a substitution θ. For simplicity, we include only the rules for constants, abstrac-

tion and application; the omitted cases (conditionals and exception handling) are

straightforward but tedious.

The main difference between the proof systems of Table 2.3 and Table 2.6 is

that the latter does not require guessing types of sub-expressions; instead, it uses

“fresh” variables for both types and effects and uses unification to impose equality

constraints between (simple) types.

The unification algorithm U in Table 2.5 takes two simple types τ̂ , τ̂ ′ and yields

the “smallest” substitution θ such that θτ̂ ≡ θτ̂ ′ (or fails, if no such substitution

exists). Note that substitutions bind both type and effect variables and therefore

are applied to types, effects and constraints.

Each rule of Table 2.6 is applicable to a single expression syntax node; thus,

the rules can be read as an algorithm for reconstructing the type and effect of an
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Γ̂ `RA c : (τc, ∅, ∅, id)

Γ̂ ∪ {x : τ̂} `RA x : (τ̂ , ∅, ∅, id)

Γ̂ `RA raise ε : (α, {ε}, ∅, id)

Γ̂ ∪ {x : α} `RA e : (τ̂ , ϕ, C, θ)

Γ̂ `RA λx. e : (θα
β−→ τ̂ , ∅, {β ⊇ ϕ} ∪ C, θ)

α, β are fresh variables

Γ̂ `RA e1 : (τ̂1, ϕ1, C1, θ1) θ1Γ̂ `RA e2 : (τ̂2, ϕ2, C2, θ2)

θ3 = U(τ̂2
β−→ α, θ2τ̂1)

Γ̂ `RA (e1 e2) : (θ3α, θ3θ2ϕ1 ∪ θ3ϕ2 ∪ {θ3β}, θ3θ2C1 ∪ θ3C2, θ3 ◦ θ2 ◦ θ1)

Table 2.6: Algorithmic typing judgements for exception analysis (excerpt).

expression.

Extending the inference algorithm with let-bound polymorphism is straightfor-

ward: quantification of variables is handled at the let and instantiation is handled at

the use of variables by introducing fresh type and effect variables. The type and effect

system for region inference of Talpin and Jouvelot (1992) combines polymorphism

and effects (but not subtyping).

Type reconstruction algorithms for subtyping usually require extending the proof

system with explicit type inequality constraints (Mitchell 1984, Fuh and Mishra

1988); this is needed to obtain syntactic completeness, i.e. an algorithm that com-

putes a principal solution from which any valid typing can be derived. This approach

is followed in Nielson et al. (1996a,b) although completeness of the algorithm is left

as an open problem. For shape conformant subtyping typical of type and effect sys-

tems it is possible to employ a simpler two-stage approach: first the underlying types

are inferred and then the subtyping inequalities are translated to constraints on the

annotations (Reistad and Gifford 1994); such an algorithm will not be complete, i.e.

it may compute a type and effect that is not minimal.

2.2.9 Concluding remarks

The type and effect discipline has some strengths compared to the other main ap-

proaches for program analysis (e.g. based on data-flow or abstract interpretation): it

deals naturally with higher-order functions by means of annotations on arrow types;
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it allows separate analysis of modules by communicating information via extended

type signatures; the latter also provide a natural mechanism for reporting the results

of analysis to the user.

Type and effect systems do not naturally fit languages with non-strict semantics,

e.g. lazy evaluation; this can be witnessed in the type rule (2.11) for application:

Γ ` e1 : τ ′
ϕ0−→ τ & ϕ1 Γ ` e2 : τ ′ & ϕ2

Γ ` (e1 e2) : τ & ϕ0 ∪ ϕ1 ∪ ϕ2

The effect ϕ0 ∪ ϕ1 ∪ ϕ2 of the application subsumes the effect ϕ2 of the argument,

thus modelling a strict application.

Effect systems where initially proposed to address the problems of combining

ML-style polymorphism with implicit side-effects. But implicit effects are not useful

in a non-strict language because the order of evaluation is dependent on demand.

In lazy functional languages the sequentiality of effects must be controlled explicitly,

e.g. using monads (Wadler 1993, Benton et al. 2000).

However, the monadic and effect-system approaches are not completely apart:

Wadler (1998a) has shown that monads can be parameterised by effects and that the

inference rules and algorithms of type and effect systems carry over to the monadic

translation.

2.3 Abstract interpretation

Abstract interpretation (Cousot and Cousot 1977, 1992a) is a framework for program

analysis based on approximating computations on concrete values by computations

on abstract properties of values. The key idea is to approximate the concrete do-

main of values by a more coarse domain of abstract properties and lift the concrete

operations to sound abstract approximations. The static analysis is constructed by

interpreting the program in the non-standard abstract domain.

2.3.1 Concrete and abstract domains

The theory of abstract interpretation is concerned with establishing sound approx-

imations independently of the syntactical characteristics of the programming lan-

guage (or, more generally, model of computation). It is therefore usual to start by

defining sets P\ of concrete properties and P] of abstract properties.

The concrete properties are derived from some semantic description of the lan-

guage (e.g. they can be sets of values, states or given by a “collecting” semantics);
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the requirement for P\ is that is a complete proof method for the intended proper-

ties under analysis; therefore elements of P\ are usually not machine representable.

Conversely, the abstract properties P] will typically be both finitely representable

and computable.

The sets of concrete and abstract properties are then instrumented with partial

orders representing the relative precision of descriptions; a common scenario is to

consider properties to be lattices (P, v, ⊥, >, t, u). The convention is that preci-

sion is lost when moving upwards in the lattice: if p, p′ ∈ P satisfy p v p′ then any

value described by p is also described by p′, i.e. p entails p′. The bottom element ⊥
represents the most precise property (i.e. divergent or non-reachable computations);

the top element > represent the least precise property (absence of information).

Note that it is possible for properties to be incomparable, i.e. when neither p v p′

nor p′ v p holds.

2.3.2 Correspondence between concrete and abstract proper-

ties

The correspondence between concrete and abstract properties c ∈ P\ and a ∈ P]

can be established in many ways; one of the most common scenarios is to require the

existence of two monotone functions α : P\ → P] and γ : P] → P\ called abstraction

and concretisation, respectively. Informally, α(c) should be the “smallest” abstract

representative of a concrete property c; dually, γ(a) should be the “largest” concrete

property described by an abstraction a.

The classical Galois connection framework requires that the abstraction and con-

cretisation functions satisfy (2.19) and (2.20):

∀c ∈ P\ c v\ γ(α(c)) (2.19)

∀a ∈ P] α(γ(a)) v] a (2.20)

Condition (2.19) states that we may loose precision moving from concrete to abstract

lattice and back again (though we do not loose safety); condition (2.20) states that

we do not loose precision in the inverse direction.

In the presence of a Galois connection we can state the soundness relation between

a concrete and abstract property using either the concrete or abstract orders. More

precisely, a ∈ P] is a sound approximation of c ∈ P\ if either (2.21) or (2.22) holds:

c v\ γ(a) (2.21)

α(c) v] a (2.22)
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However, we shall consider the slightly more general setting where not every concrete

value has a “best” abstraction, e.g. when the domain of abstract properties is an

incomplete lattice (Cousot and Halbwachs 1978, Cousot and Cousot 1992b). In

that situation we can do without the abstraction function and define the soundness

relation using condition (2.21).

2.3.3 Approximation of fixed points

We now introduce a further assumption that the lattice P\ of concrete properties

is complete so that we can define the invariant properties of recursive or iterative

computations as fixed points.

Assume then that the semantics of a “basic block” of computation (e.g. a state

transition or the body of a loop or recursive computation) is given by a continuous

function f : P\ → P\ on concrete properties. The semantics of an iterative compu-

tation can then be obtained as the limit of an ascending chain of concrete iterates

{(cn)n∈N}:
c0

def= ⊥\ cn+1
def= f(cn) (2.23)

By completeness of P\ the limit
⊔
{(cn)n∈N} exists; by continuity of f we have⊔

{(cn)n∈N} =
⊔
n≥0 f

n(⊥\) = fix (f).

It will usually be the case that the least fixed point fix (f) is incomputable and

so we are interested in obtaining a computable approximation using a monotone ab-

stract semantics function f ] : P] → P] describing a transition in abstract properties.

Note that the requirement for monotonicity is quite natural for program analysis:

it merely amounts to saying that f ] cannot yield more precise results from less pre-

cise initial approximations. Note also that we do not assume that the lattice P] is

complete nor that f ] is continuous.

The soundness relation between f and f ] can specified using a Galois connection,

i.e. abstraction and concretisation functions. In that case f ] is completely determined

by f , α and γ:

f ] = α ◦ f ◦ γ (2.24)

Informally, condition (2.24) says that computing with f ] should yield the same result

as first using γ to project into the concrete domain, computing with f and then using

α to get back to the abstract domain.

In the absence of a Galois connection, it is possible to employ the concretisation

function alone to specify the soundness relation using (2.21) in a pointwise manner:

∀a ∈ P] f(γ(a)) v\ γ(f ](a)) (2.25)
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Condition (2.25) says that computing with f ] and then projecting into the concrete

domain must yield a upper-approximation of first projecting into the concrete domain

and then computing with f .

Consider now the sequence of abstract iterates {(an)n∈N} generated by f ]:

a0
def= ⊥] an+1

def= f ](an) (2.26)

It is immediate that {(an)n∈N} is an ascending chain in P] by the monotonicity of

f ]. In the simple situation where the abstract lattice of properties P] is finite the

iteration (2.26) will converge to the least fixed point in a finite number of iterations.

However, this is not the case for lattices that capture numerical properties, e.g.

the lattices of integer intervals or convex polyhedra (Cousot and Halbwachs 1978).

If the abstract lattice is incomplete or does not satisfy the finite ascending chain

condition (see Appendix A.1.8) then the limit of (2.26) might not exist or the iter-

ation might not converge finitely; in either case the abstract iteration does not give

an effective computational method for obtaining a sound abstraction.

The solution is to replace (2.26) by another iteration that is an upper bound of

the original and does stabilise in a finite number of steps; this can be done using a

widening operator.

Widening operators

When the lattice of abstract values does not satisfy the ascending chain condition,

we need some heuristic for extrapolating fixed point iterations. This is designated a

widening operator.3

Definition 2.3 A total function ∇ : P × P → P on a partially ordered set (P, v)

is a widening operator if and only if:

1. For all x, y ∈ P we have x v x∇y and y v x∇y;

2. If for all n, xn ∈ P and xn v xn+1, then the sequence yn ∈ P defined by

y0
def= x0 yn+1

def= yn∇xn+1

eventually stabilises, i.e. there exists k ≥ 0 such that for all n, n ≥ k implies

yn = yk.

3There is some flexibility in the definition of widening operators; we use the formulation of (Niel-

son et al. 1999).
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The first condition of this definition requires that ∇ is an upper bound operator

(though not necessarily the least upper bound); the second condition requires that

∇ transforms ascending iterations into finitely stabilising iterations.

Assume we have a widening operator ∇ for the lattice of abstract properties P];
then the following iteration

a0 = ⊥]

an+1 = an if f ](an) v] an
an+1 = an∇f ](an) otherwise

(2.27)

eventually stabilises (Nielson et al. 1999, pages 227–228). Therefore, we can com-

pute successive iterates a0, a1, . . . until the condition f ](ak) v] ak is satisfied; by

the properties of the widening, this is guaranteed to happen in a finite number of

iterations; then

f ](ak) v] ak by the termination condition

=⇒ γ(f ](ak)) v\ γ(ak) by monotonicity of γ

=⇒ f(γ(ak)) v\ γ(ak) by hypothesis (2.25)

=⇒ fix (f) v\ γ(ak) by the fixed point theorem A.1

The last line says that the abstract property ak obtained from (2.27) is a sound

approximation of fix (f) as required.

2.3.4 Abstract interpretation of numerical properties

Several applications of analysis and verification require approximating the dynamic

values of program variables, e.g. the elimination of array bounds check in an opti-

mising compiler. It is sometimes desirable to approximate not just individual values,

but also relations between them, e.g. the input-output relation between list lengths

of the size analysis example in Chapter 1.

In general, such analyses construct finite representations of (possibly infinite)

sets of vectors in an n-dimensional space; each variable or parameter of the analysed

program is associated with one particular dimension. Thus, the concrete domain for

numerical relations between n variables is ℘(Zn).

It is immediate that this domain is not machine representable, so we will be inter-

ested in computable sound approximations (i.e. upper bounds in the set containment

order). Two of the earliest but still most relevant abstract domains for this purpose

are the intervals of integers (Cousot and Cousot 1976) and convex polyhedra (Cousot

and Halbwachs 1978). Unlike elements of ℘(Zn), both intervals and polyhedra are

machine representable and support a rich algebra of computable operations.
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2.3.5 Lattice of intervals

We start by a simple case, namely, approximating the range of values of a single

integer variable. A concrete element is then X ∈ ℘(Z), that is, a set X ⊆ Z of

integer values. To approximate this we can use an interval that contains X. This

can be represented by a pair [l, r] of bounds, which are either integers, −∞ or +∞;

a special symbol ⊥ represents the empty interval. Formally, we define the integer

intervals by

Interval = {⊥} ∪ { [l, r] : l ∈ Z ∪ {−∞}, r ∈ Z ∪ {+∞}, l ≤ r }

where the order on the integers is extended to −∞ and +∞ by −∞ ≤ x, x ≤ +∞
and −∞ ≤ +∞ for all x ∈ Z.

The partial order v of interval containment is defined by

int1 v int2
def⇐⇒ inf int2 ≤ inf int1 ∧ sup int1 ≤ sup int2

where
inf ⊥ = +∞ sup⊥ = −∞

inf [l, r] = l sup [l, r] = r .

Then (Interval, v, ⊥, [−∞, +∞], t, u) is a complete lattice (Nielson et al. 1999,

pages 221–222), where the join t and meet u are defined by

[l, r] t [l′, r′] def= [min(l, l′), max(r, r′)]

⊥ t int def= int t ⊥ def= int

[l, r] u [l′, r′] def=

{
[max(l, l′), min(r, r′)] , if max(l, l′) ≤ min(r, r′)

⊥ otherwise

⊥ u int def= int u ⊥ def= ⊥

and min and max extend to −∞ and +∞ in the natural way.

Operations on intervals

The best approximation of a non-empty set X ⊆ Z of integers is the interval

[inf X, supX]; dually, an interval [l, r] represents the set X = {x ∈ Z : l ≤ x ≤ r};
the interval ⊥ represents the empty set. More generally, we define the abstraction

and concretisation functions as follows:

α : ℘(Z)→ Interval

α(∅) def= ⊥
α(X) def= [inf X, supX] (X 6= ∅)

γ : Interval→ ℘(Z)

γ(⊥) def= ∅
γ([l, r]) def= {x ∈ Z : l ≤ x ≤ r}
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It is straightforward to verify that (α, γ) form a Galois connection. This means we

can “lift” operations from integer to intervals in a pointwise-manner; for example,

the addition operation can be approximated by:

⊥+ int = int +⊥ = ⊥

[l, r] + [l′, r′] = [l + l′, r + r′]

Similar approximations can be derived for other arithmetic operations.

Widening operators for intervals

We are now almost in condition to use the lattice of interval to approximate ranges

of program variables. However, because the lattice of intervals has infinite height,

we have no termination guarantee for iterative approximation of fixed points. This

would prevent the applicability of abstract interpretation to iterative or recursive

programs. Fortunately, we can resort to the general method of Section 2.3.3 for

ensuring finite convergence of iterations, namely, employing a widening operator.

Widening operators for intervals go back to one of the first publications on ab-

stract interpretation; the widening operator proposed in Cousot and Cousot (1976)

simply extrapolates bounds that are not stable to +∞ or −∞. The formal definition

is as follows:

⊥∇int def= int∇⊥ def= int

[z1, z2]∇[z′1, z
′
2] def= [l, r]

where l =

{
z1 if z1 ≤ z′1
−∞ otherwise

r =

{
z2 if z′2 ≤ z2

+∞ otherwise

Example 2.4 Consider the simple imperative program with assignments and an

input instruction that yields a boolean result:

i := 0; c := true

while c do

i := i+ 2

read(c)

(2.28)

We wish to approximate the values of the variable i inside the loop (2.28) using

abstract interpretation on the lattice of intervals. For this simple example, it is easy

to verify that the function specifying the concrete transition associated with one
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iteration of the loop is

f : ℘(Z)→ ℘(Z)

f(X) = {0} ∪ {x+ 2 : x ∈ X}

and the concrete semantics is fix (f) =
⋃
n≥0 f

n(∅) = {0, 2, 4, . . .} = 2N, i.e. the

variable i ranges over positive even numbers.

We can now specify the abstract transition function using intervals rather than

sets:

f ] : Interval→ Interval

f ](int) = [0, 0] t (int + [2, 2])

where + is the addition of intervals. Computing the sequence of abstract iterates,

defined by a0 = ⊥ and an+1 = f ](an), yeilds:

a0 = ⊥

a1 = f ](a0) = [0, 0] + (⊥+ [2, 2]) = [0, 0]

a2 = f ](a1) = [0, 0] + ([0, 0] + [2, 2]) = [0, 2]

a3 = f ](a2) = [0, 0] + ([0, 2] + [2, 2]) = [0, 4]

...

It should be apparent that the limit
⊔
n≥0 an =

⊔
{⊥, [0, 0], [0, 2], [0, 4] . . .} =

[0, +∞] will not be obtained in a finite number of iterations.

To ensure finite convergence, we now consider the abstract iteration with widen-

ing, defined by a′0
def= ⊥ and a′n+1

def= a′n∇f ](a′n):

a′0 = ⊥

a′1 = ⊥∇f ](a′0) = ⊥∇[0, 0] = [0, 0]

a′2 = [0, 0]∇f ](a′1) = [0, 0]∇[0, 2] = [0, +∞]

a′3 = [0, 0]∇f ](a′2) = [0, 0]∇[0, +∞] = [0, +∞]

This sequence stabilises after the third iteration because a′3 = f ](a′2) = [0, +∞] =

a′2; the computed limit
⊔
n≥0 a

′
n = a′2 = [0, +∞] is a sound approximation to the

range of values of i.

Note that this example is atypical because the limits of iterations with and with-

out widening are equal. In general, the use of widening may cause overshooting

the limit of the abstract iteration; in any case, it still yields a safe upper-bound

approximation.
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2.3.6 Lattice of convex polyhedra

An interval approximates a single set of integers; to obtain an analysis for multiple

components (e.g. ranges of two or more variables) it is possible to use products

of intervals, one for each component; this kind of combination is designated an

independent attribute combination because it does capture any interplay between

components (Nielson et al. 1999, pages 249–250), e.g. it does not capture relations

between variables, as the following example illustrates.

Example 2.5 Consider the following imperative program:

i := 0; j := 1; c := true

while c do

i := i+ 1

j := j + 2

read(c)

The abstract interpretation of the ranges of i and j using a product of two interval

Interval × Interval will obtain the ranges i ∈ [0, +∞] and j ∈ [1, +∞] but no

relation between i and j. �

To obtain a relational analysis, it is necessary to consider a more expressive

abstract domain. One of the most successful approaches for this purpose is to use

finite systems of linear inequalities; such systems represent (possibly infinite) convex

polyhedral regions in an n-dimensional vector space, or simply, convex polyhedra.

Although the use of convex polyhedra in program analysis dates back to one of

the earliest papers on abstract interpretation (Cousot and Halbwachs 1978), this

domain is still the basis for many state-of-art verification and analysis tools in use

today. Moreover, there has recently been a renewed interest in the use of convex

polyhedra for program analysis motivated by both theoretical extensions (Bagnara,

Hill and Zaffanella 2002, Bagnara, Hill, Ricci and Zaffanella 2003) and the availability

of practical implementations, e.g. the Parma Polyhedra Library (Bagnara, Ricci,

Zaffanella and Hill 2002).

A closed convex polyhedron, or simply a polyhedron, is the solution-set P ⊆ Rn

of a system of linear inequations (Schrijver 1986)

P = {x ∈ Rn : Ax ≤ b } (2.29)

where A ∈ Qm×n is a matrix of coefficients and b ∈ Qm is a vector of constants.4

The set CPn of convex polyhedra of dimension n ordered by ⊆ is a lattice:
4 Note that we intentionally restrict coefficients to rational rather than real numbers to ensure

that these are machine representable.
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• the intersection P ∩Q of two polyhedra P, Q is a polyhedron (the conjunction

of the two systems of constraints);

• the union of two convex polyhedra is not necessarily convex, so the least upper

bound of P, Q is not P ∪Q; instead it is the convex hull P ]Q, i.e. the smallest

polyhedron that contains both P and Q. In general P ∪Q ⊆ P ]Q (and the

inclusion is strict when P ∪Q is not a convex set).

• the empty set ∅ and the universe Rn are, respectively, the bottom and top

elements of CPn.

We remark that CPn is not a complete lattice: for example, the sphere is not a

polyhedron but can be obtained as the limit of an infinite sequence of polyhedra.

The dual description method

We say that (A, b) of equation (2.29) is a system of constraints for P . A polyhedron

can alternatively be characterised by a system of generators (V,R) as the sum of a

convex combination of vertices V = {vi ∈ Qn} with a positive combination of rays

R = {rj ∈ Qn},

P =


|V |∑
i=1

λivi +
|R|∑
j=1

µjrj : λi ≥ 0, µj ≥ 0,
|V |∑
i=1

λi = 1

 (2.30)

The two descriptions (2.29) and (2.30) are dual of each other in the sense that

either one represents the polyhedron and that a single algorithm can switch between

representations (Motzkin et al. 1953, Chernikova 1968, Verge 1992).

The dual description method represents polyhedra both by constraints and gen-

erators. This is justified because some operations are more efficient on the con-

straints while others are more efficient on the generators; others still benefit from

both representations. Another important property is that the duality allows keeping

the representations minimal, i.e. free of redundant constraints or generators. Effi-

cient implementations of polyhedra computations are based on the dual description

method, taking special care to avoid unnecessary conversions (Wilde 1993, Bagnara

et al. 2006).

Operations on polyhedra

We briefly describe the more common computations on polyhedra, mainly to fix

notation. For a thorough description we point the reader to (Bagnara et al. 2006).

Let P and Q be two polyhedra of n dimensions x1, . . . , xn. The following operations

are all computationally effective:
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Containment test: P ⊆ Q holds if and only if the system of generators of P

satisfies the constraints of Q.

Intersection: the system of constraints for P ∩ Q is obtained as the union of the

constraints for P with those for Q.

Convex hull: the system of generators of P ] Q is obtained as the union of the

generators of P with those of Q.

Variable elimination: ELIM(xi, P ) is the polyhedron resultant from eliminating

the dimension xi from P by Fourier elimination (Chandru 1993); the system

generators of ELIM(xi, P ) is obtained by adding two rays {xi,−xi} to the

system of generators of P .

Widening: if P ⊆ Q then P∇Q is the widening of P and Q. The standard widening

for convex polyhedra is due to Halbwachs (1979); more recently, Bagnara, Hill,

Ricci and Zaffanella (2003) proposed a more precise widening operator.

Widening operators for convex polyhedra

Since the lattice of convex polyhedra is incomplete, we need to employ a widening

operator to guarantee termination of fixed point approximation (see Section 2.3.3).

The first widening operator for convex polyhedra was proposed by Cousot and

Halbwachs (1978) for synthesising loop invariants of imperative programs and later

formalised by Halbwachs (1979) in his PhD thesis. Informally, P∇Q is the set of

constraints of P that are still satisfied by Q. This is an upper bound operator

because P∇Q is defined by a subset of the constraints of both polyhedra. It is a

widening because the system of constraints of P is finite, therefore it is not possible

to keep removing constraints indefinitely.5

Example 2.6 Consider again the imperative program of Example 2.5:

i := 0; j := 1; c := true

while c do

i := i+ 1

j := j + 2

read(c)

5 The formal definition is slightly more elaborate to make the widening well-defined for equiv-

alent but syntactically-distinct constraint systems; see (Halbwachs 1979, Bagnara, Hill, Ricci and

Zaffanella 2003) for the details.
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We will perform abstract interpretation using CP2 to determine loop invariants as

linear inequalities in two dimensions. For readability, we represent elements of CP2

by systems of linear inequations using the same variable names i, j as in the program.

The abstract transition function should approximate the effect of one loop iter-

ation: given a constraint system X describing (some) reachable values of i, j, then

f ](X) should describe the reachable values after one more iteration. It is possible

to reach the loop body from either the begining of the program or by remaining in

the loop after the test condition; hence, we can define f ](X) using the least upper

bound of the two computational paths:

f ] : CP2 → CP2

f ](X) = {i = 0, j = 1} ] {(i+ 1, j + 2) : (i, j) ∈ X}

The constraints {i = 0, j = 1} in the definition above encode the exact values of the

variables at the begining of the program; the constraints {(i+1, j+2)} : (i, j) ∈ X}
encode the effects of the assignments done in the loop body.6

We can now express an approximation of reachable values as the limit of sucessive

iterates a0 = ∅ and an+1 = f ](an). The first iterates are as follows:

a0 = ∅

a1 = f ](a0) = {i = 0, j = 1} ] ∅ = {i = 0, j = 1}

a2 = f ](a1) = {i = 0, j = 1} ] {i = 1, j = 3} = {0 ≤ i ≤ 1, j = 1 + 2i}

a3 = f ](a2) = {i = 0, j = 1} ] {1 ≤ i ≤ 2, j = 1 + 2i} = {0 ≤ i ≤ 2, j = 1 + 2i}

a4 = f ](a3) = {i = 0, j = 1} ] {1 ≤ i ≤ 3, j = 1 + 2i} = {0 ≤ i ≤ 3, j = 1 + 2i}
...

It is immediate that the sucessive iterates are strictly increasing and will not stabilise

in a finite number of steps.

As in the case of intervals, we can force finite convergence by employing a widen-

ing operator ∇. Here we employ Halbwachs’ widening after the second iterate:

a′3 = a2∇f ](a2) = {0 ≤ i ≤ 1, j = 1 + 2i}∇{0 ≤ i ≤ 2, j = 1 + 2i}

= {0 ≤ i, j = 1 + 2i}

The widening operator discarded a single unstable constraint i ≤ 1. We can now

easily verify that the a′3 is a sound loop invariant because f ](a′3) = {i = 0, j =

1} ] {1 ≤ i, j = 1 + 2i} = {0 ≤ i, j = 1 + 2i} = a′3, i.e. the iteration has stabilised.
6Note that this must be a linear constraint system when X is, because it is defined by a linear

translation of X.
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Although this is not always the case, note that we have obtained the exact limit⊎
n≥0 an of the iterates above.

In general, the iteration might not stabilise after a single application of the widen-

ing; the process must be repeated until a post fixed point is reached (this must

happen in a finite number of steps by the properties of the widening).

We obtain a system of two linear constraints 0 ≤ i, j = 1 + 2i. In particular, the

linear relation j = 1 + 2i between the two variables is much could not obtained by

the interval analysis of Example 2.5. Note also that we do not loose precision: the

lower bound for j is a consequence of the two infered linear constraints. �

Halbwachs’ widening has been used in most analysis tools employing convex

polyhedra and has received the designation of the standard widening for convex

polyhedra. However, this widening is sometimes too coarse, loosing many constraints

before stabilising.

Several techniques have been proposed in the abstract interpretation literature

to improve the precision of iteration with widening. One approach is simply to not

use the widening of the first k iterations, where k is some fixed small constant.

This is in fact what we did in Example 2.6: the widening was not applied until

the third iteration. Delaying the application of widening allows accumulating more

information during the first iterations; convergence is still ensured from the k-th

iteration onwards.

A more precise variant is the “widening with tokens” of Bagnara, Hill, Ricci and

Zaffanella (2003). The iteration starts with a fixed number of tokens; one token is

consumed each time the widening would cause a loss of precision and the exact least

upper bound is used instead; the standard widening is used when there are no tokens

left. The advantage of this technique is that the number of initial tokens specify the

delaying of actual rather than potential losses of precision.

A final approach is to choose a more precise widening operator; this is highly

dependent on the lattice of abstract properties and little can be said about how to

proceed in general. Halbwachs’ widening was the sole proposal for abstract interpre-

tation using convex polyhedra from its inset in the late 1970s for over 20 years. More

recently, Bagnara, Hill, Ricci and Zaffanella (2003) proposed a new widening oper-

ator for convex polyhedra which they proved to be no less precise than Halbwachs’

widening in the worst-case and more precise in some cases.



Chapter 3

Static analysis for time and

space costs

The problem of determining bounds for time or space usage of functional programs

has been extensively addressed in the literature using various approaches. In this

chapter we present a review of the most relevant work.

In order to highlight connections and present a clearer view of the field, we group

previous work into separate sections: automatic complexity analysis (Section 3.1),

type and effect systems for time (Section 3.2), sized types (Section 3.3), dependent

types (Section 3.4), amortised analysis (Section 3.5). Finally, we review indirectly

related work in Section 3.6.

3.1 Automatic complexity analysis

Early works in automatic cost analysis follow the methodology for hand analysis of

algorithms, e.g. the seminal textbook by Knuth (1973): first derive some recurrence

equations expressing the program cost (e.g. number of arithmetic or other primitive

operations) in terms of an input metric (e.g. data size) and then solve the recurrences

(perhaps using approximation) to obtain a closed equation.

The earliest work following this methodology is Wegbreit’s METRIC system (Weg-

breit 1975). METRIC derived complexity equations for list functions written in a

first-order subset of LISP with recursive procedures, but no side-effects or impera-

tive features. The system obtained metrics such as time, length or size as a 4-tuple

〈min, max, avg, var〉 of lower bound, upper bound, average and standard deviation;

the first two are best and worst-case bounds; the last two measures are derived under

43
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the assumption of statistical independence of dynamic tests. The performance mea-

sures are expressed symbolically as functions of input size or length and the costs of

primitive operations.

METRIC first transformed a recursive function into a step-counting version, i.e.

a function with the same domain and whose value is the cost metric (here “cost” can

be length, size or time, e.g. number of reduction steps). As an example, consider a

function appending two lists:1

APPEND(X,Y ) = if NULL(X) then Y

else CONS(CAR(X), APPEND(CDR(X), Y ))

The step counting function for APPEND under the time metric produced the sym-

bolic cost function

time(APPEND(X,Y )) = if NULL(X) then null + 2vref

else null + 4vref + cdr + car + cons+

time(APPEND(CDR(X), Y ))

where null, car, cdr and cons are symbolic constants for the costs for the primitive

list operations and vref is the cost for accessing a variable.

The system now projects the step-counting function into a recurrence equation

over the integers, using either a measure of the size (total number of nodes) or

length (number of nodes along the cdr -direction) of arguments. For this example,

the recursion involves only the cdr of the first argument, so METRIC chooses the

length measure and expresses

time(APPEND(X,Y )) = T (length(X))

T (0) = null + 2vref

T (n+ 1) = null + 4vref + cdr + car + cons + T (n)

The system then attempts to solve the recurrence equation to obtain a closed-form

expression. The solution obtained for this example is:

time(APPEND(X,Y )) =null + 2vref +

(null + 4vref + cdr + car + cons)× length(X)

Note that the closed cost equatiom expresses not just the asymptotic complexity

(append is linear on the length of the first argument) but also the constants terms

involved as a combination of the parameters null, vref, etc.
1 In this example we use LISP constructors names: CONS is the pair constructor; CAR and

CDR project the first and second element of a pair; NIL is a constant; and NULL tests equality to

the NIL constant.
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We remark also that this example is uncharacteristically simple: in general to

analyse a function under one measure, METRIC might have to perform sub-analysis

under other measures (e.g. length or size of sub-expressions). Solving recurrence

equations with more alternatives also requires more sophisticated techniques, e.g.

the use of generating functions.

METRIC was able to obtain closed cost equations for simple LISP programs, e.g.

list reverse, flattening, membership test and union. The analysis could also be used

to predict heap allocation by counting the number of cons instructions executed.

However, it could not be used to predict non-cumulative metrics such as stack depth

because of the assumption that costs are additive:

time(F (G(X))) = time(G(X)) + time(F (Y )) , where Y = G(X)

While the above holds for monotonically increasing resources such as time2 or (total)

heap allocation, it does not model the reuse of stack space. The combination of stack

costs should be (ignoring the overheads for function applications, and once again

assuming call-by-value reduction):

stack(F (G(X)) = max(stack(G(X)), stack(F (Y )) , where Y = G(X)

The stack cost for the composition is the maximum of the stack used for the sub-

expression and outer call. While in theory it suffices to synthesise recurrences with

maximums instead of sums, in practice such recurrences are much harder to solve

automatically because maximum is not an analytic function.

METRIC was also limited to list processing: the complexity bounds are derived

with respect to either the length or the size of S-expressions; the system chooses one

of the two measures using an heuristic based on the use of arguments in recursive

calls. There is no way to use specialised measures as would be desirable, e.g. for

user-defined data types.

Le Métayer’s ACE system also performed complexity analysis by deriving a re-

cursive step-counting function from each recursive function (Le Métayer 1988). How-

ever, a first departure from the work by Wegbreit is that the costs measure considered

is worst-case only and asymptotic; this means that individual primitive operations

are not accounted, only the number of recursive calls.

Second, unlike Wegbreit’s approach of projecting the cost function on the integers

and solving recurrence equations, ACE obtained closed-form solutions by a series of

meaning-preserving program transformations within a functional calculus (a subset
2But is accurate only under call-by-value reduction strategy; see (Wadler 1988) for a formalisa-

tion of the corresponding assumption for call-by-need strategy, i.e. lazy evaluation.
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of the FP language). The transformations are based on an algebra of applicative

program transformations together with McCarthy’s recursion induction principle:

two functions satisfying the same recurrence equation are equal.3

For example, the factorial function can be expressed in FP as follows:

fact = eq0→ “1”; ∗o[id, fact o sub1]

The definition is in point-free style: f → g;h is a conditional with test f and true and

false branches g and h; eq0 tests the argument for zero; id is the identity function;

o is function composition; “k” is the constant k-valued function; sub1 is the integer

predecessor function; [f1, . . . , fk] builds a sequence by applying fi to an argument;

∗ and + are arithmetic operators which operate on sequences of two values.

The step-counting function Cfact mimics the recursion structure of fact but adds

one unit of cost for each call and zero for constants and primitives:

Cfact =eq0→ +o[“0”, ”0”];

+ o[“0”, +o[“0” + o[“0”,+o[plus1 oCfact o sub1, “0”]]]]

To obtain a closed-form solution for the recursive Cfact, ACE employs a number of

program transformations expressed as rewrite rules. For example, using the rules

+o[“0”, f ] = +o[f ”0”] = f (i.e. zero is the neutral element for sum) the definition

of Cfact can be simplified to:

Cfact = eq0→ “0”; plus1 oCfact o sub1

Using the recursion induction principle, the above definition is matched against a

library to find

Cfact = id

and conclude that the complexity of factorial is linear in the argument value.

Le Métayer reports success in analysing numerical programs, sorting algorithms

and a parser. However, no indication is given as to the quality of results. Moreover,

the quality of results appear to be very sensitive to the set of rewrite rules provided:

the implementation is said to use over 1,000 rules of various kinds. The extent

to which these match specific programs or general programming patterns is not

discussed.

The system deals with time in a very abstract manner (since only function calls

are accounted) and not heap space or stack depth. The same limitations regarding

cumulative cost measure that apply to Wegbreit’s METRIC hold here. Asymptotic

3On the domain of the least solution of the recurrence.
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results would, in any case, be insufficient for bounding time or space in high integrity

systems because the lower order terms might dominate the actual worst-case.

Another severe limitation for domains where high integrity is required is that a

single incorrect rule in the database compromises the soundness of the results. This

is even more problematic if the user is allowed to extend the system with new axioms

and rules for specific programs.

Le Métayer points out that the complexity functions resulting from ACE can

sometimes be several lines long; such a result would be unintelligible for a human

reader and possibly unusable by a compiler. Finally, the ACE system is very tightly

coupled with a particular language: algorithms that are not naturally expressed in

FP are very difficult to analyse in ACE.

Rosendahl (1989) describes a semantic-based method for deriving the step-counting

version of recursive first-order functions. The main contribution is the use of abstract

interpretation to define a time-bound function whose inputs are partial representa-

tions of the original program inputs and whose output is an upper-bound on the

original program time. No attempt is made to obtain closed cost expressions.

Liu and Gomez (1998) have also presented an automatic time analysis for a

first-order subset of Lisp based on obtaining a time-bound function on partial rep-

resentation of inputs. Instead of trying to obtain closed-form solutions, they use the

time-bound function to compute upper bounds. For example, to obtain a bound for

sorting a list of n values, they symbolically execute the time-bound function with a

list of n “unknown” LISP atoms. Unnikrishnan, Stoller and Liu (2000) have applied

this technique to obtain bounds on stack and heap costs.

The limitation of this approach is that it does not yield a closed cost expression: if

the original function is recursive, so is the time-bound function. Moreover, symbolic

execution of the time-bound program with a partial input will not terminate if the

recursion involves an unknown term. To ensure termination the input must be of

fixed size (e.g. a list of 10 unknown values); the time-bound function then returns

the cost for that specific size. Thus, this approach is closer to profiling than static

analysis.

Furthermore, the time-bound function can be exponentially more expensive to

compute than the original program, since it has to execute both branches of condi-

tionals that depend on unknowns. This leads to performance problems with even

moderate size inputs: Unnikrishnan et al. report a running time exceeding 2 hours

to obtain upper bounds for merge sort of 30 elements and were unable to obtain

bounds for 1,000 elements.



48 CHAPTER 3. STATIC ANALYSIS FOR TIME AND SPACE COSTS

All works in complexity analysis described so far (Wegbreit 1975, Le Métayer

1988, Rosendahl 1989) assumed a cumulative measure of time cost. This is a very

coarse overestimate under lazy evaluation, since the arguments may be only partially

evaluated. The problem of compositional time analysis for lazy evaluation is that

the time cost for an expression depends on the context, i.e. the amount of the input

that is “needed” by each function.

Wadler (1988) proposed a formalism for time analysis for first-order lazy evalua-

tion using projection transformers to capture the “neediness” of each function. This

work presented a formalism for expressing the step-counting equations but not an

algorithm for approximating them.

Bjerner and Holmström (1989) also proposed a time analysis for first-order lazy

functional programs. This approach is based on an abstract representation of de-

mand in result values; they then perform a backwards demand analysis to find out

how much of the input is required to produce the required output. One limitation is

that the representation of a demand requires knowing in advance much information

about the output value.

In his PhD thesis, Sands (1990) developed several calculi for time analysis of

functional programs, including the treatment of higher-order functions and lazy

evaluation. His approach was to employ program transformations to derive costs

functions from the original program. To deal with higher-order function, Sands pro-

posed the use of cost-closures. Cost-closures are structures that pair each function

with its corresponding cost function. He also refined the approach of Wadler (1988)

by employing strictness information to obtain sufficient-time and necessary-time cost

equations for lazy functions.

All the above formalisms (Wadler 1988, Bjerner and Holmström 1989, Sands

1990) are intended to aid a human in reasoning about program costs, but are not

directly automatable for use in a compiler or verification tool. Moreover, the model

of time cost considered is asymptotic (e.g. number of non-primitive function calls)

and consequently not directly related to the implementation time or space costs.

3.2 Type and effect systems for time

Dornic, Jouvelot and Gifford (1992) presented a polymorphic “time system” for

deriving time costs for higher-order call-by-value functional language. This system is

an instance of a type and effect analysis where an underlying type system is extended

with “effects” that approximate some intentional property of evaluation (Jouvelot

and Gifford 1991, Talpin and Jouvelot 1992, 1994). In the time system, effects
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approximate the number of computation steps needed to reduce an expression to

normal form.

The starting point is the simply typed lambda-calculus with a strict (i.e. call-by-

value) semantics.4 A type judgement Γ ` e : τ , where Γ is a typing context, e is a

term and τ is a type, is augmented with an effect n:

Γ ` e : τ $ n (3.1)

The effect n is either a natural number representing an upper-bound on the number

of reduction steps for e or a distinguished element long representing a potentially un-

bounded reduction. Thus, the augmented judgement (3.1) reads: under assumptions

Γ, e has type τ and cost n.

As in other type and effect systems, functional types in Dornic’s time system are

annotated with a “latent effect” (designated latent cost in this system) that expresses

the cost of function evaluation. The latent cost mechanism allows capturing the cost

of application of higher-order functions quite naturally, as can be seen in the type

rule for application:

Γ ` e0 : τ ′ l−→ τ $ m Γ ` e1 : τ ′ $ n

Γ ` (e0 e1) : τ $ m+ n+ l + 1
(3.2)

The type rule expresses the cost of an application (e0 e1) as a sum of: the cost m of

reducing e0 to some lambda-abstraction λx. e′; the cost n of reducing the argument

e1 to a normal form v; the latent cost l of reducing the β-reduct [x 7→v] e′; and one

extra unit to account for the application itself.

The dual rule for lambda-abstraction transposes the actual cost of a function

body into a latent one:

Γ, x : τ ′ ` e : τ $ m

Γ ` (λx. e) : τ ′ m−→ τ $ 1
(3.3)

Rules (3.2) and (3.3) reflect the chosen cost model: each application, lambda-

abstraction and variable access cost one unit. Different choices could easily be

accommodated by choosing different constants in the type rules.

Using these rules we can derive a “timed” type for the higher-order term twice ≡

4 To simplify the presentation, we use the lambda-calculus rather than the CT language of (Dor-

nic et al. 1992).



50 CHAPTER 3. STATIC ANALYSIS FOR TIME AND SPACE COSTS

λf. λx. f (f x) as follows:

f : τ l−→ τ, x : τ ` x : τ $ 1 {hypothesis}

f : τ l−→ τ, x : τ ` f : τ l−→ τ $ 1 {hypothesis}

f : τ l−→ τ, x : τ ` (f x) : τ $ 3 + l {application, arithmetic}

f : τ l−→ τ, x : τ ` (f (f x)) : τ $ 5 + 2l {application, arithmetic}

f : τ l−→ τ ` λx. (f (f x)) : τ 5+2l−−−→ τ $ 1 {abstraction}

` λf. λx. (f (f x)) : (τ l−→ τ) 1−→ τ
5+2l−−−→ τ $ 1 {abstraction}

We can interpret the inferred type as follows: twice takes a function of type τ →
τ and cost l and yields a function of the same type and cost 5 + 2l; this latent

cost expresses the duplicate reduction of the argument function; the added constant

corresponds to the cost of three variable references and the two applications.

The full power of the time system is only obtained when the language is extended

with polymorphism. Dornic et al. introduce polymorphism via a “polymorphic

lambda”; we will do so using let-bound polymorphism. In an expression

let twice = λf. λx. f (f x) in . . .

the identifier twice can be given a type quantified over type and cost variables:

∀a.∀l. (a l−→ a) 1−→ a
5+2l−−−→ a

Note that the latent cost l is now a quantified variable; this means that the analysis

is parametric, i.e. distinct uses of twice in the program can be typed with different

costs. Moreover, it does not require the whole program: the quantified type of twice

captures all information needed for future uses, so it is possible to perform separate

analysis of libraries and modules.

However, the time system has some important limitations: first, recursive func-

tions are always assigned the unbounded cost long. This is because the cost of a

recursive function depends on the sizes of arguments which are not captured in the

time system. The absence of size information also severely limits the precision of

the analysis of higher-order functions, since the costs cannot depend on the sizes of

arguments.

Second, the type system does not allow subeffecting, i.e. subsuming a cost by a

larger one; this is needed, e.g. to be able to type a conditional with different costs

in each branch; the extension (adding a maximum function to the cost algebra) is

proposed as further work.
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Finally, Dornic et al. considered only checking timed types, i.e. all time informa-

tion must be prescribed as type annotations; the problem of reconstructing timed

types was address in the subsequent work by Reistad and Gifford (1994).

Reistad and Gifford extended the time system of Dornic et al. with annotations

representing sizes of naturals, lists and vector types and with an algorithm to re-

construct sizes and times based on algebraic reconstruction of effects (Jouvelot and

Gifford 1991). This system has been applied to aid dynamically scheduling in a

parallelising implementation of the µFX language.

The size annotations represent upper bounds on the dynamic sizes of values. For

example, the values of a type Nat n are the naturals less-than or equal to n. More

interestingly, annotations in function types describe size changes, e.g. the type for

the successor function is

succ : ∀n.Nat n
1−→ Nat (n+ 1)

assuming a cost of one unit for the operation. The algebra for sizes and costs includes

a value long to represent a potentially unbounded sizes, and operations of addition,

maximum and multiplication. This sized timed type system allows subsuming sizes:

for example, the typing rule for natural constants is

nat ≤ n

Γ ` nat : Nat n $ Cnum

where Cnum is cost associated with naturals. Thus, the natural 1 admits any type

Nat n for 1 ≤ n (including long). Without this flexibility a conditional expression

like “if . . . then 1 else 2” would not admit a type because Nat 1 6= Nat 2. The order-

ing relation ≤ on sizes induces a structural subtyping relation 6 on the annotated

types (Mitchell 1984).

Adding size information to types can also allow specifying more precise costs.

For example, the higher-order map function can be assigned the following type:

map : ∀{a, b, c, l}. (a c−→ b)× List a l
k0+l×(k1+c)−−−−−−−−→ List b l

Note that the type for map expresses not just that the result list has the same length

l as the input, but also the cost of map as a function of the argument cost c and

list length l.5 Such dependency was not possible in the time system of Dornic et al.

because of the absence of size information.

The main limitation of this work is the absence of a treatment of recursion. As in

the time system of Dornic et al. recursive functions can only be typed with a long

5 Constants k0 and k1 must be chosen to reflect the overheads associated with a particular

implementation.
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cost. To mitigate this, Reistad and Gifford use a fixed set of higher-order functions

(such as map above) to express primitive recursion schemes.

A minor limitation of the size semantics is that sizes of non-increasing functions

must be overestimated. For example, a subtraction operator on the naturals must

be given the type

sub : Nat n× Nat m
Csub−−−→ Nat n

because we only know that the second argument is at most m (in particular, it could

be zero). One solution to this problem would be to extend the size semantics to

include lower bounds as well as upper bounds, i.e. intervals.

Another limitation of the system of Reistad and Gifford is an overestimation

of sizes caused by insufficient polymorphism in higher-order functions. Consider

the following sized timed types6 for the higher-order function twice and the natural

successor:

twice : ∀a.∀b.∀l. 〈(a l−→ b) 1−→ a
5+2l−−−→ b, b 6 a〉

succ : ∀n.Nat n
1−→ Nat (n+ 1)

To type the application (twice succ) we must solve the subtyping constraints:

Nat n
1−→ Nat (n+ 1) 6 a l−→ b

b 6 a

Decomposing the subtyping constraints we get (note the contravariance on the left-

side of the arrow):

a 6 Nat n

Nat (n+ 1) 6 b

b 6 a

1 ≤ l

Since the subtyping is shape conformant, we can now substitute a ≡ Nat i and

b ≡ Nat j for some sizes variables i, j and obtain the size inequations i ≤ n ∧ n +

1 ≤ j ∧ 1 ≤ l ∧ j ≤ i. It is straightforward to check that the only solution is

n = i = j = long and 7 ≤ l; thus, the application must be typed as:

twice succ : Nat long
7−→ Nat long

6We present the type scheme for twice in a more general form than that of Reistad and Gifford

by allowing subtyping constraints in quantified types (Mitchell 1984, Fuh and Mishra 1988). This is

done in order to stress that the problem is due to insufficient polymorphism rather than insufficient

subtyping.
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Although the latent cost for the result function is accurate, no size information is

known.

This problem was designated size aliasing in (Portillo et al. 2003) and is caused

by the use of a monomorphic type at two distinct sizes. One solution is to extend

the type system with discrete polymorphism, i.e. intersection types (Simões et al.

2007). In such a system twice admits types of the form

twice : (τ l−→ τ ′ ∧ τ ′ l
′

−→ τ ′′) 1−→ τ
5+l+l′−−−−→ τ ′′

By instantiation, succ admits the types

succ : Nat n
1−→ Nat (n+ 1)

succ : Nat (n+ 1) 1−→ Nat (n+ 2)

and therefore

succ : (Nat n
1−→ Nat (n+ 1)) ∧ (Nat (n+ 1) 1−→ Nat (n+ 2))

Finally, twice succ can be typed as

twice succ : Nat n
7−→ Nat (n+ 1)

which accurately expresses both the size and time of the application.

Loidl (1998) proposed a type analysis with size and time information for aid-

ing the scheduling of tasks in a parallel implementation of functional languages by

providing static granularity information. He proposes extending the size and time

analysis of Reistad and Gifford (1994) to recursive functions by synthesising recur-

rence equations; these can then be solved to obtain closed-form cost equations either

manually or with the aid of a computer algebra system. To make the analysis au-

tomatic, Loidl proposes building a library of known recurrence forms, as was done

by Rosendahl (1989).

This size and cost analysis was further developed by Vasconcelos and Hammond

(2004), which also presented results from a prototype implementation. The diffi-

culties that apply to other approaches based on synthesising recurrences (Wegbreit

1975, Le Métayer 1988) hold here: obtaining approximate solutions to recurrence

equations automatically is difficult; the use of a library of recurrences mitigates this

problem to some extent, but for practical use this must contain a large number of

distinct but similar recurrences; furthermore, a single incorrect assumption in this

library invalidates the soundness of the analysis, which is particularly relevant for

our intended application domain of embedded and real-time systems.7

7 It is worth remarking that soundness of cost approximations is not critical for the granularity

analysis of Loidl, since erroneous cost information could reduce performance but not cause failure.
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A further limitation is the loss of precision with irregular divide-and-conquer

recursions, e.g. as in the quicksort algorithm. This is shared by other type anal-

ysis where the sizes of data components are independently approximated and will

discussed in more detail in the next section.

3.3 Sized types

Some researchers have presented type based analysis for size information alone; this

can be useful for proving termination, enabling optimisations in compilers (e.g. elim-

inating array bounds checks) or for enabling program transformations (e.g. partial

evaluation).

Hughes, Pareto and Sabry (1996) presented a type system extended with size

information for proving liveness properties of reactive systems, namely termination

and productivity.

The term language considered is purely-functional, non-strict and higher-order

with let-bound polymorphism, general recursion and algebraic data types. The sized

type system of Hughes et al. distinguishes data values (e.g. naturals or finite lists)

from codata values (e.g. streams): the size of a data value is an upper bound on the

number of constructors, while for a codata value it is a lower bound. For example,

given the declarations for naturals, finite lists and infinite lists (streams),

idata Nat = Zero | Succ Nat

idata List a = Nil | Cons a (List a)

codata Stream a = Mk a (Stream a)

the corresponding sized types for constructors are:

Zero : Nat1

Succ : ∀i.Nati → Nati+1

Nil : ∀a. List1 a

Cons : ∀i.∀a. a→ Listi a→ Listi+1 a

Mk : ∀i.∀a. a→ Streami a→ Streami+1 a

The data types are annotated with a subscript or superscript size annotation (for

data or codata, respectively). Size annotations are restricted to arithmetic expres-

sions using constants (natural numbers), variables and addition, but not multiplica-

tion; this subset of arithmetic can be checked computationally using a Presburger

arithmetic solver such as the Omega Calculator (Pugh 1992).8

8 Presburger arithmetic is the first-order logic theory of the natural numbers with addition;
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The types for Succ, Cons and Mk express size relations: the result has one more

constructor than the argument. Note that Zero and Nil have size one (not zero)

because the size is the number of constructors of the value.

Sized data types can be seen as infinite families of approximations indexed by

the number of constructors, e.g. Nat0 ⊆ Nat1 ⊆ Nat2 ⊆ . . .. A special annotation

ω is used to denote the “limit” of these approximations, e.g. Natω is the type of

all naturals.9 As in the system of Reistad and Gifford, the size ordering induces

a structural subtyping relation on sized types. Subtyping is used, for example, to

assign a sized type to a conditional with expressions of different sizes in the two

branches.

The novelty of the type system of Hughes et al. is a typing rule for recursion

that embodies a principle of induction on sizes and that guarantees termination of

recursive functions (and dually, productivity of corecursive ones). Omitting type

variable generalisations for simplicity, the rule is:

all(τ [0])

Γ ` λx.M : ∀i. τ [i]→ τ [i+ 1]

Γ ∪ {x : ∀i. τ [i]} ` N : τ ′
i /∈ FV (Γ)

Γ ` letrec x = M in N : τ ′

(3.4)

The first two hypotheses express the induction on a size variable i that occurs in a

type τ [i] (we use square brackets for a context):

1. τ [0] must be a universal type, i.e. one that includes the totally undefined value

⊥;10

2. progress must be made at each recursive call, i.e. we must be able to derive

τ [i+ 1] assuming τ [i].

To see how rule (3.4) rejects non-terminating functions, consider the following (er-

roneous) list length function:

wronglen xs = case xs of Nil→ Zero | Cons x xs′ → Succ (wronglen xs)

because it omits multiplication, Presburger arithmetic is less expressive than Peano arithmetic.

However, the Presburger fragment is decidable (Cooper 1972) while (by Gödel’s incompleteness

theorem) Peano arithmetic is undecidable.
9 Note that ω does not represent the absence of size information but rather a special “limit”

size. In particular, instantiating a quantified variable with ω is not always sound in Hughes and

Pareto’s system.
10 The semantics for sized types of Hughes et al. is based on upwards-closed sets rather than the

standard semantics based on ideals (MacQueen and Sethi 1982), so that sized types can exclude ⊥.
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This function diverges for non-empty lists because the recursive call is on xs rather

than xs′. Type checking against the type

wronglen : ∀i.∀a. Listi a→ Nati

gives rise to the proof obligation

{wronglen : Listi a→ Nati, xs : Listi+1 a, . . . } ` Succ (wronglen xs) : Listi+1 a

But typing the application (wronglen xs) requires solving the subtyping constraint

Listi+1 a 6 Listi a which is impossible because i + 1 6≤ i; the erroneous function is

therefore rejected.

The correctness of rule (3.4) was proved using a non-standard type semantics

that allows types to exclude ⊥ (i.e. non-termination/non-productivity). A sketch of

the proof was presented in (Hughes et al. 1996); the complete proof together with

type checking algorithm was presented by Pareto (1998). The algorithm requires let-

bound identifiers (in particular, recursive functions) to be annotated with sizes but

infers those of intermediate expressions. The type checker rejects programs whose

termination/productivity is not ensured by the sized type annotations provided by

the user. By the undecidability of the halting problem, such a decision procedure

must reject some terminating/productive programs as well.

The sized type system allows primitive recursive definitions over naturals and

lists (e.g. append, map and filter). Functions with an accumulating parameter (e.g.

reverse) can also be accepted by extending the type rule for recursion with size poly-

morphism (but not type polymorphism, thus retaining decidability of type checking).

More complex recursions can sometimes be re-written so that the type checker will

accept them (e.g. the system rejects the usual first-order definition of the Acker-

mann function, but accepts the higher-order primitive recursive one, because in that

version termination is explicit in the structure of the definition).

However, the system has limitations with irregular recursion patterns, e.g. divide-

and-conquer algorithms where the data size does not reduce uniformly in recursive

calls. Consider the quicksort algorithm for lists, using an auxiliary function split by

that breaks up a list into two sub-lists of the smaller and greater elements with
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respect to a pivot11:

qsort : List t→ List t

qsort [ ] = [ ]

qsort (x : xs) = case split by x xs of

(l, r)→ qsort l ++ [x] ++ qsort r

split by : t→ List t→ List t× List t

split by pivot [ ] = ([ ], [ ])

split by pivot (x : xs) = case split by pivot xs of

(l, r)→ if x ≤ pivot then (x : l, h) else (l, x : h)

To type check split by in the system of Hughes et al., we must choose some size i as

induction variable; the natural choice is the size of the list argument (since split by is

defined by primitive recursion in that argument). The result depends on a dynamic

test, so we can only derive a sized type with upper bounds (which are admissible by

subtyping):

split by : ∀i. t→ Listi t→ Listi t× Listi t (3.5)

Note that sizes of the result are overestimated. We would like to express a more

precise relation, namely that the sum of the sizes of the two result lists equals the

size of the argument. However, a type such as

∀i j. t→ Listi+j t→ Listi t× Listj t

is not admissible by rule (3.4), since we cannot do induction on i + j. Using (3.5)

as assumption for split by, the type system still accepts quicksort with the type

qsort : ∀i. Listi t→ Listω t

which does not give an upper-bound for the size of the sorted list. Note, however,

that due to the non-standard type semantics, the above sized type still ensures the

termination of qsort.

Similarly, the sized type system is not well suited for algorithms over non-linear

data structures such as trees (even though the theory of sized types is developed

for generic algebraic data types). This is because the notion of size is always the

depth of constructors and size relations must be linear; for example: a tree traversal

algorithm exhibits complexity that is linear on the number of nodes but exponen-

tial on the tree depth and therefore would not be expressible. These limitations

suggest that the sized type system, while guaranteeing very strong properties (ter-

mination/productivity), is also very restrictive in practice.
11For simplicity, we use in this example a Haskell-style syntax for list operations. We also avoid

issues of ad-hoc polymorphism by assuming some monomorphic type t with a total order ≤.
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The original sized type system of Hughes et al. deals with a purely denotational

notion of size, but not space or time costs. In a later work, Hughes and Pareto (1999)

extended the size type system with effects approximating stack and heap costs for a

prototype language called Embedded ML.

Embedded ML is first-order and with a strict semantics. The model of stack

and heap costs is given by an abstract machine based on the SECD (Landin 1964).

Dynamic heap allocation and deallocation is done using regions. The standard region

system of Tofte and Talpin (1997) introduces an allocation primitive

letregion ρ in e

where ρ is region variable that can used for allocations in e. After evaluation of e,

region ρ is deallocated. The type and effect system of Tofte and Talpin guarantees

that well-typed programs dot not access regions after deallocation.

The combination of sized types and regions allows sizes of regions to be specified

at the point of allocation; overflow is prevented at compile-time by the type system.

Thus, the region allocation becomes

letregion ρ#e′ in e

where e′ is an expression that specifies the size of region ρ. The type judgements

Γ ` e : τ ! δ; p;φ

are extended with effects δ, p and φ: δ is the stack effect, p is the put effect and and φ

is the store effect. The stack and store effect are natural numbers and approximate

the maximum stack depth and heap allocations during evaluation of e. The put

effect tracks allocations done in regions in the current scope.

Type checking can now ensure at compile-time the absence of space overflow. For

example, consider a function that constructs a list of naturals12:

nats n r = Cons n (case n of

0→ Nil r

| m+ 1→ nats m r) r

The type checker accepts nats with type

nats : ∀k r.Natk × r → Listk+1 (Natk) r with δ = 5k; r+= 3k + 1

which specifies both stack and heap allocation as functions of the size k. The stack

effect accounts for 5 stack words at each recursive invocation: one word for each
12 Like the system of Tofte and Talpin, constructors such as Nil and Cons take an extra region

argument to specify where values are to be allocated.
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bound variable n, r, m, the intermediate result and the return address. The put

effect specifies that region r can grow by (at most) 3k+1 heap cells (the constants are

derived from the particular operational semantics). We now see that the application

letregion r#13 in length (nats 4 r)

is rejected by the type system because the local region r is too small for the compu-

tation of nats: the size k of the list is 5 (not 4) so at least 3× 5 + 1 = 16 heap cells

are required. To fix the program, it suffices to specify a larger size for region r. The

correctness of the type system with respect to an abstract machine is presented in

detail in Pareto (2000).

One first limitation of this work is that the let-region allocation is not sufficient

to obtain bounded space behaviour in reactive systems because region lifetimes have

to be nested. To deallocate values but re-use regions, Hughes and Pareto propose

extending their system with region resetting (Birkedal et al. 1996). Furthermore,

Embedded ML has no language mechanism for specifying reactive or infinite compu-

tations. Streams cannot be implemented as ordinary data types because the language

has a strict semantics and is first-order.

Limitations regarding the expressive power of the recursion rule that applied to

the size system alone also hold here.

Another drawback of Hughes and Pareto’s approach is that it requires user anno-

tations of both sizes and costs. While sizes are denotational properties that program-

mers can reason about in a high-level language, stack and heap costs are dependent

on implementation details. Requiring the user to specify costs in type annotations

(even if these are checkable by the compiler) lowers the level of software development.

Even if fully automatic inference is not feasible, it would be preferable to have the

user write size annotations and have the system infer costs automatically; this was

left as future work in (Hughes and Pareto 1999) and not addressed in (Pareto 2000).

Chin and Khoo (2001) addressed the problem of inferring rather than just check-

ing sized types. This system extends the prior work in two regards: first, they allow

sizes to be expressed as general Presburger constraints (first-order logic formulae with

linear arithmetic over the integers)13 and second, by presenting an algorithm that

computes a size formulae for a recursive function using an operation of “transitive

closure” on constraints (Kelly et al. 1996).

13 By contrast, type annotations in the system of Hughes and Pareto are restricted to linear size

expressions. The type checking algorithm, however, generates a set of Presburger constraints for

verifying the admissibility of typing.
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For example, the analysis of Chin and Khoo infers the following size information

for the standard list append function:

append : Listm t→ Listn t→ Listl t

s.t. size m ≥ 0 ∧ n ≥ 0 ∧ l = m+ n

inv 0 ≤ m+ < m ∧ n+ = n

The size constraint expresses the dependency between input and output list sizes,

while the invariance constraint expresses properties that hold for all recursive calls

(where n+ and m+ are the sizes of arguments in recursive calls). Invariants such

as these are useful in termination analysis or in programming transformations such

as partial evaluation. We will focus here on inference of size relations, since similar

techniques are used for inference of invariants.

Note that the size information on the list length is more precise than what could

be expressed in the system of Hughes et al.: rather than just an upper bound, the

equality constraint expresses the exact result size. In general, it is possible to express

lower bounds, upper bounds or equalities (simultaneous lower and upper bound).

The term language is a strict, higher-order functional notation with integers,

booleans and lists. Data types are annotated with size variables and all size infor-

mation is expressed by separate size constraints. Thus typing judgements take the

form

Γ ` e :: (τ, φ)

where e is an expression, τ an annotated type and φ a constraint on the annotations

of τ expressing the size of e.

The notion of size is specific to each data type: the size of a list is its length; the

size of an integer is its value (negative sizes for negative integers); boolean values

False and True have sizes 0 and 1, respectively. Assigning sizes to booleans (and other

enumerated types) allows expressing control flow information in size constraints. For

example, consider the function testing a list for emptiness:

null xs = case xs of [ ]→ True | x : xs′ → False

The sized type inferred for null is

null :: (Listn a→ Boolc, (n = 0 ∧ c = 1) ∨ (n > 0 ∧ c = 0))

where the size c of the boolean result encodes which branch of the conditional was

taken.

Unlike the system of Hughes and Pareto, the typing rule for recursive functions

in Chin and Khoo’s system does not impose a well-founded order on sizes. Again
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omitting type generalisation for simplicity, the type rule is:

Γ ∪ {x :: (τ1, φ1)} ` e1 :: (τ1, φ1) Γ ∪ {x :: (τ1, φ1)} ` e2 :: (τ2, φ2)

Γ ` letrec x = e1 in e2 :: (τ2, φ2)
(3.6)

Re-visiting our erroneous length function example, rule (3.6) allows us to type it

as

wronglen :: (Listi a→ Intj , i ≥ 0 ∧ j ≥ 0)

which expresses approximate information about the function semantics (namely, that

both the argument and result must have non-negative sizes). A more precise infor-

mation about wronglen is expressed by the sized type

wronglen :: (Listi a→ Intj , i = 0 ∧ j = 0)

that is, wronglen is only defined for the empty list. Both sized types are admissible

by rule (3.6).

The treatment of recursion in the system of Chin and Khoo corresponds to a

distinct objective to that of Hughes and Pareto: rule (3.4) guarantees a liveness

property (termination/productivity) whereas rule (3.6) guarantees a safety property

(approximation of the dynamic sizes of values).

The type rules for expressions and non-recursive functions in Chin and Khoo’s

system are syntax directed, so that size type inference can be done by synthesising

constraints from sub-expressions. However, rule (3.6) for letrec is not syntax directed

since the size constraint for the result appears in the hypothesis.

To compute a size constraint for a recursive function

letrec f = λx.M in N

Chin and Khoo first compute a constraint expressing the size-change between two

successive recursive iterations:

λf. λx.M

They then employ an algorithm to approximate the transitive closure of a Presburger

constraint (Kelly et al. 1996). One further difficulty is that the transitive closure

might not be expressible as a Presburger formula and the algorithm sometimes yields

lower-bound approximations. This is inadequate for the type rule (3.6), so some post-

processing steps are employed to obtain a safe upper bound. These computations

are implemented using the Omega Calculator (Pugh 1992).

Chin and Khoo formulate the soundness of their size analysis with respect a stan-

dard higher-order denotational semantics. The proof, however, has one important

technical flaw: it relies the existence of a constraint S(v :: τ) describing the exact
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size of a value v of annotated type τ . While this is valid for zero-order values, it fails

to hold for functional values because of the lattice of constraints is an incomplete

partial order. We will re-visit this issue in Section 5.4 where we present a revised

proof for the first-order case.

List constructors have specialised typing rules instead of being treated as con-

stants as in the sized type systems (Reistad and Gifford 1994, Hughes et al. 1996);

this is required to derive a type for lists where the head has different size than the

tail.
Γ ` e1 :: (τ1, φ1) Γ ` e2 :: (Listm τ2, φ2)

Γ ` (e1 : e2) :: (Listn τ, n = m+ 1 ∧ φ1 ∧ φ2 ∧ (τ = τ1 ∨ τ = τ2))
(3.7)

In rule (3.7) the type τ is constrained to be identical to τ1 and τ2 except for “fresh”

size annotations; the equations τ = τ1 and τ = τ2 specify the equality constraints

between size annotations in two types; the size constraint for the application specifies

the length of the result list and size elements.

One limitation of the type system is that while rule (3.7) can be used to infer

size relations on the list lengths, it often fails to infer sizes of values inside lists.

Consider for example, the tail function on a list of integers:

tail

Listn Inti︷ ︸︸ ︷
( x︸︷︷︸

Intk

: xs︸︷︷︸
Listm Intj

) =
Listm Intj︷︸︸︷
xs

Rule (3.7) generates the size constraint

n = m+ 1 ∧ (Inti = Intk ∨ Inti = Intj) ⇐⇒ n = m+ 1 ∧ (i = k ∨ i = j)

where m, k and j are “fresh” size variables; to obtain the type for the function, the

constraint is simplified by existentially quantifying variable k that does not occur in

the argument or result type; this yields the sized type

tail :: (Listn Inti → Listm Intj , n = 1 +m)

where no size information is obtained for elements inside the list.

In a subsequent work Chin et al. (2003) propose an extension to the sized type

system with collection constraints to address this problem. However, the extended

constraints fall outside the capabilities of a Presburger solver; the cited paper does

not address the issue of solving these combined constraints.

Another limitation is that the type system is not type polymorphic since no size

information is captured for type variables. The system is still able to obtain good

size information for monomorphic instances. For example, the first tuple projection
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can be typed fst : (Inti × Intj → Intk, k = i) but no size information is obtained for

the polymorphic version fst : (∀a∀b. a× b→ b, True).

The size type system of Chin and Khoo allows higher-order functions, but no size

relations are inferred from uses of functional arguments. For example, no sizes are

inferred for the usual compose function λf. λg. λx. f (g x). Moreover, since the type

system does not capture sizes for polymorphic functions, there is no analogue of a

“principal size type” to be inferred in such cases.

3.4 Dependent types

The defining characteristic of dependent type systems is the possibility of param-

eterising types over values. Dependent type systems generalise the function type

A → B to the dependent product Πx : A.B where the type B of the co-domain is

allowed to vary with x; the simple function type is obtained as an instance where x

does not occur in B.

Restricted forms of type dependency have long been used in programming lan-

guages. For example, the Pascal array type depends on its size; and the types

of arguments of the C-language printf depend on its first argument (the format

string). Dependent type systems are formal basis for reasoning about such notions.

Following the Curry-Howard correspondence (Girard et al. 1989), dependent

types allow expressing both propositions and computational (data) types in a single

framework; therefore dependent type theories can form the basis of proof assistants,

e.g. Coq (Coq 2006) and program verifiers, e.g. Lego (Luo and Pollack 1992).

More recently, there has been an increase of research in functional programming

languages incorporating dependent types, e.g. Dependent ML (Xi 1998), Cayenne

(Augustsson 1998), Agda (Coquand and Coquand 1999) and Epigram (McBride and

McKinna 2004). This is motivated by the desire to express more refined program

properties using types than is possible with the standard polymorphic type systems.

In fact, some extensions of the Haskell type system implemented in GHC, e.g. type

classes with functional dependencies (Jones 2000) and generalised algebraic data

types (Jones et al. 2006) allow simulating some of the expressive power of dependent

types (McBride 2002, Apple and Weimer 2007).

Dependent ML (DML) is a conservative extension of the ML language with de-

pendent types (Xi 1998, Xi and Pfenning 1999). The motivation for DML was

to extend a realistic programming language with dependent types whist retaining

both decidability of type checking and a low overhead of type annotations. This is
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achieved by separating arbitrary ML terms (where general recursion is allowed and

whose equivalence is therefore undecidable) from the indices allowed in types (taken

from some decidable constraint domain).

Computation on DML type indices is restricted to constraint normalisation; this

allows reducing the type checking of DML programs to constraint solving in the

underlying domain. The constraint domain of natural indices with addition allows

capturing size invariants of data structures; deciding the equivalence of the DML

types with such indices can then be reduced to checking equivalence of Presburger

constraints, e.g. using the Omega calculator (Pugh 1992). Xi (1998) presented ap-

plications of DML types with natural indices to program error detection and opti-

misations, e.g. elimination of array bounds check and dead-code.

Dependent types in DML are introduced by refining a standard data type dec-

laration. For example, a canonical declaration for a list data type

datatype ’a = nil | cons of ’a * a’ list

can be refined with a natural length measure by the declaration:

typeref ’a list of nat with

nil <| ’a list(0)

| cons <| {n:nat} ’a * ’a list(n) -> ’a list(n+1)

This refinement assigns a type with length zero for nil and a type for cons that

increases the length by one; the notation {n:nat} is the concrete syntax for intro-

ducing a dependent product Πn : nat. Size properties regarding lists can then be

expressed by dependent type annotations; for example, the size relation for the list

append function is expressed by the type

append <| {m:nat}{n:nat} ’a list(m) * ’a list(n) -> ’a list(m+n)

and the DML type checker can verify that this size relation holds for the canonical

recursive definition of append.

For size relations that cannot be expressed exactly, DML allows the use of depen-

dent sum types. For example, the higher-order filter function computes a sub-list of

elements verifying some predicate; since the length of result depends on the predicate

it cannot be specified exactly; however, an upper-bound can be specified by the type

filter <| (’a -> bool) * {n:nat} ’a list(n)

-> [m:nat | m<=n] ’a list(m)

where [m:nat | m<=n] is a dependent sum that constraints the result list length m

to be at most the length n of the original.
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DML with integer indices allows expressing properties similar to the sized type

systems (Reistad and Gifford 1994, Hughes et al. 1996, Chin and Khoo 2001). The

main distinctions between the two approaches are: DML indices are user-definable

for each data type whereas the notion of “size” in the sized type systems above

is rigid; there is no implicit subtyping relation for size coercion in DML (instead,

relevant functions must be annotated with dependent sum types); and finally, the

DML type checker can verify user-annotated size relations but not infer them as

in (Reistad and Gifford 1994, Chin and Khoo 2001).

Grobauer (2001) presented a method for automatically deriving cost recurrences

from first-order DML programs. The main contribution is the use of indices in DML

types as data sizes for expressing the recurrences. This allows the user to specify

more precise size measures for data, e.g. nested lists or trees. The cost model is

asymptotic (e.g. the number of function calls or some other primitive operation).

This work focuses on extracting cost recurrences but not on obtaining solutions to

the cost equations. Except in very simple cases, obtaining closed form solutions

requires human intervention. For example, a function merging two lists in order

(part of a merge sort example)

fun merge l = case l of

(nil, l2) => l2

(l1, nil) => l1

(cons(h1,t1),cons(h2,t2)) =>

if h1<h2 then cons(h1, merge(t1,l2))

else cons(h2, merge(l1,t2))

with merge <| {n1:nat}{n2:nat} list(n1)*list(n2) -> list(n1+n2)

yields the following cost recurrence (braces represent possibly-guarded maximum

between alternatives):

mergec n1 n2 =


n1 = 0 7→ 0

n2 = 0 7→ 0

n1 > 0 ∧ n2 > 0 7→ 1 +

{
mergec (n1 − 1) n2

mergec n1 (n2 − 1)

(3.8)

It is immediate that the cost recurrence mimics the recursive structure of the original

function. Even using computer algebra systems such as Maple or Mathematica, some

human intervention is required to convert a recurrence such as (3.8) into the closed

form expression mergec n1 n2 = min(n1, n2).

Crary and Weirich (2000) used a system based on proof-carrying code (Necula
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1997) to perform verification of resources bounds. This system is based on a inter-

mediate compiler language called LXres that allows expressing resource properties in

types by exposing a “virtual clock” representing some available resource (e.g. time).

Resource properties can then verified by the type checker. To deal with variable-time

procedures, they employ a technique of encoding static type-level representations of

data using using sum and inductive kinds; this simulates type dependency while

allowing a simpler theory and type checker.

Costs can be expressed as primitive-recursive functions over the static data rep-

resentations (so that type checking remains decidable). These must be provided by

the user: the system allows verifying resource bounds, but makes no attempt to

infer them.

Brady and Hammond (2006) employed a dependently-typed language similar to

Epigram to encode and verify size properties of functional programs. Their approach

generalises the previous examples of sized lists in DML by introducing a dependent

type Size that pairs a type indexed by a natural size and a predicate (itself repre-

sented as an dependent type). A term size v p : Size A P pairs a value v of indexed

type A n and a proof p that v respects a size property P .

Brady and Hammond applied this framework to express size relations of functions

on lists, including an example similar to the split by function of Section 3.3. They

also extend the technique to capture size relations for higher-order functions by

associating size predicates and functions with higher-order arguments. The authors

illustrate the technique with the higher-order functions such twice, map and fold.

A first limitation of this work is that it considers only verifying sizes expressed as

dependent types. The elaboration of a simply typed program in Haskell or ML into

a dependently typed version with size annotations is left to the user (particularly

guessing size relations of functions). The extent to which this step can be automated

is not addressed.

Secondly, this work uses dependent types for expressing size information but not

time or space costs. Although the authors mention that the technique should be

extendible to other metrics such as heap, stack or time usage, we remark that such

extension is not likely to be straightforward because it requires reasoning also about

intentional properties of evaluation (e.g. cost) rather than just denotational ones

(e.g. size).

Danielsson (2008) has also used a dependently-typed language for expressing

complexity analysis of functional programs. This work focuses on expressing costs

rather than sizes by encapsulating values in a cost monad (Wadler 1993) parame-



3.4. DEPENDENT TYPES 67

terised by the number of computation steps: Thunk n a is the type of a computation

that evaluates to an a in n steps. The unit and bind operations for the thunk monad

are:

return : a→ Thunk 0 a

>>= : Thunk m a→ (a→ Thunk n b)→ Thunk (m+ n) b

The monadic unit injects a value into the cost monad with zero cost while the

bind combines costs from two computations. Any atomic costs must be explicitly

introduced using “tick” annotations in the program; each tick adds one unit of cost:

tick : Thunk n a→ Thunk (1 + n) a

Note that the Thunk type is dependent on the natural n and that both the monadic

operations and tick have dependent types.

These basic combinators form a library implemented in the dependently typed

language Agda and allow a programmer to specify machine-checkable complexity

proofs; for example, assuming a dependent type for lists annotated with their length,

and assigning a unit cost to each lambda-abstraction, we can type check a list con-

catenation function annotated with a linear cost on the first argument:

(++ ) : List m a→ List n a→ Thunk (1 + 2 ∗m) (List (m+ n) a)

[] ++ ys = tick (return ys)

(x : xs) ++ ys = tick (xs++ ys >>= λt→ tick (return (x : t)))

The use of a dependently-typed cost monad allows expressing quite precise cost

information, e.g. it can be used to reason about the complexity of lazy evaluation

by explicitly embedding Thunk types into data structures.

However, it requires insightful annotations by the user and a considerable knowl-

edge of dependent type systems. For example, to type check the concatenation

example above requires providing a lemma for the arithmetic equality 1 + ((1 + 2 ∗
m) + (1 + 0)) = 1 + 2 ∗ (m+ 1). Non-trivial programs also require the introduction

of auxiliary operators, e.g. to “waste” costs and ensure that the two branches of a

conditional admit the same type14.

The cost model used is quite abstract: it counts number of “steps” specified

by the number of ticks annotated in the code. Presumably the technique could be

extended to a model of cost based on an abstract machine, e.g. as in (Hughes and

Pareto 1999).
14This is analogous to the subeffecting allowed in effects systems for time (Reistad and Gifford

1994) expect that the latter is implicit.
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Finally, the system allows only checking cost bounds but does not aid in obtaining

the cost bounds in the first place.

3.5 Amortised cost analysis

Amortised complexity analysis aims at obtaining bounds for the cost of a sequence

of operations (Tarjan 1985, Okasaki 1998); it is sometimes possible to obtain better

worst-case bounds by amortisation than by reasoning about the costs of individual

operations. For example, it might be possible to obtain a worst-case bound of O(n)

for a sequence of n operations even if some of the individual operations cost more

than O(1).

The “physicist method” for deriving amortised bounds starts by assigning a non-

negative potential function to data. The amortised cost of an operation is then

defined as the sum of the actual cost (e.g. time cost or heap cells allocated) plus

the difference in potential incurred by the operation. The key idea is to choose the

potential functions so as to facilitate computing the amortised cost, e.g. in such a

way as to make the amortised costs constant. Provided the potential is always non-

negative and initially zero, the accumulated amortised costs will be an upper-bound

on the accumulated actual costs (Okasaki 1998).

Hofmann and Jost (2003) proposed a type-based analysis for heap space usage

using amortisation. Instead of extending type judgements with effects as in (Dornic

et al. 1992, Reistad and Gifford 1994, Hughes and Pareto 1999), the analysis of

Hoffman and Jost is based on annotating data types with weights representing the

relative contribution of parts of a data structure to the overall heap usage (the

potential associated with the data structure).

The language under analysis is a first order functional notation with a strict

semantics and algebraic data types including sums, products, booleans and lists.

There are two kinds of pattern-matching deconstructors for heap-allocated values:

a deallocating match and non-deallocating match′. The heap cost is defined by a

big-step operational semantics instrumented with the size of a free list of heap cells;

the free list reduces at each constructor application and grows at each match (but

not at match′).

The augmented typing judgements take the form Γ, k ` e : A, k′ where Γ are

the type assumptions, e is an expression, A is an annotated type and k, k′ are non-

negative rational numbers representing the available potential before and after the

evaluation of e. The annotations in A together with k and k′ give both an upper

bound on the initial heap space for evaluation of e and a lower bound on the available
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heap space after evaluation. For example, the judgement

x : L(L(B, 1), 2), 3 ` e : L(B, 4), 5

informally says that if x is a list of lists of booleans then e is a list of booleans;

furthermore, if x = [l1, . . . , ln] then a free list of size 3 + 2n + 1
∑
i |li| is sufficient

to evaluate e; and if e evaluates to a list [b1, . . . , bm] of length m, the resulting free

list will have size at least 5 + 4m.

From this example we can see that type annotations play a very different role here

than in the sized type systems: in the system of Hoffman and Jost an annotation

represents not a size, but the coefficient of the heap cost incurred by a part of a data

structure. The upper bound on the initial free list is a function of the (unknown)

sizes of the input. Note also that the lower bound on the final free list size is a

function of the (unknown) size of the output and that no input/output size relation

is obtained.

The type system of Hofmann and Jost performs an amortised analysis of the size

of the free list: the coefficients in types represent the potential associated with the

data structures; the typing rules constrain the annotations so that the amortised

costs for each expression are properly accounted. For example, the typing rules for

constructing and deconstructing a list node are:15

n ≥ SIZE(A⊗ L(A, k)) + k + n′

Γ, xh : A, xt : L(A, k), n ` cons(xh, xt) : L(A, k), n′
(3.9)

Γ, n ` e1 : C, n′

Γ, xh : A, xt : L(A, k), n+ SIZE(A⊗ L(A, k)) + k ` e2 : C, n′

Γ, x : L(A, k), n ` match x with |nil⇒ e1

|cons(xh, xt)⇒ e2

: C, n′
(3.10)

Rule (3.9) specifies that the available potential n must be at least the amortised

cost of cons, that is, the actual heap cells used (given by the SIZE function) plus the

potential k associated with the list elements (because the list length is increased by

one). Dually, rule (3.10) specifies that the available potential at the cons alternative

increases by the amortised cost (because match does deallocation).

Hofmann and Jost presented an algorithm that automatically infers the type

annotations. Their technique associates each program P with a system of linear

inequalities L(P ) such that the valid annotated type derivations for P correspond

to the admissible solutions of L(P ); these solutions can be obtained by a standard

linear programming solvers.
15 Following Hofmann and Jost (2003) and without loss of generality, we present the type rules

for expressions in let normal form.
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The worst-case theoretical complexity for solving linear programs is polynomial;

the variants of the simplex algorithm used in solver implementations, although ex-

ponential in the worst-case, are quite efficient in practice. This compares favourably

with the sized type systems (Hughes et al. 1996, Hughes and Pareto 1999, Chin

and Khoo 2001) where type checking alone requires checking validity of Presburger

constraints with doubly-exponential worst-case time.

Since annotations represent coefficients of the potential function, the system can

only derive heap bounds that are linear on the sizes of data structures. However,

since the language implements deallocation using destructive matching, it is still

expressive enough to obtain heap costs for many list processing functions, including

insertion algorithms such as insertion sort and quicksort.16 Unlike the sized type

analysis of Hughes and Pareto (1999), the amortised analysis deals with the irregular

divide-and-conquer recursions by “splitting” the potentials between the two recursive

calls. Hofmann and Jost also present good results for a binary tree traversal and

report successfully analysis of other textbook examples.

One limitation of the analysis of Hofmann and Jost is that the inferred type an-

notations are sometimes not sufficiently polymorphic because every use of a function

shares the same potentials. Consider the identity function f : L(B) → L(B) on a

list of booleans; if a particular use requires the annotation f : L(B, 5), 3→ L(B, 5), 3

then it not possible to apply f to an argument of type L(B, 0). The authors suggest

that this can be relaxed by conducting separate analysis for each use of f . However,

this implies that is not possible to analyse functions separately from their use, i.e.

the analysis is not fully modular.

Hofmann and Jost have considered heap usage but not time or stack usage. Time

could, in principle, be treated similarly to heap, by simply recording the number of

execution steps instead of the size of a free list. The only difference is the absence

of a deallocation mechanism for time costs.

Extending the amortised analysis for stack usage is less straightforward. One

technical problem is that a realistic model for stack must employ a small-step rather

than a big-step semantics as used in (Hofmann and Jost 2003). Another concern is

that the bounds expressible by the amortised analysis are linear on the size of data

structures (the total number of elements). While this is generally a good match

for obtaining heap bounds, for example, it will yield coarse stack bounds for a tree

search algorithm whose worst-case complexity is linear on the depth of the tree.

A recently submitted PhD thesis investigates the extension of amortised analysis

16 The sorting algorithms exhibit linear space or even constant bounds by reusing the heap

associated with the input list for constructing the sorted list, i.e. they destroy the original list.
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to stack costs; the definition of potential is modified to account the depth of data

structures (Campbell 2008).

3.6 Other related work

Hofmann (2000) has proposed the use of a linear typing discipline for ensuring that

data structures are used in a single-threaded way and can therefore be update in-

place. Hofmann further shows that first-order functional programs that admit a

linear type in this system can be translated into C-language programs with bounded

space behaviour by construction: there are no uses of malloc() because all data

structures are updated in-place; thus dynamic memory requirements are bounded

by the usage of initial data. Of course, this guarantee applies to heap but not to

stack.

Some early works on complexity theory have studied complexity bounds of Turing-

incomplete languages. Meyer and Ritchie (1967) studied the complexity of bounded

loop programs; such programs cannot implement all computable functions but can

implement the first-order primitive-recursive functions on naturals (Lewis and Pa-

padimitriou 1981, chapter 5). The complexity bounds are expressed using a family of

primitive-recursive functions indexed by the depth of loop nesting and the number of

instructions in the program. However, the bounds are rather coarse, e.g. a program

with a single loop is bounded by a linear function but a program with two nested

loops is bounded by an exponential.

Turner (1995, 2004) proposed a discipline for strong functional programming,

that is, where program termination is guaranteed by construction. The principal

objective is the simpler equational theory resulting from the absence of a “bottom”

value associated with partiality. Unlike approaches based on constructive type the-

ory, Turner proposes an elementary discipline that could be used at an introductory

programming level; he restricts a pure functional language such Miranda or Haskell

by:

1. requiring all case-analysis definitions to be exhaustive;

2. extending all built-in operations to be total (e.g. arithmetic);

3. requiring arguments of recursive calls to be structural sub-components of the

formal parameters;

4. requiring recursive data types to be covariant (that is, recursion on the left of

the arrow type constructor is disallowed).
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The resulting programming language is not Turing-complete, but is expressive enough

to encode higher-order primitive recursive functions over naturals and other inductive

types. To express non-terminating interactions (e.g. an operating system), Turner

proposes separating the recursive data types which must be finite (e.g. naturals and

lists) from corecursive ones which are infinite (e.g. streams). Corecursive definitions

must be guarded by co-constructors; this is sufficient to ensure that codata values

are productive.17

Turner argues that the restriction to primitive recursive definitions captures most

useful computable functions. However, algorithms must sometimes be re-written

with worse time or space complexity than an equivalent general-recursive formula-

tion; this is undesirable for resource-constrained systems. In any case, we remark

that the restriction to a total programming language does not, by itself, guarantee

resource bounds, except in the naive extensional sense referred in Chapter 1.

A prerequisite for all cost analysis is to choose a model of costs. Most of the previ-

ous works (Le Métayer 1988, Rosendahl 1989, Wadler 1988, Bjerner and Holmström

1989, Dornic et al. 1992, Reistad and Gifford 1994, Vasconcelos and Hammond 2004)

chose to count the number of function calls (or the corresponding formal notion of

β-reductions in the lambda-calculus). This metric has the advantage of being easily

understood by relation with a naive equation rewrite semantics for an applicative

language. However, this is not likely to give accurate time predictions because each

β-reduction can require different amounts of execution time.

On the theoretical side, Dal Lago and Martini (2005) have argued against us-

ing the number of β-reductions as a cost model for the lambda-calculus. They

proposed a model where the cost of a reduction M → N is proportional to the dif-

ference |N | − |M | between the sizes of redex and reduct and prove that it satisfies a

polynomial-invariance result, i.e. that it can be simulated by a Turing machine within

a polynomial-time bound overhead and vice-versa (unlike the cost model based on

β-reductions).

Hope and Hutton (2006) proposed counting the reduction steps of an abstract

machine. Such a model stands half-way between the very abstract measure (number

of β-reduction) and measuring real-time for a concrete implementation. Hope and

Hutton follow the methodology of Ager et al. (2003b) and Danvy (2003): starting

from a denotational evaluator for the language, they apply a sequence of meaning-

preserving program transformations to obtain an abstract machine interpreter; this
17 This is similar to the size type system of Hughes et al. (1996); the latter, however, ensures

termination and productivity by a semantic properties of sizes rather than syntactical restrictions.
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interpreter is then straightforwardly extended with a step-counter; finally, the pro-

gram transformations are reversed to get back a cost-instrumented denotational eval-

uator. The principal strength of this approach is that the program transformations

are calculated, thus giving a constructive methodology for reasoning about costs of

an implementation at the source level.

In his PhD thesis, Bakewell (2001) studied operational theories for reasoning

about space usage of programming language evaluators. He defined a graph rewrite

system to formally specify the operational semantics of distinct language evalua-

tors, including implementation techniques of lazy evaluation and garbage collection.

Bakewell is then able to compare the space behaviour of evaluators by means of

simulation proofs—for example, he is able to prove that one evaluator is not leakier

than another. He also classifies space leaks according to the behaviour that exposes

them and provides a search procedure to find proofs of space leaks.

A more pragmatic approach to determining time and space usage is simply to

profile execution runs. One of the difficulties in implementing a profiler for a language

with higher-order functions and lazy evaluation is deciding how to assign costs to the

source program. Samson and Jones (1995) addressed this problem in the Haskell time

profiler by labeling the program with cost centers, either by hand or automatically

(e.g. one cost center for each top-level definition). This is approach is employed in

the Glasgow Haskell Compiler (GHC).

Runciman and Wakeling (1993) developed a heap space profiler for Lazy ML

(a dialect of ML with lazy evaluation) together with a set of tools for visualing

results. This was quickly adapted to other lazy functional languages and is currently

a distributed as part of the GHC profiler.

While not providing the strong guarantees of static analysis, the Haskell time and

space profilers can be very useful in improving the performance of lazy functional

programs. In particular, it has proved effective in detecting the causes of “space

leaks” in Haskell programs; these can then be addressed e.g. by program transfor-

mation or by adding strictness annotations. Runciman and Wakeling demonstrate

a reduction of heap residency of two orders of magnitude in a simple example (a

propositional formula simplifier). Hudak et al. (2007) report that time profiling the

GHC compiler (itself written in Haskell) has allowed improving its running time by

a factor of two.

Bonenfant et al. (2007) conducted worst-case execution time (WCET) analysis

to obtain bounds on real-time costs for a subset of the abstract machine instructions
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of Hume, a functionally-inspired research language for resource-sensitive systems

(see Chapter 4). Their approach is to translate the abstract machine instructions

into C and use a C compiler to obtain machine code; they then employ aiT, a

commercial tool for static WCET analysis of machine code blocks (Ferdinand et al.

1999, 2001). Unlike approaches based on experimental tests, the aiT tool uses

abstract interpretation to model cache and pipeline states of specific microprocessors

and is capable of obtaining guaranteed worst-case time bounds. Bonenfant et al.

applied this tool to derive WCET costs of compiled code for a Renesas M32C/85

micro-controller, compared the results with experimental timings and report a close

match with the analysis bounds.



Chapter 4

Core Hume

Hume is a research language aimed at applications requiring bounded time and space

behaviour, such as real-time embedded systems. In this chapter we review the Hume

language and describe a subset, called Core Hume, that will be the subject of the

size and space analyses developed in this thesis.

The development of this chapter is as follows: in Section 4.1 we present the

Hume language in an informal way; the remaining sections we define the Core Hume

subset: the abstract syntax (Section 4.2.1); the type discipline (Section 4.2.2); and

a denotational semantics (Section 4.2.3); Section 4.4 concludes with some example

programs.

4.1 The Hume language

Hume is a research language aimed at applications requiring bounded time and

space behaviour, such as real-time embedded systems (Hammond et al. 2007). The

research motivation for Hume is to explore language design and static analyses for

providing as high a level of programming expressiveness as possible, whilst retaining

the predictability of resource usage required by real-time embedded systems.

Hume combines ideas from finite-state machines and functional programming to

separate the coordination and computation aspects of embedded system program-

ming: a Hume program defines a finite number of communicating processes; each

process is a purely functional mapping of inputs to outputs. The aim for this layered

approach is to facilitate combining the high expressiveness of functional programming

(e.g. automatic memory management, user defined data types, pattern matching and

recursion, strongly-typed and higher-order functions) with bounded time and space

75
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behaviour required in embedded systems.

4.1.1 Declaration, expression and coordination

Hume programs are structured in three layers: an outermost static declaration layer

for defining data types, exceptions, streams, etc. to be used in the dynamic layers;

the innermost pure functional expression layer used for defining functions and values;

and the middle coordination layer used for defining a finite number of communicating

processes.

Coordination layer

The basic unit of coordination is the box : a process with a finite number of inputs

and outputs. The behaviour of each box is specified by a set of pattern matching

rules that map input values to output values. Boxes are re-entrant, that is, they

execute an indefinite event loop of waiting for inputs and producing outputs. The

following box specifies a one-bit inverter:

box invert

in (x :: word 1)

out (y :: word 1)

match

0 -> 1

| 1 -> 0 ;

Each box has a fixed set of named inputs and outputs (in the example above,

invert.x is the single input and invert.y is the single output). Input and out-

put are typed (in the example, as 1-bit words). The mapping between inputs and

outputs is specified by a set of rules. In the above example, rules match literal inputs

and produce literal outputs; in general, rules can bind variables using patterns and

evaluate expressions. For example, the bit inverter example could also be written

as:

box invert

in (x :: word 1)

out (y :: word 1)

match

x -> 1-x ;
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Expression layer

The expression layer of Hume is a pure functional notation similar to a pure subset

of Standard ML or Haskell. The expression language is strongly-typed and includes

user-defined data types and recursive, polymorphic and higher-order functions. To

facilitate the development of static cost analysis the expression language has a strict

semantics (i.e. call-by-value).

Hume includes a rich set of primitive data types to ease interfacing with hardware

sensors and devices: booleans, characters, integers, bit vectors (words) and floats.

Primitive types specify the data size representation explicitly, e.g. word 1 is a 1-bit

word; int 16 is a 16-bit signed integer; float 64 is a 64-bit floating point number,

etc. The compiler should choose the implementation that best suits each data size.

The compound types include strings of characters, vectors of a fixed size, tuples,

lists and user-defined data types. The latter follows the sums-of-products style of

data declaration in Standard ML or Haskell: each product is tagged with a construc-

tor label and alternatives are separated by a vertical bar. For example, the following

defines a data type for binary trees where each inner node is decorated with a label

of some arbitrary type:

data Tree a = Leaf | Branch a (Tree a) (Tree a)

Constructors build data values when used in expressions and decompose them

when used in patterns; in the later case variables are bound to the constructors

arguments. For example, the following function computes the number of inner nodes

of a tree:

size :: Tree a -> int 32

size Leaf = 0

size (Branch x l r) = 1 + size l + size r

Patterns can be used in either function definitions or case expressions and may

be nested and non-exhaustive. Pattern matching is done in top-to-bottom order so

that overlapping rules are tried in order.

4.1.2 Communication and synchronisation

Boxes communicate with each other and the environment by single-buffered, point-

to-point links called wires. The use of buffering decouples the writer and reader

boxes, improving available concurrency. It also allows connecting the output of

a box into one of its own inputs, thereby creating an explicit feedback loop; this
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technique can be used to represent state passed from one box iteration to the next

without compromising the purely functional expression semantics.

The use of a single stage buffer aids in guaranteeing that space and time costs

for communication can be bounded at compile time. Multiple stage buffering can be

implemented using multiple boxes or in the expression layer, e.g. using a list data

type.

Access to wires is mutually-exclusive and provides the only form of synchronisa-

tion between boxes. Reading from a wire consumes the value, making it unavailable

for other readers. Conversely, a box that attempts to write on a non-empty wire

becomes blocked ; the blocked box is resumed only when all required output wires

are available.

The Hume coordination layer semantics is deterministic, that is, two executions

from the same initial state produce the same observable behaviour. To ensure deter-

minacy boxes are scheduled in a round-robin fashion, following the order of program

declarations. A box is scheduled only when all required inputs are available and ex-

ecutes as an atomic, non-preemptable task to produce the output values. Therefore,

the only observable concurrency is the interleaving of box executions.

Synchronous programming

Hume boxes can be used to implement synchronous reactive systems. As an example,

consider a simple low-pass digital filter of a stream of floating-point samples x(n) that

produces a filtered response y(n) satisfying the equation y(n) = 1
2 (x(n) + x(n− 1)).

box filter

in (x0 :: float 32, x1::float 32)

out (y0 :: float 32, x1’::float 32)

match

(x0,x1) -> (0.5*(x0+x1), x0);

wire filter.x1 filter.x1’ initially 0.0;

The input and output ports of the filter box are filter.x0 and filter.y0,

respectively. Note that the value of the previous sample is written to filter.x1’

and wired in a feedback loop to filter.x1; the initial value of needed in the first

iteration is (arbitrarily) set to zero.

At any given iteration only four floating point values are stored in the input and

output wires; therefore the sizes of communication wires are bounded. It is also
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straightforward to bound time and space costs for the arithmetic expressions used in

the box; therefore the total time and space resources for the filter can be statically

bounded.

Asynchronous programming

Hume is not restricted to synchronous programming, i.e. there is no assumption that

inputs to boxes must arrive simultaneously. The coordination layer allows boxes to

react to partial inputs by using special asynchronous patterns in rules: the pattern

“*” ignores the input (and does not consume it); the pattern “ *” ignores the input

(but still consumes it if it is available). Dually, no output is produced by using “*”

on the right-hand side of a box rule.

For example, the following box odds filters a stream of integers discarding all

even values.

box odds

in (n :: int 32)

out (n’ :: int 32)

match

n -> if n%2==0 then * else n

The right-hand side of the rule in odds returns “*” if the input is an even number,

thus producing no output. Consequently, the stream of output values will not be in

synchrony with the input stream.

As another example, the following merge box writes one of its two inputs to the

output, thus merging two input streams into a single one. The *-pattern allows the

rule to match when only one of the values is present.

box merge

in (x::int 32, y::int 32)

out (xy::int 32)

match

(x, *) -> x

| (*, y) -> y

Note that the merge box biases the first input stream because rule matching is

done in top to bottom order: when both inputs are available, the first rule takes

precedence and the value of x is output. This means that the y input can be ignored

for an arbitrarily long time. To avoid this behaviour Hume allows the programmer

to specify fair matching for box rules.
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box fairmerge

in (x::int 32, y::int 32)

out (xy::int 32)

fair

(x, *) -> x

| (*, y) -> y

Fair matching in Hume means pattern fairness: all matching rules must be se-

lected equally often given an infinite stream of matching inputs.1 Note that channel

fairness is not enforced. It is possible (and sometimes desirable) to treat inputs un-

fairly. It is up to the programmer to ensure that inputs are treated fairly if required.

4.1.3 Exception raising and handling

Exceptions can be raised during expression evaluation either explicitly by raise or

as a result of some illegal operation (e.g. division by zero). However, exceptions can

only be handled in the coordination layer. Exception handlers can be declared for a

box that will treat exceptions raised in any right-hand side of the box rules.

For example, the following box handles the numeric Overflow exception by pro-

ducing a null result.

box average

in (x :: float 32, y :: float 32)

out (z :: float 32)

handles Overflow

match

(x,y) -> ((x+y)/2)

handle

Overflow -> *

It is possible to define separate handlers in each box; uncaught exceptions in a

box are handled by a general system handler in an implementation-dependent way

(e.g. performing a system-wide reset).

Exceptions should not be raised inside handlers; to ensure this the language

definition requires that handlers perform no computation (i.e. the right hand side

evaluates to a compile-time constant).

For situations where resources cannot be bounded statically, Hume supports

dynamic checks to ensure bounded time and space behaviour: an expression “expr
1In the implementation this is ensured by re-ordering rules after a successful match.
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within time” or “expr within space” specifies evaluation of expr subject to time

or space constrains; the exceptions Timeout, HeapOverflow or StackOverflow are

raised if the time or space used exceed the specified bounds.

4.1.4 Bounding time and space costs

The network of boxes and wires is fixed at compile time; this means that total time

and space resources required for a Hume program can be statically bounded provided

that:

1. the resources required by the expressions used in boxes are bounded;

2. the sizes of values in wires are bounded.

The above properties cannot be guaranteed for arbitrary programs because the Hume

expression layer allows general recursive functions and is therefore Turing-complete.

This leaves two alternatives for obtaining bounded time and space behaviour:

Restrict the expression language: prohibit recursive data structures and func-

tions or restrict to guaranteed terminating forms (e.g. primitive recursion);

such a language subset would exhibit bounded time and space behaviour by

construction at the cost of lower expressiveness;

Employ static analysis: obtain approximate bounds for the use of general recur-

sive functions in specific programs, accepting the possibility of failing to derive

useful bounds for some programs.

The two approaches are often combined in practice: Hammond and Michaelson

(2002) considered a subset designated FSM-Hume resulting from restricting data

types to be finite and functions to be first-order and non-recursive; this subset

has been shown to correspond to finite state machines (Michaelson et al. 2005).

Hammond and Michaelson obtained stack and heap costs bounds for FSM-Hume

programs using a source-level analysis that keeps track of maximum costs of expres-

sions. The advantage of a static analysis is that it avoids the combinatorial explosion

of associated with enumerating all possible execution traces (which is theoretically

possible for FSM-Hume programs).

4.2 A core subset of Hume

Core Hume is a small but representative subset of the Hume language intended as

the target for our cost analysis. The motivation for defining this core language is
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to simplify the rigorous definition of the semantics, analysis and formal proofs. The

rationale for defining the core language is to select a kernel of language constructs

and to omit redundants ones that can be obtained by translation into the kernel.

A core language can also be seen as an intermediate step in the compilation pro-

cess, e.g. as in the GHC Haskell compiler (Tolmach 2001); this decoupled approach

has several advantages:

• a compiler front-end can translate programs in the full language into the core

language; this means that the back-end need only deal with the smaller core

language rather than all the syntactical features of a realistic programming

language;

• many high-level optimisations can be done in the core language, either during

the translation or as a separate program transformation phase;

• compile-time static analysis can be done after the core language translation;

this not only simplifies the analysis (by restricting it to the smaller core lan-

guage) but also makes the analysis orthogonal to the front-end; for cost analysis

in particular, this ensures that costs incurred by the translation into the core

are properly accounted.

The expression layer of the core language has a strict and first order semantics.

Although there have been persuasive arguments in the functional programming com-

munity favouring non-strict semantics (Hughes 1989) and an increase in popularity

of general-purpose non-strict languages such as Haskell (Jones 2003), we justify the

restriction to a strict semantics in order to meet the requirements for tight and

predictable resource behaviour.

The restriction to a first order semantics is motived by our size and cost anal-

ysis. While uncharacteristic of modern general purpose functional programming

languages, this allows us to obtain tight size and space bounds for many non-trivial

programs. Thus, we shall argue that the restrictions yield a positive trade-off between

expressiveness and predictability for the specific domain of application of real-time

embedded systems. Furthermore, we will show by an example in Chapter 7 how the

standard defunctionalisation program transformation can mitigate this limitation to

some extent.

In Chapter 6 we will define a realistic execution model for Core Hume, i.e. an

abstract machine that can be directly mapped onto a general-purpose or embedded

computer. This execution model will be used to formally specify the stack and heap

space cost metrics. Since these are the only dynamic space costs in the abstract
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machine, bounding stack and heap is enough to guarantee bounded space behaviour

for Core Hume programs.

4.2.1 Syntax

Expression notation

The core expression language is a simple first-order functional notation similar to a

subset of Standard ML or Haskell and corresponds to a proper subset of the Hume

expression language; the abstract syntax is presented in Table 4.1.

The atomic expressions are integers and identifiers; compound expressions are

obtained by applications of functions, constructors or primitive operators, local def-

initions and case expressions.

We use the notation ~e to represent a tuple of arguments (e1, . . . , ek). Note that

tuples occur only as arguments of functions, constructors or primitive operations.

In particular, the result of a function cannot be a tuple; alternatively, the function

can return a product data type. The separation between tuples and data types is

motivated by the desire to model space costs of the abstract machine: argument

tuples will be allocated in the stack while data types will be allocated in the heap.

Constants other than integers are represented by constructors with no arguments;

when it is clear from the context, we omit the empty tuple of arguments, e.g. we

write the booleans as True and False instead of True ( ) and False ( ).

Case expressions scrutinise a value against a sequence of pattern-matching alter-

natives. An alternative c ~x→ e matches the application of constructor c and binds

variables ~x in expression e to the constructor arguments. We will assume, without

loss of generality, that bound variables ~x are distinct. The tuple of variables in an

alternative can be empty (matching a constructed value without arguments); as in

applications, we will omit the empty tuple in these alternatives and write c → e

instead of c ()→ e.

A case expression decomposes a single constructor application; nested pattern

matching must therefore be translated into nested case expressions (Augustsson 1985,

Wadler 1987). Case alternatives need not be exhaustive, but each constructor can

appear in at most one of the alternatives; therefore, a value can match at most a sin-

gle alternative and the order among alternatives is not relevant. We will sometimes

use a set notation {ci ~xi → ei}ni=1 for alternatives. An if-then-else expression

if e0 then e1 else e2
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n ∈ Int integers

x, f ∈ Var identifiers

p ∈ Prim primitive operations

c ∈ Cons data constructors

e ∈ Expr expressions

e ::= n integer

| x identifier

| f ~e function application

| c ~e constructor application

| p ~e primitive application

| let x = e1 in e2 local definition

| case e of alts case expression

~e ::= (e1, . . . , ek) (k ≥ 0)

alts ∈ Alts alternatives

alts ::= c1 ~x1 → e1 | . . . | cn ~xn → en (n ≥ 1)

~x ::= (x1, . . . , xk) (k ≥ 0)

decl ∈ Decl function definitions

decl ::= let f ~x = e non-recursive function

| letrec f ~x = e recursive function

Table 4.1: Abstract syntax of Core Hume expressions
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is used as an abbreviation for a case expression over the boolean data type:

case e0 of True→ e1 | False→ e2

Note also that we disallow case expressions over primitive integers; this makes the

syntax and semantics of case alternatives uniform. Case discrimination over integers

can be expressed using primitive operations and conditionals, e.g. instead of

case e0 of n→ e1 | default→ e2

we write

if e0 = n then e1 else e2

where = is the primitive operation of equality on integers (written in infix form for

readability).

In a declaration let(rec) f ~x = e the identifier f is bound to a function, ~x are

the formal parameters and e is an expression (the function body). To simplify the

presentation, but without loss of generality, we syntactically distinguish recursive and

non-recursive function definitions. Because the language is first-order, functions are

explicitly named and partial applications are disallowed. For simplicity, we consider

only single recursively-defined functions2; the generalisation to mutually recursive

definitions is technically straightforward but cumbersome.

Coordination notation

The syntax of coordination statements is presented in Table 4.2. The coordination

language allows the definition of a static network of processes called boxes. Each box

communicates through a fixed number of input and output ports by a set of rules

defining mappings from inputs to outputs. Rules can be matched fairly or unfairly ;

unfair matching is done in top-to-bottom order; fair matching re-orders the rules

after a successful match to ensure fairness among patterns.

Each rule is defined by a tuple of input patterns and a tuple of output expres-

sions. Patterns in box rules can ignore inputs, bind variables and scrutinise a single

constructor application. The special asynchronous patterns “*” and “ *” can be

used to selectively ignore inputs: “*” ignores an input and does not consume it;

“ *” ignores an input but consumes it if it is available. The right-hand side of a box

rule is a tuple of expressions; each expression corresponds to the value of one output

port. A special symbol “*” represents a “null” value, i.e. the absence of a value for

an output port.

2 Note that in a first-order language mutual recursion cannot be encoded using tuples.
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decl ::= box id ports ports match rules box

| wire id id wiring

| initial id e initial value

ports ::= (id1 : τ1, . . . , idk : τk) box ports (k ≥ 1)

match ::= unfair | fair fair/unfair matching

rules ::= rule1 | . . . | rulen box rules (n ≥ 1)

rule ::= (ap1, . . . , api)→ (ae1, . . . , aej) box rule (i ≥ 1, j ≥ 1)

ae ::= * | e asynchronous expression

ap ::= * | * | x | c ~x asynchronous pattern

Table 4.2: Abstract syntax of Core Hume coordination declarations.

Our core language restricts the Hume definition (Hammond et al. 2007) concern-

ing the terms allowed at the coordination and expression layers:

• the left-hand side of a box rule is not a single pattern but a tuple of patterns;

e.g. it is therefore not possible to bind a variable to the complete tuple of

inputs;

• the right-hand side of a box rule is always a tuple of expressions, not an

expression that may evaluate to a tuple;

• the null value “*” can occur in a box output tuple but not in an expression;

in particular, functions cannot evaluate to “*”.

These restrictions separate the roles of the coordination and expression layers: the

coordination layer checks for availability of inputs and which outputs will be pro-

duced; the expression layer is used solely for computation.

The advantage of this separation is a simplification of the language semantics:

for example, since “*” is not an expression, the corresponding semantic domain

need not include a special “null” point to represent the absence of an output value.3

3 The denotational domain of expression values still needs to include a bottom value to represent

runtime errors and non-termination. The null value, however, must be distinct from bottom: the

test for null equality is a continuous function while the test for bottom equality is non-continuous.
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The clear separation between layers is also beneficial from the point-of-view of the

implementation: the absence of the null value allows for more efficient “unboxed”

representations for expression values, leaving the boxed representation necessary only

at the coordination level.

Boxes are connected into a static process network by wires, which are single-

buffered communication links connecting box ports together. A single output port

can be connected to an arbitrary number of input ports. The wiring is static, meaning

that the communication network is totally determined at compile time.

Values in wires can be of arbitrary zero order type, e.g. integers, booleans, tu-

ples, lists or binary trees. For wire data types of variable size (e.g. lists or trees),

the compiler or runtime system might require additional information to bound the

required wire heap (e.g. user annotations, profiling data or static analysis).

The core language includes a single point-to-point wiring primitive wire and

a single initialiser primitive initial. Each port is identified by an identifier, e.g.

box.port. The initialiser allows specifying a starting value for a wire, e.g. in a feedback

loop.

4.2.2 Type discipline

Core Hume programs must be well-typed according to a first-order fragment of a

standard Damas-Milner type system. In this section we describe the type system in

some detail, since this will be the basis for the size and cost analyses that will be

developed in the following chapters.

Syntax of types

The syntax of types is given by the following grammar.

τ ∈ Type0

τ ::= α | Int | D~τ zero order types

ν ::= τ | ~τ → τ first order types

~τ ::= (τ1, . . . , τk) (k ≥ 0)

σ ∈ Type1

σ ::= ν | ∀α. σ quantified types

α ∈ TVar

α ::= a | b | c | . . . type variables

Type variables are taken from a countable set TVar; we use lowercase letters from
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FTV(α) = {α}

FTV(Int) = ∅

FTV(D~τ) = FTV(~τ)

FTV((τ1, . . . , τk)) =
⋃k
i=1 FTV(τi)

FTV(~τ → τ) = FTV(~τ) ∪ FTV(τ)

FTV(∀α. σ) = FTV(σ) \ {α}

Table 4.3: Free type variables

the beginning of the Greek alphabet α, β as syntactical meta-symbols for type

variables.

Zero order types are either variables, the primitive type of integers, or an appli-

cation of a data type constructor to a sequence of types; data type constructors

are described in Section 4.2.2.

First order types (τ1, . . . , τk)→ τk+1 is the type of a function with k arguments

of types τ1, . . . , τk and result of type τk+1. Note that argument tuples can be

empty, e.g. for data constructors with zero arguments.

Types can be quantified over type variables, yielding type schemes. We use the

universal logic quantifier ∀ for type quantification and abbreviate the notation,

writing ∀~α. σ def= ∀α1. . . .∀αn. σ to quantify over a sequence ~α = (α1, . . . , αn)

of type variables.

The set of type variables with free occurrences in a type scheme σ is FTV(σ).

Table 4.3 defines FTV(σ) inductively on the structure of σ. We will sometimes

consider that FTV(σ) yields a sequence of type variables ~α rather than a set, e.g.

by ordering the variables in lexicographic order.

Data type declarations

Algebraic types are defined by data type declarations with the syntax:

datadecl ::= data D ~α = c1 ~τ1 | · · · | cn ~τn

The declaration defines a type constructor D of arity |~α| as a sum of n alternatives,

each labelled by a unique constructor ci. The declaration defines a recursive type if

the type D occurs in the right-hand side alternatives. Since the expression language
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is strict, data type definitions cannot be co-inductive: all data type definitions should

be well-founded, i.e. have at least one non-recursive alternative.

Example 4.1 The type of booleans and homogeneous lists are declared as

data Bool () = True () | False ()

data List (a) = Nil () | Cons (a, List a)

which defines True and False as boolean values, the empty list constructor Nil and

the list Cons (h, t) with first element h and tail t. �

Type assumptions

As usual in type assignment disciplines, we use type assumptions to associate types

to free variables. Type assumptions Γ are sequences of pairs x : σ or c : σ associating

type scheme σ with, respectively, an identifier x or constructor c:

Γ ::= [] | x : σ, Γ | c : σ, Γ

We will represent the concatenation of two sequences Γ′ and Γ by (Γ′, Γ); the defi-

nition of concatenation is standard and we therefore omit it.

An assumption sequence defines a partial finite map from names to type schemes.

We will use the notation Γ(id) for the first assumption (if any) associated with id

in Γ:

(id ′ : σ, Γ)(id) def=

{
σ if id = id ′

Γ(id) otherwise.

Note that Γ(id) is undefined when Γ is the empty sequence.

Type substitutions

A type substitution is a function θ : TVar → Type0 from type variables to zero-

order types. The domain of θ is dom(θ) = {α ∈ TVar : θα 6= α}, i.e. the set of

variables where θ is not the identity. We use the notation [α 7→τ ] for the substitution

mapping α to τ and behaving as the identity everywhere else, i.e.

[α 7→τ ]α′ =

{
τ , if α = α′

α′ otherwise .

Substitutions extend from variables to types and schemes in the usual way.
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Typing rules and derivations

Tables 4.4 and 4.5 present the typing rules for Core Hume expressions and decla-

rations. Each rule has the form {A1, A2, . . . , An}/B where {A1, A2, . . . , An} is a

finite set of antecedents and B is the consequent. We write each rule using the style

of natural deduction: the antecedents and consequent are separated by an horizontal

line and the rule is labelled with a unique name for easier reference in proofs.

[label ]
A1 A2 · · · An

B

A rule ∅/B with an empty set of premises is an axiom and is written as a single con-

sequent without the horizontal line. Rules are usually specified with meta-variables

that can be replaced by terms of the appropriate syntactical kind. Some rules are

subject to side conditions to restrict allowed instances.

Given a set of rules, a derivation is a finite tree where each internal node is an

instance of a rule and each leaf is an instance of an axiom.

We will often prove properties using induction on derivations (Winskel 1993,

Mitchell 1996). To prove that property P holds for all consequences of deriva-

tions we need only show that: (1) P holds for all axioms; and (2) for each rule

{A1, . . . , An}/B, P (B) holds under the assumptions P (A1), . . . , P (An).

Description of the typing rules

Types are assigned to expressions by a judgement Γ D̀M e : τ which informally states

that under assumptions Γ, e admits type τ . Most of the rules of Table 4.4 are

directly adapted from the literature (Milner 1976, Damas and Milner 1982, Damas

1985, Pierce 2002) and we therefore describe them only briefly:

• Rule [Var ] infers a type for an identifier if it can be obtained from the as-

sumption set Γ using an auxiliary judgement Γ ÌNST id : σ for type scheme

instantiation.4

• Rules [FunAp] and [ConsAp] infers a type for an function and constructor

applications if the type of domain and argument match.

• Rule [Let ] infer a type an expression under a local definition. Because the

language is first-order, the bound value is zero-order and therefore the rule

restricts its type to be monomorphic. Polymorphic definitions are allowed

only in function declarations.
4 A separate judgement is needed because expression types are zero-order while type schemes

are first-order.
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Γ D̀M e : τ

[Int ] Γ D̀M n : Int

[Var ]
Γ ÌNST x : τ

Γ D̀M x : τ

[FunAp]
Γ ÌNST f : ~τ → τ ′ Γ D̀M ~e : ~τ

Γ D̀M f ~e : τ ′

[ConsAp]
Γ ÌNST c : ~τ → τ ′ Γ D̀M ~e : ~τ

Γ D̀M c ~e : τ ′

[Let ]
Γ D̀M e1 : τ1 x : τ1, Γ D̀M e2 : τ2

Γ D̀M let x = e1 in e2 : τ2

[Case]

Γ D̀M e0 : τ ′

Γ ÌNST ci : ~τ ′′i → τ ′ ~xi : ~τ ′′i , Γ D̀M ei : τ (∀i)
Γ D̀M case e0 of {ci ~xi → ei}ni=1 : τ

Γ D̀M ~e : ~τ

[Tuple]
Γ D̀M ei : τi (∀i)

Γ D̀M (e1, . . . , ek) : (τ1, . . . , τk)

Γ ÌNST id : σ Assumption instantiation

[Axiom] Γ ÌNST id : Γ(id)

[Elim∀]
Γ ÌNST id : ∀α. σ

Γ ÌNST id : [α 7→τ ]σ

Table 4.4: Typing rules for Core Hume expressions.
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Γ D̀M decl : σ

[Fun]
x1 : τ1, . . . , xk : τk, Γ D̀M e : τk+1

Γ D̀M let f (x1, . . . xk) = e : ∀~α. (τ1, . . . , τk)→ τk+1

[Rec]
x1 : τ1, . . . , xk : τk, f : (τ1, . . . , τk)→ τk+1, Γ D̀M e : τk+1

Γ D̀M letrec f (x1, . . . , xk) = e : ∀~α. (τ1, . . . , τk)→ τk+1

where ~α =
(⋃k+1

i=1 FTV(τi)
)
\ FTV(Γ)

Table 4.5: Typing rules for Core Hume function declarations.

• Rule [Case] infers a type for a case expression: the type for the scrutinised ex-

pression e0 and co-domain of the constructors ci must match; each alternative

is then typed under extended assumptions for the patterns variables;5 finally,

the types of the right-hand side expressions ei must be equal among all the

alternatives.

The typing judgement Γ D̀M decl : σ derives a type scheme σ for a function

declaration decl under assumptions Γ.

A function declaration let(rec) f (x1, . . . , xk) = e binds the identifier f to a k-

argument function with formal parameters x1, . . . , xk and body e. The inferred type

has the form (τ1, . . . , τk) → τk+1, where τ1, . . . , τk are the types of the arguments

and τk+1 is the type of result. The rule [Rec] for recursive functions differs from the

non-recursive one [Fun] in the assumption for f in the typing context of e.

As usual in type systems based on Damas-Milner let-bound polymorphism, the

types of functions are quantified in all variables that do not occur free in the type

assumptions.

4.2.3 Semantics

In order to formulate and prove the correctness of our analysis, we will present a

formal semantics for Core Hume. In this section we focus on the semantics of the

expression layer in the form of a standard call-by-value denotational semantics (see

Appendix A for a review of the required order-theoric concepts). The semantics for

the coordination layer will be presented in Chapter 6.

5 When |~x| = |~τ | we write ~x : ~τ as an abbreviation for the assumptions x1 : τ1, . . . , xn : τn, [].
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Semantic domains

Values of Core Hume expressions are integers, constructors and sequences of values.

Formally, we define the set of values inductively by a grammar.

Definition 4.2 The set of expressible values V is defined by the grammar

v ∈ V

v ::= n | c | u | 〈v, v〉
c ∈ Cons

n ∈ Z

where Z is the set of integers and Cons is the set of data constructors and u is a

distinguished unit value.

We introduce a shorthand notation for multi-arity tuples: 〈v1, . . . , vn〉 is an abbre-

viation for 〈v1, 〈. . . , 〈vn−1, vn〉〉〉 for n > 0. In particular, a singleton 〈v〉 is just the

value v.

The set of denotable values is V⊥ = {bvc : v ∈ V} ∪ {⊥} containing the lifted

elements of V together with a distinguished element ⊥ representing partiality (i.e.

run-time errors and non-termination).

Definition 4.3 The domain of denotations of expressions is the flat CPO (V⊥, v),

where u v v ⇐⇒ u = ⊥ ∨ u = v.

The denotations of functions are continuous mappings from V to V⊥, or equiva-

lently elements of [V→ V⊥]. Note that ⊥ is not included in the domain of function

denotations: since we are modelling a strict semantics the image of ⊥ is always ⊥.

The set [V→ V⊥] with the pointwise order v is a CPO (see Section A.1.7).

Environments

To associate denotations to identifiers we employ the standard notion of an environ-

ment. Since our language semantics is first-order, we distinguish environments ρ for

basic values from environments ϕ for functional values:

ρ ∈ Env def= Var→ V⊥ (4.1)

ϕ ∈ Fenv def= Var→ [V→ V⊥] (4.2)

We denote by ρ0 the environment that maps every identifier to bottom (i.e.

ρ0(x) = ⊥ for all x ∈ Var), and use the notations ρ[x 7→ v] and ϕ[f 7→ F ], where
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v ∈ V and F ∈ [V→ V⊥], for extending environments as follows:

ρ[x 7→v](x′) =

{
bvc if x = x′

ρ(x′) otherwise
ϕ[f 7→F ](f ′) =

{
F if f = f ′

ϕ(f ′) otherwise

Note that, because the Core Hume semantics is strict, we will never extend an

environment ρ with a bottom value.

Semantic equations

The semantics of Core Hume is given in Table 4.6 by functions E for expressions, A for

alternatives,M for pattern matching and D for declarations. We use a metalanguage

based on the λ-calculus to define the semantics functions (Stoy 1977, Winskel 1993):

Lambda-abstraction: If E ∈ V⊥ is a continuous expression in a variable x ∈ V

then λx.E denotes a function in [V→ V⊥].

Function lifting: Let F ∈ [V→ V⊥] and define the lifting of F to be F ∗:

F ∗(v) =

{
F (v′) if v = bv′c
⊥ if v = ⊥

Then F ∗ ∈ [V⊥ → V⊥].

Strict binding: If E1 ∈ V⊥ and E2 ∈ V⊥ are continuous expressions in all vari-

ables, then the expression

let x⇐ E1. E2
def= (λx.E2)∗E1

is also continuous in all variables (since it is defined by λ-abstraction, lifting

and application).

Case expressions: If e ∈ V and E1, . . . , En ∈ V⊥ are continuous expressions and

c1, . . . , cn are all distinct, then

case e of {c1. E1 | · · · | cn. En} =

{
Ei if v = ci for some i

⊥ otherwise

is a continuous expression in all variables.

Tuple binding: We use also a form of lambda-abstraction that binds components

of tuples. If E is in V⊥ and is continuous in x1, . . . , xk, then the lambda-

expression λ〈x1, . . . , xk〉. E represents the function

(λ〈x1, . . . , xk〉. E) v =

{
E[x1 7→v1, . . . xk 7→vk] if v = 〈v1, . . . , vk〉
⊥ otherwise

It is immediate that this function is continuous and, therefore, in [V→ V⊥].
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Env def= Var→ V⊥

Fenv def= Var→ [V→ V⊥]

E : Expr→ Fenv→ Env→ V⊥

EJn K ϕ ρ
def= bnc

EJx K ϕ ρ
def= ρ(x)

EJ c ~e K ϕ ρ
def= let v ⇐ EJ~e K ϕ ρ. b〈c, v〉c

EJ f ~e K ϕ ρ
def= let v ⇐ EJ~e K ϕ ρ. ϕf v

EJ let x = e1 in e2 K ϕ ρ
def= let v ⇐ EJ e1 K ϕ ρ. EJ e2 K ϕ ρ[x 7→v]

EJ case e of alts K ϕ ρ
def= let v ⇐ EJ e K ϕ ρ. AJ alts K ϕ ρ v

EJ () K ϕ ρ
def= buc

EJ (e1, . . . , ek) K ϕ ρ
def= let v1 ⇐ EJ e1 K ϕ ρ.

...

let vk ⇐ EJ ek K ϕ ρ. b〈v1, . . . , vk〉c

A : Alts→ Fenv→ Env→ V→ V⊥

AJ {ci ~xi → ei}ki=1 K ϕ ρ
def= λ〈v′, v〉. case v′ of

c1.MJ c1 ~x1 → e1 K ϕ ρ v |
...

ck.MJ ck ~xk → ek K ϕ ρ v

M : Alt→ Fenv→ Env→ V→ V⊥

MJ c (x1, . . . , xk)→ e K ϕ ρ
def= λ〈v1, . . . , vk〉. EJ e K ϕ ρ[x1 7→v1, . . . , xk 7→vk]

D : Decl→ Fenv→ [V→ V⊥]

DJ let f (x1, . . . , xk) = e K ϕ def= λ〈v1, . . . , vk〉. EJ e K ϕ ρ0[x1 7→v1, . . . , xk 7→vk]

DJ letrec f (x1, . . . , xk) = e K ϕ def= fix (F),

where F = λF. λ〈v1, . . . , vk〉. EJ e K ϕ[f 7→F ] ρ0[x1 7→v1, . . . , xk 7→vk]

Table 4.6: Denotational semantics for Core Hume expressions and functions.
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Least fixed point: If D is a pointed CPO and F ∈ [D → D] (i.e. F is a continuous

function in D), then fix (F ) is the least fixed point of F in D.

Because Core Hume is first-order, functions definitions are only allowed at the

outermost level of declarations. The semantics of non-recursive functions is defined

by a lambda-abstraction denoting an element of [V → V⊥]. The semantics of

recursive functions is defined as the least fixed point of a functional in [[V→ V⊥]→
[V→ V⊥]]. The following lemma establishes the continuity of the functional, which

guarantees the existence of the least fixed point (Davey and Priestley 1990).

Lemma 4.4 E is continuous in its ϕ, ρ arguments.

Proof: Analogous to standard proofs in semantics textbooks such as (Stoy 1977,

Winskel 1993). �

4.3 Concrete syntax

A Core Hume program consists of a sequence of data type declarations, function

declarations and coordination declarations. In this section we describe the concrete

syntax of Core Hume programs; this is mostly a subset of the syntax of Hume (Ham-

mond et al. 2007) with some minor exceptions to simplify parsing (e.g. the require-

ment that data type constructors start with upper-case letters).

4.3.1 Lexical conventions

Identifiers start with a lowercase letter followed by any sequence of letters, digits,

underscore ( ) and quote (’) characters.

Constructors start with uppercase letters, followed by any sequence of letters,

digits and underscore. The exception to the latter rule are the list constructors,

where we use a Haskell-like notation: [] is the empty list and h:t is the list

with head h and tail t.

Types type variables start with a lowercase letters; data type constructors start

with uppercase letters. The list type is written [τ]. An n-argument function

type is written {τ1, τ2, ..., τn}->τn+1; a single argument function can be

written τ1->τ2 omitting the braces around the argument type.

Comments single-line comments start with -- and extend to the end-of-line. Block

comments are enclosed within {- and -}.
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4.3.2 Syntactical conventions

Application of functions and constructors is written by juxtaposition, i.e. f e1 . . . ek

instead of f (e1, . . . , ek).

Parenthesis ( and ) are used to delimit expressions when required.

Integer arithmetic operators +, -, *, ==, <= are written in infix notation and fol-

low the usual precedences. Function and constructor applications have higher

precedence than infix operators, thus foo x+y parses like (foo x)+y.

Floating point arithmetic operators are written +., *., /., etc. to lexically

distinguish them from the operators on integers.

List extensions is a shorthand notation for nested application of the list construc-

tors: [e1, e2, . . . , en] stands for e1:e2: . . . en:[].

Function definitions can be made using equations with patterns on the left-hand

sides; each equation is terminated by a semicolon. Pattern matching equations

are translated into case expressions using the algorithm of Wadler (1987).

Type signatures are required for each function; this is done solely to to simplify

the size and cost analysis presented in the the following chapters. In any

case, type signatures could be introduced automatically, if desired, using the

Damas-Milner type reconstruction algorithm (Damas 1985).

4.4 Examples

We shall now present some example programs in Core Hume, mainly to familiarise

the reader with the concrete syntax used. Some of the examples (e.g. the list reverse

function) will also be revisited in Chapter 7 when we use them as subjects for the

size and cost analyses of Chapters 5 and 6.

4.4.1 List functions

Our first examples are standard list functions from the Haskell prelude: the head and

tail projections and list reverse written in tail-recursive style using an accumulating

parameter.

-- head and tail are not defined for []

head :: [a] -> a

head (x:xs) = x;



98 CHAPTER 4. CORE HUME

tail :: [a] -> [a]

tail (x:xs) = xs;

-- reverse using an accumulating parameter

reverse :: [a] -> [a]

reverse xs = revAcc xs [];

revAcc :: {[a],[a]} -> [a]

revAcc [] ys = ys;

revAcc (x:xs) ys = revAcc xs (x:ys);

Pattern matching on the left-hand side of these equations is translated in the Core

language using the algorithm of Wadler (1987). For example, the compilation of

revAcc yields the following abstract syntax:

letrec revAcc (xs, ys) = case xs of

Nil→ ys

| Cons (x, xs′)→ revAcc (xs′, Cons (x, ys))

4.4.2 Parity checker

Our next example is a Core Hume box implementing a parity checker : a box pro-

cessing a stream of bits one bit at a time and keeping a record of the parity of the

number of True bits. This is a very simple example of a reactive process using a wire

with a feedback to record state (the current parity).

not :: Bool -> Bool

not True = False ;

not False = True ;

box parity

in (bit::Bool, state::Bool) -- inputs

out (state’::Bool) -- output

match

(True, p) -> (not p) -- invert parity

(False,p) -> (p) ; -- maintain parity

wire parity.state parity.state’ ; -- feedback loop

initial parity.state False ; -- initial parity
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-- traffic light states

data Light = Red | Amber | Green | Red_Amber ;

-- traffic lights delay

data Delay = Done | Wait Int ;

-- delay values (in clock cycles, e.g. seconds)

red_amber_delay = 2 ;

green_delay = 90 ;

amber_delay = 2 ;

red_delay = 90 ;

countdown :: Int -> Delay

countdown ticks = if ticks>0 then Wait (ticks-1) else Done ;

-- traffic lights controller

box lights

in (clk::(), delay::Int, state::Light)

out (delay’::Int, state’::Light)

match

(_, Done, Red) -> (Wait red_amber_delay, Red_Amber)

| (_, Done, Red_Amber) -> (Wait green_delay, Green)

| (_, Done, Green) -> (Wait amber_delay, Amber)

| (_, Done, Amber) -> (Wait red_delay, Red)

| (_, Wait ticks, state) -> (countdown ticks, state) ;

wire lights.delay lights.delay’;

wire lights.state lights.state’;

-- clock input wired to light.clk

initial lights.state Red;

initial lights.delay (Wait red_delay);

Figure 4.1: Traffic lights controller in Core Hume.
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4.4.3 Traffic lights controller

The next example in Figure 4.1 is a finite-state controller for a set of traffic lights.

The controller goes through a sequence of states: red (stop), red and amber (prepare

to go), green (go) and amber (prepare to stop). The state transitions are delayed by

multiples of a clock input. The clock is a pure synchronisation signal; therefore its

value (of type unit) is not used.

Summary

We have introduced Core Hume, a small but representative subset of the Hume

language. Core Hume programs consist of a static network of processes described in

a strict, first-order, statically-typed applicative language.

We have presented formal definitions of the syntax, semantics and type system

of Core Hume. These definitions form the basis for the specification and correctness

proofs of the size and costs analyses developed in Chapters 5 and 6.



Chapter 5

Size analysis

In this chapter we present an size analysis for Core Hume programs based on a sized

type system. This purely denotational size analysis is a preliminary step towards

the cost analysis for recursive programs which will be developed in Chapter 6.

We present the syntax and semantics of sized types (Section 5.2), the type infer-

ence rules (Section 5.3) and prove that the analysis is sound with respect to the deno-

tational semantics defined in Chapter 4 (Section 5.4). We also present an algorithm

for reconstructing sized types automatically (Section 5.5) and dicuss limitations of

the analysis regarding quality of the size information obtained (Section 5.6).

5.1 Overview

Size analyses are static analysis techniques for automatically obtaining predictive

information about the sizes of data values in a program. The basic idea is to attach

size measures to data structures and express the effect of a program as a size relation.

For example, consider two Core Hume recursive functions for list concatenation

and insertion (written in a Haskell-style for legibility):

append :: {[a],[a]} -> [a]

append [] ys = ys ;

append (x:xs) ys = x:append xs ys;

insert :: {Int,[Int]} -> [Int]

insert x [] = [x] ;

insert x (y:ys) = if x<y then x:y:ys

else if x>y then y:insert x ys

101



102 CHAPTER 5. SIZE ANALYSIS

else y:ys;

Defining the size of a list to be the length, i.e.

|[]| = 0

|x : xs| = 1 + |xs| ,

we can verify (e.g. by structural induction) that the following size relations hold:

|append xs ys| = |xs|+ |ys| (5.1)

|ys| ≤ |insert x ys| ≤ 1 + |ys| (5.2)

Equation (5.1) gives the size of the result list as the sum of two input lists. Inequa-

tions (5.2) give lower-and upper-bounds on the size of the result list (the exact size

will depend on whether the inserted value occurs in the input list).

In the sized type system of Chin and Khoo (2001), such relations are expressed

by the following annotated types:1

append : 〈{[a]i, [a]j} → [a]k, i+ j = k〉 (5.3)

insert : 〈{Int, [Int]n} → [Int]m, n ≤ m ∧m ≤ n+ 1〉 (5.4)

These examples illustrate three characteristics of size analysis:

Relational information: sizes of individual data structures are represented by an-

notations in types; the size analysis express not just sizes of individual values,

but also relations between sizes of values;

Arithmetic relations: size relations are naturally expressed using arithmetic con-

straints; to allow automatic manipulation these are typically restricted to de-

cidable fragments, e.g. Presburger arithmetic (Pugh 1992);

Approximate information: the size analysis must allow approximations; for ex-

ample, the sizem of the result of insert depends on which branch of the dynamic

test are taken; the analysis obtains a range as a conjunction of two inequations

n ≤ m ∧m ≤ n+ 1.

Our sized analysis is based on the sized type systems presented by Hughes, Pareto

and Sabry (1996) and Chin and Khoo (2001); however, it differs from these works

in several aspects:

1. we do inference of size information rather than just checking programmer

annotations as in the system of Hughes et al.;
1 We ignore the issues of size and type polymorphism in this example; these will be addressed

in the technical development of Section 5.2.
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2. our sized type system infers a safety property i.e. safe bounds on sizes of

dynamic values; it does not prove termination as does the system of Hughes

et al.;

3. like the system of Chin and Khoo (2001), we obtain size relations for recursive

function automatically; however, we do so using standard fixpoint approxima-

tion techniques (Cousot and Halbwachs 1978) rather than the transitive closure

used by Chin and Khoo;

4. we generalise the notions of size in both previous approaches and allow user

defined metrics for new data types; this extends the applicability of size analysis

to non-linear data structures (e.g. binary trees);

5. our soundness proof for the type system corrects the one by Chin and Khoo

which erroneously assumes completeness of the lattice of constraints.

The presentation proceeds as follows: in Section 5.2 we introduce the syntax of

annotated types and size constraints; in Section 5.3 we present the typing rules for

deriving sized types for Core Hume programs; in Section 5.4 we present a size seman-

tics based on the denotational semantics of Core Hume and prove the correctness

of the type system; in Section 5.5 we present the sized type inference algorithm.

Finally, Section 5.6 discusses some limitations of the size analysis.

5.2 Size analysis for Core Hume

5.2.1 Sizes of data types

To extend Core Hume with sized types we need to choose size measures. As in

Dependent ML (Xi 1998), we rely on the programmer specifying a size measure for

user-defined data types by augmenting the type declarations with size variables and

constraints. In the absence of a user-defined size, the data type is treated as unsized.

This allows the programmer to assign meaningful size measures to the relevant data

types and avoid size information when it is not required.

For example, the list data type of Example 4.1 can be extended with a measure

for list length by the declaration:

data Listi a = Nil {i = 0}
| Cons (a, Listj a) {i = 1 + j ∧ 0 ≤ j}

The variables i, j represent sizes of lists; the Nil and Cons constructors have been

augmented with constraints on these variables (the syntax of constraints will be
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formalised in the next section). The constraint i = 0 in the first branch encodes

the relation |Nil| = 0; the constraint i = 1 + j in the second branch encodes the

relation |Cons(x, xs)| = 1 + |xs|; the constraint 0 ≤ j encodes the non-negativity of

list lengths.

Note that we can also define sizes for simple enumerations, e.g. by associating

each constructor with an integer size; this is used on case selection to propagate

information. For example, we can define the size of booleans as |True| = 1 and

|False| = 0:

data Booli = True {i = 1} | False {i = 0}

The only type with a predefined size measure is Int, the primitive type of integers:

we take |n| = n, i.e. the size of an integer is its own value.

The reader may wonder why we did we not choose a logarithmic size for integers

(e.g. |n| = dlog2(n+1)e); the rationale for our choice is that the size of integers is not

intended to bound storage (we will instead assume integers fit a fixed bit-pattern)

but rather as indices for constructing and traversing other data structures, e.g. lists.

Note that unlike lists and booleans, negative sizes are meaningful for integers.

5.2.2 Annotated types and constraints

Table 5.1 extends the basic type system of Section 4.2.2 with size annotations. Al-

gebraic data types are annotated with either a size variable ` or the symbol ω

indicating the absence of size information. Type variables and the unit type require

no size annotation.

As in the system of Chin and Khoo, size annotations are variables and size

relations are expressed through constraints; this has the advantage of separating the

free algebra of types from the algebra of sizes. For example, checking the equality

of the sized types

〈(Inti, Intj)→ Intk, 1 + k = i+ j ∧ 0 ≤ i ∧ 0 ≤ j︸ ︷︷ ︸
φ

〉

〈(Inti, Intj)→ Intk, i+ j − 1 = k ∧ 0 ≤ j ∧ 0 ≤ 1 + k︸ ︷︷ ︸
ψ

〉

reduces to checking the equivalence of constraints φ and ψ. This simplifies a type

checking or inference algorithm: the non-free algebra of arithmetic can be delegated

to a specialised constraint solver, while the inference algorithm deals only with a free

algebra of types.

Type variables are syntactical place-holders for type expressions. Because sizes

are attached to types, substituting a type variable in will propagate size informa-
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τ ∈ Type0

τ ::= α | Intz | Dz ~τ zero order types

ν ::= τ | ~τ → τ first order types

~τ ::= (τ1, . . . , τk) argument tuple (k ≥ 0)

z ::= ` | ω size annotations

σ ∈ Type1

σ ::= ν | ∀α. σ′ type quantification

η ∈ Type2

η ::= 〈σ, φ〉 | ∀`. η′ size quantification

α ∈ TVar type variables

α ::= a | b | c | . . . sized type variables

| â | b̂ | ĉ | . . . unsized type variables

φ, ψ ∈ F

φ ::= s1 ≤ s2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃`. φ′ size constraints

s ::= n | ` | n× s′ | s1 + s2 size expressions

` ∈ ZVar

` ::= i | j | k | n | m | . . . size variables

Table 5.1: Syntax of annotated types and size constraints.

tion. For soundness reasons, we will need to disallow size propagation in some

circumstances. Therefore, we introduce two kinds of type variables: unsized type

variables that can only be replaced by types where all size annotations are ω; and

sized type variables that can be replaced by arbitrary annotated types.

Size constraints

The choice of size constraints must balance expressiveness with effectiveness: con-

straints must be expressive enough to capture useful size relations, but also simple

enough to make automatic manipulation tractable. At the very least the type sys-

tem should be decidable, i.e. we should be able to algorithmically check if a type

derivation is well-formed; this motivates the restriction to a decidable fragment of

first-order logic with arithmetic.

Following Chin and Khoo (2001), our size constraints are based on Presburger
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arithmetic: first-order logic formulae over the naturals with addition and predicates

for equality and ‘less-than’, but no multiplication. Thus 1 + i = j is a Presburger

formula over variables i, j, but i× j = 4 is not because of the term i× j. The decid-

ability of this logical theory over the naturals was proved in 1929 by M. Presburger;

applications to automated theorem proving go back to Cooper (1972). Presburger

formulae can be extended with negative numbers and multiplication by constants and

still maintain decidability; computational implementations typically handle these ex-

tensions, e.g. the Omega calculator (Pugh 1992).

Although we do not consider equality as a primitive predicate, equations can be

expressed as a conjunction of two inequations. We use the shorthand s1 = s2 for the

logically equivalent conjunction (s1 ≤ s2) ∧ (s2 ≤ s1). Similarly, we use True and

False as shorthands for universal and unsatisfiable constraints, e.g. True ≡ (0 ≤ 0)

and False ≡ (1 ≤ 0).

While the syntax of our size constraints is a fragment of Presburger arithmetic,

the semantics is interpreted over the rationals rather than the integers. This choice

allows performing quantifier elimination by Fourier elimination (Chandru 1993)

avoiding the congruence predicates needed for integer solutions (Rabin 1977). We

remark that solving for rationals rather than integers sizes yields a larger solution set

which is always a sound approximation. In practice, we found that rational solutions

give short constraints that compose more easily while still capturing accurate upper

and lower bounds on sizes.

Quantified types

Types can be quantified in both type and size variables. We introduce two levels of

quantification: type schemes σ are (first-order) types quantified over type variables;

and size schemes η are type schemes quantified over size variables. As is usual in

type systems extended with constraints (Mitchell 1984, Jouvelot and Gifford 1991,

Nielson et al. 1999), size schemes need to capture both the type structure σ and a

constraint φ.

We use the logic quantifier ∀ for both type and size variables, distinguishing the

two uses by the kind of variable quantified. We will also abuse notation and write

∀~α or ∀~̀ to quantify over sequences of type or size variables.

Free and bound occurrences of variables

The scope of a type quantifier ∀α. σ is σ; the scope of a size quantifier ∀`. η is η; the

scope of the constraint quantifier ∃`. φ is φ. An occurrence of a type variable α inside
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the scope of a quantifier ∀α is said to be bound by the quantifier (and similarly for

occurrences of size variables ` in the scope of ∀` or ∃`). An occurrence of a variable

that is not bound by any quantifier is said to be free. The set of type and annotation

variables with free occurrences in t (where t is a quantified type or a size constraint)

is given by FTV(t) and FZV(t), respectively (see Table 5.2).

Sized type substitutions

We consider an extended notion of syntactical substitution that maps type variables

to (sized) types and size variables to size annotations (i.e. size variables or ω).

Formally, substitutions θ are sequences of mappings from variables to terms,

θ ::= [ ] | [α 7→τ ]θ | [` 7→`′]θ | [` 7→ω]θ

where [ ] is the empty substitution and:

[α 7→τ ]θ is the substitution mapping a type variable α to the type τ ;

[` 7→`′]θ is the substitution mapping a size variable ` to another `′;

[` 7→ω]θ is the substitution mapping a size variable ` to ω.

In all the above cases, a substitution [v 7→· · · ]θ acts as θ for variables other than v.

Substitutions extend to (sized) types in the usual way. We will also extend

substitutions to constraints; note that type variables do not occur in the latter, so

mappings on type variables are not relevant in this case; substituting a size vari-

able by another in a constraint is straightforward. The only remaining case is the

substitution of a size variable by ω in a constraint φ; this is defined by existential

quantification:

([` 7→ω]θ)φ def= θ (∃`. φ) (5.5)

As usual, the composition of two substitutions is written θ1 ◦ θ2 and defined as

(θ1 ◦ θ2) t def= θ1 (θ2 t). A substitution θ is idempotent if and only if θ ◦ θ = θ.

An annotated type τ is unsized if and only if all size annotations are ω and all

type variables are unsized, i.e. FZV(τ) = ∅ and FTV(τ) are unsized. A substitution

θ is proper if and only if it is idempotent and all unsized variables are mapped to

unsized types. It is straightforward to verify that the composition of two proper

substitutions is proper.
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FTV(α) = {α}

FTV(Intz) = ∅

FTV(Dz ~τ) = FTV(~τ)

FTV(~τ → τ) = FTV(~τ) ∪ FTV(τ)

FTV((τ1, . . . , τk)) =
⋃k
i=1 FTV(τi)

FTV(∀α. σ) = FTV(σ) \ {α}

FTV(〈σ, φ〉) = FTV(σ)

FTV(∀`. η) = FTV(η)

FZV(α) = ∅

FZV(Intω) = ∅

FZV(Int`) = {`}

FZV(D` ~τ) = {`} ∪ FZV(~τ)

FZV(Dω ~τ) = FZV(~τ)

FZV(~τ → τ) = FZV(~τ) ∪ FZV(τ)

FZV((τ1, . . . , τk)) =
⋃k
i=1 FZV(τi)

FZV(∀α. σ) = FZV(σ)

FZV(〈σ, φ〉) = FZV(σ) ∪ FZV(φ)

FZV(∀`. η) = FZV(η) \ {`}

FZV(φ1 ∧ φ2) = FZV(φ1 ∨ φ2) = FZV(φ1) ∪ FZV(φ2)

FZV(s1 ≤ s2) = FZV(s1) ∪ FZV(s2)

FZV(∃`. φ) = FZV(φ) \ {`}

FZV(n) = ∅

FZV(`) = {`}

FZV(n× s) = FZV(s)

FZV(s1 + s2) = FZV(s1) ∪ FZV(s2)

Table 5.2: Free type and size variables



5.2. SIZE ANALYSIS FOR CORE HUME 109

V |= s1 ≤ s2 ⇐⇒ Js1KV ≤ Js2KV

V |= φ1 ∧ φ2 ⇐⇒ V |= φ1 ∧ V |= φ2

V |= φ1 ∨ φ2 ⇐⇒ V |= φ1 ∨ V |= φ2

V |= ∃`. φ ⇐⇒ ∃r ∈ Q : V[` 7→r] |= φ

Table 5.3: Constraint satisfiability relation

Lemma 5.1 For all size variables `, `′ and terms t (i.e. sized types or constraints):

[` 7→`′] t = t , if ` /∈ FZV(t) (5.6)

FZV([` 7→`′] t) = [` 7→`′] FZV(t) (5.7)

FZV([` 7→ω] t) = FZV(t) \ {`} (5.8)

Proof: By simple induction on the structure of t. �

5.2.3 Semantics of size constraints

Informally, a size constraint represents an approximation to the sizes of runtime data

values (this notion will be made formal in Section 5.4). In particular, True conveys

the least informative approximation corresponding to the absence of any size informa-

tion; conversely, False conveys the most informative approximation, corresponding

to statically detecting unreachability (i.e. a run-time error or non-termination).

Valuations and satisfiability

To assign truth values to constraints, we borrow the standard notion of valuation

from model theory: a size valuation is a function V : ZVar→ Q assigning a rational

size to each variable. We use the standard relation of satisfiability2 of a constraint

under a valuation written V |= φ and defined in Table 5.3.

Entailment

Constraint entailment is the “semantic consequence” relation: φ � ψ if and only

if every valuation satisfying φ also satisfies ψ. Informally φ � ψ means that the

size information conveyed by ψ is compatible with (but possibly less precise than)

2Note that our notion of satisfiability is more restrictive than the notion of first-order model:

we only consider interpretation in the universe Q and the meaning of constants and operations is

always the standard arithmetic interpretation.
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that conveyed by φ. Entailment is a partial order and in particular False � φ and

φ � True for all φ, i.e. False and True are the bottom and top elements.

To define entailment formally, we start by defining a pre-order relation and then

extend it to an order between equivalence classes.

Definition 5.2 We say that φ pre-entails ψ (and write φ �′ ψ) if all valuations

satisfying φ also satisfy ψ. Formally,

φ �′ ψ
def⇐⇒ ∀V : ZVar→ Q (V |= φ =⇒ V |= ψ) .

If φ �′ ψ and ψ �′ φ then φ and ψ are logically equivalent and we write φ ' ψ. We

remark that ' is an equivalence relation in F because �′ is reflexive and transitive.

However, �′ is not antisymmetric because equivalent constraints can be syntactically

distinct, e.g. (0 ≤ 0) ' (0 ≤ 1). By lifting �′ to the quotient set F/' we obtain a

partial order on equivalence classes of constraints.

Definition 5.3 � is a binary relation in F/' defined by [φ1] � [φ2] if and only if

φ1 �′ φ2 (where [φ] is the equivalence class of φ with respect to ').

In the remaining presentation we will identify logically equivalent constraints (that

is, we consider constraints as representatives of F/').

Partial order of constraints

We remark that (F/', �) forms a partially ordered set (in fact, a lattice with

least upper bound ∨ and greatest lower bound ∧). However, (F/', �) is not a

complete partial order because not all ascending chains have a least upper bound.

For example, the circle can be obtained as the limit of a infinite sequence of enclosed

convex polyhedra each of which can be represented by a formula in F; yet the circle

is not expressible by a formula in F.

Results from first-order logic

The following results regarding existential quantification hold for any first-order logic

theory.



5.3. SIZED TYPING RULES 111

Lemma 5.4 For all formulas φ, ψ and variables `, `′:

φ � ψ =⇒ φ � ∃`. ψ (5.9)

φ � ψ =⇒ ∃`. φ � ∃`. ψ (5.10)

∃`.∃`′. φ ' ∃`′.∃`. φ (5.11)

∃`. φ ' φ , if ` /∈ FZV(φ) (5.12)

(∃`. φ) ∧ ψ ' ∃`′. ([` 7→`′]φ ∧ ψ) , if `′ /∈ FZV(φ) ∪ FZV(ψ) (5.13)

φ ∧ (∃`. ψ) ' ∃`′. (φ ∧ [` 7→`′]ψ) , if `′ /∈ FZV(φ) ∪ FZV(ψ) (5.14)

(∃`. φ) ∨ ψ ' ∃`′. ([` 7→`′]φ ∨ ψ) , if `′ /∈ FZV(φ) ∪ FZV(ψ) (5.15)

φ ∨ (∃`. ψ) ' ∃`′. (φ ∨ [` 7→`′]ψ) , if `′ /∈ FZV(φ) ∪ FZV(ψ) (5.16)

Proof: (5.9)–(5.12) follow directly from the definitions of � and '; (5.13)–(5.16)

are standard in textbooks on mathematical logic, e.g. see Chapter XIII of (Smullyan

1995). �

Result (5.11) permit us to abuse notation and use an existential quantifier with

sets of variables X = {`1, `2, . . . , `n}, writing ∃X.φ instead of ∃`1.∃`2. . . .∃`n. φ
(where the order among variables is chosen arbitrarily). Repeated applications of re-

sults (5.13)–(5.16) allow moving all quantifiers to the front of a formula, i.e. obtaining

an equivalent formula in prenex form.

Lemma 5.5 For every formula φ, there is a quantifier-free formula ψ such that

φ ' ∃`1. . . . ∃`n. ψ.

Proof: By induction on the structure of φ together with (5.13)–(5.16). �

5.3 Sized typing rules

5.3.1 Sized type assumptions

As would be expected, type assumptions must be extended to associate identifiers

and constructors to sized types:

Γ ::= [ ] | x : τ, Γ | f : η, Γ | c : η, Γ

Our type system rules will maintain the invariant that zero-order names are as-

sociated with simple annotated types while function names and constructors are

associated with (type or size) quantified types. In particular, only the function

types capture size constraints. The rationale for this distinction is that size relations
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between zero-order values are expressed by the type judgement, not in individual

types.

We employ the same notational conventions as in the underlying type system

of Section 4.2.2 regarding concatenation of assumption sequences; we will also use

assumptions as (partial) functions, i.e. Γ(id) gives the first assumption (if any) for

id in the sequence Γ (where id is an identifier or constructor).

5.3.2 Typing judgements for expressions

Table 5.4 presents the sized typing rules for Core Hume expressions as judgements

Γ S̀IZE e : τ | φ

which state that, under assumptions Γ, expression e admits annotated type τ subject

to size constraint φ. The rules of Table 5.4 extend the ones for the underlying type

system presented in Section 4.2.2:

• The judgement for instantiation Γ ÌNST id : η now handles size as well as type

quantifiers. There are two rules for ∀ elimination (distinguishing sized and

unsized type variables) and two rules for ∀ elimination (substituting a variable

or ω).

• Rule [Int ] specifies the most precise size for a literal integer, i.e. the value of

integer itself.

• Rules [FunAp] and [ConsAp] require that the types of arguments and function

domain match, including size annotations. The constraint for the application

is the conjunction of the constraints for the function and argument; this mod-

els a strict semantics: when the argument constraint φ′ is unsatisfiable (and

therefore the argument is ⊥), the constraint φ ∧ φ′ for the application is also

unsatisfiable.

• Rule [Case] specifies the constraint for a case expression as the conjunction

of the constraint φ0 for the scrutinised expression and the disjunction of con-

straints for each alternatives: a “contextual” constraint φ′k associated with any

value that matches matches the constructor ck; and a constraint φk associated

with the expression ek on the right-hand side of the alternative.

• Rule [Unsize] allows forcing the loss of size information by replacing a size

annotation by ω.
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Γ S̀IZE e : τ | φ

[Int ] Γ S̀IZE n : Int` | ` = n ` /∈ FZV(Γ)

[Var ]
Γ ÌNST x : 〈τ, φ〉

FZV(τ) ∩ FZV(Γ) = ∅
Γ S̀IZE x : τ | φ

[FunAp]
Γ ÌNST f : 〈~τ → τ ′, φ′〉 Γ S̀IZE ~e : ~τ | φ

Γ S̀IZE f ~e : τ ′ | φ ∧ φ′

[ConsAp]
Γ ÌNST c : 〈~τ → τ ′, φ′〉 Γ S̀IZE ~e : ~τ | φ

Γ S̀IZE c ~e : τ ′ | φ ∧ φ′

[Let ]
Γ S̀IZE e

′ : τ ′ | φ′ x : τ ′, Γ S̀IZE e : τ | φ

Γ S̀IZE let x = e′ in e : τ | φ ∧ φ′

[Case]

Γ S̀IZE e0 : τ ′ | φ0

Γ ÌNST ci : 〈~τ ′′i → τ ′, φ′i〉 ~xi : ~τ ′′i , Γ S̀IZE ei : τ | φi (∀i)
Γ S̀IZE case e0 of {ci ~xi → ei}ni=1 : τ | φ0 ∧

∨n
i=1(φi ∧ φ′i)

[Tuple]
Γ S̀IZE ei : τi | φi (∀i)

Γ S̀IZE (e1, . . . , ek) : (τ1, . . . , τk) |
∧k
i=1 φi

[Unsize]
Γ S̀IZE e : τ | φ

` /∈ FZV(Γ)
Γ S̀IZE e : [` 7→ω] τ | φ

[Weaken]
Γ S̀IZE e : τ | φ

φ � ψ
Γ S̀IZE e : τ | ψ

Side conditions:

FZV(τ) ∩ FZV(Γ) = ∅ FZV(τ) ∩ FZV(τ ′) = ∅ FZV(τ ′) ∩ FZV(Γ) = ∅

FZV(τ ′′i ) ∩ FZV(Γ) = ∅ FZV(τ) ∩ FZV(τ ′′i ) = ∅ FZV(τ ′) ∩ FZV(τ ′′i ) = ∅

Table 5.4: Sized typing rules for expressions.
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Γ ÌNST id : η

[Axiom1 ] Γ ÌNST x : 〈Γ(x), True〉

[Axiom2 ] Γ ÌNST id : Γ(id) id is a constructor or function name

[Rename]
Γ ÌNST id : 〈σ, φ〉

Γ ÌNST id : 〈[` 7→`′]σ, φ ∧ ` = `′〉
`′ /∈ FZV(Γ) ∪ FZV(σ)

[Elim∀1 ]
Γ ÌNST id : 〈∀α. σ, φ〉

Γ ÌNST id : 〈[α 7→τ ]σ, φ〉
α is sized

[Elim∀2 ]
Γ ÌNST id : 〈∀α̂. σ, φ〉

Γ ÌNST id : 〈[α̂ 7→τ ]σ, φ〉
α̂, FTV(τ) are unsized and FZV(τ) = ∅

[Elim∀3 ]
Γ ÌNST id : ∀`. η

Γ ÌNST id : [` 7→`′] η

[Elim∀4 ]
Γ ÌNST id : ∀`. η

Γ ÌNST id : [` 7→ω] η

Table 5.5: Sized typing rules for instantiation of assumptions.

Γ S̀IZE decl : η

[Fun]
x1 : τ1, . . . , xk : τk, Γ S̀IZE e : τk+1 | φ

Γ S̀IZE let f (x1, . . . , xk) = e : ∀~̀. 〈∀~α. (τ1, . . . , τk)→ τk+1, φ〉

[Rec]
x1 : τ1, . . . , xk : τk, f : ∀~̀. 〈(τ1, . . . , τk)→ τk+1, φ〉, Γ S̀IZE e : τk+1 | φ

Γ S̀IZE letrec f (x1, . . . , xk) = e : ∀~̀. 〈∀~α. (τ1, . . . , τk)→ τk+1, φ〉

where ~α =
(⋃k+1

i=1 FTV(τi)
)
\ FTV(Γ)

~̀=
(⋃k+1

i=1 FZV(τi) ∪ FZV(φ)
)
\ FZV(Γ)

Table 5.6: Sized typing rules for function declarations.
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• Rule [Weaken] allows replacing a constraint φ by any consequence ψ. This

rule is called subtyping in (Chin and Khoo 2001); however, since it is not

strictly a relation between types but rather between constraints, we call it

weakening instead. Weakening can be employed to simplify size information,

e.g. by existentially quantifying intermediate size variables.

5.3.3 Typing judgements for declarations

The typing rules for function declarations are presented in Table 5.5. Declaration

judgements have the form Γ S̀IZE decl : η meaning that function declaration decl

admits sized type scheme η.

Non-recursive functions

Rule [Fun] extends the corresponding rule of Section 4.2.2 to obtain a pair of an-

notated type and size constraint for a non-recursive function definition. The size

constraint for the function is obtained by typing the function body. The annotated

type and constraint are quantified in all free size and type variables.

Example 5.6 Consider the function max that computes the maximum of two

integers,

let max (x, y) = case lte(x, y) of True→ y | False→ x

where lte is the primitive ‘less-than-or-equal’ operation on integers and True, False

are the boolean values. The sized type assumptions for these are:

Γ def= True : ∀k. 〈Boolk, k = 1〉,

False : ∀k. 〈Boolk, k = 0〉,

lte : ∀ijk. 〈(Inti, Intj)→ Boolk, (i ≤ j ∧ k = 1) ∨ (j + 1 ≤ i ∧ k = 0)〉, []

The sized type derivation for max is presented in Table 5.7. Note that the application

of weakening in (5.20) is valid because φ � ∃i′j′k′. φ. The final size formula (i ≤
j ∧ k = j) ∨ (j + 1 ≤ i ∧ k = i) is an exact characterisation of the maximum of the

two integer sizes i and j. �

Recursive functions

Typing a recursive function declaration requires “guessing” the annotated type and

size formula. By rule [Rec], this assumption is admissible for recursive function if it

is an invariant for the function body (the soundness of this rule will be established
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Γ′ ÌNST lte : 〈(Inti′ , Intj′
)→ Boolk

′
, (i′ ≤ j′ ∧ k′ = 1) ∨ (j′ + 1 ≤ i′ ∧ k′ = 0)〉 (5.17)

(5.17)

Γ′ S̀IZE x : Inti′ | i′ = i Γ′ S̀IZE y : Intj′
| j′ = j

[Tuple]
Γ′ S̀IZE (x, y) : (Inti′ , Intj′

) | i′ = i ∧ j′ = j
[FunAp]

Γ′ S̀IZE lte(x, y) : Boolk
′
| i′ = i ∧ j′ = j ∧

((i′ ≤ j′ ∧ k′ = 1) ∨ (j′ + 1 ≤ i′ ∧ k′ = 0))

(5.18)

(5.18) Γ′ ÌNST True : 〈Boolk
′
, k′ = 1〉 Γ′ ÌNST False : 〈Boolk

′
, k′ = 0〉

Γ′ S̀IZE y : Intk | k = j Γ′ S̀IZE x : Intk | k = i
[Case]

Γ′ S̀IZE case lte(x, y) of True→ y | False→ x : Intk |

i′ = i ∧ j′ = j ∧ ((i′ ≤ j′ ∧ k′ = 1) ∨ (j′ + 1 ≤ i′ ∧ k′ = 0)) ∧

((k′ = 1 ∧ k = j) ∨ (k′ = 0 ∧ k = i))

(5.19)

(5.19)
[Weaken] (∗)

x : Inti, y : Intj , Γ| {z }
Γ′

S̀IZE case lte(x, y) of True→ y | False→ x : Intk |

(i ≤ j ∧ k = j) ∨ (j + 1 ≤ i ∧ k = i)

(5.20)

(5.20)
[Fun]

Γ S̀IZE let max (x, y) = case lte(x, y) of True→ y | False→ x

: ∀ijk. 〈(Inti, Intj)→ Intk, (i ≤ j ∧ k = j) ∨ (j + 1 ≤ i ∧ k = i)〉

(5.21)

(∗) : ∃i′j′k′. (i = i′ ∧ j = j′ ∧ . . .) ' (i ≤ j ∧ k = j) ∧ (j + 1 ≤ i ∧ k = i)

Table 5.7: Sized type derivation for the maximum of two integers
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in Section 5.4). This rule allows checking a sized type, but does not give a method

for constructing a size formula. In Section 5.5 we will present algorithmic methods

to automatically construct the size formula using fixed point iteration.

Rule [Rec] specifies size quantification for the assumption used in typing the

function body, i.e. polymorphic recursion restricted to size variables. This is required

if the function is used more than once: each application context requires a distinct

size instance. Unlike polymorphic recursion on type variables, polymorphic recursion

on size variables is decidable. Finally, as in the non-recursive case, the result type

and formula are quantified in all free size and type variables.

Example 5.7 We show that the list concatenation function

letrec app (xs, ys) = case xs of

Nil→ ys

| Cons (x, xs′)→ Cons (x, app (xs ′, ys))

admits the sized type

∀ijk. 〈∀a. (Listi a, Listj a)→ Listk a, k = i+ j ∧ 0 ≤ i ∧ 0 ≤ j〉 (5.22)

The type derivation is presented in Table 5.8, where the following abbreviations are

used:

Γ0
def= Nil : ∀i. 〈∀a. Listi a, i = 0〉,

Cons : ∀ij. 〈∀a. (a, Listi a)→ Listj a, j = 1 + i ∧ 0 ≤ i〉

Γ1
def= xs : Listi a, ys : Listj a, app : (5.22), Γ0

Γ2
def= x : a, xs′ : Listn

′
a, Γ1

Note how size polymorphism is used in judgement (5.24) to obtain an instance of the

size formula for the application of append. Finally, we remark that the side-condition

of weakening in judgement (5.28) is valid because the size formula in (5.28) is a con-

sequence of the one in (5.27) by existentially quantifying variables n, n′, n′′,m,m′, k′.

�

5.4 Soundness

Informally, the soundness result for the size typing judgements of Section 5.2 will

state that if we derive a size constraint for an expression, then the size of the ex-

pression’s value is approximated by the size constraint.
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Γ2 S̀IZE xs′ : Listn′′
a | n′′ = n′ Γ2 S̀IZE ys : Listm′

a | m′ = j
[Tuple]

Γ2 S̀IZE (xs′, ys) : (Listn′′
a, Listm′

a) | n′′ = n′ ∧m′ = j
(5.23)

Γ2 ÌNST app : 〈(Listn′′
a, Listm′

a)→ Listk′
a, n′′ + m′ = k′∧

0 ≤ n′′ ∧ 0 ≤ m′〉 (5.23)
[FunAp]

Γ2 S̀IZE app(xs′, ys) : Listk′
a | n′′ = n′ ∧m′ = j ∧ n′′ + m′ = k′∧

0 ≤ n′′ ∧ 0 ≤ m′

(5.24)

Γ2 S̀IZE x : a | True (5.24)
[Tuple]

Γ2 S̀IZE (x, app(xs′, ys)) : (a, Listk′
a) | n′′ = n′ ∧m′ = j ∧ n′′ + m′ = k′∧

0 ≤ n′′ ∧ 0 ≤ m′

(5.25)

Γ2 ÌNST Cons : 〈(a, Listk′
a)→ Listk a, k = 1 + k′ ∧ 0 ≤ k′〉 (5.25)

[ConsAp]
Γ2 S̀IZE Cons(x, app(xs′, ys)) : Listk a | n′′ = n′ ∧m′ = j ∧ n′′ + m′ = k′

∧0 ≤ n′′ ∧ 0 ≤ m′ ∧ k = 1 + k′ ∧ 0 ≤ k′

(5.26)

Γ1 S̀IZE xs : Listn a | n = i

Γ1 ÌNST Nil : 〈Listn a, n = 0〉

Γ1 ÌNST Cons : 〈(a, Listn′
a)→ Listn a, n = 1 + n′ ∧ 0 ≤ n′〉

Γ1 S̀IZE ys : Listk a | k = j (5.26)
[Case]

Γ1 S̀IZE case xs of · · · : Listk a | n = i ∧ ((n = 0 ∧ k = j)∨

(n = 1 + n′ ∧ 0 ≤ n′ ∧ n′′ = n′ ∧m′ = j ∧ n′′ + m′ = k′∧

0 ≤ n′′ ∧ 0 ≤ m′ ∧ k = 1 + k′ ∧ 0 ≤ k′))

(5.27)

(5.27)
[Weaken]

Γ1 S̀IZE case xs of · · · : Listk a | k = i + j ∧ 0 ≤ i ∧ 0 ≤ j
(5.28)

(5.28)
[Rec]

Γ0 S̀IZE letrec app (xs, ys) = · · · : ∀ijk. 〈∀a. (Listi a, Listj a)→ Listk a,

k = i + j ∧ 0 ≤ i ∧ 0 ≤ j〉

(5.29)

Γ0
def
= Nil : ∀i. 〈∀a. Listi a, i = 0〉, Cons : ∀ij. 〈∀a. (a, Listi a)→ Listj a, j = 1 + i ∧ 0 ≤ i〉

Γ1
def
= xs : Listi a, ys : Listj a, app : (5.22), Γ0

Γ2
def
= x : a, xs′ : Listn′

a, Γ1

Table 5.8: Sized type derivation for list append
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T : Type1 → TEnv→ T0 ∪ T1

T Jα K χ = χ(α)

T J Intz K χ = Z⊥

T JDz ~τ K χ = ΨD (T J~τ Kχ)

T J~τ → τ ′ K χ = T J~τ Kχ �� T J τ ′ Kχ

T J∀α. σ K χ =
⋂
I∈T0

T Jσ Kχ[α 7→I]

T J () K χ = {u}⊥

T J (τ1, . . . , τn) K χ = T J τ1 Kχ� · · ·� T J τn Kχ

�, � : T0 × T0 → T0

A�B
def= { b〈a, b〉c ∈ V⊥ : bac ∈ A ∧ bbc ∈ B } ∪ {⊥}

A�B
def= A ∪B

�� : T0 × T0 → T1

A��B def= {F ∈ [V→ V⊥] : F ∗(A) ⊆ B}

Table 5.9: Unsized type semantics.

More formally, to establish the soundness of the size typing rules of Tables 5.4

and 5.5 we will first define an unsized type semantics based on ideals, i.e. subsets of

CPOs closed for least upper bounds (see Section A.1). This is essentially a first-order

restriction of a standard denotational type semantics such as (MacQueen and Sethi

1982). Zero order types will be associated with ideals of V⊥ and first order types

with ideals of [V→ V⊥].

We then refine this semantics with size information: the inhabitants of a sized

type 〈σ, φ〉 are inhabitants of the unsized semantics of σ whose size satisfies the

constraint φ. The crucial result is that such a refinement is still closed for least

upper bounds, i.e. it still defines ideals (Lemma 5.16).

5.4.1 Unsized type semantics

Definition 5.8 The set T0 of zero order types is the set of ideals of V⊥; the set T1

of first order types is the set of ideals of [V→ V⊥].

T0
def= {I ⊆ V⊥ : I is an ideal of V⊥}

T1
def= {I ⊆ [V→ V⊥] : I is an ideal of [V→ V⊥]}
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In order to present the type semantics in a compositional way, we use operators

�, � and �� to construct the semantics for product, sum and function types (Mac-

Queen and Sethi 1982). To assign meaning to free type variables in type expressions,

we use type environments χ mapping type variables to type denotations, i.e. elements

of T0. The empty type environment χ0 maps every variable to the bottom element

of T0. As is standard in type systems with Hindley-Milner polymorphism, the se-

mantics of quantified types is the intersection of ideals.

The unsized semantics of types is given by the function T defined in Table 5.9.

The equation defining the semantics of an algebraic data types makes use of a type

constructor function

ΨD : T0 → T0

for each data type D. The constructor functions can be derived from the data

declarations by translation into sums of products; recursive data types are defined

as the least fixed point of a function on T0 → T0. For example, for the types of

booleans and lists

data Bool () = True () | False ()

data List a = Nil () | Cons (a, List a)

the type constructor functions are:

ΨBool = λI. ({True}⊥ � {u}⊥)� ({False}⊥ � {u}⊥)

= λI. {〈True, u〉, 〈False, u〉}⊥

ΨList = λX.fix (λL. ({Nil}⊥ � {u}⊥)� ({Cons}⊥ �X � L))

= λX.fix (λL. {〈Nil, u〉}⊥ � ({Cons}⊥ �X � L))

5.4.2 Sized type semantics

To formulate the size correctness of our type system we need to establish an in-

habitance relation between the denotations of Section 4.2.3 and the sized types of

Section 5.2.

A first problem is that a denotation will admit many sized types: if v inhabits

〈σ, φ〉, then it should also inhabit 〈σ, ψ〉 whenever φ � ψ. The approach followed

by Chin and Khoo (2001) is to define a “size” function S(v :: σ) that takes a data

value v and an annotated type σ and yields the most precise constraint describing

the size of the data. Type inhabitance is then defined by constraint entailment: v

inhabits 〈σ, φ〉 if S(v :: σ) � φ.

Chin and Khoo define the size of a function F ∈ [V → V⊥] as the infinite

conjunction of all constraints that are entailed by the function’s input/output size
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relation. Their formal definition is (slightly adapted to our notation):

S(F :: τ1 → τ2) def=
∧
{φ ∈ F : ∀v1 :: τ1 ∀v2 :: τ2

v2 = F (v1) implies (S(v1 :: τ1) ∧ S(v2 :: τ2)) � φ}
(5.30)

However, we remark that the equation (5.30) does not always define a formula be-

cause the partial order � is incomplete. For example, the size of F ≡ λn. n2 ∈ [Z→
Z⊥] is undefined because there are infinite descending chains of piecewise-linear ap-

proximations to {(n, n2) : n ∈ Z} but no “best” approximation (c.f. Section 5.2.3).

In fact, (5.30) will be undefined for any function which exhibits non-linear size rela-

tions; this technical problem invalidates Chin and Khoo’s soundness proof.

Our approach to establish the soundness of size approximations is to define a size

function for zero-order values (for which the “best” size is well-defined). For func-

tion values, we define the approximation relation as a type semantics that imposes

the entailment relation between the function’s input/output size relation and a size

constraint.3

Size function

The size function for a value v ∈ V⊥ with respect to a annotated type τ is defined

in Table 5.10.

We remark that our notion of size is parametrized by the type assumptions for

data constructors; consequently, our size function must be defined with respect to

the later. This is generalizes the work of Chin and Khoo (2001), where the notion

of size is defined only for booleans, integers and lists.

We will therefore consider a restricted form of the type assumptions defined in

Section 5.3:

Σ ::= [] | c : η, Σ

Each entry c : η associates a constructor c with a size quantified type η (including

a size constraint).

Constructor consistency

In order to obtain sound size derivations, we have to impose the precondition that

the size constraints in Σ are consistent with the denotational semantics. Informally,
3 This is analogous to establishing correctness of abstract interpretations with an incomplete

abstract domain; in this setting the soundness of approximations is expressed using a concretisation

function alone (i.e. there is no adjoint abstraction function) (Cousot and Cousot 1992a,b).
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SΣ(⊥ :: τ) def= False

SΣ(bnc :: Int`) def= ` = n

SΣ(bnc :: Intω) def= True

SΣ(bvc :: α) def= True

SΣ(b〈c, v〉c :: τ ′) def= ∃X. (φ′ ∧ SΣ(bvc :: ~τ)) ,

where


Σ ÌNST c : 〈~τ → τ ′, φ′〉

FZV(~τ) ∩ FZV(τ ′) = ∅

X = FZV(~τ)

SΣ(b〈v1, . . . , vn〉c :: (τ1, . . . , τn)) def=
n∧
i=1

SΣ(bvic :: τi)

Table 5.10: Size function for zero-order values and tuples.

consistency of Σ states that that if v is non-bottom then also the constructed value

〈c, v〉 is non-bottom and should therefore have a satisfiable size constraint.

Definition 5.9 We say Σ is consistent if and only for all c and all v ∈ V such that

Σ ÌNST c : 〈~τ → τ ′, φ′〉 and SΣ(bvc :: ~τ) = φ, if φ is satisfiable then φ ∧ φ′ is also

satisfiable.

Size semantics for functions

The size semantics for function types is defined by extension: a formula φ is a sound

approximation for F if and only if it φ approximates the input/output size relation

of F , i.e. the sizes of pairs (v, F (v)).

Definition 5.10 The semantics of first order sized types is given by

TΣJ〈∀~α. ~τ → τ ′, φ〉K def= {F ∈ [V→ V⊥] : F ∈ T J∀~α. ~τ → τ ′ Kχ0 and

∀v ∈ V SΣ(bvc :: ~τ) ∧ SΣ(F (v) :: τ ′) � φ }

and χ0 is the empty type environment.

Note that, because there are no free type variables in a quantified first order type,

TΣ does not need a type environment argument.
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Example 5.11 Consider an inductive data type for natural numbers augmented

with a size measure for magnitude of the numbers:

data Natn = Zero {n = 0}

| Succ Natk {n = 1 + k}
(5.31)

and consider the primitive recursive addition function:

letrec plus (x, y) = case x of

Zero→ y

| Succ x′ → Succ (plus (x′, y))

(5.32)

Designate by pnq the denotation of a natural n, i.e. n applications of Succ followed

by one application of Zero:

p0q def= 〈Zero, u〉

p1 + nq
def= 〈Succ, pnq〉

Let ϕplus = DJ (5.32) Kϕ0, i.e. ϕplus is the denotational semantics of plus. We show

that

ϕplus ∈ TΣJ∀ijk. 〈(Nati,Natj)→ Natk, i+ j = k〉K (5.33)

where Σ are the type assumptions associated with the declaration (5.31).

By the soundness of the underlying type system we will assume ϕplus ∈ T J (Nati,Natj)→
Natk K. It remains to be proved that

SΣ(b〈pnq, pmq〉c :: (Nati,Natj)) ∧ SΣ(ϕplus 〈pnq, pmq〉 :: Natk) � i+ j = k

(∀n ∈ N) (∀m ∈ N)
(5.34)

By the definition of S and Σ:

SΣ(b〈pnq, pmq〉c :: (Nati,Natj)) = SΣ(bpnqc :: Nati) ∧ SΣ(bpmqc :: Natj)

' i = n ∧ j = m

By the definition of plus:

ϕplus 〈pnq, pmq〉 = bpn+mqc

which implies

SΣ(ϕplus 〈pnq, pmq〉 :: Natk) = SΣ(bpn+mqc :: Natk) ' k = n+m

Replacing both results in our proof obligation (5.34) we obtain a valid entailment

between constraints:

i = n ∧ j = m ∧ k = n+m � i+ j = k (∀n ∈ N) (∀m ∈ N)

This concludes the proof of (5.33). �
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5.4.3 Preliminary results

The next results show some syntactical properties regarding the size function, namely

that only the size variables occurring in a type are free in the size constraint; and

that we can commute substitutions and the size function.

Lemma 5.12 FZV(SΣ(v :: σ)) ⊆ FZV(σ).

Lemma 5.13 SΣ(v :: [` 7→`′]σ) ' [` 7→`′]SΣ(v :: σ).

Lemma 5.14 SΣ(v :: [` 7→ω]σ) ' ∃`.SΣ(v :: σ).

Proof of Lemmas 5.12, 5.13 and 5.14: By induction on the structure of σ. �

Intuitively, if a zero order value is not bottom then the size function expresses

its “best” size as a formula. The next result shows that this constraint is satisfiable

provided that the constructor assumptions are consistent (Definition 5.9). This

precondition will be needed in the soundness proofs of the typing system.

Lemma 5.15 If Σ is consistent, v ∈ T Jσ Kχ0, v 6= ⊥ and each size variable in σ

occurs only once, then SΣ(v :: σ) is satisfiable.

Proof: By induction on the structure of the type σ we construct a valuation for

SΣ(v :: σ). The assumption that size variables occur only once is needed to combine

valuations of sub-formulas. �

5.4.4 Inclusiveness

We are now ready to prove one further preliminary result, namely that the sized

semantics of functional types is inclusive (Winskel 1993), i.e. it is closed for least

upper bounds of ascending chains. This property is called admissibility in (Manna

1974, Chin and Khoo 2001) and is the basis for proving correctness of the typing

rule for recursion.

Lemma 5.16 (Inclusiveness of TΣ) Let {Fi : i ∈ N} be an ascending chain, i.e.

Fi ∈ [V → V⊥] and Fi v Fi+1 for all i ∈ N. If Fi ∈ TΣJ〈∀~α. ~τ → τ ′, φ〉K for all i,

then
⊔
i∈N Fi ∈ TΣJ〈∀~α. ~τ → τ ′, φ〉K.

Proof: Designate F =
⊔
i∈N Fi; we have F ∈ T J∀~α. ~τ → τ ′ Kχ0 because T J∀~α. ~τ →

τ ′ Kχ0 is an ideal and therefore closed for least upper bounds of ascending chains.

To prove F ∈ TΣJ〈∀~α. ~τ → τ ′, φ〉K we need to show that

∀v ∈ V : SΣ(v :: ~τ) ∧ SΣ(F (v) :: τ ′) � φ
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Let v ∈ V and consider the ascending chain {Fi(v) : i ∈ N} ⊆ V⊥. Because V⊥ is

a flat domain, the ascending chain eventually stabilises, i.e. there exists j ≥ 0 such

that Fj(v) = Fj+1(v) = · · · = F (v) and therefore SΣ(F (v) :: τ ′) ' SΣ(Fj(v) :: τ ′).

Since Fi ∈ TΣJ〈∀~α. ~τ → τ ′, φ〉K for all i ≥ 0, in particular for i = j we obtain

SΣ(v :: ~τ) ∧ SΣ(Fj(v) :: τ ′) � φ

⇐⇒ SΣ(v :: ~τ) ∧ SΣ(F (v) :: τ ′) � φ

which concludes the proof. �

5.4.5 Preconditions for soundness

To establish the soundness of the typing rules of Section 5.3, we need to formulate

some preconditions between the typing assumptions and the denotational semantics.

We start by extending the notion of size to denotational environments.

Definition 5.17 Let ρ be a value environment and Γ be an assumption set. The

size of ρ with respect to Γ is:

SΣ(ρ :: Γ) def=
n∧
i=1

SΣ(ρ(x) :: Γ(xi))

where dom(ρ) = {x1, . . . , xn}.

Definition 5.18 We say that ρ satisfies Γ and write ρ |= Γ if and only if for all

x ∈ dom(ρ) we have ρ(x) ∈ T JΓ(x) Kχ0.

Definition 5.19 We say that ϕ satisfies Γ and write ϕ |= Γ if and only if for all

f ∈ dom(ϕ) we have ϕf ∈ TΣJΓ(f )K.

Inspecting the type rules of Table 5.4 we can see that size constraints in the

conclusions of the elimination rules ([FunAp], [ConsAp], [Let ] and [Case]) can have

free occurrences of variables that do not occur free in either the result type or

assumptions. However, we can always normalise any derivation Γ S̀IZE e : τ | φ by

applying [Weaken] to derive Γ S̀IZE e : τ | ∃X.φ (where X = FZV(φ) \ (FZV(τ) ∪
FZV(Γ)) are the intermediate variables). A derivation where all size variables in the

formula occur in either the type or assumptions is called normalised.

Definition 5.20 A sized type derivation Γ S̀IZE e : τ | φ is normalised if FZV(φ) ⊆
FZV(τ) ∪ FZV(Γ). We write Γ 
SIZE e : τ | φ to indicate that a type derivation is

normalised.
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When proving the type soundness results we will assume, without loss of gener-

ality, that type derivations for sub-expressions have been normalised. This avoids

the possibility of unintended capture of size variables and consequently simplifies the

proofs.

5.4.6 Soundness of expression typing

We are now in condition to state and prove the soundness of the typing rules of

Table 5.4. Since our semantic notion of size depends on assumptions for constructors,

these need to be made explicit in the soundness theorem. We do so by requiring

that type assumptions are factored as a concatenation Γ, Σ of two sequences where

Γ are the assumptions for identifiers and Σ for constructors. It is always possible to

factor any assumption sequence in this way, so no generality is lost.

Informally, the soundness theorem states that if Γ, Σ S̀IZE e : τ | φ and envi-

ronments ϕ and ρ are compatible with Γ and Σ, then φ approximates the size of

EJ e Kϕρ and the size of the environment ρ. The conclusion is more informative than

that of a standard type inhabitance result: the type judgement conveys information

not just about the sizes of the expression e but also about the sizes of free variables

in the environment Γ. As we shall see in the next section, this stronger result is

essential to obtain relational size information for function declarations.

Theorem 5.21 (Soundness of expression typing) If Σ is consistent, ρ |= Γ,

ϕ |= Γ and Γ,Σ S̀IZE e : τ | φ, then SΣ(EJ e Kϕρ :: τ) ∧ SΣ(ρ :: Γ) � ∃X.φ, where

X = FZV(φ) \ (FZV(τ) ∪ FZV(Γ)).

Before proving this theorem, we present an example that illustrates the soundness

result.

Example 5.22 Using the type rules of Tables 5.4 and 5.5, we can derive the

following judgement

xs : Listn a, Σ S̀IZE case xs of Nil→ True : Boolk | n = 0 ∧ k = 1︸ ︷︷ ︸
φ

(5.35)

where Σ are the canonical sized type assumptions for lists and boolean constructors:

True : ∀i. 〈Booli, i = 1〉

False : ∀i. 〈Booli, i = 0〉

Nil : ∀i. 〈∀a. Listi a, i = 0〉

Cons : ∀ij. 〈∀a. (a, Listi a)→ Listj a, j = 1 + i〉
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Let ρ be such that ρ(xs) is a list. Let v = EJ case xs of Nil→ True Kϕ0 ρ; then by

Theorem 5.21 we have

SΣ(v :: Boolk) ∧ SΣ(ρ(xs) :: Listn a) � k = 1 ∧ n = 0 (5.36)

If v 6= ⊥ and ρ(xs) 6= ⊥ then from equation (5.36) we can conclude that v is True and

ρ(xs) is Nil. This example illustrates how the size judgement conveys information

not just about the size of the result but also about the free variables in assumptions.

�

Proof of Theorem 5.21: We remark that the result is immediate when EJ e Kϕρ = ⊥
because SΣ(⊥ :: τ) = False. We prove the case EJ e Kϕρ 6= ⊥ by induction on the

derivation of Γ,Σ S̀IZE e : τ | φ. We assume, without loss of generality, that any

sub-derivations are normalised. The induction hypothesis is then:

For all sub-derivations Γ′,Σ 
SIZE e
′ : τ ′ | φ′, if ρ′ |= Γ′ and EJ e′ Kϕρ′ 6= ⊥,

then SΣ(EJ e′ Kϕρ′ :: τ ′) ∧ SΣ(ρ′ :: Γ′) � φ′.

We proceed by case analysis on the rule at the root of the derivation.

Rule [FunAp]: the type rule hypotheses are:

Γ,Σ ÌNST f : 〈~τ → τ ′, φ′〉 (5.37)

Γ,Σ 
SIZE ~e : ~τ | φ (5.38)

FZV(~τ) ∩ FZV(τ ′) = ∅ (5.39)

FZV(~τ) ∩ FZV(Γ) = ∅ (5.40)

One hypothesis for the induction proof is that EJ f ~e Kϕρ 6= ⊥; the strict semantics

of f implies EJ f ~e Kϕρ = ϕf (v) where EJ~e Kϕρ = bvc 6= ⊥. We can therefore apply

the induction hypothesis to (5.38) and obtain

SΣ(bvc :: ~τ) ∧ SΣ(ρ :: Γ) � φ (5.41)

By (5.37) together with the hypothesis that ϕ |= Γ we obtain ϕf ∈ TΣJ〈~τ → τ ′, φ′〉K,
which implies

SΣ(bvc :: ~τ) ∧ SΣ(ϕf (v) :: τ ′) � φ′ (5.42)
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Combining (5.41) and (5.42) by conjunction:

SΣ(bvc :: ~τ) ∧ SΣ(ϕf (v) :: τ ′) ∧ SΣ(ρ :: Γ) � φ ∧ φ′

=⇒ ∃X. (SΣ(bvc :: ~τ) ∧ SΣ(ϕf (v) :: τ ′) ∧ SΣ(ρ :: Γ)) � ∃X. (φ ∧ φ′)

{existentially quantifying both sides}

⇐⇒ (∃X.SΣ(bvc :: ~τ)) ∧ SΣ(ϕf (v) :: τ ′) ∧ SΣ(ρ :: Γ) � ∃X. (φ ∧ φ′)

{by hypothesis (5.39) and (5.40)}

⇐⇒ True ∧ SΣ(ϕf (v) :: τ ′) ∧ SΣ(ρ :: Γ) � ∃X. (φ ∧ φ′)

{because ∃X.SΣ(bvc :: ~τ) ' True}

⇐⇒ SΣ(ϕf (v) :: τ ′) ∧ SΣ(ρ :: Γ) � ∃X. (φ ∧ φ′)

The last equation establishes the required result.

Rule [ConsAp]: the type rule hypotheses are

Γ,Σ ÌNST c : 〈~τ → τ ′, φ′〉 (5.43)

Γ,Σ 
SIZE ~e : ~τ | φ (5.44)

FZV(~τ) ∩ FZV(τ ′) = ∅ (5.45)

FZV(~τ) ∩ FZV(Γ) = ∅ (5.46)

We have EJ c ~e Kϕρ 6= ⊥ which implies that EJ c ~e Kϕρ = b〈c, v〉c where EJ~e Kϕρ =

bvc 6= ⊥. We are therefore in a position to apply the induction hypothesis to (5.44)

and obtain:

SΣ(bvc :: ~τ) ∧ SΣ(ρ :: Γ) � φ (5.47)

We also have

SΣ(b〈c, v〉c :: τ ′) ' ∃X. (φ′ ∧ SΣ(bvc :: ~τ)), where X = FZV(~τ) (5.48)

Combining (5.47) by conjunction with φ′ on both sides yields:

φ′ ∧ SΣ(bvc :: ~τ) ∧ SΣ(ρ :: Γ) � φ′ ∧ φ

=⇒ ∃X. (φ′ ∧ SΣ(bvc :: ~τ) ∧ SΣ(ρ :: Γ)) � ∃X. (φ′ ∧ φ)

{existentially quantifying both sides}

⇐⇒ ∃X. (φ′ ∧ SΣ(bvc :: ~τ)) ∧ SΣ(ρ :: Γ) � ∃X. (φ′ ∧ φ)

{by hypothesis (5.46)}

⇐⇒ SΣ(b〈c, v〉c :: τ ′) ∧ SΣ(ρ :: Γ) � ∃X. (φ′ ∧ φ)

{by (5.48)}

The last equation is the required result.
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Rule [Case]: the type rule hypotheses are

Γ,Σ 
SIZE e0 : τ ′ | φ0 (5.49)

Γ,Σ ÌNST ci : 〈~τ ′′i → τ ′, φ′i〉 (1 ≤ i ≤ n) (5.50)

~xi : ~τ ′′i , Γ, Σ 
SIZE ei : τ | φi (1 ≤ i ≤ n) (5.51)

FZV(τ) ∩ FZV(τ ′) = ∅ (5.52)

FZV(Γ) ∩ FZV(τ ′) = ∅ (5.53)

FZV(τ) ∩ FZV(~τ ′′i ) = ∅ (1 ≤ i ≤ n) (5.54)

FZV(Γ) ∩ FZV(~τ ′′i ) = ∅ (1 ≤ i ≤ n) (5.55)

Designate F
def= AJ {ci xsi → ei}ni=1 Kϕρ. By definition of E and the hypothesis

EJ e Kϕρ 6= ⊥ we get that

EJ case e0 of {ci xsi → ei}ni=1 Kϕρ
def= (let v ⇐ EJ e0 Kϕρ. F (v)) 6= ⊥ (5.56)

Therefore EJ e0 Kϕρ = bvc 6= ⊥ and F (v) 6= ⊥. By definition of A, this implies that

there exists k and l such that 1 ≤ k ≤ n, 1 ≤ l, v = 〈ck, v′1, . . . , v′l〉 and

F (v) =MJ ck (x1, . . . , xl)→ ek Kϕρ 〈v′1, . . . , v′l〉

= (λ〈v1, . . . , vl〉. EJ ek Kϕρ[x1 7→v1, . . . , xl 7→vl]) 〈v′1, . . . , v′l〉

= EJ ek Kϕρ[x1 7→v′1, . . . , xl 7→v′l] (5.57)

We can apply the induction hypothesis to (5.49) and obtain

SΣ(bvc :: τ ′) ∧ SΣ(ρ :: Γ) � φ0 (5.58)

Hypotheses (5.50) and (5.51) for i = k are

Σ ÌNST ck : 〈(τ1, . . . , τl)︸ ︷︷ ︸
~τ ′′

k

→ τ ′, φ′k〉 (5.59)

x1 : τ1, . . . , xl : τl, Γ, Σ 
SIZE ek : τ | φk (5.60)

where ~τ ′′k = (τ1, . . . , τl). Let X = FZV(~τ ′′k ) = FZV(τ1) ∪ . . . ∪ FZV(τl); by the

definition of S together with (5.59) we have

SΣ(bvc :: τ ′) = SΣ(b〈ck, v′1, . . . , v′l〉c :: τ ′)

' ∃X. (φ′k ∧ SΣ(b〈v′1, . . . , v′l〉c :: ~τ ′′k )) (5.61)

Let ρ′ = ρ[x1 7→ v′1, . . . , xl 7→ v′l] and Γ′ = x1 : τ1, . . . , xl : τl, Γ. We are now in

condition to apply the induction hypothesis to (5.60) and obtain:

SΣ(F (v) :: τ) ∧ SΣ(ρ′ :: Γ′) � φk (5.62)
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But

SΣ(ρ′ :: Γ′) = SΣ(ρ[x1 7→v′1, . . . , xl 7→v′l] :: (x1 : τ1, . . . , xl : τl, Γ))

= SΣ(ρ :: Γ) ∧ SΣ(bv′1c :: τ1) ∧ . . . ∧ SΣ(bv′lc :: τl)

= SΣ(ρ :: Γ) ∧ SΣ(b〈v′1, . . . , v′l〉c :: (τ1, . . . , τl))

= SΣ(ρ :: Γ) ∧ SΣ(b〈v′1, . . . , v′l〉c :: ~τ ′′k ) (5.63)

Substituting (5.63) in (5.62) yields:

SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ SΣ(b〈v′1, . . . , v′l〉c :: ~τ ′′k ) � φk

=⇒ SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ SΣ(b〈v′1, . . . , v′l〉c :: ~τ ′′k ) ∧ φ′k � φk ∧ φ′k
=⇒ ∃X. (SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ SΣ(b〈v′1, . . . , v′l〉c :: ~τ ′′k ) ∧ φ′k) � ∃X. (φk ∧ φ′k)

⇐⇒ SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ ∃X. (SΣ(b〈v′1, . . . , v′l〉c :: ~τ ′′k ) ∧ φ′k) � ∃X. (φk ∧ φ′k)

{by (5.54) and (5.55)}

⇐⇒ SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ SΣ(bvc :: τ ′) � ∃X. (φk ∧ φ′k)

{by (5.61)}

=⇒ SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ SΣ(bvc :: τ ′) � φ0 ∧ ∃X. (φk ∧ φ′k)

{by conjunction with (5.58)}

=⇒ SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ SΣ(bvc :: τ ′) � ∃X. (φ0 ∧ φk ∧ φ′k)

{by (5.54) and (5.55)}

=⇒ ∃X ′. (SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ SΣ(bvc :: τ ′)) � ∃X ′.∃X. (φ0 ∧ φk ∧ φ′k)

{existentially quantifying over X ′ = FZV(τ ′)}

⇐⇒ SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ ∃X ′.SΣ(bvc :: τ ′) � ∃X ′.∃X. (φ0 ∧ φk ∧ φ′k)

{by (5.52) and (5.53)}

⇐⇒ SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) ∧ True � ∃X ′.∃X. (φ0 ∧ φk ∧ φ′k)

{because ∃X ′.SΣ(bvc :: τ ′) ' True by Lemma 5.15}

=⇒ SΣ(F (v) :: τ) ∧ SΣ(ρ :: Γ) � ∃X ′.∃X. (φ0 ∧
∨n
i=1(φi ∧ φ′i))

{because φk ∧ φ′k �
∨n
i=1(φi ∧ φ′i)}

Note that the use of Lemma 5.15 above requires constructor consistency (Defini-

tion 5.9). This concludes the proof of rule [Case].

Rule [Unsize]: let bvc = EJ e Kϕρ 6= ⊥; starting from the induction hypothesis, we
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get:

SΣ(bvc :: τ) ∧ SΣ(ρ :: Γ) � φ

=⇒ ∃`. (SΣ(bvc :: τ) ∧ SΣ(ρ :: Γ)) � ∃`. φ

{existentially quantifying both sides over `}

⇐⇒ ∃`.SΣ(bvc :: τ) ∧ SΣ(ρ :: Γ) � ∃`. φ

{by the hypothesis ` /∈ FZV(Γ)}

⇐⇒ SΣ(bvc :: [` 7→ω] τ) ∧ SΣ(ρ :: Γ) � ∃`. φ

{by Lemma 5.14}

The last equation is the required result.

Rule [Weaken]: the result follows directly from the transitivity of �.

The remaining cases for [Int ], [Var ] and [Tuple] are straightforward and we omit

them. This concludes the proof of Theorem 5.21. �

5.4.7 Soundness of declaration typing

We can now establish the soundness of the typing rule for function abstractions;

the proof splits into two cases according to whether the function is recursive or not.

The result for the non-recursive case follows from the application of soundness of

expression typing to the function body (Theorem 5.21); for the recursive case, we

additionally employ fixed-point induction together with the inclusiveness of the sized

type semantics (Lemma 5.16).

Theorem 5.23 (Soundness of declaration typing) If Σ is consistent, ϕ |= Γ

and Γ,Σ S̀IZE decl : η, then DJ decl Kϕ ∈ TΣJηK.

Proof: By simple case analysis, distinguishing recursive and non-recursive function

declarations. Note that since all judgements of Table 5.5 comprise a single step,

we do not need induction. Again we assume without loss of generality that typing

judgements for sub-expressions are normalised.

Case [Fun]: The hypothesis for the type rule is

x1 : τ1, . . . , xk : τk, Γ, Σ 
SIZE e : τk+1 | φ (5.64)

Designate F = DJ let f (x1, . . . , xk) = e Kϕ; by the definition of D in Table 4.6, we

have

F = λ〈v1, . . . vk〉. EJ e Kϕρ0[x1 7→v1, . . . , xk 7→vk] (5.65)
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We need to prove F ∈ TΣJ〈∀~α. (τ1, . . . , τk)→ τk+1, φ〉K. By Definition 5.10, it suffices

to show that

∀v ∈ V SΣ(bvc :: (τ1, . . . , τk)) ∧ SΣ(F (v) :: τk+1) � φ (5.66)

To prove (5.66), assume v ∈ V and v = 〈v1, . . . , vk〉. From (5.65) we get F (v) =

EJ e Kϕρ0[x1 7→v1, . . . , xk 7→vk]. It is straightforward to check that

ϕ |= x1 : τ1, . . . , xk : τk, Γ

ρ0[x1 7→v1, . . . , xk 7→vk] |= x1 : τ1, . . . , xk : τk, Γ

We can therefore apply Theorem 5.21 to hypothesis (5.64) and obtain

SΣ(ρ0[x1 7→v1, . . . , xk 7→vk] :: (x1 : τ1, . . . , xk : τk, Γ))∧SΣ(F (v) :: τk+1) � φ (5.67)

But

SΣ(ρ0[x1 7→v1, . . . , xk 7→vk] :: (x1 : τ1, . . . , xk : τk, Γ)) =

= SΣ(bv1c :: τ1) ∧ . . . ∧ SΣ(bvkc :: τk)

= SΣ(b〈v1, . . . , vk〉c :: (τ1, . . . , τk))

= SΣ(bvc :: (τ1, . . . , τk))

Replacing the equality above in (5.67), we get

SΣ(bvc :: (τ1, . . . , τk)) ∧ SΣ(F (v) :: τk+1) � φ

which is the desired result.

Case [Rec]: The hypothesis for the typing judgement is

x1 : τ1, . . . , xk : τk, f : ∀~̀. 〈(τ1, . . . , τk)→ τk+1, φ〉, Γ, Σ 
SIZE e : τ | φ

where ~̀= FZV(φ) ∪
⋃k+1
i=1 FZV(τi) (5.68)

By the definition of D in Table 4.6, DJ letrec f (x1, . . . , xk) = e Kϕ = fix (F), where

F = λF. λ〈v1, . . . , vk〉. EJ e K ϕ[f 7→F ] ρ0[x1 7→v1, . . . , xk 7→vk]

Since fix (F) =
⊔
n≥0 Fn(⊥) (where ⊥ is the least element of [V → V⊥]) it is

sufficient to prove ⊔
n≥0

Fn(⊥) ∈ TΣJ〈∀~α. (τ1, . . . , τk)→ τk+1, φ〉K (5.69)

We proceed by fixed-point induction (Manna 1974, Winskel 1993); first we prove

∀n ≥ 0 Fn(⊥) ∈ TΣJ〈∀~α. (τ1, . . . , τk)→ τk+1, φ〉K (5.70)
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by induction on n. The base case is immediate because F0(⊥) = ⊥ and ⊥ belongs

to the semantics of any functional type. For the step case, observe

Fn+1(⊥) def= F(Fn(⊥))

= λ〈v1, . . . , vk〉. EJ e K ϕ[f 7→Fn(⊥)] ρ0[x1 7→v1, . . . , xk 7→vk]

Using the induction hypothesis Fn(⊥) ∈ TΣJ〈∀~α. (τ1, . . . , τk) → τk+1, φ〉K together

with Theorem 5.21 applied to hypothesis (5.68), we proceed as in the proof for the

[Fun] rule and obtain

Fn+1(⊥) ∈ TΣJ〈∀~α. (τ1, . . . , τk)→ τk+1, φ〉K

This concludes the inductive proof of (5.70). By Lemma 5.16 (inclusiveness of the

type semantics), result (5.70) implies (5.69).

This concludes the proof of Theorem 5.23. �

Note that the above proof requires the stronger conclusion provided by Theo-

rem 5.21, i.e. that, given a judgement

x1 : τ1, . . . , xk : τk, . . . S̀IZE e : τk+1 | φ ,

the formula φ constraints both the type assumptions x1 : τ1, , . . . , xk : τk and the

result type τk+1; this is essential to conclude that the abstracted function admits

sized type

〈(τ1, . . . , τk)→ τk+1, φ〉

as required.

5.5 Size reconstruction algorithm

In Section 5.3 we have defined the size analysis as a proof system deriving sized type

judgements for expressions and declarations. In Section 5.4 we proved the correctness

of the proof system against the denotational semantics. However, deriving a sized

type judgement requires foresight in guessing the correct types and constraints in

certain points of the derivation. In order to automate the analysis, we need an

algorithm that constructs sized type derivations for un-annotated programs, i.e. a

type reconstruction algorithm.

5.5.1 Type checking versus type reconstruction

The type checking problem consists of deciding whether a type derivation is well-

formed. Observing the rules in Tables 5.4–5.6 we see that most rules have straight-

forward syntactical conditions; the only exception is [Weaken] which is subject to
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checking the entailment φ � ψ between size constraints. Since entailment for size

formulas can be checked algorithmically, e.g. by quantifier elimination (Rabin 1977,

Koubarakis 2006), it follows that type checking can be done algorithmically.

The type reconstruction problem consists of finding an annotated type and for-

mula τ, φ given Γ and e such that such that Γ S̀IZE e : τ | φ. This condition expresses

the soundness requirement for reconstruction, that is, the sized type obtained must

be admissible with respect to the proof system. The reconstruction algorithm may

also fail, e.g. if no type derivation exists.

A reconstruction algorithm is complete if it always computes a “principal” so-

lution, i.e. one that characterises all admissible type derivations. In particular, a

complete reconstruction algorithm will fail only if no typing derivation exists. The

standard example of a complete type reconstruction algorithm is the well-known

Damas algorithm W (Damas 1985) that forms the basis of type inference in modern

functional programming languages, such as Haskell and ML.

We can formulate principality for the underlying Core Hume type system as

follows: let Γ be a closed assumption set4 and decl a function definition; then σ is a

principal type scheme if and only if:

Γ D̀M decl : σ (5.71)

for all σ′, if Γ D̀M decl : σ′ then σ � σ′ (5.72)

Condition (5.71) states that σ is a solution for the typing problem; (5.72) states that

σ is minimal with respect to the partial order � of instantiation, i.e. least specific.

For the underlying type system, relation � is defined by

∀α. σ � [α 7→τ ]σ (5.73)

together with rules for reflexivity and transitivity.

Suppose now that we want to extend the notion of principally for sized type

schemes: for (sized) type assumptions Γ and a function definition decl , the sized

type scheme η is principal if and only if:

Γ S̀IZE decl : η (5.74)

for all η′, if Γ S̀IZE decl : η′ then η � η′ (5.75)

For condition (5.75) we must then extend instantiation to sized types schemes with

the general form ∀`1 . . . `n. 〈σ, φ〉. It is necessary not just to allow instantiations

for the size variables `i but also to allow for replacing the size constraint φ by any
4For simplicity we state the notion of principal type scheme for closed Γ, i.e. such that FTV(Γ) =

∅.
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upper approximation (an application of rule [Weaken]). To extend � for sized type

schemes we need to allow the possibility of weakening size constraints:

σ � σ′ φ � φ′

〈σ, φ〉 � 〈σ′, φ′〉
(5.76)

Condition (5.76) implies that the size constraint φ in a principal sized type scheme

∀`1 . . . `n. 〈σ, φ〉 must be the least with respect to �. However, because of the in-

completeness of the constraint entailment order, we have already seen that there are

functions for which there is no least size constraint (Section 5.2.3). Therefore, our

sized type system does not have principal type schemes and consequently we cannot

therefore expect a complete reconstruction algorithm.

Dropping the requirement for completeness, we focus on deriving an algorithm

that constructs one admissible sized type derivation. Although incomplete, the

algorithm has two important properties:

1. It always obtains a type derivation when one exists (in fact, when a derivation

in the underlying Damas-Milner system exists);

2. In the absence of a “best” size constraint, the algorithm employs a fixed-point

iteration method with a widening operator to obtain a sound size constraint

for recursive functions.5

Finally, we shall demonstrate in Chapter 7 that our algorithm yields informative

sized types for a representative range of Core Hume programs.

5.5.2 Unification of annotated types

As a preliminary step towards the type reconstruction algorithm, we now look at

solving type equality constraints. Since annotated types are terms in a free first-

order algebra, we can solve equations using an algorithm based on first-order unifi-

cation (Robinson 1971).

To simplify the handling of multiple arity type constructors, the input to the

unification procedure is a system of type equalities rather than just a pair of types.

Definition 5.24 A system of type equality constraints TE is defined by

TE ::= true | τ = τ ′ ∧ TE

where τ , τ ′ are annotated types.

5 A standard technique from abstract interpretation (Cousot and Cousot 1992a,b).
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We will sometimes write conjunctions of type equalities as a single equation between

two sequences of types, i.e. ~τ = ~τ ′ instead of τ1 = τ ′1 ∧ τ2 = τ ′2 ∧ . . .∧ τn = τ ′n ∧ true.

A solution to a system of type equalities ε is a substitution θ on type and size

variables that validates all equations; such substitution is a unifier of ε and we write

θ |= ε.

Definition 5.25 The relation θ |= TE (read: θ is a unifier of TE) is defined by the

rules

θ |= true
θ τ ≡ θ τ ′ θ |= TE

θ |= τ = τ ′ ∧ TE
where ≡ is syntactical equality between types.

Table 5.11 presents the unification algorithm as a procedure U that, given a

system of type equalities TE , either returns a unifier substitution or fails if no such

substitution exists. The algorithm processes by replacing, at each step, one equation

by simpler set of equivalent equations. This decomposition continues until it reaches

either a trivial equality or an equality between a variable and a type; in the latter

case, a new binding is recorded in the result substitution and propagated to the

pending equations.6 Unification terminates when all equalities have been eliminated.

The only departure from standard first-order unification occurs when binding

an unsized type variable; this uses an auxiliary procedure X that takes a list of

types and yields an substitution mapping all annotations to ω and all variables to

unsized. In order to avoid name clashes, unused variables are required at some

points, indicated by a side-condition such as “α is new”. This could be formalised in

the usual manner, e.g. by supplying a list of unused variables to procedures X and

U . We refrain from doing so to avoid cluttering the presentation.

The following lemmas establish the correctness and minimality of unification.

Lemma 5.26 If U(TE ) = θ then θ is a proper substitution, i.e. θ is idempotent

and θ maps unsized type variables to unsized types.

Proof: These properties are easily verified to be invariants of each of the cases

defining U .

Lemma 5.27 If U(TE ) = θ then θ |= TE.

Proof: It is enough to verify that for each of the cases defining U , we have θ |= TE

if and only if θ |= TE ′, where TE ′ is the reduced system on the right-hand side of

the definition.

6Provided the occurs check holds, i.e. variable does not occur in the type; otherwise there is no

solution to the type equality.
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α, β sized type variables

α̂, β̂ unsized type variables

`, `′ size variables

ω unbounded size

U(true) = id

U(α = β ∧ TE ) = [α 7→β] ◦ U([α 7→β] TE )

U(α̂ = β̂ ∧ TE ) = [α̂ 7→ β̂] ◦ U([α̂ 7→ β̂] TE )

U(α = β̂ ∧ TE )

= U(β̂ = α ∧ TE ) = [α 7→ β̂] ◦ U([α 7→ β̂] TE )

U(α = τ ∧ TE ) =

 [α 7→τ ] ◦ U([α 7→τ ] TE ) , if α 6∈ FTV(τ)

fails otherwise

U(α̂ = τ ∧ TE ) =



let θ = X (τ : [ ])

θ′ = [α̂ 7→θτ ]

in θ′ ◦ θ ◦ U(θ′θTE ) , if α̂ 6∈ FTV(τ)

fails otherwise

U(D` ~τ = D`′ ~τ ′ ∧ TE ) = [` 7→`′] ◦ U([` 7→`′] (~τ = ~τ ′ ∧ TE ))

U(D` ~τ = Dω ~τ ′ ∧ TE )

= U(Dω ~τ ′ = D` ~τ ∧ TE ) = [` 7→ω] ◦ U([` 7→ω] (~τ = ~τ ′ ∧ TE ))

U(Dω ~τ = Dω ~τ ′ ∧ TE ) = U(~τ = ~τ ′ ∧ TE )

U(τ = τ ′ ∧ TE ) fails if τ, τ ′ have different type constructors

X ([ ]) = id

X (α : ts) = [α 7→ β̂] ◦ X ([α 7→ β̂] ts), β̂ is new

X (α̂ : ts) = X (ts)

X (D` ~τ : ts) = [` 7→ω] ◦ X ([` 7→ω] (~τ ++ ts))

X (Dω ~τ : ts) = X (~τ ++ ts)

Table 5.11: Unification and size erasure of annotated types.
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Lemma 5.28 If there exists θ′ such that θ′ |= TE, then θ = U(TE ) is defined and

there exists θ′′ such that θ′ = θ′′ ◦ θ.

5.5.3 Algorithmic presentation of the typing rules

We present the reconstruction algorithm as a proof system for deriving sized type

judgements Γ S̀IZE-R e : τ | φ; θ extended with a unifier substitution θ. These extended

judgements should be sound with respect to the original proof system in the sense

that if Γ S̀IZE-R e : τ | φ; θ, then (θ Γ) S̀IZE e : τ | (θ φ).

However, unlike the proof system of Tables 5.4–5.6, all rules for the extended

judgements are syntax-directed, that is, a single rule applies for each syntactical

class of expression. This means that we will be able to read the rules for extended

judgements as a reconstruction algorithm that takes Γ and e as inputs and yields τ ,

φ and θ as outputs.

Type reconstruction for expressions

To obtain the algorithmic rules from the proof rules of Table 5.4–5.6 we need to

replace any implicit type equalities in the antecedents by explicit unifications. Con-

sider the rule for function application:

Γ ÌNST f : 〈~τ → τ ′, φ′〉 Γ S̀IZE ~e : ~τ | φ

Γ S̀IZE f ~e : τ ′ | φ ∧ φ′

This rule is applicable only if the function’s domain type matches the argument

type. To change this into an algorithmic rule, we introduce an explicit unification

and thread the result substitution:

Γ ÌNST f : 〈~τ → τ ′, φ′〉 Γ S̀IZE-R ~e : ~τ ′ | φ; θ1
θ2 = U(~τ = ~τ ′)

Γ S̀IZE-R f ~e : (θ2θ1τ
′) | φ ∧ φ′; θ2 ◦ θ1

Recall that substitutions bind both type and size variables so they must be applied to

types and constraints. We apply the unifier substitution to the result type eagerly

to allow further unifications. However, size constraints are only collected during

expression type reconstruction and so we can delay the application of the substitution

until a later stage, e.g. just before constraint simplification.

Table 5.12 presents the complete type reconstruction rules for expressions. Note

that there are no non-syntax-directed rules like [Weaken] and [Unsize] in the original

type system. Weakening will be used only to simplify constraints at the function

declarations level; and ω-substitutions are introduced only by unification and size

erasure.

The following lemma states the soundness of type reconstruction.
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Γ S̀IZE-R e : τ | φ; θ

[Int ] Γ S̀IZE-R n : Int` | ` = n; id (` is new)

[Var ]
Γ ÌNST-R x : 〈τ, φ〉

Γ S̀IZE-R x : τ | φ; id

[FunAp]
Γ ÌNST-R Γ(f ) : 〈~τ → τ ′′, φ′〉 Γ S̀IZE-R ~e : ~τ ′ | φ; θ1

θ2 = U(~τ = ~τ ′)
Γ S̀IZE-R f ~e : (θ2θ1 τ

′′) | φ ∧ φ′; θ2 ◦ θ1

[ConsAp]
Γ ÌNST-R Γ(c) : 〈~τ → τ ′′, φ′〉 Γ S̀IZE-R ~e : ~τ ′ | φ; θ1

θ2 = U(~τ = ~τ ′)
Γ S̀IZE-R c ~e : (θ2θ1 τ

′′) | φ ∧ φ′; θ2 ◦ θ1

[Let ]

Γ S̀IZE-R e1 : τ1 | φ1; θ1

x : τ1, θ1 Γ S̀IZE-R e : τ2 | φ2; θ2

Γ S̀IZE-R let x = e1 in e2 : τ2 | φ1 ∧ φ2; θ2 ◦ θ1

[Case2 ]

Γ S̀IZE-R e0 : τ ′0 | φ0; θ0 Γ ÌNST-R ci : 〈~τ ′′i → τ ′i , φ
′
i〉 (i ∈ {1, 2})

~x1 : θ′0θ0~τ
′′
1 , θ

′
0 θ0 Γ S̀IZE-R e1 : τ1 | φ1; θ1

~x2 : θ1θ
′
0θ0~τ

′′
2 , θ1 θ

′
0 θ0 Γ S̀IZE-R e2 : τ2 | φ2; θ2

Γ S̀IZE-R case e0 of { ci ~xi → ei }i∈{1,2} : (θ3θ2 τ1) |

φ0 ∧
∨
i∈{1,2}(φi ∧ φ′i); θ3 ◦ θ2 ◦ θ1 ◦ θ′0 ◦ θ0 ,

where θ′0 = U(τ ′0 = τ ′1 ∧ τ ′0 = τ ′2), θ3 = U(θ2 τ1 = τ2)

[Tuple0 ] Γ S̀IZE-R ( ) : () | True; id

[Tuple2 ]
Γ S̀IZE-R e1 : τ1 | φ1; θ1 θ1 Γ S̀IZE-R e2 : τ2 | φ2; θ2

Γ S̀IZE-R (e1, e2) : (θ2τ1, τ2) | φ1 ∧ φ2; θ2 ◦ θ1

Table 5.12: Algorithmic size typing rules rules for expressions.



140 CHAPTER 5. SIZE ANALYSIS

Γ ÌNST-R η : 〈ν, φ〉

[Axiom] Γ ÌNST-R 〈ν, φ〉 : 〈[~̀ 7→ ~̀′] ν, φ ∧ ~̀= ~̀′〉
~̀= FZV(ν) ∩ FZV(Γ),
~̀′ are new, |~̀′| = |~̀|

[Elim∀]
Γ ÌNST-R η : 〈ν, φ〉

Γ ÌNST-R ∀`. η : 〈[` 7→`′] ν, [` 7→`′]φ〉
`′ is new

[Elim∀1 ]
Γ ÌNST-R 〈σ, φ〉 : 〈ν, φ〉

Γ ÌNST-R 〈∀α. σ, φ〉 : 〈[α 7→α′] ν, φ〉
α′ is new, α, α′ are sized

[Elim∀2 ]
Γ ÌNST-R 〈σ, φ〉 : 〈ν, φ〉

Γ ÌNST-R 〈∀α̂. σ, φ〉 : 〈[α̂ 7→ α̂′] ν, φ〉
α̂′ is new, α̂, α̂′ are unsized

Table 5.13: Algorithmic typing rules for assumption instantiation.

Lemma 5.29 If Γ S̀IZE-R e : τ | φ; θ then (θ Γ) S̀IZE e : τ | (θ φ).

Type reconstruction for assumption instantiation

The algorithmic judgements for assumption instantiation have the form Γ ÌNST-R η :

〈ν, φ〉; the assumptions Γ and size quantified type η are inputs and ν and φ are

the outputs. Note that since instantiation does not impose any type equalities,

unification is not used and hence no substitution is returned.

The algorithmic instantiation rules presented in Table 5.5 follow the structure of

the sized type scheme η: [Elim∀] eliminates one quantified size variable, substituting

it by a fresh one; [Elim∀1 ] and [Elim∀2 ] eliminate sized and unsized type variables,

respectively; finally, [Axiom] renames any variables that occur free in the type as-

sumptions (this corresponds to uses of rule [Rename] in the original type system).

As with type reconstruction for expressions, any substitution by ω, if required, will

be obtained at a subsequent stage as a result of unification.

The following lemma states the soundness of type reconstruction for assumption

instantiation.

Lemma 5.30 If Γ(x) = η and Γ ÌNST-R η : 〈ν, φ〉, then Γ ÌNST x : 〈ν, φ〉 and FZV(Γ)∩
FZV(ν) = ∅.
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[Abs]

x1 : α1, . . . , xk : αk, Γ S̀IZE-R e : τ | φ; θ

~̀= FZV(θφ) \ FZV((θα1, . . . , θαk)→ τ)

φ′ = SIMPLIFY(∃~̀. (θφ))
αi are new

Γ ÀBS-R λ(x1, . . . , xk). e : 〈(θα1, . . . , θαk)→ τ, φ′〉

[Fun]
Γ ÀBS-R λ~x. e : 〈~τ → τ ′, φ〉 ~α = FTV(~τ → τ ′) \ FZV(Γ)

~̀= FZV(~τ → τ ′) \ FTV(Γ)Γ S̀IZE-R let f ~x = e : ∀~̀. 〈∀~α. ~τ → τ ′, φ〉

[Rec]
φ = FIX(Γ, f ~x = e : ~τ → τ ′) ~α = FTV(~τ → τ ′) \ FZV(Γ)

~̀= FZV(~τ → τ ′) \ FTV(Γ)Γ S̀IZE-R letrec f ~x = e : ∀~̀. 〈∀~α. ~τ → τ ′, φ〉

Table 5.14: Algorithmic typing judgements for function declarations.

Algorithm FIX: iterate to obtain a size constraint for letrec f ~x = e

Inputs: Γ, f ~x = e, ~τ → τ ′

Output: φ

~̀= FZV(~τ → τ ′)

i← 0

φ← False

loop

compute 〈~τ ′ → τ ′′, φ′〉 using f : ∀~̀. 〈~τ → τ ′, φ〉, Γ ÀBS-R λ~x. e : 〈~τ ′ → τ ′′, φ′〉
θ= U(~τ = ~τ ′ ∧ τ ′ = τ ′′)

assert θ~τ ≡ ~τ ∧ θτ ′ ≡ τ ′

φ′ ← HULL(θφ′)

if φ′ � φ then

return φ

else

φ← φ∇i φ′

end if

i← 1 + i

end loop

Table 5.15: Size fixpoint iteration for recursive functions.
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Type reconstruction for function declarations

The sized type reconstruction for function declarations is presented in Table 5.14.

Both recursive and non-recursive functions use an auxiliary judgement Γ ÀBS-R λ~x. e :

〈~τ → τ ′, φ〉 to reconstruct the annotated type ~τ → τ ′ and size constraint φ for a

function with formal parameters ~x and body e.7 As in Damas-Milner type inference,

the abstraction judgement reconstructs the type for the body under generic assump-

tions for the arguments; the inferred types are obtained by applying the unifier

substitution to the generic assumptions.

Rule [Abs] invokes a procedure SIMPLIFY to perform constraint simplification;

this is discussed in Section 5.5.4. As in other type systems that extend polymorphic

types with constraints (Mitchell 1984, Fuh and Mishra 1988, 1989), we simplify

constraints before generalisation; this reduces the number of constraints that will be

duplicated by type scheme instantiation.

Rules [Fun] and [Rec] perform sized type reconstruction for polymorphic function

declarations. In both rules the result type scheme is quantified in all size and type

variables that occur in the type but not the assumptions.

To simplify the presentation, rule [Rec] for recursive functions assumes that the

annotated type is known in advance. This is done without loss of generality, since

the annotated type can be obtained by performing Damas-Milner type inference and

annotating all data type constructors with distinct size variables.

The auxiliary procedure FIX constructs a sound size constraint for a recursive

function iteratively. The initial approximation is False (the bottom element in the

lattice of constraints). Each iteration computes the next approximation φ′ using the

previous approximation φ in the type assumption for the recursive function. As in

the proof system, we quantify the assumption for typing the function body over size

variables, i.e. we allow polymorphic recursion on sizes (but not types).

The assertion θ~τ ≡ ~τ ∧ θτ ′ ≡ τ ′ is required to ensure that the size variables in

the annotated type are invariant throughout the fixed point computation. This can

be guaranteed by imposing a total order on variables and implementing unification

so that substitutions binding two variables respect the ordering.

The loop terminates when φ′ � φ; under that condition, by Lemma 5.29 followed

by an application of rules [Weaken] and [Rec], we conclude that φ is admissible for

f . Since this is the only successful termination condition, we conclude that, when

FIX terminates successfully, it yields an admissible size constraint.

7 We recall that our language is first-order and therefore does not allow nameless functions;

the term λ~x. e is not an expression and we use it only as a part of an abstraction judgement

· ÀBS-R λ~x. e : 〈·, ·〉.
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To ensure the termination of FIX we employ a widening operator for systems of

linear inequalities (Cousot and Halbwachs 1978, Bagnara, Hill, Ricci and Zaffanella

2003) that guarantees the iteration will stabilise in a finite number of steps. More

generally, widening operators are a standard technique used in abstract interpreta-

tion to accelerate or guarantee convergence of iterations on lattices with large or

infinite ascending chains (see Section 2.3.6).

We allow some further flexibility by parameterising the widening on the iteration

i; this can be used to delay the use of widening by defining an extrapolation threshold

k > 0 and choosing

∇i
def=

 ] , if i ≤ k

∇ otherwise

where ] is the convex hull operator and ∇ is the proper widening operator (Halb-

wachs 1979, Bagnara, Hill, Ricci and Zaffanella 2003). Therefore, FIX uses the more

precise upper-bound operator (the convex hull) for the first k iterations before resort-

ing to the widening operator that ensures convergence but potentially loses precision;

this is a standard technique in abstract interpretation for improving the precision of

fixed point approximations (Cousot and Cousot 1992b).

The following lemma states the soundness of declaration reconstruction algo-

rithm.

Lemma 5.31 If Γ S̀IZE-R decl : η then Γ S̀IZE decl : η.

Example 5.32 We apply the sized type reconstruction algorithm to the list append

function:

letrec app (xs, ys) = case xs of

Nil→ ys

Cons(x, xs′)→ Cons(x, app(xs′, ys))

: (Listi a, Listj a)→ Listk a

(5.77)

The application of FIX to (5.77) constructs the following iteration:

φ0 ≡ False φ′0 ≡ j = k ∧ i = 0

φ1 ≡ φ0∇φ′0 ≡ j = k ∧ i = 0 φ′1 ≡ i+ j = k ∧ i ≤ 1 ∧ 0 ≤ i

φ2 ≡ φ1∇φ′1 ≡ i+ j = k ∧ 0 ≤ i φ′2 ≡ i+ j = k ∧ 0 ≤ i

We now verify that φ′2 � φ2 and therefore FIX terminates. The inferred sized type

for append is app : ∀ijk. 〈∀a. (Listi a, Listj a)→ Listk , i+ j = k ∧ 0 ≤ i〉. �
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5.5.4 Simplifying size constraints

Our type reconstruction judgements for function declarations require auxiliary pro-

cedures that manipulate size constraints. We need algorithms not just to decide

constraint entailment but also to simplify constraints. Simplification is important

not just for efficiency of the reconstruction algorithm (by reducing the size of con-

straints), but also to make the output of the analysis intelligible. We employ the

standard method of performing quantifier elimination (Rabin 1977, Koubarakis 2006)

by variable elimination in systems of linear inequations (Schrijver 1986, Chandru

1993) (see also Section 2.3.6).

Elimination of existential quantifiers

Procedure SIMPLIFY eliminates existential quantifiers from a size formula. The

method can be applied in general to first-order theory with variable elimination (Ra-

bin 1977); our presentation follows (Koubarakis 2006). To eliminate existential quan-

tifiers from a formula ψ:

1) obtain a formula ∃`1. . . . ∃`m. φ equivalent to ψ and in prenex form using Lemma 5.5;

2) use the distributivity of ∧ over ∨ to rewrite φ in disjunctive form, i.e. φ '
φ1 ∨ . . . ∨ φn, where φi are conjunctions of inequalities;

3) eliminate variables `1, . . . , `m one at time using variable elimination in systems

of linear inequalities,

∃`. (φ1 ∨ . . . ∨ φn) ' ELIM(`, φ1) ∨ . . . ∨ ELIM(`, φn)

where ELIM is the procedure for variable elimination in a system of linear

inequalities.

The result constraint is a disjunction of conjunctions of linear inequalities. However,

it can still include redundant terms; we therefore add a final step to simplify the

result:8

4) let φ1 ∨ . . . ∨ φn be the quantifier-free constraint in disjunctive form; remove all

φi such that φi � False or φi � φj for i 6= j.

Note that step 4 above requires testing entailment between system of convex linear

inequalities rather than general constraints; therefore we use a simpler algorithm for

testing containment of convex polyhedra (Schrijver 1986).
8This is an adaptation of the normalisation step described in the “powerset construction” of Bag-

nara, Hill and Zaffanella (2003).
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Finally, we remark that although step 1 would be necessary in the general case,

it is not required in our reconstruction algorithm because the constraint is always

in prenex form (the only algorithmic rule that introduces existential quantifiers

is [Abs]).

Computation of the convex hull

For each iteration in FIX we use a procedure HULL to compute the convex hull of

the size constraint.9 This ensures that iterates are systems of linear inequalities and

therefore we can employ a widening operator to ensure convergence.

Employing the convex hull on the constraint of a function reduces the constraint

size by eliminating disjunctions (this is particularly effective for functions with many

alternative computation paths); the drawback is a potential loss of precision. Our

experiments suggested that the situations where this loss is harmful are few and

rather specialised. In our implementation we therefore chose to employ the convex

hull by default even for non-recursive functions but allow the user to specify otherwise

to retain higher precision when required.

Implementation considerations

We have implemented the sized type reconstruction algorithm in Haskell using the

Glasgow Haskell Compiler version 6.4.1 (GHC). Note that it is not possible to decou-

ple type reconstruction from size constraint solving, e.g. generate a set of constraints

for solving off-line, because entailment checking, hulling and widening are required

during fixpoint approximation. Therefore we choose to use a constraint library

rather than an external constraint solver, namely the Parma Polyhedra Library ver-

sion 0.9.1 (Bagnara et al. 2006). This library suits our necessities in the following

aspects:

1. it specifically targets the requirements of program analyses, e.g. by providing

implementations of several widening operators;

2. it emphasises correctness, e.g. by using arbitrary-precision rational arithmetic

to avoid floating-point rounding;

3. it imposes no arbitrary limits for data (other than available memory);

4. it is rather efficient and the developers aim at making it even more so;

9The convex hull of φ is the smallest convex constraint that is an upper-bound of φ with respect

to � (see Section 2.3.6).
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5. it includes interfaces for C/C++ and other high-level languages10;

6. it is well documented and actively maintained;

7. it is distributed freely in source-form under the GNU Public Licence.

A web interface to our prototype implementation, including several examples, is

available at http://www.ncc.up.pt/~pbv/cgi/cost.cgi. This implementation per-

forms not just the size analysis but also the cost analysis for stack and heap that

will be presented in Chapter 6.

5.6 Discussion

5.6.1 Partiality

Our sized type system infers a safety property, namely an approximation of the

sizes of results of successful evaluations; the soundness result (Theorem 5.21) holds

trivially for a divergent expression, i.e. that evaluates to bottom. This is unlike

the system of Hughes et al. (1996) which verifies the liveness properties of termi-

nation and productivity: a sized type derivation in their system guarantees that an

expression does not evaluate to bottom.

Our analysis can, in many circumstances, accurately determine the domains of

functions. For example, consider the erroneous list length function of Section 3.3:

wronglen xs = case xs of Nil→ 0 | Cons x xs′ → 1 + wronglen xs

This function is rejected by the sized type system of Hughes et al. because it diverges

for non-empty lists (the recursive call is on xs rather than xs′). By contrast, our size

analysis infers a size relation for the limited domain where the wronglen is defined.

wronglen :: [a]^z1->Int^z2 | z2=0, z1=0

The inferred constraint also implies that wronglen is undefined for non-empty lists;

thus the following application yields an unsatisfiable constraint:

Γ ÌNST wronglen : 〈Listi a→ Intj , i = 0 ∧ j = 0〉

Γ S̀IZE xs : Listi a | i = 1
by [FunApp]

Γ S̀IZE wronglen xs : Intj | i = 0 ∧ j = 0 ∧ i = 1︸ ︷︷ ︸
False

10Regrettably, the interface to Haskell/GHC is not yet incorporated in the standard distribution

PPL version 0.9.1. The author would like to express his thanks to Axel Simon for his help in

facilitating access to his experimental interface source code.
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Note that this typing is sound because the application evaluates to bottom. Of

course one can argue that programmers do not intentionally execute divergent com-

putations, so these situations should be identified as errors.

Our analysis can easily be extended to detect such errors by requiring that each

function is annotated with a constraint asserting the expected domain. For our

example, this assertion would be:

wronglen : Listi a→ Int , domain i ≥ 0

To allow functions that are partial on the data types, e.g. list head or tail, we assume

the domain assertions are provided by the programmer. Thus, the above constraint

i ≥ 0 expresses the programmer’s intention that wronglen ought to be defined for all

lists. Size analysis then proceeds as before, ignoring the assertion, and yields:

wronglen : 〈Listi a→ Intj , i = 0 ∧ j = 0〉

Next the analysis tests if the inferred constraint contains the domain constraint by

existentially quantifying the result variables:

i ≥ 0
?

� ∃j. (i = 0 ∧ j = 0) (5.78)

But ∃j. (i = 0 ∧ j = 0) ' i = 0 and i ≥ 0 6� i = 0, so entailment check (5.78) fails

and the function is rejected.

Note that there is no guarantee of totality when the domain check succeeds: our

analysis proves a safety property, so the right hand side of (5.78) is, in general, over-

approximated. However, if the check fails then the function must be less defined than

the asserted domain. Thus, the guarantee is a dual to that of the type system of

Hughes et al.: our analysis rejects some non-terminating programs but never rejects

terminating ones.

Our analysis accepts non-primitive recursive functions: consider the Ackermann

function, a standard example of a total function on naturals that is not primitive

recursive:

ack m n = if m = 0 then n+ 1

else if n = 0 then ack (m− 1) 1

else ack (m− 1) (ack m (n− 1))

(5.79)

This standard first-order definition cannot be typed in the system of Hughes et al.

because there is no single decreasing size to allow using the recursion type rule (3.4)

(page 55); it can, however, be typed by transforming it into a higher-order primitive-

recursive form.
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By contrast, our analysis accepts the first-order Ackermann, obtaining the fol-

lowing size information:

ack :: {Int^z0,Int^z1}->Int^z2 | z2>=1+z0+z1, 3*z0+2*z2>=2+2*z1

As would be expected, only lower bounds are obtained (since Ackermann grows faster

than any primitive recursive function):

ack m n ≥ 1 +m+ n ∧ ack m n ≥ 1 + n− 3
2
m, ∀m ∀n

The size constraint expresses no restriction of the function domain; this is to be

expected since Ackermann is a total function on the naturals.11

5.6.2 Rational size relations

The algorithm of Section 5.5.4 solves the size constraints over rationals rather than

integers; this not only simplifies elimination of quantifiers but also allows for a more

compositional combination of size bounds. To exemplify this, consider two recursive

lists functions: foo deletes every third element from a list; bar that inserts an element

for every two elements; and foobar is a composition of the two functions.12

foo :: [a] -> [a]

foo (x1:x2:x3:xs) = x1:x2:foo xs ;

foo xs = xs ;

bar :: [a] -> [a]

bar (x1:x2:xs) = x1:x2:x1:bar xs ;

bar xs = xs ;

foobar :: [a] -> [a]

foobar xs = bar (foo xs);

Note that the second equations of foo and bar apply only if the first does not, i.e. if

the argument list has too few elements.

We can guess “asymptotic” size relations by simple inspection of the equations:

foo consumes three elements for each two produced; and bar consumes two for each

three produced; therefore we have

|foo xs| ≈ 2
3
|xs| |bar xs| ≈ 3

2
|xs| ,

11 Note that (5.79) is also defined for some negative arguments so that it is not true that m ≥ 0

and n ≥ 0.
12 This examples are due to Hofmann and Jost (2003). For legibility we use pattern-matching

equations; the translation into our core language is standard.
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where | · | is the list length; composing the size relations for the two functions yields:

|foobar xs| ≈ |bar (foo xs)| ≈ 3
2
× 2

3
× |xs| ≈ |xs| .

However, if we are interested (for example) in bounding the heap space for foobar, we

need a more precise bound on |foobar xs| in terms of |xs|. Let us start by considering

foo; we analyse separately three cases corresponding to the remainders of |xs| by 3:

|foo xs| =


2k if |xs| = 3k

2k + 1 if |xs| = 3k + 1

2k + 2 if |xs| = 3k + 2

A similar analysis for bar would yield two more cases (for the remainders by 2),

leading to six cases for foobar ; these could be simplified into:

|foobar xs| =

{
1 + |xs| if |xs| = 3k + 2

|xs| otherwise
(5.80)

Although this kind of analysis could in principle be automated, e.g. using the Omega

calculator (Pugh 1992), the number of alternatives and consequently, the number of

constraints, can grow exponentially with the number of applications. Moreover, the

case analysis on the remainders is unnecessary when we are interested only in the

lower and upper bounds.

Our alternative is to obtain solutions for rationals instead of integers. A first

advantage is that there is no need to consider congruence relations for quantifier

elimination. The second advantage is that we gain the possibility of employing

many approximation techniques of convex linear inequalities to trade precision for

efficiency, e.g. widening and hulling; see Section 5.5.

For the above definitions of foo, bar and foobar, our analysis yields the following

sized types (where all simplifications were performed automatically):

foo :: [a]^z1->[a]^z2 | 3*z2>=2*z1, 2+2*z1>=3*z2, z1>=z2

bar :: [a]^z1->[a]^z2 | 1+2*z2>=3*z1, z2>=z1, 3*z1>=2*z2

foobar :: [a]^z1->[a]^z2 | 1+2*z2>=2*z1, 3*z2>=2*z1, 3*z1>=2*z2,

1+z1>=z2

Note that although the list sizes are integers, the constraints represent potentially

rational solutions. This means that we should interpret the results by isolating

variables and taking the integral approximations of the left and right bounds. For
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the result sizes of foo and bar this yields:⌈
2
3
|xs|

⌉
≤ |foo xs| ≤

⌊
2
3

+
2
3
|xs|

⌋
|foo xs| ≤ |xs|⌈

3
2
|xs| − 1

2

⌉
≤ |bar xs| ≤

⌊
3
2
|xs|

⌋
|xs| ≤|bar xs|

Finally, for the size of foobar this yields:⌈
|xs| − 1

2

⌉
≤ |foobar xs| ≤ 1 + |xs|

⇐⇒ |xs| ≤ |foobar xs| ≤ 1 + |xs|

because d|xs| − 1/2e = |xs|. We get the same upper and lower bounds on the length

of foobar of (5.80); these are tight bounds, as can be witnessed by

foobar [1] = bar (foo [1])

= bar [1]

= [1]

foobar [1, 2] = bar (foo [1, 2])

= bar [1, 2]

= [1, 2, 1]

5.6.3 Limitations regarding collection types

Our size analysis suffers from the same limitation as the system of Chin and Khoo

(2001): while we can infer the sizes of collections, e.g. lists, trees or vectors, we do

not infer sizes of values inside collections. In fact, allowing size annotations inside

collection types (other than ω) can lead to unsound sized type derivations.

To exemplify the problem, consider sized type assumptions Σ for constructors

of (monomorphic) lists of integers that express both the list length and the sizes of

inner values:

Σ def= Nil : ∀ik. 〈()→ Listi Intk, i = 0〉,

Cons : ∀ijk. 〈(Intk, Listi Intk)→ Listj Intk, j = 1 + i ∧ i ≥ 0〉
(5.81)

Now consider an expression that calculates the difference between the first and second

integers in a list xs,

case xs of

Cons (x1, xs
′)→ case xs′ of

Cons (x2, xs
′′)→ sub (x1, x2)

(5.82)

where sub is a primitive operation with sized type:

sub : ∀ijk. 〈(Inti, Intj)→ Intk, k = i− j〉
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Under an assumption that xs is a list of integers, it is straightforward to obtain

a typing for (5.82) in our type system. For brevity, we omit the complete deriva-

tion and present just the expression annotated with the intermediate types and size

constraints:

case

Listn Intk︷︸︸︷
xs of

Cons ( x1︸︷︷︸
Intk

, xs′︸︷︷︸
Listn1 Intk

)→ case xs′ of

Cons ( x2︸︷︷︸
Intk

, xs′′︸︷︷︸
Listn2 Intk

)→ sub (x1, x2)︸ ︷︷ ︸
Intr

subject to: n = 1 + n1 ∧ n1 ≥ 0 ∧ n1 = 1 + n2 ∧ n2 ≥ 0 ∧ r = k − k

(5.83)

From (5.82) we can derive the type judgement

xs : Listn Intk, Σ S̀IZE (5.82) : Intr | n ≥ 2 ∧ r = 0

where we have simplified the result constraint by eliminating variables n1 and n2 that

do not occur in the result type or in the assumptions. Although the size constraint

correctly captures the minimal length of xs, the size r = 0 of result is unsound

because the first and second list elements can differ.

The unsoundness is caused by insufficient size polymorphism in the Cons assump-

tion of (5.81): the annotation of the type Intk of the list elements constrains every

element to have the same size k. This can be be exemplified by calculating the size

constraint S defined in Section 5.4 of a list with two distinct integers:

SΣ(b〈Cons, 〈0, 〈Cons, 〈1, 〈Nil, u〉〉〉〉〉c :: Listn Intk)
def= SΣ(b0c :: Intk) ∧ SΣ(b1c :: Intk) ∧ n = 1 + n1 ∧ n1 = 1 + n2 ∧ n2 = 0

' k = 0 ∧ k = 1 ∧ . . . ' False

The example demonstrates that the assumptions (5.81) are not constructor consistent

(Definition 5.9 of Section 5.4): the list denotation is a non-bottom value that has an

unsatisfiable size. This invalidates one of the preconditions for our soundness result

(Theorem 5.21) and indeed we derive an unsound size information.

Our inference algorithm presented in Section 5.5 ensures constructor consistency

by removing all size information for types inside collections, i.e. substituting all size

annotations by ω and all type variables by unsized ones.

While this is an important quality limitation, we remark that it will not prevent

obtaining cost bounds when these depend only on the sizes an outermost data struc-

ture. Furthermore, algorithms that depend on sizes of nested data are also likely to
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have non-linear costs which would not be expressible using Presburger constraints.

We therefore do not address this limitation in this thesis and leave it as a subject

for future research.



Chapter 6

Cost analysis

In this chapter we extend the sized type system of Chapter 5 to perform static cost

analysis for Hume expressions. As a proof-of-concept, our analysis will model the

dynamic memory requirements of a prototype abstract machine.

The development is as follows: in Section 6.2 we define an operational seman-

tics for expressions as an abstract machine; in Section 6.3 we define an operational

semantics for the coordination layer as a transition system. In Section 6.4 we ex-

tend the size analysis of Chapter 5 with cost annotations and cost effects modelling

the stack and heap usage of our abstract machine. In Section 6.5 we fomulate the

soundness of the cost analysis with respect to a denotational semantics instrumented

with costs. We present extensions for common space optimisations in Section 6.6

and show how to extend the analysis for the coordination layer in Section 6.7.

6.1 Overview

We start from the observation that the notion of “cost” is inherently operational: it

is a property of the finite nature of computation rather than of the denoted values.

Therefore, we must consider an operational model of computation in order to reason

about costs.

Since we are interested in modelling realistic stack and heap space costs, we will

consider in Section 6.2 a “small-step” rather than “big-step” semantics for expression

evaluation. In Section 6.3 we extend the operational semantics to model space re-use

at the coordination layer by presenting a scheduling semantics where communication

wires are implemented as bounded memory regions. By predicting safe bounds for

these regions and for dynamic stack, our cost analysis will obtain guarantees of

153
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bounded space behaviour for a complete network of Core Hume boxes.

6.2 Operational semantics for expressions

In this section we define an operational semantics for Core Hume expressions in

the form of state transitions of an abstract machine. Instead of a “big-step” se-

mantics, we start from a “small-step” one that explicitly records control-flow in a

stack to properly account stack costs. Our abstract machine is based on the SECD

machine (Landin 1964, Kogge 1991).

Our operational semantics interprets expressions rather than a compiled instruc-

tion stream. Thus, in the classification of Ager et al. (2003a), it is an abstract

rather than a virtual machine. To avoid the need to perform substitutions, we use

an environment that binds values to free identifiers in expressions. It would be

straightforward to compile Core Hume expressions into an instruction set, replacing

reference to identifiers by stack offsets. Such translation does not influence stack

and heap usage and therefore we will not pursue it here.

The machine configuration consists of a control, an environment, a stack and a

heap. Each of these components represents part of the evaluation context:

the Control is a pseudo-instruction stream specifying the pending evaluations;

the Environment is an association of free identifiers to values;

the Stack is the storage area for temporary values and continuations;

the Heap is the storage area for structured values (e.g. tuples, lists, etc).

Following Hughes and Pareto (1999), we have coalesced the separate dump and

value stacks of the original SECD machine into a single stack; this could ultimately

be implemented as the system stack of a general purpose or embedded computer and

assures that our stack cost model mimics a realistic implementation.

6.2.1 Region-based memory management

Our abstract machine employs a simple region-based memory management strategy,

where the heap is split into a number of smaller sections called regions (Tofte and

Talpin 1997).

A heap value is referenced by an address: a pair (r, o) of a region identifier r and

an offset o within the region.

a ∈ Addr def= Region×Offset
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Heap values can be allocated in any region and, therefore, regions grow independently

of each other. However, individual values in regions are not deallocated; instead, a

whole region is reset when its values are no longer needed, i.e. all its values are

deallocated (but the region itself remains) (Tofte et al. 2004).

Unlike the system of Tofte and Talpin, regions in Core Hume are not dynamic:

the number of regions is determined statically by the network of communication

wires. Dynamically, we require only two operations on regions:

1. allocate a new value in a region;

2. reset a region (i.e. deallocate all values in the region).

Boxed and unboxed values

We distinguish two kinds of values: boxed values that require a runtime tag and

unboxed values that do not.

Unboxed values u ∈ Unboxed

u ::= n primitive integer

| a heap address

Boxed values b ∈ Boxed

b ::= 〈c, u1, . . . , un〉 tagged tuple (n ≥ 0)

An unboxed value is either a primitive integer or a heap address. A boxed value is a

tagged sequence 〈c, u1, . . . , un〉 of unboxed values; the tag c ranges over a finite set

of constructors (i.e. those explicitly mentioned in the program). Each of the fields

ui is an unboxed value (i.e. either a primitive integer or an address). The number n

of fields in a boxed value can be zero, e.g. for the boolean values 〈True〉 and 〈False〉
or the empty list constructor 〈Nil〉.

Unboxed values occupy a fixed and small amount of storage space (e.g. one ma-

chine word), while boxed values occupy variable storage space. Therefore, unboxed

values are allocated in the stack, and boxed values are allocated in the heap and

referenced by an address.

Allocation in a region

The heap is a finite map from addresses to boxed values:

H ∈ Heap def= Addr→fin Boxed

Heap allocation is always done in a specific region. To ensure that space associated

with “old” regions can be re-used, we will not allow cross-region references in the
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heap. To formalise this, we introduce a relation ‘u at r’ meaning that an unboxed

value u is compatible with region r:

(r′, o) at r def⇐⇒ r = r′

n at r def⇐⇒ True

An address is only compatible with its associated region while an integer is com-

patible with any region. Thus, when allocating a new boxed value 〈c, u1, . . . , un〉 in

region r we will impose the side-conditions ui at r for all values u1, . . . , un.

Region resetting

We write H \ r for the heap resulting after resetting region r in H, that is

(H \ r)(a) def=

{
H(a) if a = (r′, o) ∧ r′ 6= r

undefined otherwise

Thus, dom(H \ r) = dom(H) \ {(r, o) : o ∈ Offset}. Region resetting will be used

only in the box scheduler semantics of Section 6.3.

6.2.2 Preliminary definitions

Stack

A stack value is either an unboxed value or a continuation, i.e. the runtime repre-

sentation of the function call context. The stack is a sequence of stack values. The

empty stack is [] and s : S′ is a stack with s on top of S′.

s ∈ Stackval

s ::= u | κ

S ∈ Stack def= Stackval∗

S ::= [] | s : S

Environment

The environment is a (finite) map from identifiers to unboxed values:

E ∈ Env def= Var→fin Unboxed

The environment is used to associate values to free identifiers. In a compiled code

implementation the environment would exist only at compile-time and references to

identifiers would be translated into references to stack offsets.
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Control directives

The control component is a sequence of directives specifying the pending evaluation.

C ∈ Control def= Dir∗ sequence of directives

C ::= [] | d : C

d ∈ Dir

d ::= eval(e) evaluate expression

| bind(x1, . . . , xn) extend environment (n ≥ 0)

| fbind(x1, . . . , xn) reset environment (n ≥ 0)

| ret(n) dynamic return (n ≥ 0)

| sret(n,E) static return (n ≥ 0)

| select(alts) pattern selection

| mkcons(c, n) make constructor (n ≥ 0)

| succ primitive operation

The initial control for evaluating a closed expression e is eval(e) : []; the rules of

Table 6.1 perform single-step transitions replacing the evaluation of e it by directives

for evaluating sub-expressions; the evaluation terminates when the control is [] and

the result will be left on top of the stack.

Continuations

A continuation is the representation of the dynamic context for function invoca-

tion. For our abstract machine, a continuation is a pair of the current control and

environment:

κ ∈ Control×Env

In a compiled code implementation, the continuation would be represented in the

function’s activation record (e.g. a return address and frame pointer).

Note that the environment can contain heap addresses; to restore the environment

in a different heap, we need to ensure a safety condition: no address accessible in

the environment was deallocated from the heap. In fact, our semantics will satisfy a

much stronger condition: heap values are not deallocated during expression reduction

(Lemma 6.1).

States

A machine state σ is a 4-tuple 〈C, E, S, H〉. The set of all states is Σ.

σ ∈ Σ def= Control×Env × Stack×Heap
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We use two projection functions stack : Σ → Stack and heap : Σ → Heap to refer

to the stack and heap components of a state.

Heap and stack metrics

We take the storage required for an unboxed value as our unit of cost. In a real im-

plementation, this typically corresponds to one machine word. The storage required

for a boxed value with n arguments 〈c, u1 . . . , un〉 should then be proportional to n.

Assuming a contiguous memory layout using one extra word for the tag c and the

number of fields n, we define |〈c, u1 . . . , un〉| = 1 + n. The total storage required for

a heap H is then |H| =
∑
a∈dom(H) |H(a)|, again assuming contiguous allocation.

The storage size for a stack S is simply the length of S, i.e. |[]| = 0 and |s : S| =
1 + |S|. This means that we are (arbitrarily) considering that each continuation

requires the same storage as an unboxed value.

It would be straightforward to assume different storage overheads for either heap

or stack values and modify the development accordingly. Alternatively, we could

derive a parametric analysis where costs are expressed as multiples of some basic

constants. We refrain from doing so to avoid burdening the presentation. Further-

more, we will develop an analysis that is (to some extent) independent of the specific

cost model by means of cost annotations (see Section 6.4.4).

6.2.3 Transition rules

The transition rules for the Core Hume machine are presented in Table 6.1 in the

style of structural operational semantics (Plotkin 1981). Each transition has the

form σ
r
↪→ σ′, meaning that the machine proceeds in a single-step from state σ to

state σ′ performing allocations in region r. Transitions are specified with respect to

the program P , i.e. a set of global function definitions. Some rules have preconditions

and utilise Haskell-style pattern matching. We describe each of the rules informally:

• Rules (6.1) and (6.2) specify evaluation of integers and identifiers; in both cases

the corresponding unboxed value is pushed onto the stack.

• Rule (6.3) specifies evaluation of function application: 1) the current context

is captured in a continuation and pushed onto the stack; 2) the arguments are

evaluated in reverse order; 3) the formal parameters are bound in an empty

environment; 4) the function body is evaluated; finally, 5) the return directive

restores the evaluation context.

• Rule (6.4) specifies let-evaluation as an inlined one-argument function. Unlike
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〈eval(n) : C, E, S, H〉 r
↪→ 〈C, E, n : S, H〉 (6.1)

〈eval(x) : C, E, S, H〉 r
↪→ 〈C, E, E(x) : S, H〉 (6.2)

(f (x1, . . . , xn) = e′) ∈ P

〈eval(f (e1, . . . , en) : C), E, S, H〉 r
↪→ 〈eval(en) : . . . : eval(e1) :

fbind(x1, . . . , xn) : eval(e′) : ret(n) : [], E, 〈C, E〉 : S, H〉

(6.3)

〈eval(let x = e1 in e2) : C, E, S, H〉 r
↪→

〈eval(e1) : bind(x) : eval(e2) : sret(1, E) : C, E, S, H〉 (6.4)

〈eval(case e of alts) : C, E, S, H〉 r
↪→ 〈eval(e) : select(alts) : C, E, S, H〉 (6.5)

〈eval(c (e1, . . . , en)) : C, E, S, H〉 r
↪→

〈eval(en) : . . . : eval(e1) : mkcons(c, n) : C, E, S, H〉 (6.6)

〈eval(succ e) : C, E, S, H〉 r
↪→ 〈eval(e) : succ : C, E, S, H〉 (6.7)

〈bind(x1, . . . , xn) : C, E, u1 : . . . : un : S, H〉 r
↪→

〈C, E[x1 7→ u1, . . . , xn 7→ un], u1 : . . . : un : S, H〉
(6.8)

〈fbind(x1, . . . , xn) : C, E, u1 : . . . : un : S, H〉 r
↪→

〈C, [x1 7→ u1, . . . , xn 7→ un], u1 : . . . : un : S, H〉
(6.9)

H(a) = 〈c, u1, . . . , un〉 (c (x1, . . . , xn)→ e) ∈ alts

〈select(alts) : C, E, a : S, H〉 r
↪→ 〈bind(x1, . . . , xn) : eval(e) :

sret(n,E) : C, E, u1 : . . . : un : S, H〉

(6.10)

〈ret(n) : C, E, u0 : u1 : . . . : un : 〈C ′, E′〉 : S, H〉 r
↪→

〈C ′, E′, u0 : S, H〉
(6.11)

〈sret(n,E′) : C, E, u0 : u1 : . . . : un : S, H〉 r
↪→ 〈C, E′, u0 : S, H〉 (6.12)

S = u1 : . . . : un : S′ a /∈ dom(H) a at r ∀i. ui at r

〈mkcons(c, n) : C, E, S, H〉 r
↪→ 〈C, E, a : S′, H[a 7→ 〈c, u1, . . . , un〉]〉

(6.13)

〈succ : C, E, n : S, H〉 r
↪→ 〈C, E, (1 + n) : S, H〉 (6.14)

Table 6.1: Small-step operational semantics for Core Hume expressions.
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rule (6.3), the control flow is statically known and therefore no continuation is

pushed onto the stack; the environment is simply extended for evaluation of

the body and restored by a static return.

• Rule (6.5) specifies that the evaluation of a case expression requires evaluat-

ing the discriminant and selecting one alternative. Rule (6.10) for the select

directive unpacks a boxed value onto the stack, binds pattern variables and

evaluates the match expressions. As in the evaluation of a let-expression, no

continuation is pushed.

• Rules (6.6) and (6.13) for constructors evaluate the arguments, build a result

in the heap and push its address on the stack. The preconditions ‘a at r’ and

‘ui at r’ require that both the allocated value and arguments reside in the

same region. We remark that (6.13) is the only rule that modifies the heap.

• Rules (6.7) and (6.14) evaluate a primitive operation, namely, the integer suc-

cessor function. The result is an unboxed integer and therefore stored in the

stack. It would be straightforward to extend the rules with other primitive

operations, and we omit them from this presentation for brevity.

• Rules (6.8) and (6.9) modify the environment by binding identifiers to the

values on top of the stack. Directive bind extends the existing environment

while funbind creates a new environment; the former is used in let and case

expressions while the latter is used in function calls. Note that the bound

values are not removed from the stack: binding is simply the association of

identifiers to stack values. Stack space is reclaimed only by a static or dynamic

return when exiting a scope.

• Rule (6.11) implements a dynamic return at the end of a function call. The

result value is left on the top of the stack and the continuation is n elements

below. Therefore, the stack shrinks by n elements and the context is restored

from the continuation.

• Rule (6.12) implements a static return when exiting the scope of a let binding

or case alternative. The result value is on the top of the stack, the stack shrinks

by n elements, the environment is restored and the control continues with the

next directive.

We write
r
↪→→ for the reflexive and transitive closure of

r
↪→, i.e. σ0

r
↪→→ σn if and only

if ∃σ1 . . . σn−1 : σ0
r
↪→ σ1

r
↪→ · · · r

↪→ σn−1
r
↪→ σn. When it is clear from the context,

we will sometimes omit the region parameter from reduction relations, writing ↪→
and ↪→→ instead of

r
↪→ and

r
↪→→.
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6.2.4 Auxiliary results

Lemma 6.1 (Heap monotonicity) If σ
r
↪→ σ′ then heap(σ) ⊆ heap(σ′).

Proof: Only rule (6.13) modifies the heap with H ′ = H[a 7→ · · · ]; the result follows

immediately from the assumption a 6∈ dom(H). �

The next lemma states a standard invariant for a stack machine: successful

evaluation of an expression extends the stack by one value (the result of evaluation)

and leaves the environment unchanged.

Lemma 6.2 (Evaluation) If 〈eval(e) : C, E, S, H〉 r
↪→→ 〈C, E′, S′, H ′〉 then E′ =

E and there exists u such that S′ = u : S.

Proof: By induction on the number n of reduction steps. For n = 1, the only

applicable rules are (6.1) and (6.2) and it is immediate that the result holds. For

n > 1, we proceed by analysis on the structure of the expression e.

If e ≡ let x = e1 in e2; the transition sequence must be:

〈eval(let x = e1 in e2) : C, E, S, H〉

↪→ 〈eval(e1) : bind(x) : eval(e2) : sret(1, E) : C, E, S, H〉 by rule (6.4)

↪→→ 〈bind(x) : eval(e2) : sret(1, E) : C, E, u1 : S, H1〉

by the induction hypothesis on e1

↪→ 〈eval(e2) : sret(1, E) : C, E′, u1 : S, H1〉 by rule (6.8)

↪→→ 〈sret(1, E) : C, E′, u2 : u1 : S, H2〉

by the induction hypothesis on e2

↪→ 〈C, E, u2 : S, H2〉 by rule (6.12)

If e ≡ f (e1, . . . , em); the transition sequence must be:

〈eval(f (e1, . . . , em)) : C, E, S, H〉

↪→ 〈eval(em) : . . . : eval(e1) : fbind(~x) : eval(e′) : ret(m) : [], E, 〈C, E〉 : S, H〉

by rule (6.3)

↪→→ 〈fbind(~x) : eval(e′) : ret(m) : [], E, u1 : . . . : um : 〈C, E〉 : S, H ′〉

using the induction hypothesis m times on em, . . . , e1

↪→ 〈eval(e′) : ret(m) : [], [~x 7→ ~u], u1 : . . . : um : 〈C, E〉 : S, H ′〉

by rule (6.9)

↪→→ 〈ret(m) : [], [~x 7→ ~u], u0 : u1 : . . . : um : 〈C, E〉 : S, H ′′〉
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by the induction hypothesis on e′

↪→ 〈C, E, u0 : S, H ′′〉

by rule (6.11)

The proof for the case statement is similar to that for the let; the proofs for construc-

tors and primitives follow directly from rules (6.6), (6.13), (6.7) and (6.14). This

concludes the proof of Lemma 6.2. �

6.2.5 Big-step evaluation semantics

We will now define an instrumented big-step evaluation relation that abstracts in-

dividual reduction steps but records stack and heap usage.1 The objective is to be

able to reason about the evaluation costs compositionally, i.e. define the stack and

heap costs of an expression in terms of the costs of sub-expressions. This will pave

the way for the source-level analysis for stack and heap costs in Section 6.4.

The big-step judgements have the form

H, E ` e ⇓r u, H ′, δ, γ

meaning that e reduces to u under environment E, heap H and region r; the final

heap is H ′ and δ and γ are, respectively, the relative stack and heap metrics used in

the evaluation of e.

First, we remark that the relative heap for a reduction sequence σ↪→→σ′ is simply

the difference |heap(σ′)|−|heap(σ)| because no deallocation occurs during expression

reduction.

For the stack metric, however, we need to keep track of the maximum depth in

all intermediate states. We do so using an instrumented version of the transitive

reduction relation: σ
r
↪→→
M

σ′ means that M is the maximum stack depth in the

reduction sequence from σ to σ′. This relation is formally defined by two inductive

rules:

M = |stack(σ)|

σ
r
↪→→
M

σ

σ
r
↪→ σ′ σ′

r
↪→→
M ′

σ′′ M = max(|stack(σ)|, M ′)

σ
r
↪→→
M

σ′′

Using
r
↪→→
M

we now define the big-step evaluation relation.

1This can be seen as the formalisation of a simple profiler that records maximum usage for a

whole expression.
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Definition 6.3 (Big-step evaluation semantics) The big-step evaluation rela-

tion is defined by

H, E ` e ⇓r u, H ′, δ, γ
def⇐⇒

∀C ∀S 〈eval(e) : C, E, S, H〉 r
↪→→
M
〈C, E, u : S, H ′〉

∧ δ = M − |S| ∧ γ = |H ′| − |H| .

Two remarks should be made regarding this definition. First, note that the stack

size of the final state is 1 + |S|; therefore M ≥ 1 + |S| which implies that δ ≥ 1.

Second, the universal quantification in the code C and stack S makes big-step

evaluation independent of context. This allows us to derive structural rules for big

step evaluation with stack and heap costs (Table 6.2).

Lemma 6.4 The rules of Table 6.2 are admissible.

Proof: The proofs are straightforward but tedious. We prove the rules for the let

expression, function application and case expression in detail.

Let-expression: the hypotheses of rule (6.17) are

H0, E ` e1 ⇓r u1, H1, δ1, γ1 (6.22)

H1, E[x 7→ u1] ` e2 ⇓r u2, H2, δ2, γ2 (6.23)

and we want to conclude

H0, E ` let x = e1 in e2 ⇓r u2, H2, max(δ1, 1 + δ2), γ1 + γ2 (6.24)

Let C and S be arbitrary; the reduction sequence is as follow:

〈eval(let x = e1 in e2) : C, E, S, H0〉
r
↪→ 〈eval(e1) : bind(x) : eval(e2) : sret(1, E) : C, E, S, H0〉
r
↪→→
M1
〈bind(x) : eval(e2) : sret(1, E) : C, E, u1 : S, H1〉

r
↪→ 〈eval(e2) : sret(1, E) : C, E[x 7→ u1], u1 : S, H1〉
r
↪→→
M2
〈sret(1, E) : C, E[x 7→ u1], u2 : u1 : S, H2〉

r
↪→ 〈C, E, u2 : S, H2〉

Designate by δ the relative stack metric for the above evaluation. By definition of
r
↪→→
M

, we know M1 ≥ |u1 : S| and M2 ≥ |u2 : u1 : S|, and therefore

δ = max{|S|, M1, |u1 : S|, M2, |u2 : u1 : S|, |u2 : S|} − |S|

= max(M1, M2)− |S| = max(M1 − |S|, M2 − |S|) (6.25)
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H, E ` n ⇓r n, H, 1, 0 (6.15)

H, E ` x ⇓r E(x), H, 1, 0 (6.16)

H0, E ` e1 ⇓r u1, H1, δ1, γ1 H1, E[x 7→ u1] ` e2 ⇓r u2, H2, δ2, γ2

H0, E ` let x = e1 in e2 ⇓r u2, H2, max(δ1, 1 + δ2), γ1 + γ2

(6.17)

Hn−i, E ` ei ⇓r ui, Hn+1−i, δi, γi (1 ≤ i ≤ n)

Hn, [x1 7→ u1, . . . , xn 7→ un] ` e′ ⇓r u′, Hn+1, δ
′, γ′

δ = max{n+ 1− i+ δi}ni=1 γ =
∑n
i=1 γi

H0, E ` f (e1, . . . , en) ⇓r u′, Hn+1, max(δ, n+ 1 + δ′), γ + γ′

if (f (x1, . . . , xn) = e′) ∈ P

(6.18)

(∀i) Hn−i, E ` ei ⇓r ui, Hn+1−i, δi, γi ui at r

a /∈ dom(Hn) a at r δ = max{n− i+ δi}ni=1 γ =
∑n
i=1 γi

H0, E ` c (e1, . . . , en) ⇓r a, Hn[a 7→ 〈c, u1, . . . , un〉], δ, γ + 1 + n

(6.19)

H0, E ` e ⇓r a, H1, δ1, γ1

H1(a) = 〈c, u1, . . . , un〉 (c (x1, . . . , xn)→ e′) ∈ alts

H1, E[x1 7→ u1, . . . , xn 7→ un] ` e′ ⇓r u′, H2, δ2, γ2

H0, E ` case e of alts ⇓r u′, H2, max(δ1, n+ δ2), γ1 + γ2

(6.20)

H, E ` e ⇓r n, H ′, δ, γ

H, E ` succ e ⇓r n+ 1, H ′, δ, γ
(6.21)

Table 6.2: Rules for big-step evaluation.
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By hypotheses (6.22) and (6.23), we obtain relations between the maximum and

relative stack depths for subexpressions e1 and e2:

δ1 = M1 − |S|

δ2 = M2 − |u1 : S| = M2 − (1 + |S|)

⇐⇒ 1 + δ2 = M2 − |S|

Replacing the above equalities in (6.25) we get δ = max(δ1, 1+δ2), thus establishing

the relative stack result. For the relative heap result, we remark that γ1 = |H1|−|H0|
and γ2 = |H2| − |H1| and therefore

γ = |H2| − |H0| = |H1| − |H0|︸ ︷︷ ︸
γ1

+ |H2| − |H1|︸ ︷︷ ︸
γ2

= γ1 + γ2 .

Function application: the hypotheses of rule (6.18) are

Hn−i, E ` ei ⇓r ui, Hn+1−i, δi, γi (1 ≤ i ≤ n) (6.26)

Hn, [x1 7→ u1, . . . , xn 7→ un] ` e′ ⇓r u′, Hn+1, δ
′, γ′ (6.27)

and we want to conclude

H0, E ` f (e1, . . . , en) ⇓r u′, Hn+1, max(δ, n+ 1 + δ′), γ + γ′ (6.28)

where δ = max{n+ 1− i+ δi}ni=1 and γ =
∑n
i=1 γi. Let C and S be arbitrary; the

reduction sequence for the application is as follows:

〈eval(f (e1, . . . , en) : C), E, S, H0〉
r
↪→ 〈eval(en) : . . . : eval(e1) : fbind(~x) : eval(e′) : ret(n) : [], E, 〈C, E〉 : S, H0〉
r
↪→→
Mn

〈eval(en−1) : . . . : eval(e1) : fbind(~x) : eval(e′) : ret(n) : [], E,

un : 〈C, E〉 : S, H1〉
...

r
↪→→
M2
〈eval(e1) : fbind(~x) : eval(e′) : ret(n) : [], E, u2 : . . . : un : 〈C, E〉 : S, Hn−1〉

r
↪→→
M1
〈fbind(~x) : eval(e′) : ret(n) : [], E, u1 : . . . : un : 〈C, E〉 : S, Hn〉

r
↪→ 〈eval(e′) : ret(n) : [], [~x 7→ ~u], u1 : . . . : un : 〈C, E〉 : S, Hn〉
r
↪→→
M ′
〈ret(n) : [], [~x 7→ ~u], u′ : u1 : . . . : un : 〈C, E〉 : S, Hn+1〉

r
↪→ 〈C, E, u′ : S, Hn+1〉

The relative stack metric for the application is

δ = max{M1, M2, . . . , Mn, M
′} − |S|

= max(max{Mi − |S|}ni=1, M
′ − |S|) (6.29)
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Using hypotheses (6.26) and (6.27), we obtain:

δi = Mi − |ui+1 : . . . : un : 〈C, E〉 : S| = Mi − (n+ 1− i+ |S|) (6.30)

δ′ = M ′ − |u1 : . . . : un : 〈C, E〉 : S| = M ′ − (n+ 1 + |S|) (6.31)

Isolating δi and δ′ in the above equations yields

Mi − |S| = δi + n+ 1− i (6.32)

M ′ − |S| = δ′ + n+ 1 (6.33)

Replacing the above equations in (6.29) we get the stack result:

δ = max(max{δi + n+ 1− i}ni=1, δ
′ + n+ 1) (6.34)

The heap result is immediate because

|Hn+1| − |H0| = |Hn+1| − |Hn|︸ ︷︷ ︸
γ′

+ |Hn| − |Hn−1|︸ ︷︷ ︸
γn

+ · · ·+ |H1| − |H0|︸ ︷︷ ︸
γ1

= γ′ +
n∑
i=1

γi

Case expression: the hypotheses of rule (6.20) are

H0, E ` e ⇓r a, H1, δ1, γ1 (6.35)

H1(a) = 〈c, u1, . . . , un〉 (6.36)

(c (x1, . . . , xn)→ e′) ∈ alts (6.37)

H1, E[x1 7→ u1, . . . , xn 7→ un] ` e′ ⇓r u′, H2, δ2, γ2 (6.38)

and the conclusion is

H0, E ` case e of alts ⇓r u′, H2, max(δ1, n+ δ2), γ1 + γ2 (6.39)

Starting from an arbitrary code C and stack S, the reduction of the case expression

is:

〈eval(case e of alts) : C, E, S, H0〉
r
↪→ 〈eval(e) : select(alts) : C, E, S, H0〉
r
↪→→
M1
〈select(alts) : C, E, a : S, H1〉

r
↪→ 〈bind(x1, . . . , xn) : eval(e′) : sret(n,E) : C, E, u1 : . . . : un : S, H1〉
r
↪→ 〈eval(e′) : sret(n,E) : C, E[x1 7→u1, . . . , xn 7→un], u1 : . . . : un : S, H1〉
r
↪→→
M2
〈sret(n,E) : C, E[x1 7→u1, . . . , xn 7→un], u′ : u1 : . . . : un : S, H2〉

r
↪→ 〈C, E, u′ : S, H2〉



6.3. OPERATIONAL SEMANTICS FOR BOXES 167

Using hypothesis (6.35) and (6.38) we obtain:

δ1 = M1 − |S|

δ2 = M2 − |u1 : . . . : un : S| = M2 − (|S|+ n)

⇐⇒ n+ δ2 = M2 − |S|

The relative stack metric δ for the case expression is then

δ = max{|S|, |S|+ 1, |S|+ n, M1, M2} − |S|

= max{1, n, M1 − |S|, M2 − |S|}

= max{1, n, δ1, n+ δ2}

= max(δ1, n+ δ2)

since δ1 ≥ 1 and δ2 ≥ 1 (see the remark following Definition 6.3). The relative heap

result is again immediate because

γ = |H2| − |H0| = (|H2| − |H1|︸ ︷︷ ︸
γ2

) + (|H1| − |H0|︸ ︷︷ ︸
γ1

) = γ1 + γ2

The proofs for the rules (6.15) (6.16) (6.21) for constants, variables and the primitive

successor follow directly from the single-step reduction; we therefore omit them. The

proof for the constructor application rule (6.19) is similar to the proof of rule (6.18)

for function application. This concludes the proof of Lemma 6.4. �

Whenever we do not care about the stack and heap metrics we will omit them

from the reduction relation, writing H, E ` e ⇓r u, H ′ instead of ∃δ ∃γ H, E ` e ⇓r
u, H ′, δ, γ. We will also introduce a notation for a sequence of big-step evaluations,

each producing a result in a distinct region. This notation will be used for the

evaluation of the right-hand of a box rule:

H1, E ` (e1, . . . , en) ⇓(r1,...,rn) (u1, . . . , un), Hn+1
def⇐⇒

Hi, E ` ei ⇓ri
ui, Hi+1 ∧ ui at ri (1 ≤ i ≤ n) (6.40)

Note that the threading of the heap from H1 to Hn+1 in the above definition fixes the

order of evaluation from e1 to en. Since the output regions r1, . . . , rn are distinct

from each other and from the input wire regions, no real data dependency exists

between the evaluations.

6.3 Operational semantics for boxes

A Core Hume program defines a network of communicating processes as a sequence

of box, wire, data type and functions declarations. In the previous section we defined

an abstract machine for evaluation of expressions and functions.
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In this section we will define the operational semantics for the coordination layer

of a Core Hume program in the form of a single-step transition relation on network

states. This semantics implements the following actions:

• scheduling the next box with sufficient available inputs;

• synchronisation of accesses to wires, i.e. keep record of which wires are available

and ensure boxes only read/write to available wires;

• memory management for the communication wires, i.e. reclaim heap space for

wires after inputs are consumed.

We will use the big-step evaluation relation defined in Section 6.2.5 to evaluate

expressions in the right-hand side of box rules. This means that expression evaluation

is an atomic action that cannot be preempted by the scheduler.

6.3.1 Wire values and locations

We assume that each wire is assigned a sequential index at compile-time; the set

of all wire indices is denoted by Wire. We then define a wire value map as the

association of each wire to a (possibly null) value:

ν ∈Wireval def= Wire→ Unboxed ∪ {null}

A wire value is either an unboxed value (defined in the expression semantics of

Section 6.2) or a special null value: if ν(w) = null then wire w is not available for

reading (and, conversely, is available for writing).

Values in wires result from evaluating arbitrary Hume expressions (e.g. tuples,

lists, etc.) and might therefore require heap storage. Since values in wires might

be written and consumed independently, we will use separate heap regions for each

wire. We introduce two wire location maps

ρ, ρ̃ ∈Wireloc def= Wire→ Region

to associate each wire w with two distinct heap regions: ρ(w) is associated with the

value of wire w in the current scheduler iteration and ρ̃(w) with the value in the

next iteration.

The combination of wire value and region maps allows an efficient and predictable

recycling of heap space:

• to consume the value on a wire w we set ν(w)← null and reset region ρ(w);
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• the output value in a wire w′ is constructed in the region for the next iteration

ρ̃(w′);

• when all outputs u1, . . . , un to wires w′1, . . . , w
′
n are available, the values are

updated in single step by setting ν(w′i)← ui and exchanging ρ(wi) and ρ̃(wi).2

These operations can be implemented by simple array updates, thus allowing heap

reuse at the end of a scheduling step with no space overhead and in predictable time.

Finally, since each wire is assigned two distinct regions, the total number of

regions is twice the number of wires, and therefore known at compile-time.

6.3.2 Runtime configuration of boxes

The runtime configuration for a box is a 6-tuple of a state, a sequence of pending

output values, a matching flag, a sequence of box rules and sequences of input and

output wires. The state of a box is either ready (waiting to read inputs) or blocked

(waiting to write outputs). The matching flag is either fair or unfair ; fair matching

implies re-ordering alternatives after a successful match.

Box def= BoxState×Unboxed∗ ×Match×Alts×Wire∗ ×Wire∗

BoxState def= {ready, blocked}

Match def= {fair, unfair}

The state of the network of boxes is a 5-tuple consisting of a sequence of box

configurations, a heap and the wire value and location maps.

Coord def= Box∗ ×Heap×Wireval×Wireloc×Wireloc

6.3.3 Scheduler

Boxes are scheduled in a circular queue, following the order of declarations in the

program. To determine whether to run a box, each of its rules is tried in order.

When a match is found, the right-hand side of the matching rule is evaluated and

the outputs are written to the output wires. The scheduler then moves the box

to end of the queue and proceeds to the next box. Scheduling is non-preemptive:

when a rule match is found, the corresponding right-hand-side expression runs to

completion. This means that expression evaluation is an atomic action from the

point-of-view of the scheduler.
2 This exchange operation is equivalent to two simultaneous region-renaming operations of Hen-

glein et al. (2001).
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H ` ν(in) match rules ⇒ ( ~ap → ~ae), E H, E ` ~ae ⇓ρ̃(out) ~u, H ′

ν′ = ν[{ini 7→ null | api 6= *}] H ′′ = H ′ \ {ρ(ini) | api 6= *}

〈(ready, [], unfair, rules, in, out) : boxes, H, ν, ρ, ρ̃〉y

〈(blocked, ~u, unfair, rules, in, out) : boxes, H ′′, ν′, ρ, ρ̃〉

(6.41)

H ` ν(in) match rules ⇒ ( ~ap → ~ae), E H, E ` ~ae ⇓ρ̃(out) ~u, H ′

ν′ = ν[{ini 7→ null | api 6= *}] H ′′ = H ′ \ {ρ(ini) | api 6= *}

rules ′ = (rules \ ( ~ap → ~ae)) ++ ( ~ap → ~ae)

〈(ready, [], fair, rules, in, out) : boxes, H, ν, ρ, ρ̃〉y

〈(blocked, ~u, fair, rules ′, in, out) : boxes, H ′′, ν′, ρ, ρ̃〉

(6.42)

H 0 ν(in) match rules

〈(ready, [],match, rules, in, out) : boxes, H, ν, ρ, ρ̃〉y

〈boxes++ (ready, [],match, rules, in, out), H, ν, ρ, ρ̃〉

(6.43)

(∀i) ui = null ∨ ν(outi) = null ν′ = ν[{outi 7→ ui | ui 6= null}]

ρ′ = ρ[{outi 7→ ρ̃(outi) | ui 6= null}] ρ̃′ = ρ̃[{outi 7→ ρ(outi) | ui 6= null}]

〈(blocked, ~u,match, rules, in, out) : boxes, H, ν, ρ, ρ̃〉y

〈boxes++ (ready, [],match, rules, in, out), H, ν′, ρ′, ρ̃′〉

(6.44)

(∃i) ui 6= null ∧ ν(outi) 6= null

〈(blocked, ~u,match, rules, in, out) : boxes, H, ν, ρ, ρ̃〉y

〈boxes++ (blocked, ~u,match, rules, in, out), H, ν, ρ, ρ̃〉

(6.45)

Table 6.3: Box scheduling relation.
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H ` u match ap ⇒ E

H ` u match *⇒ ∅ (6.46)

H ` u match *⇒ ∅ (6.47)

u 6= null

H ` u match ⇒ ∅
(6.48)

u 6= null

H ` u match x⇒ [x 7→ u]
(6.49)

a ∈ Addr H(a) = 〈c, u1, . . . , un〉

H ` a match (c x1 . . . xn)⇒ [x1 7→ u1, . . . , xn 7→ un]
(6.50)

H ` ~u match ~ap ⇒ E

H ` ui match api ⇒ Ei (1 ≤ i ≤ n)

H ` (u1, . . . , un) match (ap1, . . . , apn)⇒
⋃n
i=1Ei

(6.51)

H ` ~u match rules ⇒ rule, E

H ` ~u match ~ap ⇒ E

H ` ~u match ( ~ap → ~ae | rules)⇒ ( ~ap → ~ae ), E
(6.52)

H 0 ~u match ~ap H ` ~u match rules ⇒ rule, E

H ` ~u match ( ~ap → ~ae | rules)⇒ rule, E
(6.53)

Table 6.4: Box pattern and rule matching.
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A box rule (ap1, . . . , apn) → (ae1, . . . , aem) is runnable if all the non-ignored

inputs (i.e. with pattern other than ‘*’) are available and match the corresponding

patterns api. The matching relation is specified in Table 6.4. The scheduler is

specified in Table 6.3 as a single-step transition relation y between network states.

Each transition either runs or blocks the next box depending on availability of its

inputs.

• Rule (6.41) specifies a successful unfair match: 1) check if the inputs values

are available and bind pattern variables; 2) set the input values to null; 3)

reset the input wire regions; 4) evaluate the right-hand-side expressions; 5)

leave the box temporarily blocked (to attempt writing the outputs on the next

scheduling step).

• Rule (6.42) specifies fair matching; except for a final re-ordering of the box

rules it is identical to (6.41).

• Rule (6.43) deals with an unsuccessful match: the box is simply moved to the

end of the scheduling queue.

• Rule (6.44) unblocks a box: 1) check if the outputs wires are available: 2)

write the output values to the output wires; 3) exchange the current and next

generation regions; 4) move the box to the end of the scheduling queue.

• Rule (6.45) applies when a box must remain blocked because the output wires

are busy; in this case, the box is moved to the end of the scheduling queue.

6.3.4 On region safety and copying

The region memory management we have introduced is particularly simple. Regions

in Core Hume are primarily an implementation mechanism for predictable reuse

of heap space at the coordination level. In particular, the expression layer has no

explicit control over regions (i.e. they cannot be abstracted, applied to functions or

even bound to names).

However, the use of regions induces some restrictions in the admissibility of Core

Hume programs. Since the input and output wire regions are distinct, expressions

used in boxes must construct separate heap results; sharing parts of the input would

violate the requirement that heap objects in a region are self-contained.

Example 6.5 The following box does not copy a list of integers because the input

and output wires reside in different regions.
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box wrong_copy (xs::[Int]) (ys::[Int])

match

(xs) -> (xs) -- wrong: region violation!

;

Following the operational semantics to reduce xs in the right-hand side, we verify

that rule (6.41) does not apply3 and relation y is “stuck”. �

We call such scheduler configurations region violations and say that programs that

do not lead to such configurations are region safe.

Example 6.6 The region-safe solution to the copy box is to explicitly copy the list

using a recursive function.

box copy (xs::[Int]) (ys::[Int])

match

(xs) -> (copyList xs) -- correct

;

copyList :: [Int] -> [Int];

copyList [] = [];

copyList (x:xs) = x : copy_List xs;

More generally, we might need an explicit copy for every heap allocated input that

is used in the right-hand-side of a box rule. �

Requiring explicit copies at every box expression may seem an unnecessary bur-

den on the programmer. The alternative followed in the prototype Hume compiler

and abstract machine (Hammond 2003) is to implement a polymorphic copying oper-

ation as part of the runtime system using a bounded-space copying algorithm (Rein-

gold 1973, Jones and Lins 1996). Such approach, however, makes cost analysis at

the source-level more difficult because the costs of copying are not expressed in the

program: although space costs of a pointer-reversal copying algorithm are bounded,

the amount of heap copied and the associated time costs depend not just on the sizes

of objects but also on the amount of sharing in the heap. A purely denotational size

analysis would not give accurate bounds for these costs.

From a methodological perspective, copying an arbitrary data type is too complex

to be considered a single-step operation, particularly if we ultimately aim to reason

about time as well as space costs. Therefore, we argue that it is best to break up
3 Because one of the side conditions ui at r fails.
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copying into smaller, bounded-cost operations; the Core Hume language is already

expressive enough for this purpose. Furthermore, since copy operations are simply

functions in the core language, we will be able to obtain the costs for copying using

the type and effect analysis of Section 6.4, without the need for any extra machinery.

Finally, and although we do not do it here, we believe that the copying functions

could, in principle, be generated automatically by the compiler, e.g. in a type-directed

way. This would also open up the possibility of employing optimisations to avoid

copying when the results are disjoint from the inputs. The advantage of the language-

based approach is the ability of expressing this optimisation as a source-to-source

transformation.

In summary: we argue that for obtaining static guarantees of bounded space and

time, the benefits of explicit copying outweigh the disadvantages.

6.3.5 On bounding costs for complete programs

We have stated informally that time and space cost for a complete Hume program

are bounded provided that the costs for the expressions used in boxes and wires are

bounded. We now justify why our choice of formal semantics allows us to sustain

this claim with regard to stack and heap costs:

• each wire is a bounded communication buffer (in fact, a buffer of size one)

between a single producer box and a finite number of consumer boxes;

• wires are single-buffered (i.e. writing a value for the next iteration is blocked

until the current one is consumed); this means that the heap size of wire

region is simply the maximum heap used by the corresponding expressions on

the right-hand side of box rules;4

• the maximum stack required is simply the maximum used in any box or wire

expression. To simplify the presentation, we are not considering stack costs

for box pattern matching; since patterns are not nested, these costs can be

determined trivially (e.g. from the maximum number of bound variables in the

box rules);

• finally, the costs associated with the scheduler itself (i.e. the sizes of wire value

map, region maps and scheduling queue) are bounded trivially by the total

number of boxes and wires.
4 More precisely, the maximum heap required for the wire regions is twice the maximum amount

used by the corresponding box expressions (for the two regions associated with consecutive gener-

ations).
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6.4 A type and effect system for expression costs

In this section we extend the sized type system of Chapter 5 with effects that track

stack and heap costs. We develop this type and effect analysis in two steps. We start

by presenting a straightforward extension of the sized type system that associates

the exact stack and heap costs with each syntax node, following the cost model of

Section 6.2. This analysis is theoretically sound and as accurate as possible within

our framework. However, from a practical point-of-view, it will yield large constraints

and can therefore be computationally very expensive.

In a remaining of the section, we refine the analysis as follows. First, we extend

Core Hume expressions with cost annotations. Second, we define the analysis for

the instrumented language. Third, we define a “cost lifting” transformation for

annotated programs that does not decrease the overall cost. By employing cost

transformations before the analysis we are able to trade a (potential) loss of precision

for shorter analysis times.

6.4.1 Latent costs

Following the type and effect discipline, we extend the sized types Section 5.2.2

with “latent effects” on arrows (Talpin and Jouvelot 1994, Reistad and Gifford 1994,

Nielson et al. 1999).

τ ::= · · · (see Table 5.1)

ν ::= τ | ~τ
s;h−−→ τ ′ (where s, h ∈ ZVar)

σ ::= ν | ∀α. σ

η ::= 〈σ, φ〉 | ∀`. η

The annotations s, h are latent costs (Reistad and Gifford 1994, Portillo et al. 2003,

Vasconcelos and Hammond 2004) representing the stack and heap costs of the func-

tion. Like the size annotations of Chapter 5, the latent costs are variables; the actual

cost information is expressed separately by a size constraint φ. This allows us to

express a fully relational analysis where costs can depend on any combination of

sizes.

We allow an abbreviation of omitting latent costs on functional types whenever

these are free variables, writing simply ~τ → τ ′.
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6.4.2 Maximum terms in constraints

All the stack costs of Table 6.2 involve the maximum of the stack costs for sub-

expressions. We can express the maximum with our Presburger-like size constraints

using the following equivalence:

` = max(s1, s2) ⇐⇒ (s2 ≤ s1 ∧ ` = s1) ∨ (s1 ≤ s2 ∧ ` = s2) (6.54)

However, when generalising the above to n expressions, this translation yields a

constraint of size O(n2). Furthermore, since we are combining stack costs, we are

primarily interested in upper-bounds rather than precise ranges. We will therefore

allow some imprecision and consider the following abbreviation instead:

` = s1 ∨ ` = s2 (6.55)

Clearly (6.54) entails (6.55), so this approximation is sound. The advantage of

encoding the maximum as (6.55) is that it yields constraints of size O(n) when

generalising to n expressions, i.e.

n∨
i=1

` = si (6.56)

6.4.3 Type and effect judgements

Tables 6.5 and 6.6 present the cost analysis for expressions and declarations as judge-

ments

Γ C̀OST e : τ $ s ;h | φ

where τ is a sized type, φ is a size constraint and s, h are effects delimiting, respec-

tively, the stack and heap costs of executing e. Effects are simple variables; all cost

information is expressed together with the size information through the constraint

φ. Rules in Tables 6.5 and 6.6 are, for the most part, straightforward extensions of

the rules of Tables 5.4 and 5.5 with the costs of Table 6.2.

• Integers and variables incur no heap cost and a single unit of stack cost.

• Rule [Tuple] illustrates the distinct aggregation of stack and heap costs: the

heap cost for a tuple is the sum of the sub-expression heap costs, while the

stack cost is the maximum of the sub-expression stack costs.

• Rule [FunAp] combines the latent costs of the function with the costs of the ar-

gument tuple. Note that, since the language is first-order, the type judgement

for the function does not carry stack and heap costs (i.e., function dispatch is

done statically).
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Γ C̀OST e : τ $ s ;h | φ

[Int ] Γ C̀OST n : Int` $ s ;h | ` = n ∧ s = 1 ∧ h = 0

[Var ]
Γ ÌNST x : 〈τ, φ〉

FZV(τ) ∩ FZV(Γ) = ∅
Γ C̀OST x : τ $ s ;h | φ ∧ s = 1 ∧ h = 0

[FunAp]

Γ ÌNST f : 〈(τ1, . . . , τn)
s1;h1−−−→ τ, φ1〉

Γ C̀OST (e1, . . . , en) : (τ1, . . . , τn) $ s2 ;h2 | φ2

Γ C̀OST f (e1, . . . , en) : τ $ s ;h | φ1 ∧ φ2 ∧ h = h1 + h2

∧ s = max(1 + n+ s1, 1 + s2)

[ConsAp]

Γ ÌNST c : 〈(τ1, . . . , τn)→ τ, φ1〉

Γ C̀OST (e1, . . . en) : (τ1, . . . , τn) $ s ;h′ | φ2

Γ C̀OST c (e1, . . . , en) : τ $ s ;h | φ1 ∧ φ2 ∧ h = h′ + 1 + n

[Let ]

Γ C̀OST e1 : τ1 $ s1 ;h1 | φ1

x : τ1, Γ C̀OST e2 : τ2 $ s2 ;h2 | φ2

Γ C̀OST let x = e1 in e2 : τ2 $ s ;h | φ1 ∧ φ2 ∧ s = max(s1, 1 + s2)

∧h = h1 + h2

[Case]

Γ C̀OST e0 : τ ′ $ s0 ;h0 | φ0 Γ ÌNST ci : 〈~τ ′′i → τ ′, φ′i〉

~xi : ~τ ′′i , Γ C̀OST ei : τ $ si ;hi | φi
(∀i)

Γ C̀OST case e0 of {ci ~xi → ei}ni=1 : τ $ s ;h |

φ0 ∧
∨n
i=1(φi ∧ φ′i ∧ s = max(s0, si + |~xi|) ∧ h = h0 + hi)

[Tuple]

Γ C̀OST ei : τi $ si ;hi | φi (∀i)

Γ C̀OST (e1, . . . , en) : (τ1, . . . , τn) $ s ;h |
∧n
i=1 φi ∧ h =

∑n
i=1 hi

∧ s = max{n− i+ si}ni=1

[Unsize]
Γ C̀OST e : τ $ s ;h | φ

` /∈ FZV(Γ)
Γ C̀OST e : [` 7→ω] τ $ s ;h | φ

[Weaken]
Γ C̀OST e : τ $ s ;h | φ

Γ C̀OST e : τ $ s ;h | φ′
φ � φ′

Table 6.5: Cost analysis rules for expressions.
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Γ C̀OST decl : η

[Fun]
x1 : τ1, . . . , xk : τk, Γ C̀OST e : τk+1 $ s ;h | φ

Γ C̀OST let f (x1, . . . , xk) = e : ∀~̀. 〈∀~α. (τ1, . . . , τk)
s;h−−→ τk+1, φ〉

[Rec]

f : ∀~̀. 〈τ1 × · · · × τk
s;h−−→ τk+1, φ〉,

x1 : τ1, . . . , xk : τk, Γ C̀OST e : τk+1 $ s ;h | φ

Γ C̀OST letrec f (x1, . . . , xk) = e : ∀~̀. 〈∀~α. (τ1, . . . , τk)
s;h−−→ τk+1, φ〉

where ~α =
⋃k+1
i=1 FTV(τi)

~̀ =
⋃k+1
i=1 FZV(τi) ∪ FZV(φ) ∪ {s, h}

Table 6.6: Cost analysis rules for function declarations.

• Rule [Case] expresses the cost of the case as the disjunction of the costs of

alternatives. The heap cost for the discriminated expression is always added

because the case is strict in that expression.

• Rule [Weaken] allows weakening of size and cost information. Since the con-

straint φ captures both size and cost information, there is no need for a separate

sub-effecting rule for costs.

• Rules [Fun] and [Rec] transpose stack and heap costs of executing the function

body to the latent costs on the function type.

6.4.4 Extending Core Hume with cost annotations

The rules of Table 6.5 introduce maximum constraints ` = max{si}ni=1 for combining

the stack costs of any expression with n sub-expressions. Since such a constraint is

just an abbreviation for n disjunctions, and the intermediate constraint must be

reduced to disjunctive normal form for computing fixed point approximations (see

Section 5.5), this leads to an exponential growth of the constraint size with respect

to the length of the program. Moreover, the base of this exponential is the number

of nodes in the abstract syntax tree rather than (say) the number of execution paths

(i.e. nested case alternatives). This compromises the applicability of the analysis

formulated in Table 6.5 to large programs.

To improve the scalability of the analysis, we will decouple the type and effect

rules from the specific cost model, i.e. the concrete costs derived from the opera-
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CE : Expr→ Êxpr

CEJn K def= stack1 n

CEJx K
def= stack1 x

CEJ f (e1, . . . , en) K def= stack1+n (f (stack−1 CEJe1K, . . . , stack−n CEJenK))

CEJ c () K def= heap1 stack1 (c ())

CEJ c (e1, . . . , en) K def= heap1+n (c (stackn−1 CEJe1K, . . . , stack0 CEJenK)) (n ≥ 1)

CEJ p (e1, . . . , en) K def= heapγ (p (stackn−1 CEJe1K, . . . , stack0 CEJenK))

(γ is the heap cost of primitive p)

CEJ let x = e1 in e2 K
def= let x = CEJe1K in stack1 CEJe2K

CE

[[
case e0 of

{ci ~xi → ei}ni=1

]]
def= case CEJe0K of {ci ~xi → stack|~xi| CEJeiK }ni=1

CD : Decl→ D̂ecl

CDJlet(rec) f ~x = eK def= let(rec) f ~x = CEJeK

Table 6.7: Cost annotations for the Core Hume abstract machine.
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tional semantics of Section 6.2. For that purpose, we introduce a syntactic class of

annotated expressions ê that extends the core language of Table 4.1 with explicit

annotations for costs.

ê ::= · · · (see Table 4.1)

| stackk ê k units of stack cost

| heapk ê k units of heap cost

Cost annotations associate costs with expressions: the annotation stackk ê (respec-

tively, heapk ê) assigns k integer units of stack cost (respectively, heap cost) to an

expression ê; note that ê can contain nested cost annotations.

The stack and heap annotations mark the basic costs in the underlying cost

model, while the type and effect rules specify how to combine the costs from sub-

expression for each syntax node. Of course, this decoupling of the type rules from

the specific cost model means that we must start from a suitably annotated source

program. Table 6.7 defines two annotation functions CE and CD for the stack and

heap costs of the Core Hume region machine of Section 6.2. The cost annotations are

derived from the big-step semantics with relative stack and heap costs (Table 6.2).

Example 6.7 Consider the list append function

letrec app (xs, ys) = case xs of

Nil→ ys

| Cons (x, xs′)→ Cons (x, app (xs′, ys))

(6.57)

Annotating (6.57) following the definitions of Table 6.7 yields:

letrec app (xs, ys)

= case (stack1 xs) of

Nil→ stack1 ys

| Cons (x, xs′)→ stack2heap3 Cons (stack1stack1 x,

stack0stack3 app (stack−1stack1 xs ′, stack−2stack1 ys))

(6.58)

In the annotated expression (6.58) syntax nodes that incur stack pushes or heap

allocation are explicit. For example, we can see that heap allocation is only per-

formed in the the Cons alternative (because there is no heap annotation in the Nil

alternative). �

6.4.5 Cost analysis for annotated expressions

The type and effect rules for cost-annotated expressions are presented in Tables 6.8

and 6.9. Rules for declarations remain unchanged (except for the use of cost-
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Γ C̀OST ê : τ $ s ;h | φ

[Int ] Γ C̀OST n : Int` $ s ;h | ` = n ∧ s = 0 ∧ h = 0

[Var ]
Γ ÌNST x : 〈τ, φ〉

FZV(τ) ∩ FZV(Γ) = ∅
Γ C̀OST x : τ $ s ;h | φ ∧ s = 0 ∧ h = 0

[Tuple]

Γ C̀OST êi : τi $ si ;hi | φi (∀i)

Γ C̀OST (ê1, . . . , ên) : (τ1, . . . , τn) $ s ;h |
∧n
i=1 φi ∧ s = max{si}ni=1

∧h =
∑n
i=1 hi

[FunAp]

Γ ÌNST f : 〈(τ1, . . . , τn)
s1;h1−−−→ τ, φ1〉

Γ C̀OST (ê1, . . . , ên) : (τ1, . . . , τn) $ s2 ;h2 | φ2

Γ C̀OST f (ê1, . . . , ên) : τ $ s ;h | φ1 ∧ φ2 ∧ s = max(s1, s2)

∧h = h1 + h2

[ConsAp]

Γ ÌNST c : 〈(τ1, . . . , τn)→ τ, φ1〉

Γ C̀OST (ê1, . . . , ên) : (τ1, . . . , τn) $ s ;h | φ2

Γ C̀OST c (ê1, . . . , ên) : τ $ s ;h | φ1 ∧ φ2

[Heap]
Γ C̀OST ê : τ $ s ;h′ | φ

Γ C̀OST heapk ê : τ $ s ;h | φ ∧ h = h′ + k

[Stack ]
Γ C̀OST ê : τ $ s′ ;h | φ

Γ C̀OST stackk ê : τ $ s ;h | φ ∧ s = s′ + k

[Unsize]
Γ C̀OST ê : τ $ s ;h | φ

` /∈ FZV(Γ)
Γ C̀OST ê : [` 7→ω] τ $ s ;h | φ

[Weaken]
Γ C̀OST ê : τ $ s ;h | φ

Γ C̀OST ê : τ $ s ;h | φ′
φ � φ′

Table 6.8: Cost analysis rules for annotated expressions.
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[Let ]

Γ C̀OST ê1 : τ1 $ s1 ;h1 | φ1

x : τ1, Γ C̀OST ê2 : τ2 $ s2 ;h2 | φ2

Γ C̀OST let x = ê1 in ê2 : τ2 $ s ;h | φ1 ∧ φ2 ∧ s = max(s1, s2)

∧h = h1 + h2

[Case]

Γ C̀OST ê0 : τ ′ $ s0 ;h0 | φ0

Γ ÌNST ci : 〈~τ ′′i → τ ′, φ′i〉
~xi : ~τ ′′i , Γ C̀OST êi : τ $ si ;hi | φi (∀i)

Γ C̀OST case ê0 of {ci ~xi → êi}ni=1 : τ $ s ;h |

φ0 ∧
∨n
i=1(φi ∧ φ′i ∧ s = max(s0, si) ∧ h = h0 + hi)

Table 6.9: Cost analysis rules for annotated expressions (continued).

annotated expressions).

Two new rules [Heap] and [Stack ] are introduced to add heap and stack costs,

respectively. Note that these are the only rules that add positive costs—all other

rules simply combine the costs of sub-expressions.

Introducing explicit cost annotations allows us to decouple the analysis from the

particular cost model of our implementation by simply modifying the annotation

phase (i.e. functions CE and CD). That is, we get a parametric analysis “for free”.

Cost annotations also open up the possibility of transforming the annotated pro-

gram before performing the cost analysis. In particular, we will employ transforma-

tions that do not reduce costs (and are therefore sound) but reduce the complexity

of synthesised constraints by “lifting” costs from child to parent nodes in the syntax

tree. For example, starting from the annotated expression

f (stack2 heap1 e1, stack1 heap1 e2)

we can the lift cost annotations one level by taking the maximum of stack and the

sum of the heap costs:

stack2 heap2 f (e1, e2) (6.59)

Cost analysis of expression (6.59) will not generate a maximum constraint for the

stack cost of the arguments because e1, e2 have no stack annotations. Of course,

cost lifting might increase the overall predicted costs, so this transformation trades

precision for efficiency.
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heapγ1 (heapγ2 ê) heapγ1+γ2 ê (6.60)

stackδ1 (stackδ2 ê) stackδ1+δ2 ê (6.61)

heapγ (stackδ ê) stackδ (heapγ ê) (6.62)

stackδ (heapγ ê) heapγ (stackδ ê) (6.63)

f (heapγ1 ê1, . . . , heapγn ên) heapγ f (ê1, . . . , ên) ,

c (heapγ1 ê1, . . . , heapγn ên) heapγ c (ê1, . . . , ên) ,

p (heapγ1 ê1, . . . , heapγn ên) heapγ p (ê1, . . . , ên) ,

where γ =
n∑
i=1

γi

(6.64)

let x = (heapγ1 ê1) in (heapγ2 ê2) heapγ1+γ2 (let x = ê1 in ê2) (6.65)

case (heapγ0 ê0) of {ci xsi → heapγi êi}ni=1  

heapγ (case ê0 of {ci xsi → êi}ni=1) ,

where γ = γ0 +
n

max
i=1

γi

(6.66)

f (stackδ1 ê1, . . . , stackδn ên) stackδ f (ê1, . . . , ên) ,

c (stackδ1 ê1, . . . , stackδn ên) stackδ c (ê1, . . . , ên) ,

p (stackδ1 ê1, . . . , stackδn ên) stackδ p (ê1, . . . , ên) ,

where δ =
n

max
i=1

δi

(6.67)

let x = (stackδ1 ê1) in (stackδ2 ê2) stackmax(δ1,δ2) (let x = ê1 in ê2) (6.68)

case (stackδ0 ê0) of {ci xsi → stackδi êi}ni=1  

stackδ (case ê0 of {ci xsi → êi}ni=1) ,

where δ =
n

max
i=0

δi

(6.69)

Table 6.10: Cost-lifting transformation for annotated expressions.
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6.4.6 Cost-lifting transformations

The cost annotation functions of Table 6.7 specify the most accurate description of

the costs of Table 6.2. For example, annotating a let-expression let x = e1 in e2

yields:

let x = CEJe1K in stack1 CEJe2K

The stack annotation reflects the operational semantics cost of one stack position for

the bound variable. Since e2 is evaluated with one extra entry on the stack relative

to e1, this cost is attached only to e2.

It would also be sound (though possibly less precise) to attach the stack cost to

the let-expression as a whole:

stack1 (let x = CEJe1K in CEJe2K)

Such “lifting” of costs from inner to outer syntax nodes can be performed system-

atically. Table 6.10 defines this transformation as a rewrite relation  between

annotated expressions. Informally, when the relation ê  ê′ holds then ê and ê′

yield the same value and the costs of ê′ are an upper-bound of those for ê (a formal

statement of this property will be presented in Section 6.5.2). Therefore, it is safe

to systematically apply the rules of Table 6.10 to lift costs from sub-expressions to

enclosing ones and perform the cost analysis on the resulting expression.

Example 6.8 Applying the transformations of Table 6.10 to the annotated ap-

pend (6.58), we can systematically lift costs from the innermost expressions to the

outermost ones to obtain:

letrec app (xs, ys) = stack5 heap3 (case xs of

Nil→ ys

| Cons (x, xs′)→ Cons (x, app (xs ′, ys)))

(6.70)

The costs annotated in (6.70) are over-approximated compared to (6.58) and to the

underlying cost model (the Core Hume machine). For example, the heap cost is

always added regardless of which branch of the case is taken. �

The two annotated versions of append in Examples 6.7 and 6.8 represent two

extremes: the version given by the functions CE and CD yields the most precise

cost annotation—essentially the same cost information obtained by the naive type

and effect analysis of Tables 6.5 and 6.6. The version resulting from lifting all cost

information to the outermost node gives the least precise cost annotation.

In practice, we will use cost lifting transformations to partially simplify cost

information. The heuristic employed is to retain cost annotations up-to a specified
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“depth” and to lift more deeply nested annotations. A depth of infinity gives the

highest precision and a depth of zero gives the least precision.

This heuristic allows a gradual loss of accuracy rather than in a single step.

Furthermore, the depth parameter can be chosen individually for different functions.

We have implemented this heuristic and obtained good results in improving analysis

times with little loss of precision (see Section 7.2.10).

6.5 Soundness

In this section we prove the soundness of the type and effect cost analysis. In the

interest of generality, we will not formulate soundness with respect to the particular

abstract machine of Section 6.2; instead, we will extend the denotational semantics

of Section 4.2.3 for cost instrumented expressions and prove the analysis correct with

respect to the instrumented semantics.

6.5.1 Cost instrumented semantics

Table 6.11 presents a semantics for core Hume expressions annotated with stack and

heap costs. Note that the semantics is still denotational, albeit involving somewhat

more complex domains that record costs as well as the results of computations: the

denotations of expressions are now elements of (V × N × N)⊥; the denotations of

functions are elements of [V → (V × N × N)⊥]. It is straightforward to verify that

both domains are still CPOs.

Semantic domains with costs

A cost-instrumented value is either ⊥ or a tuple b〈v, δ, γ〉c where v ∈ V and δ, γ are

natural numbers representing the stack and heap costs for computing v. Similarly,

if f ∈ [V → (V × N × N)⊥] is the cost-instrumented denotation of some function,

v ∈ V and f(v) = b〈u, δ, γ〉c, then u is the function result value and δ, γ are the

maximum stack and heap costs required in the computation of u.

The cost-instrumented semantics is given by EC for expressions and DC for func-

tions. Note that environments for functional values are extended with costs but

environments for zero-order values are not; this is because the latter represent fully-

reduced values, while the former represent computations that can incur latent costs

(see also the next section on the relation with monadic semantics).

Only the annotations stackk and heapk add positive costs; all other expressions

simply combine the costs of sub-expressions using a “cost let” meta-expression; this
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Env def= Var→ V⊥

FenvC
def= Var→ [V→ (V × N× N)⊥]

EC : Expr→ FenvC → Env→ (V × N× N)⊥

ECJn K ϕ ρ
def= b〈n, 0, 0〉c

ECJx K ϕ ρ
def= let v ⇐ ρ(x). b〈v, 0, 0〉c

ECJ c ~e K ϕ ρ
def= letC v ⇐ ECJ~e K ϕ ρ. b〈〈c, v〉, 0, 0〉c

ECJ f ~e K ϕ ρ
def= letC v ⇐ ECJ~e K ϕ ρ. ϕf v

ECJ let x = e1 in e2 K ϕ ρ
def= letC v ⇐ ECJ e1 K ϕ ρ. ECJ e2 K ϕ ρ[x 7→v]

ECJ case e of alts K ϕ ρ
def= letC v ⇐ ECJ e K ϕ ρ. ACJ alts K ϕ ρ v

ECJ stackk e K ϕ ρ
def= let 〈v, s, h〉 ⇐ ECJ e K ϕ ρ. b〈v, s+ k, h〉c

ECJ heapk e K ϕ ρ
def= let 〈v, s, h〉 ⇐ ECJ e K ϕ ρ. b〈v, s, h+ k〉c

ECJ () K ϕ ρ
def= b〈u, 0, 0〉c

ECJ (e1, . . . , ek) K ϕ ρ
def= letC v1 ⇐ ECJ e1 K ϕ ρ.

...

letC vk ⇐ ECJ ek K ϕ ρ. b〈〈v1, . . . , vk〉, 0, 0〉c

AC : Alts→ FenvC → Env→ V→ (V × N× N)⊥

ACJ {ci ~xi → ei}ki=1 K ϕ ρ
def= λ〈v′, v〉. case v′ of

c1.MCJ c1 ~x1 → e1 K ϕ ρ v |
...

ck.MCJ ck ~xk → ek K ϕ ρ v

MC : Alt→ FenvC → Env→ V→ (V × N× N)⊥

MCJ c (x1, . . . , xk)→ e K ϕ ρ
def= λ〈v1, . . . , vk〉. ECJ e K ϕ ρ[x1 7→v1, . . . , xk 7→vk]

DC : Decl→ FenvC → [V→ (V × N× N)⊥]

DCJ let f (x1, . . . , xk) = e K ϕ def= λ〈v1, . . . , vk〉. ECJ e K ϕ ρ0[x1 7→v1, . . . , xk 7→vk]

DCJ letrec f (x1, . . . , xk) = e K ϕ def= fix (F),

where F = λF. λ〈v1, . . . , vk〉. ECJ e K ϕ[f 7→F ] ρ0[x1 7→v1, . . . , xk 7→vk]

Table 6.11: Cost semantics for Core Hume expressions
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is defined in terms of the strict let of Section 4.2.3 (where vi, δi and γi are meta-

variables for values and costs):

letC v1 ⇐ E1. E2
def= let 〈v1, δ1, γ1〉 ⇐ E1.

(let 〈v2, δ2, γ2〉 ⇐ E2.

b〈v2, max(δ1, δ2), γ1 + γ2〉c)

(6.71)

Equation (6.71) specifies that the stack cost of letC v1 ⇐ E1. E2 is the maximum of

the stack costs of E1 and E2, while the heap cost is the sum of the heap costs of E1

and E2.

Relation with monadic semantics

We remark that the cost instrumented semantics is an instance of a monadic se-

mantics where basic values V are encapsulated in a monad C V = (V × N× N)⊥ '
(V × (N× N))⊥ for complexity and partiality (Wadler 1998a, Benton et al. 2000):

• (N×N, (0, 0), ?) is the cost monoid with zero element (0, 0) and inner operation

(δ1, γ1) ? (δ2, γ2) def= (max(δ1, δ2), γ1 + γ2);

• letC is the monadic bind operation;

• λv. b〈v, 0, 0〉c is the monadic unit ;

• stackk and heapk are the increment operations of the complexity monad.

We can now see that the cost instrumented semantics domain for functions corre-

sponds to the standard call-by-value translation of V→ V into the complexity and

partiality monad:

(V→ V)cbv = Vcbv → (C Vcbv)

= V→ C V

= V→ (V × N× N)⊥

6.5.2 Soundness of cost lifting

Our first result formalises the notion of soundness for cost lifting, namely, that the

transformations of Table 6.10 always yield an annotated program with greater or

equal costs than the original. This result is orthogonal to the cost analysis which

computes an approximation to the annotated costs; the soundness of the latter will

be stated in Section 6.5.3.
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Lemma 6.9 (Soundness of cost lifting) If ECJ ê Kϕρ = b〈v, δ, γ〉c and ê  ê′,

then ECJ ê′ Kϕρ = b〈v, δ′, γ′〉c with δ ≤ δ′ and γ ≤ γ′.

Proof sketch: Note that that the statement concerns a single rewriting step. We can

therefore consider each of the rules in Table 6.10 separately; in each case the result

follows directly from the unfolding the definitions of the cost semantics of Table 6.11.

�

6.5.3 Soundness of cost analysis for expressions

To formulate and prove the soundness of the cost analysis, we first define a size

function augmented with costs: if v ∈ (V×N×N)⊥ is a cost instrumented value, τ

is a sized type and s, h are cost variables, then SC
Σ(v :: τ ! s;h) is a formula expressing

the size and cost of v.

Definition 6.10 (Size and cost function) Given assumptions Σ for data con-

structors, the semantic size and cost function is:

SC
Σ(⊥ :: τ ! s;h) def= False

SC
Σ(b〈v, δ, γ〉c :: τ ! s;h) def= SΣ(bvc :: τ) ∧ s = δ ∧ h = γ

where S is defined in Table 5.10 of Section 5.4.

Using SC we can now define a type semantics for first order function types aug-

mented with costs.

Definition 6.11 The semantics of first order sized types with costs is given by

T C
Σ J〈∀~α. ~τ

s;h−−→ τ ′, φ〉K def= {F ∈ [V→ (V × N× N)⊥] :

π ◦ F ∈ T J∀~α. ~τ → τ ′ Kχ0 and

∀v ∈ V SΣ(bvc :: ~τ) ∧ SC
Σ(F (v) :: τ ′ ! s;h) � φ }

where χ0 is the empty type environment and π : (V × N × N)⊥ → V⊥ is the lifted

first projection.

Using this type semantics with costs we now extend the soundness precondition that

states that a functional environment ϕ satisfies the type assumptions Γ. Except for

the use of T C
Σ instead of TΣ, the condition is identical to Definition 5.19:

Definition 6.12 We say that ϕ satisfies Γ and write ϕ |= Γ if and only if for all

f ∈ dom(ϕ) we have ϕf ∈ T C
Σ JΓ(f )K.
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Note that no analogous extension is needed for simple environments ρ because these

are not extended with costs. Therefore, the size-only condition of Definition 5.18 is

sufficient.

We can now state the soundness of cost analysis for expressions as an extension

of the corresponding result of the size-only analysis (Theorem 5.21). Informally,

the following theorem states that the size and cost constraint approximates the cost

instrumented semantics.

Theorem 6.13 (Soundness of cost analysis for expressions) If Σ is consistent,

ρ |= Γ, ϕ |= Γ and Γ, Σ C̀OST e : τ $ s ;h | φ, then SC
Σ(ECJ e Kϕρ :: τ ! s;h) ∧ SΣ(ρ ::

Γ) � ∃X.φ, where X = FZV(φ) \ (FZV(τ) ∪ FZV(Γ) ∪ {s, h}).

Proof sketch: The proof is by induction on the derivation Γ, Σ C̀OST e : τ $ s ;h | φ
and follows the structure of the soundness proof for size analysis (Theorem 5.21). �

6.5.4 Soundness of cost analysis for declarations

The proof of soundness of cost analysis for function declarations follows the structure

of the corresponding one of the size analysis. We start by restating inclusiveness for

the type semantics with both sizes and costs.

Lemma 6.14 (Inclusiveness of T C
Σ ) Let {Fi : i ∈ N} be an ascending chain, i.e.

Fi ∈ [V→ (V×N×N)⊥] and Fi v Fi+1 for all i ∈ N; if Fi ∈ T C
Σ J〈∀~α. ~τ

s;h−−→ τ ′, φ〉K
then

⊔
i∈N Fi ∈ T C

Σ J〈∀~α. ~τ
s;h−−→ τ ′, φ〉K.

Proof sketch: The proof is analogous to the one for the size semantics (Lemma 5.16);

the crucial property is that (V×N×N)⊥ is a flat domain and therefore satisfies the

ascending chain condition. �

Finally, we can state soundness of the cost analysis for function abstractions.

Again the proof follows the structure of the one for size analysis (Theorem 5.23).

Theorem 6.15 (Soundness of cost analysis for declarations) If Σ is consis-

tent, ϕ |= Γ and Γ,Σ C̀OST decl : η, then DJ decl Kϕ ∈ T C
Σ JηK.

Proof sketch: The proof is by case analysis on decl and is analogous to the one for

the size analysis (Theorem 5.23). The soundness of the recursive functions relies on

the inclusiveness of T C
Σ (Lemma 6.14). �
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6.6 Optimisations

Our type and effect system can easily be extended to account for compiler optimi-

sations provided these can be exposed in a syntax-directed way. We consider here

some optimisations that reduce stack and heap space usage (and, indirectly, also

time costs).

Optimisations are important for two reasons: first, they reduce the absolute time

or space costs of Core Hume programs, thus making the language better suited

for systems with limited resources. Secondly, space reuse optimisations can lower

the cost complexity, making more algorithms exhibit linear or even constant space

costs (Hofmann 2000). Thus, optimisations can have a positive impact on pre-

dictability of costs as well as on the performance.

6.6.1 Tail call optimisation

The standard tail call optimisation compiles a function call in a tail position into a

direct jump, re-using the caller stack frame (Steele 1977, Jones and Johnsson 1987).

In particular, a tail recursive function is optimised to run in constant stack space

(i.e. an iterative loop).

Annotating tail calls

In order to distinguish tail calls for ordinary function calls we add an extra node to

our abstract syntax for (annotated) expressions:

ê ::= · · · | f ↓k (ê1, . . . , ên) tail call (k ≥ 0)

A tail call is annotated with a parameter k specifying the number of stack-bound

identifiers at the call point; these are no longer accessible after evaluation of the

function arguments, and so can be deallocated before transferring control to f .

Example 6.16 The auxiliary list reverse function using an accumulating parame-

ter can be written in tail-recursive fashion:

letrec revAcc (xs, ys) = case xs of

Nil→ ys

| Cons (x, xs′)→ revAcc↓4 (xs′,Cons (x, ys))

The alternative for Cons is a tail call to revAcc; the 4 stack entries associated with

xs, ys, x and xs′ can be removed after the evaluation of the arguments but before

the recursive call.
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Extending the operational semantics

To extend the Core Hume abstract machine with tail calls we introduce a new control

directive slide(n, k) that shifts the top n stack values k positions down, reducing the

stack depth by k; the transition rule for slide is:

〈slide(n, k) : C, E, u1 : . . . : un : v1 : . . . : vk : S, H〉 r
↪→

〈C, E, u1 : . . . : un : S, H〉
(6.72)

The transition rule for evaluating a tail call f ↓k (ê1, . . . , ên) is similar to an ordinary

application except that: 1) we do not push a continuation; and 2) we slide the

function arguments before evaluating the function body.

(f (x1, . . . , xn) = e′) ∈ P

〈eval(f↓k (e1, . . . , en) : C), E, S, H〉 r
↪→ 〈eval(en) : . . . : eval(e1) :

slide(n, k) : fbind(x1 . . . xn) : eval(e′) : ret(n) : [], E, S, H〉

(6.73)

Extending the type and effect analysis

To extend the cost analysis for tail calls, we first extend the instrumentation function

CE that assigns cost annotations to expressions. The definition of CE for ordinary

function calls is (reproduced from Table 6.7):

CEJ f (ê1, . . . , ên) K def= stack1+n f (stack−1 CEJê1K, . . . , stack−n CEJênK)

The modification required for tail calls are:

CEJ f ↓k (ê1, . . . , ên) K def= stackn f ↓k (stack−1 CEJê1K, . . . , stack−n CEJênK) (6.74)

As would be expected, the stack cost for the tail call is one less than ordinary calls

because no continuation is pushed. However, the number k of deallocated stack is

not accounted in (6.74); this is because stack is deallocated after the evaluation of

the arguments ê1, . . . , ên.

To account for stack deallocation, we introduce a specialised typing rule for tail

calls. The typing rule for ordinary function calls is (reproduced from Table 6.8):

Γ ÌNST f : 〈(τ1, . . . , τn)
s1;h1−−−→ τ, φ1〉

Γ C̀OST (ê1, . . . ên) : (τ1, . . . , τn) $ s2 ;h2 | φ2

Γ C̀OST f (ê1, . . . , ên) : τ $ s ;h | φ1 ∧ φ2 ∧ s = max(s1, s2)

∧h = h1 + h2
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The new rule for tail calls is:

Γ ÌNST f : 〈(τ1, . . . , τn)
s1;h1−−−→ τ, φ1〉

Γ C̀OST (ê1, . . . , ên) : (τ1, . . . , τn) $ s2 ;h2 | φ2

Γ C̀OST f ↓k (ê1, . . . , ên) : τ $ s ;h | φ1 ∧ φ2 ∧ s = max(s1 − k, s2)

∧h = h1 + h2

(6.75)

Rule (6.75) subtracts k from the latent stack cost s1 but not from the stack cost s2

of the arguments; this mimics the operational semantics of deallocating the stack

after evaluating the arguments but before the function body.

6.6.2 Unboxed data types

The abstract machine of Section 6.2 represents values of an algebraic data type

data D ~α = c1 ~τ1 | c2 ~τ2 | · · · | cn ~τn

as a heap cell with a tag ci and |~τi| arguments (where |~τi| is the arity of the con-

structor ci).

For a data type where all constructors have zero arity (i.e. a pure sum type)

such representation is wasteful: a value can be represented in a register or the stack

by the constructor tag alone. Dually, a data type with a single constructor (i.e. a

tuple) can be represented by its components in registers or the stack. Such “unbox-

ing” of the data representation is an important optimisation technique in modern

implementations of functional languages, e.g. the Glasgow Haskell Compiler (Jones

1992).

We will consider here the first of these optimisations, namely unboxing the repre-

sentation of pure sum types; this avoids heap allocations in quite common situations

(e.g. the boolean data type or any other enumerations).

Note that, for technical reasons, we will not deal with unboxing tuples. Although

this could be implemented by allowing functions to return more than result on the

stack, it would invalidate the invariant of Lemma 6.2 of our abstract machine and,

consequently, the instrumented big-step evaluation semantics of Section 6.2.5 which

is the formal basis for the stack bounds obtained by our cost analysis.

Representing unboxed data types

To modify the core language and abstract machine for this optimisation it suffices to

introduce distinct syntax nodes for unboxed constructors and allow tags as unboxed
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values.5 The formal changes are:

e ::= · · · expressions (Section 4.2.1)

| c# unboxed constructor

| case# e0 of {ci → ei}ni=1 unboxed case

u ::= · · · unboxed values (Section 6.2)

| c constructor tag

Note that case# expressions do not bind variables because unboxed values cannot

have arguments (i.e. are simple enumerations).

We require that the representation of a data type is uniform, i.e. that all con-

structors of the data type are represented in either boxed or unboxed form; this is

to avoid the need for runtime tags on unboxed values to distinguish addresses from

constructors. Therefore, the above syntax for expressions distinguishes an unboxed

constructor c# from a boxed constructor with zero arguments c ().

Extending the operational semantics

The small-step semantics of Section 6.2, Table 6.1 can easily be extended to handle

unboxed data types. We introduce a new control directive select#(alts) to perform

selection on an unboxed constructor and three extra transitions:

〈eval(c# : C), E, S, H〉 r
↪→ 〈C, E, c : S, H〉 (6.76)

〈eval(case# e of alts) : C, E, S, H〉 r
↪→ 〈eval(e) : select#(alts) : C, E, S, H〉 (6.77)

(c → e) ∈ alts

〈select#(alts) : C, E, c : S, H〉 r
↪→ 〈eval(e) : C, E, S, H〉

(6.78)

Evaluating an unboxed constructor (rule (6.76)) simply places the tag on top of the

stack. Rule (6.77) evaluates the unboxed case by evaluating the discriminant first.

Finally, rule (6.78) dispatches the correct alternative based on the constructor tag

on the top of the stack; note that unlike rule (6.10) for boxed value selection, no

static return is needed because unboxed case expressions do not bind variables.

Extending the type and effect analysis

To extend the type and effect analysis for unboxed constructors, it is enough to

modify the cost annotations function CE : the construction of an unboxed value
5 This would be straightforward in an real implementation because tags can be represented by

machine integers.
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incur a stack cost but no heap cost; and case analysis incurs no stack or heap costs.

CEJ c# K def= stack1 c ()

CEJ case# e0 of {ci → ei}ni=1 K
def= case CEJe0K of {ci ()→ CEJeiK }ni=1

The type and effect rules for annotated expressions of Table 6.8 remain unchanged.

6.6.3 Explicit heap deallocation

We now consider an optimisation for explicit heap deallocation. Following (Hofmann

2000, 2002) and (Hofmann and Jost 2006) we do so by introducing a case expression

that deallocates the heap value that it matches against; such deallocation is safe if

the value is not used in the continuation of the evaluation. The extended syntax is:

e ::= · · · | case! e0 of {ci ~xi → ei}ni=1 deallocating case expression

Denotationally, case! has the same semantics as an ordinary case; operationally, case!

performs deallocation of the result of e0 before evaluating one alternative, so that

the associated heap cell can be re-used.

In the remaining section we discuss the modifications to our abstract machine

and type and effect analysis to implement this optimisation. We do not address the

problem of checking if the use of case! is safe, i.e. determining the last use of a heap

value.

Example 6.17 Assume that list constructors are heap allocated but booleans are

not (e.g. by using the unboxing optimisation discussed in Section 6.6.2). Then the

following program implements a destructive list insertion sort that re-uses the input

list to construct the sorted one (Hofmann 2000):

letrec insert x ys = case! ys of

[ ]→ x : [ ]

| y : ys′ → if x < y then x : y : ys′ else x : insert x ys′

letrec isort xs = case! xs of

[ ]→ [ ]

| x : xs′ → insert x (isort xs′)

Either branch of insert deallocates a nil or a cons cell before evaluating the expres-

sions on the right hand side. By induction on the length of the list, it is easy to

verify that the net effect of insert is to grow the heap by a single cons cell (regard-

less of the list length). Because one cons cell is deallocated before each insertion,
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isort reuses the input list to construct the result—effectively performing the sort

operation “in-place”. �

More generally, Hofmann (2000) presented a linear type system to detect such safe

re-uses of heap values and shows that linearly-typed first-order functional programs

can be translated into malloc-free C code.

Operational semantics

To extend the operational semantics for deallocation we introduce a new control

directive select!(alts) and two new small-step reduction rules:

〈eval(case! e of alts) : C, E, S, H〉 r
↪→ 〈eval(e) : select!(alts) : C, E, S, H〉 (6.79)

a at r H(a) = 〈c, u1, . . . , un〉

H ′ = H − a (c (x1, . . . , xn)→ e) ∈ alts

〈select!(alts) : C, E, a : S, H〉 r
↪→ 〈bind(x1, . . . , xn) : eval(e) :

sret(n,E) : C, E, u1 : . . . : un : S, H ′〉

(6.80)

Rule (6.80) implements the selection and deallocation of a heap value whose address

is on top of the stack; except for deallocation it is identical to the corresponding

rule (6.10) for ordinary case selection.

In the above rule we write H − a for the result of deallocating a single cell

at address a from H. We assume that deallocation decreases heap residency by the

space associated with the heap cell, i.e. |H−a| = |H|−|〈c, u1, . . . , un〉| = |H|−1−n.

Note also that the arguments u1, . . . , un are not deallocated.

In order to be able to re-use the released heap space in subsequent evaluations,

we allow only deallocation of value residing in the output region of evaluation; this

is imposed by the side condition a at r in rule (6.80).

Extending the small-step semantics with deallocation means that the heap usage

in an evaluation is no longer monotonically increasing (so Lemma 6.1 no longer

holds). This implies that our definition of the big-step evaluation must be revised.

Concretely, we must:

1. augment the transitive reduction relation to record both maximum stack and

heap usage;

2. define both the stack and heap usage δ and γ in the big-step evaluation H, E `
e ⇓r u, H ′, δ, γ relative to the maximum usage in intermediate configurations.
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Let σ
r
↪→→

Ms,Mh

σ′ be the transitive reduction from σ to σ′ where Ms is the maximum

stack and Mh the maximum heap. We define the big-step evaluation as:

H, E ` e ⇓r u, H ′, δ, γ
def⇐⇒

∀C ∀S 〈eval(e) : C, E, S, H〉 r
↪→→

Ms,Mh

〈C, E, u : S, H ′〉

∧ δ = Ms − |S| ∧ γ ≥Mh − |H| (6.81)

Note that we have relaxed the definition of heap usage in (6.81) compared to the

previous one (Definition 6.3 in Section 6.2.5) by allowing an upper bound instead

than just the exact cost. This is needed in order to prove the admissibility of following

judgement:

H0, E ` e ⇓r a, H1, δ1, γ1

H1(a) = 〈c, u1, . . . , un〉 (c (x1, . . . , xn)→ e′) ∈ alts

H1 − a, E[x1 7→ u1, . . . , xn 7→ un] ` e′ ⇓r u′, H2, δ2, γ2

H0, E ` case! e of alts ⇓r u′, H2, max(δ1, n+ δ2), max(γ1, γ1 + γ2 − 1− n)
(6.82)

Note that we would need to prove (6.82) together with all the cases of Lemma 6.4

again for the revised definition (6.81); the proofs are analogous to the ones given

before and we omit them.

Type and effect analysis

We now modify the type and effect analysis in two stages: first we modify the cost

annotation function CE to account for heap deallocation (6.83); and second, we

introduce a extra typing rule for (annotated) case! expressions (6.84).

CEJ case! e0 of {ci ~xi → ei}ni=1 K
def=

case! CEJ e0 K of {ci ~xi → stack|~xi| heap−1−|~xi| CEJ ei K}ni=1

(6.83)

Γ C̀OST ê0 : τ ′ $ s0 ;h0 | φ0

Γ ÌNST ci : 〈~τ ′′i → τ ′, φ′i〉 ~xi : ~τ ′′i , Γ C̀OST êi : τ $ si ;hi | φi (∀i)

Γ C̀OST case! ê0 of {ci ~xi → êi}ni=1 : τ $ s ;h |

φ0 ∧
∨n
i=1(φi ∧ φ′i ∧ s = max(s0, si) ∧ h = max(h0, h0 + hi))

(6.84)

Note that, unlike case analysis for unboxed values of Section 6.6.2, we need a

distinct typing rule for the deallocating case because the heap is no longer simply

additive. The effect hi associated with the heap cost of ei can be negative (because

of the negative annotations introduced by CE); however, at least h0 available heap
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is always required to evaluate the case discriminant e0; we therefore take the heap

of the case expression as a whole to be the maximum of h0 and h0 + hi.

We have implemented this extension in our cost analysis; it can infer zero heap

cost for the in-place insertion sort (Example 6.17):

insert :: {Int^z0,[Int]^z1}-^z3^z4->[Int]^z2 | 1+z1=z2, 3>=z4,

2+5*z1>=z3, z4>=0, z3>=1, z1>=0

isort :: [Int]^z0-^z2^z3->[Int]^z1 | z3=0, z0=z1, z2>=1,

2+5*z0>=z2, 1+6*z0>=z2

Note that the inferred bound on the heap cost of insert is z4 ≤ 3 corresponding to

the allocation of a single cons cell; and the heap cost of isort is z3 = 0, i.e. insort

re-uses the heap space of the input list.

Implementation issues

The introduction of heap deallocation means that we can no longer assume that the

available memory is contiguous. One standard approach for managing the available

heap is to represent it as a linked structure of free blocks (the free-list) (Knuth

1973). For the simple case when all blocks have the same size, allocation and deallo-

cation can be implemented in a LIFO-fashion, with constant-time access costs and

no fragmentation. Two problems arise with variable-sized blocks:

1. allocation and deallocation of a block require traversing the free-list, i.e. they

are no longer constant-time operations;

2. the allocation of a contiguous block may fail even though smaller blocks to-

talling the required size are available, i.e. the runtime system may run out of

heap due to external fragmentation.

The first of these problems leads to potential unpredictability of time costs which

is undesirable for the intended application domain of real-time embedded systems;

the second problem leads to a potential heap underflow that would be undetected

by our static analysis.

Both these problems can be avoided by simply allocating blocks in a single size

(i.e. the size of the largest heap cell); this trades heap space waste due to internal

fragmentation for predictability. While this may seem overly wasteful, we remark

that the heap cell sizes for Core Hume are determinable at compile-time from the

types and that that we can consider the maximum size for each region separately.

Moreover, heap usage in Core Hume programs is likely to exhibit more regularity

than that of a general-purpose language because region-resetting at the coordination
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layer guarantees that the heap is compacted at regular intervals. We therefore con-

jecture that it should be possible to obtain static bounds on fragmentation costs for

allocation/deallocation of variable-sized blocks by combining some of the strategies

in the literature, e.g. separate free lists by block size or the “buddy” systems (Wilson

et al. 1995). We leave this subject open for further research.

6.7 Cost analysis for the coordination layer

We now discuss how to combine the cost analyses of separate functions into an analy-

sis for a complete program, i.e. a network of Core Hume boxes. Our aim is to obtain

static stack and heap cost bounds for each of the communication wires. Because

these are the only dynamic memory requirements in Core Hume, this guarantees

bounded space behaviour for the complete program.

Values in wires can be written and read independently of each other; we will

therefore employ an independent attribute analysis that associates intervals of sizes

and costs to each wire. This means that we need some mechanism to mediate between

the linear constraints obtained by the expression analysis and the intervals in the

coordination analysis; we introduce interval constraints with a projection operation

for that purpose.

6.7.1 Interval constraints

An interval of integers is either empty ⊥ or a pair [l, r] of bounds l ∈ Z∪{−∞}, r ∈
Z ∪ {+∞}. The set Interval of integer intervals with the interval inclusion partial

order v forms a complete lattice.

An interval constraint has the syntax ` w φ, where ` is a variable and φ is a convex

size formula (i.e. a conjunction of linear inequalities; see Section 5.5). Informally, a

constraint ` w φ expresses a lower-bound on the range of ` as a projection of φ.

A system of interval constraints is a finite set {(`i w φi)Ni=1} where the variables

`i on the left-hand sides are not necessarily distinct. Systems of constraints always

have a least solution with respect to the interval inclusion order (see Appendix A.2).

Restricting φ in an interval constraint ` w φ to be convex does not limit expres-

siveness: quantifier elimination of an arbitrary size formula yields a disjunctive equiv-

alent φ1∨φ2∨. . .∨φn where each φi is convex; and a constraint ` w (φ1∨φ2∨. . .∨φn)

is equivalent to the system {` w φ1, ` w φ2, . . . , ` w φn}.
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6.7.2 Box analysis

Consider a generic declaration of a box b with n inputs, m outputs and k rules:6

box b (x1 : τ1, . . . , xn : τn) (y1 : τ ′1, . . . , yn : τ ′m)

unfair/fair

(x1, . . . , xn)→ (e11, . . . , e1m)
...

(x1, . . . , xn)→ (ek1, . . . , ekm)

(6.85)

Assume also that input and output wires are associated with sized types with distinct

annotations, i.e. that FZV(τi) ∩ FZV(τ ′j) = ∅ and i 6= j =⇒ FZV(τi) ∩ FZV(τj) =

FZV(τi) ∩ FZV(τj) = ∅ for all i, j.

We can perform size and cost analysis of each output separately because each

output is associated with a separate heap region; and because the analysis will obtain

upper bounds, each rule can be analysed separately.

Consider then the j-th output in the i-th rule of (6.85); using the type and effect

analysis of Section 6.4 we obtain a cost analysis for eij :

x1 : τ1, . . . , xn : τn, Γ0 C̀OST eij : τ ′j $ sj ;hj | φij (6.86)

Γ0 are the type assumption for the user-defined data constructor and functions and

sj , hj are the stack and heap costs associated with the j-th output; the formula φij
expresses the output sizes and costs as a function of the input sizes. The coordination

layer analysis for output j in rule i is then a set of lower bound constraints:

LB(i, j) def= { ` w SIMPLIFY(∃Y \ (X ∪ {`}). φij) : ` ∈ FZV(τ ′j) ∪ {sj , hj}

where X =
⋃
i FZV(τi) and Y = FZV(φij) }

(6.87)

Note that we employ the procedure SIMPLIFY of Section 5.5 to obtain a convex

formula equivalent to ∃Y \ (X ∪{`}). φij . Finally, the analysis of box b is simply the

union of the lower bounds obtained for all rules and outputs:

LB(b) def=
⋃

1≤i≤k
1≤j≤m

LB(i, j) (6.88)

Example 6.18 Consider the list copy box (Example 6.6, p. 173):

box copy (xs::[Int]) (ys::[Int])

6 For simplicity we consider the case where the rule patterns are variables and the outputs are

not *; the generalisations for these cases are straightforward.
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match

(xs) -> (copyList xs)

;

copyList :: [Int] -> [Int];

copyList [] = [];

copyList (x:xs) = x : copy_List xs;

The expression layer analysis for copyList yields

Γ0
def= copyList : ∀z0z1z2z3. 〈Listz0 Int

z2;z3−−−→ Listz1 Int,

z0 = z1 ∧ 1 + 3z0 = z3 ∧ 1 + 4z0 ≥ z2 ∧ z2 ≥ 1〉
(6.89)

For the coordination analysis of the copy box, we assign distinct sizes to the input

and output:
Listi Int input xs

Listo Int output ys

s stack cost of ys

h heap cost of ys

The analysis of the single rule yields:

xs : Listi Int, Γ0 C̀OSTcopyList xs : Listo Int $ s ;h |

i = o ∧ 1 + 3i = h ∧ 3 + 4i ≥ s ∧ s ≥ 3
(6.90)

Note that the expression stack cost in (6.90) is two words higher than the latent cost

in (6.89) to account for the for the application. The analysis of the copy box is then:

LB(copy) = { o w (i = o ∧ i ≥ 0), h w (1 + 3i = h ∧ i ≥ 0),

s w (3 + 4i ≥ s ∧ s ≥ 3) } (6.91)

The interval constraints (6.91) express the output size, stack and heap costs as

functions of the input list size i. �

We remark that the assumption FZV(τi) ∩ FZV(τ ′j) = ∅ that size variables in

input and output types each box are distinct is needed for the soundness of the type

and effect analysis in (6.86) (Theorem 6.13). However, this prevents analysing a

box that connects an output to an input (i.e. a direct feedback loop) since in that

situation both ports share the same wire.

Consider a box with a input i connected to output j; we can extend the analysis

for this situation by simply letting τ ′j be a size-renaming of the type τi for the input.

We proceed as in the previous case and add interval constraints τi w τ ′j ∪ {si w
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sj , hi w hj} between the sizes and costs of input and output wires; the extension of

w to sized types is simply the system of pairwise constraints between corresponding

annotations.

6.7.3 Solving interval constraints

A solution of a system S = {(`i w φi)Ni=1} of interval constraints is an assignment

V : ZVar → Interval from variables to integral intervals. Systems of interval

constraints always have a least solution with respect to the interval containment

order v; the proof is presented in Appendix A.2. Furthermore, solutions can be

obtained in a fully automated way using standard abstract interpretation techniques

(see Appendix A.2 for details). Therefore the coordination layer analysis can obtain

concrete stack and heap bounds that may be used in a compiler as static bounds for

space allocation.7

Example 6.19 Consider the interval constraints (6.91) obtained for the analysis

of the copy box. We can obtain finite bounds for a specific sizes by solving an

augmented system with constraints specifying ranges for the input. For example,

solving LB(copy) ∪ {i w (0 ≤ i ≤ 10)} we obtain the following solution:

V(i) = V(o) = [0, 10] V(s) = [3, 43] V(h) = [1, 31]

Thus, we get guaranteed worst-case bounds of 43 words for stack and 31 words of

heap for the output wire ys for copying lists of length up to 10. �

Summary

In Sections 6.2 and 6.3 we presented a cost model for Core Hume program in the

form of an abstract machine. This machine is the semantic basis used in defining

notions of stack and heap costs for Core Hume programs.

In Section 6.4 we extended the sized type system of Chapter 5 with effects that

approximate stack and heap costs of the Core Hume machine. We have also extended

our core language with cost annotations that decouple the cost analysis from the

specific cost model (Section 6.4.4) and introduced cost lifting transformations that

allow trading analysis precision for lower time (Section 6.4.6).

7 Subject, of course, to the expression layer analysis being able to infer upper bounds; otherwise,

the coordination analysis obtains a stack or heap bound +∞ which is safe but uninformative.
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In Section 6.5 we proved the correctness of the cost analysis with respect to a

cost-instrumented semantics.

In Section 6.6 we have shown how to extend the cost analysis to deal with some

standard optimisations: tail calls, unboxed enumerations and explicit heap deallo-

cation.

Finally, we have shown in Section 6.7 how to transpose the cost analysis of

expressions to obtain concrete stack and heap bounds for the communication layer

of Core Hume.



Chapter 7

Experimental results

In this chapter we present experimental results obtained using the size and cost

analysis that were developed in Chapters 5 and 6. In order to assess the quality

of the cost approximations, we will compare results obtained by our cost analysis

with profiling information obtained from an implementation of the abstract machine

described in Section 6.2.

The presentation is as follows: Section 7.1 discusses objectives and methodology.

Section 7.2 presents the results of applying cost analysis to some standard functional

algorithms and data structures. Section 7.3 presents results for some simplified

embedded systems.

7.1 Objectives and methodology

It is well-known that establishing soundness of the approximations computed by a

program analysis is not sufficient to judge its usefulness: an analysis that always

produces a “don’t know” answer will be trivially sound, but not useful. Therefore,

in order to assess the usefulness of the cost analysis of Chapter 6, we will apply it to

a small but representative set of Core Hume programs. The cost approximations can

then be compared with actual profiling information obtained from an implementation

of the abstract machine of Section 6.2.

However, since Hume is a research language, there are as yet no real-world ap-

plications written in Hume. Furthermore, our analysis and cost model are defined

only for a subset of Hume that lacks many useful features for realistic applications

(e.g. input-output, exceptions, more primitive types, etc). We have therefore chosen

to evaluate the analysis using synthetic benchmarks divided in two groups:

203
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1. some standard algorithms on functional data structures (e.g. lists and binary

trees);

2. some prototype embedded systems modelled as Hume processes that react to

external stimuli and must run indefinitely in bounded space.

The benchmarks in the first group are not complete Hume programs. Instead, they

are intended to be representative of a repertoire of algorithms and data structures

that a Hume programmer has at his or her disposal. By assessing the quality of the

heap and stack bounds inferred by our analysis, we intend to demonstrate its use-

fulness for obtaining bounded space guarantees in a general functional programming

context.

The second group of benchmarks consists of simplified reactive systems which

employ recursive algorithms and data-structures. These will be used to demonstrate

the applicability, in principle, of our cost analysis to bounding stack and heap space

for complete Hume systems.

We will also consider some pragmatic aspects of the analysis, in particular, the

running time and memory consumption. Since we are performing analysis at compile-

time this has no impact on the deployed code, but must be efficient enough in order

to be practical.

Finally, we point out that a web interface for our prototype implementation of

the analysis available at http://www.ncc.up.pt/~pbv/cgi/cost.cgi allows exper-

imenting with these and other examples.

7.2 Functional algorithms and data structures

In this section we will present the analysis for some standard algorithms on functional

data structures such as lists and trees.

7.2.1 Lists

Our initial examples operate on list structures. We employ a Haskell-style syntax

for the lists type with a default length measure, i.e. the (implicit) sized data type

declaration is:

data [a]^n = [] { n=0 }

| a : [a]^k { n=1+k, 0<=k }

The constraint 0 ≤ k in the cons alternative states that the list length of the tail

is non-negative. Non-negativity constraints like these allow the size analysis to ob-
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tain more precise information (e.g. when matching a pattern like x:xs the analysis

concludes that the list has at least one element).

The first example is the canonical list append function. Size type inference for

this example was already presented in Chapter 5; we will therefore focus on the

results of cost analysis. Our implementation allows pattern-matching equations that

get translated into simple case expressions; the concrete syntax for append is:

append :: {[a],[a]} -> [a] ;

append [] ys = ys ;

append (x:xs) ys = x : append xs ys ;

The output of cost analysis is a type signature annotated with variables and a con-

straint. We will present the straight output of the analysis in the same typewriter

font as the concrete Hume program:

append :: {[a]^z1,[a]^z2}-^z4^z5->[a]^z3 | 3*z1=z5, z1+z2=z3,

1+5*z1>=z4, z4>=1

Size and cost variables are named z1, z2, . . . etc. Size annotations on data types

are preceded by a caret (^). Thus, z1 is the size of the first list argument, z2 is the

size of the second list argument and z3 is the size of the result. ω-annotations are

omitted: for example, Intω is written as Int.

An arrow type carries annotations for the stack and heap costs of the correspond-

ing function; the association is positional: z4 corresponds to the stack cost and z5

to the heap cost.

The size and cost constraint is simplified using the algorithms of Section 5.5.

The constraint is in quantifier-free disjunctive form, with conjunctions written as

commas (,) and disjunctions as double vertical bars (||); the former bind more

tightly than the later, so no parenthesis are needed. All variables occurring in the

constraint are free and must occur in the annotated type.

The constraints inferred for recursive functions are always convex, i.e. a conjunc-

tion of linear (in)equalities (as in the append example above). This is a consequence

of using hulling and widening during the fixed point approximation (algorithm FIX

of Section 5.5). For non-recursive functions we have the option of not applying the

convex hull and instead obtaining a more precise disjunctive constraint. Our infer-

ence algorithm defaults to applying the convex hull even in these cases, but allows

the programmer to specify non-hulling for specific functions. This behaviour yields

a simpler constraint as the default (which is often precise enough), and allows higher

precision only when required (we will present an example of this later on).
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We have seen in Section 5.5 that our inference algorithm obtains the exact relation

z1 + z2 = z3 between input and output sizes for append. For the heap cost, we also

get an exact equation 3z1 = z5 expressing the relation between heap allocations and

the size of the first input list: append allocates one new Cons cell (3 heap units in our

cost model) for each element in the first argument list. For stack cost, we get upper

and lower bound inequations 1 + 5z1 ≥ z4 ≥ 1 relating the maximum stack depth to

the length of the first list (as expected, since append recurses on this argument).

7.2.2 List reversal

Naive reverse

The naive list reversal function constructs the reversed list by successively appending

singleton lists.

nrev :: [a] -> [a] ;

nrev [] = [] ;

nrev (x:xs) = append (nrev xs) [x] ;

The analysis of nrev requires a type assumption for append. Here we used the result

obtained by analysing the previous example, but it could equally be obtained from a

library of predefined functions and analyses (this modularity is one of the advantages

of type-based program analyses). Using the type assumption for append obtained in

the previous example, the analysis of nrev yields:

nrev :: [a]^z1-^z3^z4->[a]^z2 | z1=z2, 2+z4>=7*z1, 1+6*z1>=z3,

z3>=1, z4>=1+4*z1

The equation z1 = z2 captures the precise size relation: the reversed list must have

the same length as the original list.

We obtain only lower bounds for the heap cost: 2 + z4 ≥ 7z1 and z4 ≥ 1 + 4z1.

This is to be expected: we have seen in the previous example that heap cost of

append is (exactly) linear in the length of the first list. Since nrev calls append for

each list element, its heap cost will be quadratic in the length. Because our analysis

is based on a linear constraint solver, we do not obtain an upper bound. We do,

however, get an upper bound 1 + 6z1 ≥ z3 of the stack depth as a linear function of

the input list length.
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Reverse with an accumulating parameter

It is well-known that we can transform naive reverse into a linear time algorithm by

replacing calls to append with an accumulating parameter. Our analysis can obtain

tight linear cost bounds for this version of reverse.

revAcc :: {[a],[a]} -> [a] ;

revAcc xs ys = case xs of

[] -> ys

| x:xs’ -> revAcc xs’ (x:ys) ;

reverse :: [a] -> [a] ;

reverse xs = revAcc xs [] ;

The analysis of reverse and the auxiliary function yields:

revAcc :: {[a]^z1,[a]^z2}-^z4^z5->[a]^z3 | 3*z1=z5, z1+z2=z3,

1+5*z1>=z4, z4>=1

reverse :: [a]^z1-^z3^z4->[a]^z2 | z1=z2, 1+3*z2=z4, z2>=0,

z3>=2, 4+5*z2>=z3

First, we remark that we still obtain the exact size relation z1 = z2 between input

and reversed lists. We also get a relation 1 + 3z2 = z4 expressing the heap cost of

reverse as a linear function of the reversed list length (which, by the first equation, is

equal to the input list length). This is the exact heap cost of replicating the original

list structure (one Nil cell plus z1 Cons cells).

Second, we get a stack bound 4+5z2 ≥ z3, again as a function of the input/output

list length z2. Third, we remark that the coefficient of z2 in this bound is lower than

the one obtained for naive reverse. Therefore, our analysis was able to prove an

overall lower stack cost for the accumulating version of reverse compared to the

naive version.

Reverse with tail call optimisation

We observe that the function revAcc is tail recursive, i.e. the result for the recursive

case is a tail call. Tail calls can be optimised into jumps with no extra stack growth

and, therefore, tail recursive functions be executed in constant stack space.

Following the extension described in Section 6.6.1, we explicitly annotate recAcc

as a tail call and apply the analysis to predict costs of the optimised program. Recall

that a tail call f ↓k (e1, . . . , en) is annotated with the number k of bound identifiers
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at the call point; the concrete syntax for tail calls is f^k e1 ... eN, where k is a

natural constant. The modified program is:

revAcc :: {[a],[a]} -> [a] ;

revAcc xs ys = case xs of

[] -> ys

| x:xs’ -> revAcc^4 xs’ (x:ys) ;

reverse :: [a] -> [a] ;

reverse xs = revAcc^1 xs [] ;

We have written recAcc with a case expression rather than pattern matching equa-

tions to make the bound identifiers explicit: the tail recursive call to revAcc is

annotated with frame size 4 for identifiers xs, ys, x and xs′. Reverse is also defined

by a (non recursive) tail call to revAcc; here the stack frame holds a single bound

identifier. The analysis obtains:

revAcc :: {[a]^z1,[a]^z2}-^z4^z5->[a]^z3 | 3*z1=z5, z1+z2=z3,

4>=z4, 1+3*z1>=z4, z4>=1

reverse :: [a]^z1-^z3^z4->[a]^z2 | z1=z2, 1+3*z2=z4, z3>=1, z2>=0,

2+3*z2>=z3, 5>=z3

As promised the stack costs for the tail-optimised functions are bounded by constants

(z4 ≤ 4 for revAcc, z3 ≤ 5 for reverse). Note that we also obtain linear stack bound

z3 ≤ 2+3z2 for reverse; the conjunction of inequations implies z3 ≤ min(2+3z2, 5);

in fact, 2+3z2 < 5 only for z2 = 0 which corresponds to an empty result and original

lists. Therefore, the stack cost predicted for reverse is 1 for the empty list and 5 for

the non-empty ones; this matches the actual cost obtained from profiling.

Shuffling lists

The functions append, nrev and revAcc of the previous examples were all written in

primitive-recursive form: there is a base case for [] and a recursive case for x:xs

with the recursive call on the argument xs.

Since our analysis is based on semantic properties of sizes rather than the syntac-

tical shape of recursion, we can infer sized types for more general recursive definitions.

The following function “shuffles” a list by reversing the argument at each recursive

call; this example is due to Hughes et al. (1996).

shuffle :: [a] -> [a] ;
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shuffle [] = [] ;

shuffle (x:xs) = x : shuffle (reverse xs) ;

The argument of the recursive call is not xs but reverse xs and, therefore, shuffle

is not primitive-recursive. But the analysis can infer that the argument size in the

recursive call is decreasing and obtains the following invariant (where the reverse is

tail recursive):

shuffle :: [a]^z1-^z3^z4->[a]^z2 | z1=z2, z3>=1,

3+4*z1>=z3, 1+6*z1>=z3

The equation z1 = z2 captures the exact relation between input and output list. We

also get two linear upper bounds on the stack cost, namely z3 ≤ 3+4z1∧z3 ≤ 1+6z1;

these are linear on the list size z1 because the stack cost for each call to reverse is

constant. However, no upper-bounds are obtained for heap costs; this is as would be

expected because the worst-case costs are quadratic on the list size and, therefore,

no linear upper-bound exists.

7.2.3 Take and drop

The next examples are the standard take and drop functions from the Haskell pre-

lude. These functions are defined by recursion over a pair of natural number and a

list and exemplify how our analysis deals with more complex termination conditions.

Using inductive naturals

First, we begin with an inductive definition of natural numbers in Peano-style; the

size measure is the natural number itself.

data Natn = Zero {n = 0 }

| Succ Natk { k ≥ 0 ∧ n = 1 + k }

Take and drop can then be defined by case analysis on the arguments:

take :: {Nat,[a]} -> [a] ;

take Zero [] = [] ;

take Zero (x:xs) = [] ;

take (Succ n) [] = [] ;

take (Succ n) (x:xs) = x : take n xs ;

drop :: {Nat,[a]} -> [a] ;
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drop Zero [] = [] ;

drop Zero xs = xs ;

drop (Succ n) [] = [] ;

drop (Succ n) (x:xs) = drop n xs ;

The size and cost analysis for these two definitions yields:

take :: {Nat^z1,[a]^z2}-^z4^z5->[a]^z3 | 1+3*z3=z5, z4>=1, z3>=0,

3+6*z3>=z4, z2>=z3, 2+z2+5*z3>=z4, z1>=z3, 1+z1+2*z2+3*z3>=z4

drop :: {Nat^z1,[a]^z2}-^z4^z5->[a]^z3 | 1>=z5,

3+z1+5*z2>=5*z3+z4+2*z5, z5>=0, z4>=1, z3+z5>=1, z2>=z3,

3+6*z2>=6*z3+z4+z5, z1+z3>=z2

As might be expected, the equations obtained are more complex than the previ-

ous examples. We obtain linear relations not just between sizes and costs but also

between costs themselves, e.g. the inequation 3 + z1 + 5z2 ≥ 5z3 + z4 + 2z5 estab-

lishes a relation between the stack and heap costs for drop. This is because our

constraints are based on convex polyhedra inequations and are thus fully-relational :

the equations obtained can involve any subset of annotation variables; this allows

more precise information than an independent attribute analysis, where there is no

interplay between information obtained for each component (Nielson et al. 1999,

pages 250–251). It is also possible to simplify the information obtained by per-

forming existential quantification over the “irrelevant” variables followed by variable

elimination. We will do so in the next paragraphs to interpret the results.

Size analysis Designate the constraints obtained above for take and drop, by φtake
and φdrop respectively. We start eliminating variables z4 and z5 for stack and heap,

thus obtaining size-only information.

∃z4.∃z5. φtake ' z3 ≥ 0 ∧ z2 ≥ z3 ∧ z1 ≥ z3 (7.1)

∃z4.∃z5. φdrop ' z3 ≥ 0 ∧ z2 ≥ z3 ∧ z1 + z3 ≥ z2 (7.2)

Equation (7.1) states that the length of the result of take is smaller than the size

of both the natural number and the argument list. Equation (7.2) states that the

length of the result of drop is smaller than the length of the argument list, but by

no more than the size of the natural number.
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Heap analysis To focus solely on heap results, we eliminate variable z4 associated

with the latent stack cost.

∃z4. φtake ' 1 + 3z3 = z5 ∧ z3 ≥ 0 ∧ z2 ≥ z3 ∧ z1 ≥ z3 (7.3)

∃z4. φdrop ' 1 ≥ z5 ∧ z1 + z3 ≥ z2 ∧ z5 ≥ 0 ∧ z3 + z5 ≥ 1 ∧ z2 ≥ z3 (7.4)

From equation (7.3) we can verify that the heap cost of take is linear in the size

of the output list z3 (in fact, heap is only allocated for constructing the result list

structure). Note that the equation 1+3z3 = z5 gives the exact heap cost as a function

of an unknown size z3. However, z3 is bounded by the inequations z2 ≥ z3∧ z1 ≥ z3.

Thus, the heap usage is bounded as function of the size of the inputs.

Equation (7.4) yields a constant upper bound on heap consumption: 1 ≥ z5.

This is because, other than the Nil case, the result list is a part of the input list, thus

no extra heap is allocated.

Stack analysis To focus on stack results, we eliminate variable z5 associated with

the latent heap cost.

∃z5. φtake ' z4 ≥ 1 ∧ z3 ≥ 0 ∧ 6 + 6z3 ≥ z4 ∧ z2 ≥ z3 ∧

2 + z2 + 5z3 ≥ z4 ∧ z1 ≥ z3 ∧ 1 + z1 + 2z2 + 3z3 ≥ z4

(7.5)

∃z5. φdrop ' z4 ≥ 1 ∧ z3 ≥ 0 ∧ z2 ≥ z3 ∧ 3 + 6z2 ≥ 6z3 + z4 ∧

2 + 6z2 ≥ 5z3 + z4 ∧ z1 + z3 ≥ z2 ∧ 1 + z1 + 5z2 ≥ 3z3 + z4

(7.6)

Equations (7.5) and (7.6) express upper-bounds relating the stack costs to linear

combinations of z3 (the result list size), z1 and z2 (the size of the arguments). But

since z3 is bounded by z1 and z2, this translates into stack upper-bounds as a linear

functions of the size of the argument for both take and drop.

Using primitive integers

For the sake of efficiency we might prefer to use primitive (unboxed) integers rather

than an inductive data type for naturals. Since case expressions are only applicable to

boxed values (not integers), we rewrite the functions using a combination of boolean

conditional, equality and arithmetic primitives:

take’ :: {Int,[a]} -> [a];

take’ n xs = case xs of

[] -> []

| x:xs’ -> if n<=0 then [] else x:take’ (n-1) xs’ ;
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drop’ :: {Int,[a]} -> [a];

drop’ n xs = case xs of

[] -> []

| x:xs’ -> if n<=0 then xs else drop’ (n-1) xs’ ;

Using suitable typing assumptions for the primitive operations, the cost analysis

obtains:

take’ :: {Int^z1,[a]^z2}-^z4^z5->[a]^z3 | 3*z5>=2+7*z3+z4,

z5>=1+4*z3, 1+z2+3*z3>=z5, z4>=1, z3>=0, 2+4*z3>=z5

drop’ :: {Int^z1,[a]^z2}-^z4^z5->[a]^z3 | 1+z2=z3+z5,

4+5*z2>=5*z3+z4, z2>=z3, z4>=1, z3>=0, 1+5*z2>=2*z3+z4

The results for size analysis are:

∃z4z5. φtake′ ' z3 ≥ 0 ∧ z2 ≥ z3

∃z4z5. φdrop′ ' z3 ≥ 0 ∧ z2 ≥ z3

Comparing these results with (7.1) and (7.2) we can see that the size relations

between z1 and z3 were lost. This is caused by the inability of the fixpoint iteration

to infer the non-negativity of the integer argument.

We do obtain upper bounds for stack and heap costs expressed in terms of z2 and

z3. Note that the heap costs are different; in particular, drop’ does not execute in

constant heap. This is caused by the allocation of a boolean value for the comparison

at each recursive step. Of course, this extra heap could be avoided, e.g. by using the

unboxing optimisation of Section 6.6.2.

7.2.4 List sorting

Our next examples are implementations of two classic sorting algorithms, namely

quicksort and mergesort. For simplicity, we consider here sorting lists of integers us-

ing a primitive less-than-or-equal operator with zero heap and stack costs. However,

the cost analysis should, in principle, be applicable other data types with a suitable

comparison operation.1

The first versions of the sorting algorithms are purely functional, i.e. construct

new lists for all intermediate results; this implies that the number of allocations

will be supra-linear with respect to the list size and therefore our analysis will not

obtain an upper-bound for the heap costs (it will, however, obtain bounds for sizes
1 The more general solution (abstracting the comparison as a higher-order argument) is not

possible since our language is first-order.
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qsort :: [Int] -> [Int] ;

qsort [] = [];

qsort (x:xs)

= case (split_by x xs) of

(lo,hi) -> append (qsort lo) (x:qsort hi);

split_by :: {Int,[Int]} -> ([Int],[Int]) ;

split_by x [] = ([],[]);

split_by x (y:ys)

= case (split_by x ys) of

(lo,hi) -> if y<=x then (y:lo,hi) else (lo,y:hi) ;

append :: {[a],[a]} -> [a];

append [] ys = ys;

append (x:xs) ys = x:append xs ys;

Figure 7.1: Purely-functional Quicksort

and stack costs). In Section 7.2.5 we will present alternative versions using explicit

deallocation to re-use heap space of the input and intermediate lists; our analysis

will be able to infer linear bounds on the worst-case heap cost for those.

Quicksort

Figure 7.1 presents a Core Hume implementation of quicksort using an auxiliary

function split by that splits a list into the two sublists of lower and higher elements

with respect to a “pivot” value. The main function qsort calls split by, recursively

sorts the two sublists and concatenates the results.

Our type and effect analysis infers the following annotated types for split by and

qsort :2

split_by :: {Int^z0,[Int]^z1}-^z4^z5->([Int]^z2,[Int]^z3) |

5+7*z1=z5, z1=z2+z3, z4>=1, z1>=z2, z2>=0, 2+5*z1>=z4

qsort :: [Int]^z0-^z2^z3->[Int]^z1 | z0=z1, 12+5*z0+z3>=3*z2,

1+8*z0>=z2, 12+z3>=19*z0, z2>=1, z3>=1+9*z0, 6+z3>=16*z0

We obtain information on the list lengths for both functions, but not for the integer

sizes in lists; as discussed in Section 5.6.3, this is a limitation our type system
2We omit the analysis of append which was already presented in Section 7.2.1.
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regarding collection types.

Equations z1 = z2+z3∧z1 ≥ z2∧z2 ≥ 0 in the annotated type of split by captures

the exact size relation between the function’s arguments and result: the sum of the

lengths of the result lists equals the length of the argument list. The result lengths

z2 and z3 are unknown but bounded by z1 (because z1 = z2 + z3 ∧ z1 ≥ z2 ∧ z2 ≥ 0

entails z1 ≥ z2 ∧ z1 ≥ z3).

The stack and heap costs inferred for split by are linear on z1 (the size of the

argument list): we get an exact linear equation z5 = 5 + 7z1 for the heap cost z5,

together with lower and upper bounds 1 ≤ z4 ≤ 2 + 5z1 for the stack cost z4.

The analysis of qsort obtains the equality relation z0 = z1 between the input and

output lengths, i.e. qsort preserves the list size. Again, we get no size information

on the list elements. The remaining equations express relations between sizes and

costs. We get only lower bounds for the heap cost z3; we would not expect an upper

bound because the worst-case cost is quadratic in the list size z0. We do get an upper

bound 1 + 8z0 ≥ z2 for the stack depth z2 as a function of the input list length z0.

In fact, we shall see that this matches the maximum stack depth obtain by profiling

exactly (see Table 7.1).

Note that our analysis would infer less precise size and cost information for the

standard textbook definition of quicksort using two separate filters with inverted

conditions, e.g. as in Bird and Wadler (1988), Chakravarty and Keller (2002), Hutton

(2007):

qsort [] = []

qsort (x:xs) = let lo = [x’<-xs | x’<=x]

hi = [x’<-xs | x’>x]

in qsort lo ++ x:qsort hi

For such a definition our size analysis would infer |lo| ≤ |xs| and |hi| ≤ |xs| but

it would not infer the relation |lo| + |hi| = |xs|. Consequently, only a lower bound

would be obtained for the length of the sorted list |qsort xs| ≥ |xs| and no upper

bound would be obtained for the stack cost.

Mergesort

Figure 7.2 presents the implementation of mergesort using auxiliary functions split

to divide a list into two (approximate) halves and merge to combine two sorted lists

in order. The main function msort splits the input list, recursively sorts each half

and merges the results.
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msort :: [Int] -> [Int] ;

msort [x] = [x] ;

msort xs = case (split xs) of

(xs1,xs2) -> merge (msort xs1) (msort xs2) ;

split :: [a] -> ([a],[a]) ;

split [] = ([], []);

split [x] = ([x], []);

split (x:y:t) = case (split t) of (xs,ys) -> (x:xs, y:ys) ;

merge :: {[Int],[Int]} -> [Int] ;

merge xs ys -- assumes xs is not []

= case xs of

x:xs’ -> case ys of

[] -> xs

| y:ys’ -> if x<=y then x:merge ys xs’

else y:merge xs ys’ ;

Figure 7.2: Purely-functional Mergesort

Our implementation differs from the typical textbook presentation of mergesort,

e.g. from Bird and Wadler (1988):

msort [x] = [x]

msort xs = merge (msort xs’) (msort xs’’)

where n = length xs ‘div‘ 2

xs’ = take n xs

xs’’= drop n xs

Instead of using length, take and drop, we use a single split function that recursively

breaks a list into two halves. This allows the analysis to infer a more precise size

relation between the two halves; it also avoids the use of the division operation whose

size relation cannot be expressed as an exact Presburger formula and therefore would

admit only an uninformative sized type, e.g. div : 〈(Intω, Intω)→ Intω, True〉.3

We also point out that merge assumes that its first argument is not the empty list.

This invariant holds for the call to merge in msort and is maintained in the recursive

calls by flipping the arguments, if necessary. Thus, it is sufficient to test only the
3Divisions by constants admit informative sized types, e.g. div2 : ∀ij. 〈Inti → Intj , i− 1 ≤ 2j ≤

i〉. It would be possible to employ an initial partial evaluation phase to statically detect such uses.
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second argument of merge for emptiness. This uniform termination condition allows

our cost analysis to obtain more accurate stack bounds.

Our type and effect analysis infers the following annotated types for this imple-

mentation of mergesort:

split :: [a]^z1-^z4^z5->([a]^z2,[a]^z3) | z1=z2+z3, z1>=z2,

2*z2>=z1, 1+z1>=2*z2, 5+6*z1=3*z2+z5, 2+4*z1>=z2+z4,

3+4*z1>=2*z2+z4, z4>=1

merge :: {[Int]^z0,[Int]^z1}-^z3^z4->[Int]^z2 | z0+z1=z2, z0>=1,

4*z0+4*z1>=4+z4, 12+7*z4>=4*z3, 4*z1+z4>=0, z4>=0, z3>=1

msort :: [Int]^z0-^z2^z3->[Int]^z1 | z0=z1, z0>=1,

10*z0>=1+z2, 29+z3>=24*z0, 15+z3>=11*z0+z2, z2>=1, 7+z3>=7*z0+z2,

20+z3>=21*z0, 14+z3>=18*z0

As with the split by function in the quicksort example, the lengths z2, z3 of the

output of split are not known exactly. But for split our analysis obtains much more

precise ranges:

z1 = z2 + z3 ∧ z1 ≥ z2 ∧ 2z2 ≥ z1 ∧ 1 + z1 ≥ 2z2 =⇒

 z1 = z2 + z3

z1/2 ≤ z2 ≤ (1 + z1)/2

Thus, there are only two cases: if z1 is even then z2 = z3 = z1/2; if z1 is odd,

then z2 = (1 + z1)/2 and z3 = (−1 + z1)/2. The size analysis was able to infer

more information because, unlike split by, the behaviour of split depends on the lists

lengths but not on the values in the list.

For the msort function we obtain the equality z0 = z1 between the lengths of

input and output lists. As would be expected, we do not get an upper bound on

the number of allocations for the purely functional msort (the worst-case bound

is O(n log n) for a list of length n). We do, however, get a linear upper bound

1 + 10z0 ≥ z2 for on the stack depth in terms of the list length z0.

7.2.5 Destructive list sorting

Both implementations of list sorting in the previous section allocate new lists for all

intermediate results. This is rather wasteful of space when compared to a typical

implementation in an imperative language, where the sorting could be performed

in-place.

We can improve the space behaviour of the functional algorithms by explicitly

deallocating the input and intermediate lists (using the optimisation Section 6.6.3).

Moreover, because the optimisation makes the cost linear on the list size, this allows
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qsort_d :: [Int] -> [Int] ;

qsort_d xs = case! xs of

[] -> []

| x:xs’ -> case! (split_by_d x xs’) of

(l,r) -> append_d (qsort_d l) (x:qsort_d r) ;

split_by_d :: {Int,[Int]} -> ([Int],[Int]);

split_by_d x ys = case! ys of

[] -> ([],[])

| y:ys’ -> case! (split_by_d x ys’) of

(lo,hi) -> if! y<x then (y:lo,hi) else (lo,y:hi) ;

append_d :: {[a],[a]} -> [a];

append_d xs ys = case! xs of

[] -> ys

| x:xs’ -> x : append_d xs’ ys;

Figure 7.3: Destructive Quicksort

our analysis to obtain upper-bounds on the heap cost; Figures 7.3 and 7.4 present

the modified qsort d and msort d, respectively. Note that, in order to avoid us-

ing deallocated values we sometimes reconstruct lists in recursive calls (e.g. in the

merge d function in Figure 7.4).

Note also that we do not consider here the optimisation for unboxing data values

(Section 6.6.2) and so the boolean result of comparisons are allocated in the heap;

these can be deallocated immediately after scrutiny. For readability, we write a case!

expression over a boolean value as “if! . . . then . . . else . . .”.

Destructive Quicksort

The type and effect analysis of destructive quicksort yields the following annotated

types:

append_d :: {[a]^z1,[a]^z2}-^z4^z5->[a]^z3 | z5=0, z1+z2=z3,

1+5*z1>=z4, z4>=1

split_by_d :: {Int^z0,[Int]^z1}-^z4^z5->([Int]^z2,[Int]^z3) |

z1=z2+z3, 4>=z5, 2+5*z1>=z4, z5>=0, z4>=1, z1>=z2, z2>=0

qsort_d :: [Int]^z0-^z2^z3->[Int]^z1 | z0=z1, z3>=0, z2>=1, z0>=z3,

1+8*z0>=z2
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For append d the analysis infers the heap cost z5 = 0, i.e. that the function does not

allocate any new heap. In fact, the base case deallocates a [] but does no further

allocation, so that the amount of available heap after execution of append d is higher

than initially available. However, to account for the worst-case in intermediate

configurations, the heap cost is defined as the maximum difference between initial

and intermediate states (not just the initial and final states), so it is always non-

negative.

For the heap cost of split by d we get a constant upper bound z5 ≤ 4 (i.e. indepen-

dent of the input list length). This cost is incurred in the alternative for the empty

list by the deallocation of a single [] followed by the allocation of ([],[]). The

alternative for the non-empty list re-uses a cons and pair cell, so the net difference

is zero.

For the qsort function itself the analysis obtains a linear upper bound z3 ≤ z0

for the heap cost z3. This is because each recursive step of qsort d calls split by d

but deallocates only a pair cell. Note that the append d deallocates one [] for

each recursive call, so that the final size of the heap will be the same as the initial;

our analysis infers only the initially required heap but not the available heap after

execution.

Destructive Mergesort

The type and effect analysis of destructive mergesort yields:

split_d :: [a]^z1-^z4^z5->([a]^z2,[a]^z3) | z1=z2+z3, 2*z2>=z1,

4>=z5, 2+4*z1>=z2+z4, z5>=0, z4>=1, 1+z1>=2*z2, z1>=z2,

3+4*z1>=2*z2+z4

merge_d :: {[Int]^z0,[Int]^z1}-^z3^z4->[Int]^z2 | z4=0, z0+z1=z2,

z3>=1, z1>=0, z0>=1, 7*z0+7*z1>=3+z3

msort_d :: [Int]^z0-^z2^z3->[Int]^z1 | z0=z1, 10*z0>=z2, z2>=1,

4+12*z0>=z2+2*z3, 4*z0>=4+z3, 5*z0>=2+2*z3, 16*z0>=12+z2, z3>=0

As in the previous example, the analysis infers a constant bound z5 ≤ 4 for

the heap cost of split d. This again is caused by the allocation of the pair in the

alternative for [].

For merge d the analysis infers a zero heap cost z4 = 0. As in append d, merge d

will deallocate one more constructor than it allocates, leaving a larger amount of

available heap after execution; this is not captured in the heap effect.

Finally, for msort d we get two inequations z3 ≤ 4z0 − 4 ∧ 2z3 ≤ 5z0 − 2 giving

upper-bounds on the heap cost; this implies that the heap cost is bounded by the
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msort_d :: [Int] -> [Int] ;

msort_d xs = case! xs of

x:xs’ -> case! xs’ of

[] -> [x]

| y:xs’’ -> case! (split_d (x:y:xs’’)) of

(xs1,xs2) ->

merge_d (msort_d xs1) (msort_d xs2) ;

-- merge two lists of integers in order

-- assumes the first list is not []

merge_d :: {[Int],[Int]} -> [Int] ;

merge_d xs ys

= case! xs of

x:xs’ -> case! ys of

[] -> x:xs’

| y:ys’ -> if! x<=y then x:merge_d (y:ys’) xs’

else y:merge_d (x:xs’) ys’ ;

-- split a list into two halves

split_d :: [a] -> ([a],[a]) ;

split_d xs = case! xs of

[] -> ([],[])

| x:xs’ -> case! xs’ of

[] -> ([x],[])

| y:t -> case! (split_d t) of

(t’, t’’) -> (x:t’, y:t’’) ;

Figure 7.4: Destructive Mergesort
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minimum, i.e. z4 ≤ min(4z0 − 4, 5
2z0 − 1) (where z0 is the length of the input list.

Note that, as in the qsort d example, msort d will release all the heap it allocates,

but the inferred heap effect cannot capture this: it only approximates the required

initial heap.

7.2.6 Binary search trees

Unlike the sized type systems of Hughes et al. and Chin and Khoo, we allow used-

defined size measures; this is particularly relevant for non-linear data structures like

trees, where choosing different sizes measures can be according to intended use can

be beneficial.

We illustrate this issue with a simple example of binary search trees with labelled

inner nodes and empty leaves. The underlying data type declaration is:

data Tree a = Leaf | Branch (a, Tree a, Tree a)

We can augment this data type with a size measure counting the number of inner

nodes:
data Treen a

= Leaf {n = 0 }
| Branch (a, Treek a, Treem a) {n = 1 + k +m ∧

0 ≤ k ∧ 0 ≤ m }

(7.7)

Alternatively, we could choose the size measure to be the maximum height of the

tree. Since the maximum is not included in our size constraint syntax, we need to

write it using a disjunction of linear inequations:

data Treeh a

= Leaf {h = 0 }
| Branch (a, Treel a, Treer a) { (0 ≤ l ≤ r ∧ h = 1 + r)∨

(0 ≤ r ≤ l ∧ h = 1 + l) }

(7.8)

Depending on the algorithm and cost metric, either measure could be more suit-

able. For example, for analysing a traversal algorithm that visits every node, we

might choose size measure (7.7). Conversely, for a binary search algorithm we would

chose size measure (7.8).

Instead of trying to choose the metric automatically, we leave it up to the pro-

grammer to specify it for new data types (or to leave the data type unsized). How-

ever, no unsound information comes from this choice: a less insightful choice will

simply mean that the analysis will not yield as precise size or cost bounds as it might.

In fact, it is possible to start with a simple but coarse measure and later refine it

with the aim of improving the results of cost analysis.
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Tree traversal

Our first example is a simple tree traversal algorithm that lists the labels in-order:

for each node, first visit the left sub-tree, then the current label, and finally the right

sub-tree. The visiting order is represented by the result list of labels.

We use an auxiliary accumulating parameter to avoid the need for concatenating

lists. More importantly, the accumulating parameter makes the algorithm exhibit

linear complexity on the number of nodes, which is necessary for our analysis to infer

upper bounds.

inorder :: Tree a -> [a];

inorder t = inorderAcc t [];

inorderAcc :: {Tree a, [a]} -> [a];

inorderAcc Leaf xs = xs ;

inorderAcc (Branch x l r) xs = inorderAcc l (x:inorderAcc r xs);

Declaring the size of trees to be the number of inner nodes as in (7.7), the analysis

yields the following:

inorderAcc :: {Tree^z1 a,[a]^z2}-^z4^z5->[a]^z3 | z1+z2=z3,

3*z1=z5, 1+7*z1>=z4, z4>=1

inorder :: Tree^z1 a-^z3^z4->[a]^z2 | z1=z2, z2>=0, 1+3*z2=z4,

z3>=2, 4+7*z2>=z3

The size analysis produces an exact result: the result list length z2 must be equal

to the number of nodes z1 in the tree. Equation 1 + 3z2 = z4 expresses the exact

heap cost z4; this corresponds to the allocation of the result list. The stack depth

z3 is bounded by a linear term on output size: 4 + 7z2 ≥ z3. Therefore, the analysis

obtains upper bounds for both stack and heap costs.

We remark that the outermost recursive call to inderAcc is in a tail position and

so we could be optimised as described in Section 6.6.1. This would lower the stack

cost but, unlike the list reverse example, would not make inorderAcc run in constant

stack because of the inner recursive call.

Finally, note that size polymorphism is needed for typing inorderAcc because

this function is applied to arguments with different sizes in the body of the recursive

definition. In fact, the result of the first call is the argument for the second call;

without size polymorphism this would yield an unsatisfiable size constraint.
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Insertion in order

The following example is the insertion of a value in a tree respecting a total ordering

on labels. Analogously to what was done for the sorting algorithms, we conduct the

analysis for the simple case of integer labels. To make the example more challenging,

the label will not be inserted if it occurs already in the tree.

insert :: {Int,Tree Int} -> Tree Int ;

insert x t = case t of

Leaf -> Branch x Leaf Leaf

| Branch y l r ->

if x<y then Branch y (insert x l) r

else if y<x then Branch y l (insert x r)

else t ;

It is clear that the number of recursive calls of insert is bounded by the tree height.

We therefore choose the tree size measure of declaration (7.8). Our analysis obtains:

insert :: {Int^z0,Tree^z1 Int}-^z3^z4->Tree^z2 Int | 1+z1>=z2,

z2>=z1, 14*z2>=8+4*z1+z4, 13+34*z1+6*z4>=34*z2+5*z3, z3>=1,

6*z2>=z4, 20*z2>=8+2*z3+z4, 4*z1+z4>=2+4*z2, 2+6*z1+z4>=5*z2+z3

Designating by φins the constraint above, we perform some simplifications to inter-

pret the results. To obtain size information we eliminate variables z3 and z4 for stack

and heap:

∃z3.∃z4. φins ' 1 + z1 ≥ z2 ≥ z1 ∧ z2 ≥ 1

The inequations 1+z1 ≥ z2 ≥ z1 express the best possible interval for the result tree

height z2 as a function of the input tree height z1: it is (at least) the input height

and (at most) one plus the input height. The constraint z2 ≥ 1 expresses the fact

that the result tree has a height of at least one, i.e. it can not be a leaf.

To obtain stack information we eliminate variable z4, thus obtaining linear rela-

tions between stack cost and sizes (and mutatis mutandis for heap).

∃z4. φins ' . . . ∧ 2z1 + 5z2 ≥ z3 ≥ 1

∃z3. φins ' . . . ∧ 6z2 ≥ z4 ∧ 14z2 − 4z1 − 8 ≥ z4 ≥ 2− 4z1 + 4z2

7.2.7 Red-black balanced trees

The next example is an insertion algorithm into self-balancing trees (Guibas and

Sedgewick 1978, Okasaki 1998). The data type is identical to binary trees except
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-- red-black trees; size measure is the height

data Tree^h = Leaf { h=0 }

| Branch Colour a (Tree^l a) (Tree^r a)

{ 0<=l, l<=r, h=1+r || 0<=r, r<=l, h=1+l } ;

data Colour = Red | Black ;

-- balanced insertion

insert :: {Int, Tree Int} -> Tree Int;

insert x t = case (insertRec x t) of

Branch c y l r -> Branch Black y l r;

-- auxiliary recursive insertion

insertRec :: {Int, Tree Int} -> Tree Int;

insertRec x t

= case t of

Leaf -> Branch Red x Leaf Leaf

| Branch c y l r ->

if x<y then lbalance c y (insertRec x l) r

else if y<x then rbalance c y l (insertRec x r)

else t ;

-- left and right balancing function

lbalance :: {Colour, a, Tree a, Tree a} -> Tree a ;

lbalance Black z (Branch Red y (Branch Red x a b) c) d

= Branch Red y (Branch Black x a b) (Branch Black z c d) ;

lbalance Black z (Branch Red x a (Branch Red y b c)) d

= Branch Red y (Branch Black x a b) (Branch Black z c d) ;

lbalance c x l r = Branch c x l r;

rbalance :: {Colour, a, Tree a, Tree a} -> Tree a ;

rbalance Black x a (Branch Red y b (Branch Red z c d))

= Branch Red y (Branch Black x a b) (Branch Black z c d) ;

rbalance Black x a (Branch Red z (Branch Red y b c) d)

= Branch Red y (Branch Black x a b) (Branch Black z c d) ;

rbalance c x l r = Branch c x l r;

Figure 7.5: Insertion into a red-black balanced tree.
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for the addition of a “red” or “black” tag at each inner node. Since we are going

to analyse insertion, we chose the tree height as the size measure; the data type of

colours is unsized. The sized type declaration is as follows:

data Colour = Red | Black

data Treeh a = Leaf {h = 0 }
| Branch (Colour, a, Treel a, Treer a) { (0 ≤ l ≤ r ∧ h = 1 + r)∨

(0 ≤ r ≤ l ∧ h = 1 + l) }

Red-black trees respect two conditions: 1) no red node has a red child; 2) every

path from the root node to a leaf has the same number of black nodes. Together

these conditions imply that the maximum height a red-black tree with n nodes is

2blog(n + 1)c, i.e. the tree is balanced. The insertion algorithm performs some

rebalancing transformations that ensure the two conditions are invariants.

Figure 7.5 presents the insertion algorithm of (Okasaki 1998) adapted to Core

Hume. It makes use of some auxiliary functions: insertRec performs insertion recur-

sively, while the lbalance and rbalance functions perform the re-balancing transfor-

mations on the left and right sub-trees, respectively.4

The balancing functions use nested patterns that must be translated into simple

case expressions. Unlike the previous examples, the translation of these patterns

leads to a significant expansion of code size. This fact, together with the disjunc-

tions introduced by the size measure, leads to much larger constraints than previous

examples, with a consequent negative impact on the analysis time. We therefore

choose to employ the cost approximation transformations discussed in Section 6.4.4

to trade less precise cost bounds for a faster analysis and shorter constraints. The

following results were obtained with a cost annotation depth zero (the least accurate

approximation). We present results for sizes first and stack and heap later.

Size analysis An initial attempt using size analysis of the functions in Figure 7.5

yields:

lbalance :: {Colour,a,Tree^z1 a,Tree^z2 a}-^z4^z5->Tree^z3 a |

z3>=z1, 2*z3>=2+z1+z2, 1+z1+z2>=z3, z3>=1+z2, z2>=0

rbalance :: {Colour,a,Tree^z1 a,Tree^z2 a}-^z4^z5->Tree^z3 a |

2*z3>=2+z1+z2, z3>=1+z1, z1>=0, 1+z1+z2>=z3, z3>=z2

insertRec :: {Int^z0,Tree^z1 Int}-^z3^z4->Tree^z2 Int |

z2>=1, z1>=0

4 Our implementation includes the optimisation described in Exercise 3.10 of (Okasaki 1998)

that separates the balancing functions for left and right sub-trees.
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insert :: {Int^z0,Tree^z1 Int}-^z3^z4->Tree^z2 Int |

z1>=0, z2>=1

The results are sound but uninformative: the size constraint z2 ≥ 1 for the result

of insert gives only a lower bound on the size (at least one, meaning that the result

tree is not empty).

The cause of this coarse approximation is the analysis of lbalance and rbalance:

in either case, the inequality 1+z1 +z2 ≥ z3 is overestimating the height of the result

tree to be (one plus) the sum of the heights z1, z2. But the balancing functions will

never concatenate the two trees along the longest path (in fact, this would result in

an unbalanced tree).

We can get a better bounds if we instruct the analysis to avoid computing the

convex hull of the size formula; this is done by an analysis directive pragma "nohull"

before the definitions lbalance and rbalance. Running the analysis again yields:

lbalance :: {Colour,a,Tree^z1 a,Tree^z2 a}-^z4^z5->Tree^z3 a |

1+z2=z3, z1>=0, z2>=z1 || 1+z1=z3, z2>=0, z3>=1+z2 ||

2+z2=z3, z1>=2, z3>=z1 || 1+z1>=z3, z3>=z1, z2>=0, z1>=2,

z3>=2+z2

rbalance :: {Colour,a,Tree^z1 a,Tree^z2 a}-^z4^z5->Tree^z3 a |

1+z2=z3, z1>=0, z2>=z1 || 1+z1=z3, z2>=0, z3>=1+z2 ||

1+z2>=z3, z3>=z2, z1>=0, z2>=2, z3>=2+z1 || 2+z1=z3, z2>=2,

z3>=z2

insertRec :: {Int^z0,Tree^z1 Int}-^z3^z4->Tree^z2 Int |

z2>=1, 1+z1>=z2

insert :: {Int^z0,Tree^z1 Int}-^z3^z4->Tree^z2 Int |

z2>=1, 1+z1>=z2

The constraints obtained for lbalance and rbalance are now a disjunction of con-

junctions that describe the size changes more precisely by distinguishing relations

among the heights of the sub-trees. As a result, we get a more precise size relation

for the recursive insertion insertRec (and consequently, for the top level function

insert): 1 + z1 ≥ z2 is the expected upper-bound on the height of the resulting tree

(it is at most one plus the original tree height). Keeping the disjunctive form in the

constraints inferred for lbalance and rbalance allowed the fixed point approximation

of insertRec to be more precise.

Unfortunately, the disjunctive form implies larger constraints and longer analysis

times. It can also lead to less intelligible constraints for functions with many alter-

native paths. Our implementation therefore computes the convex hull of constraints
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at function definitions by default, relying on a programmer directive to explicitly

ask for the more precise disjunctive forms when needed.

Stack analysis The stack analysis of the functions of Figure 7.5 yields:

lbalance :: {Colour,a,Tree^z1 a,Tree^z2 a}-^z4^z5->Tree^z3 a |

1+z2=z3, z4=17, z1>=0, z3>=1+z1 ||

1+z1=z3, z4=17, z2>=0, z3>=1+z2 ||

2+z2=z3, z4=17, z1>=2, 2+z2>=z1 ||

z4=17, 1+z1>=z3, z3>=z1, z2>=0, z1>=2, z3>=2+z2

rbalance :: {Colour,a,Tree^z1 a,Tree^z2 a}-^z4^z5->Tree^z3 a |

1+z2=z3, z4=17, z1>=0, z3>=1+z1 ||

1+z1=z3, z4=17, z2>=0, z3>=1+z2 ||

z4=17, 1+z2>=z3, z3>=z2, z1>=0, z2>=2, z3>=2+z1 ||

2+z1=z3, z4=17, z2>=2, z3>=z2

insertRec :: {Int^z0,Tree^z1 Int}-^z3^z4->Tree^z2 Int |

z3>=9, 1+9*z1+8*z2>=z3, 1+z1>=z2, 17+9*z1>=z3

insert :: {Int^z0,Tree^z1 Int}-^z3^z4->Tree^z2 Int |

1+z1>=z2, z3>=8, z2>=1, 9+9*z1+8*z2>=z3, 25+9*z1>=z3

The constraints on the latent stack z4 in lbalance and rbalance yield a constant cost

cost; this is because these functions are not recursive and we are employing a cost

lifting transformation which approximates the maximum stack cost among branches.

For the recursive insertion insertRec and top level insert we get linear bounds

that depend on the tree heights z1 and z2. Specifically for insert we get linear upper

bounds for stack: 9+9z1 +8z2 ≥ z3∧25+9z1 ≥ z3 where z1 is input tree height and

z2 is the output tree height (but note that we also have 1+z1 ≥ z2 so that the output

height is bounded by the input height). The conjunction implies that the stack is

bounded by the minimum of both expressions: z3 ≤ min(9 + 9z1 + 8z2, 25 + 9z1).

Heap analysis The heap analysis yields:

lbalance :: {Colour,a,Tree^z1 a,Tree^z2 a}-^z4^z5->Tree^z3 a |

1+z2=z3, z5=18, z1>=0, z3>=1+z1 ||

1+z1=z3, z5=18, z2>=0, z3>=1+z2 ||

2+z2=z3, z5=18, z1>=2, 2+z2>=z1 ||

z5=18, 1+z1>=z3, z3>=z1, z2>=0, z1>=2, z3>=2+z2

rbalance :: {Colour,a,Tree^z1 a,Tree^z2 a}-^z4^z5->Tree^z3 a |

1+z2=z3, z5=18, z1>=0, z3>=1+z1 ||
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1+z1=z3, z5=18, z2>=0, z3>=1+z2 ||

z5=18, 1+z2>=z3, z3>=z2, z1>=0, z2>=2, z3>=2+z1 ||

2+z1=z3, z5=18, z2>=2, z3>=z2

insertRec :: {Int^z0,Tree^z1 Int}-^z3^z4->Tree^z2 Int |

26*z2+z4>=8+26*z1, 8+26*z1>=z4, z4>=8, 1+z1>=z2, 26*z2+z4>=34

insert :: {Int^z0,Tree^z1 Int}-^z3^z4->Tree^z2 Int |

14+26*z1>=z4, 1+z1>=z2, z4>=14, 26*z2+z4>=14+26*z1, z2>=1

As the stack cost before, the heap cost of lbalance and rbalance is approximated

to the worst-case z5 = 18 which occurs whenever the red-child invariant is violated

and the sub-trees need rebalancing. For the top level insert we get an upper-bound

14 + 26z1 ≥ z4 on the heap cost z4 as a linear function of the input tree height z1.

7.2.8 Comparisons with profiling

Table 7.1 presents the results of cost analysis compared with data obtained from an

implementation of the Hume abstract machine of Section 6.2. We recall that the Core

Hume machine implements unboxed integers and all other values as boxed (including

the booleans and empty list constructor). We have implemented an interpreter

for the abstract machine that provides exact stack and heap profiling results (i.e.

matching the cost model exactly) that can be compared to the analysis results.

The examples are parameterised by the size of data (e.g. list length or tree height).

Whenever possible, we chose to generate input data with distribution corresponding

to the worst-case costs (e.g. the worst-case for quicksort occurs when the input list is

ordered). When this was not possible, we approximated the worst-case by choosing

the highest cost from some trial runs. Our test entries are:

append-n append two lists of n integers;

nrev-n naive reverse a list of n integers;

reverse-n reverse a list of n integers with accumulating parameter;

reverse-tc-n reverse a list of n integers with accumulating parameter and tail call

optimisation;

qsort-n sort an already ordered list of n integers using quicksort;

qsort-d-n destructive version of the above;

msort-n sort a list of n integers using mergesort;

msort-d-n destructive version of the above;
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inorder-n in-order traversal of a binary tree with n nodes

ins-tree-n insert an integer into a right-linear binary tree of n nodes (and equal

height);

ins-rb-h insert an integer into a red-black balanced tree of height h.

The analysis results for stack and heap are presented as either exact values,

upper-bounds or lower-bounds, in order of decreasing precision.

Stack results We obtain upper bounds for the stack cost for all the examples.

The upper bounds are exact for reverse (both naive and accumulating version),

quicksort and in-order tree traversal. We still get good bounds for tree insertion

(17% overestimate) and (to a lesser extent) for mergesort (43% overestimate).

All the previous examples use cost lifting depth of infinity, i.e. exact cost informa-

tion. However, to reduce analysis times, we use a coarser cost lifting approximation

with depth 2 for the red-black insertion. Consequently, the stack upper bound for

this example is slightly less accurate (20% overestimate). Fortunately, we shall see

that the precision can be substantially improved by choosing higher cost depth ap-

proximations.

Heap results We obtain exact heap results for the accumulating reverse and tree

traversal algorithms and good upper bounds for tree insertion (20% overestimate).

Of course, no linear upper bounds could be obtained for worst-case quadratic or

O(n log n) algorithms.

For the red-black tree example, we again get somewhat inaccurate bounds (roughly

133% overestimate). This is caused by the analysis taking the conservative assump-

tion that calls to lbalance and rbalance can always result in red-parent red-child

violations (which incur a higher heap cost). Obtaining a more accurate heap bounds

on the re-balancing costs would require expressing the global invariant on the tree

structure (namely, the red-black tree invariants) which are outside the expressiveness

of our size constraints.

7.2.9 Analysis times

Tables 7.2 and 7.3 summarise the analysis time and space for the stack and heap

analysis of the previous examples. Timings are discriminated for both top-level and

auxiliary definitions. Each entry includes the analysis time (in seconds) and some

metrics on the complexity of the constraints before simplification: the number of
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Stack Heap

Profiling Analysis Error Profiling Analysis Error

append-1 10 = 10 0% 9 = 9 0%

append-10 55 = 55 0% 72 = 72 0%

append-100 505 = 505 0% 702 = 702 0%

nrev-1 9 ≤ 9 0% 5 ≥ 5 n/a

nrev-10 63 ≤ 63 0% 176 ≥ 68 n/a

nrev-100 603 ≤ 603 0% 15251 ≥ 698 n/a

reverse-1 11 ≤ 11 0% 4 = 4 0%

reverse-10 56 ≤ 56 0% 31 = 31 0%

reverse-100 506 ≤ 506 0% 301 = 301 0%

reverse-tc-1 7 ≤ 7 0% 4 = 4 0%

reverse-tc-10 7 ≤ 7 0% 31 = 31 0%

reverse-tc-100 7 ≤ 7 0% 301 = 301 0%

qsort-100 803 ≤ 803 0% 50803 ≥ 2290 n/a

qsort-200 1603 ≤ 1603 0% 201603 ≥ 4590 n/a

qsort-500 4003 ≤ 4003 0% 1254003 ≥ 11490 n/a

qsort-d-100 803 ≤ 803 0% 502 ≤ 502 0%

qsort-d-200 1603 ≤ 1603 0% 1002 ≤ 1002 0%

qsort-d-500 4003 ≤ 4003 0% 2502 ≤ 2502 0%

msort-100 707 ≤ 1001 42% 6553 ≥ 2773 n/a

msort-200 1407 ≤ 2001 42% 14805 ≥ 5573 n/a

msort-500 3507 ≤ 5001 43% 42565 ≥ 13973 n/a

msort-d-100 708 ≤ 1002 42% 412 ≤ 651 58%

msort-d-200 1408 ≤ 2002 42% 813 ≤ 1301 60%

msort-d-500 3508 ≤ 5002 43% 2014 ≤ 3251 61%

inorder-100 706 ≤ 706 0% 301 = 301 0%

inorder-200 1406 ≤ 1406 0% 601 = 601 0%

ins-tree-100 606 ≤ 706 17% 506 ≤ 606 20%

ins-tree-200 1206 ≤ 1406 17% 1006 ≤ 1206 20%

ins-rb-tree-5 ∗ 55 ≤ 68 24% 49 ≤ 114 133%

ins-rb-tree-10 ∗ 95 ≤ 113 19% 84 ≤ 214 155%

ins-rb-tree-15 ∗ 132 ≤ 158 20% 158 ≤ 314 99%

Table 7.1: Comparison of the results of profiling and cost analysis.
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List functions time/s #vars #eqs #iters

append 0.02 10 52 5

nrev 0.06 14 113 6

revAcc 0.02 10 52 5

reverse <0.01 8 24 n/a

insert 0.10 13 266 5

take 0.05 14 124 5

drop 0.04 13 112 5

take’ 0.14 15 305 5

drop’ 0.12 14 275 5

Total time 0.92

Total memory 8628 KB

Quicksort time/s #vars #eqs #iters

split by 0.24 14 410 5

qsort 0.41 20 338 6

Total time 0.89

Total memory 15808 KB

Mergesort time/s #vars #eqs #iters

split 0.12 13 205 5

merge 0.22 14 492 5

msort 2.96 24 887 5

Total time 3.54

Total memory 50088 KB

Timings and memory usage obtained on an AMD Athlon XP 2800+ PC, 1 GB of RAM,

running Ubuntu GNU/Linux system, kernel 2.6.15, GHC 6.4.2 and PPL 0.9.1.

Table 7.2: Summary of cost analysis times and memory usage.
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Binary trees time/s #vars #eqs #iters

inorder† <0.01 8 24 n/a

inorderAcc† 0.05 14 104 5

insert‡ 2.14 19 3894 5

Total time 2.34

Total memory 12036 KB

Red-black trees∗ time/s #vars #eqs #iters

insert‡ 0.10 10 784 n/a

insertRec‡ 20.2 24 45840 5

lbalance‡ 0.54 19 6188 n/a

rbalance‡ 0.53 19 6188 n/a

Total time 21.3

Total memory 81660 KB

Timings and memory usage obtained on an AMD Athlon XP 2800+ PC, 1 GB of RAM,

running Ubuntu GNU/Linux system, kernel 2.6.15, GHC 6.4.2 and PPL 0.9.1.
†Size measure: the number of inner nodes in the tree.
‡Size measure: the maximum height of the tree.
∗Cost lifting approximation to depth 2.

Table 7.3: Summary of cost analysis times and memory usage (continued).
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Relative error of stack prediction

d = 0 d = 1 d = 2 d = 3 d = 4 d = 5

ins-rb-tree-5 75% 60% 55% 55% 31% 7%

ins-rb-tree-10 64% 56% 53% 53% 34% 10%

ins-rb-tree-15 64% 58% 55% 55% 38% 13%

Analysis time (s) 1.9 6.5 9.7 26.2 72.7 97.5

Total memory (KB) 12216 26400 39840 71100 121120 133628

Relative error of heap prediction

d = 0 d = 1 d = 2 d = 3 d = 4 d = 5

ins-rb-tree-5 194% 133% 133% 133% 133% ∞
ins-rb-tree-10 226% 155% 155% 155% 155% ∞
ins-rb-tree-15 156% 99% 99% 99% 99% ∞

Analysis time (s) 2.0 4.5 5.2 9.3 13.7 11.9

Total memory (KB) 12080 17820 21220 30008 34128 29136

Table 7.4: Effect cost lifting depth on analysis time and precision.

variables, the number of (in)equations, and (for recursive functions) the number of

iterations required for reaching a fixed-point.5

The analysis time is dominated by the polyhedral computations for simplification

of size and cost constraints. Therefore, the higher analysis times occur for the more

complex algorithms and data structures (e.g. mergesort and red-black tree insertion)

which generate larger constraints. This can be verified by comparing the number of

variables and linear inequations.

We remark that size measure has a large influence on the complexity of generated

constraints. For example: the tree height measure introduces a disjunction at each

tree node; this leads to an exponential growth of constraint size on nested applica-

tions of the tree constructor. This justifies, for example, the constraint complexity

and analysis times for the tree-insertion algorithm when compared to tree-traversal:

the former uses the tree height (and thus introduces disjunctions), while the later

uses the number of nodes (which is expressible as a convex constraint).

5 Converge of fixed-point iterations is ensured using the widening operator of (Bagnara, Hill,

Ricci and Zaffanella 2003) after an initial delay of k = 3 iterations.
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7.2.10 Effects of the cost lifting transformations

For most of the examples in Tables 7.1 and 7.2 we have conducted the most precise

analysis possible within our framework. However, for the red-black tree insertion

algorithm we have employed the cost lifting approximation described in Section 6.4.6

to reduce the complexity of synthesised constraints.

We now address the issue of whether we can effectively improve the analysis

precision by using a higher depth, and what impact does that have on analysis time.

Table 7.4 summarises the results of increasingly large depths d in the stack and heap

analysis of the red-black tree insertion. The precision is measured as the relative

error between predicted and measured costs. The values for depth d = 0 correspond

the results of Table 7.1.

Choosing depth d = 5 greatly improves the precision of the stack upper bound

to just 13% overestimation of the measured stack cost. This is at the expense of

(roughly) a 50-times increase in analysis time. Still, we believe that a few minutes of

static analysis is an acceptable price to pay for an accurate, guaranteed worst-case

stack prediction (particularly since the higher precision analysis can be employed

only when required).

For the heap analysis, depths higher than d = 1 yield no further improvements.

In fact, choosing d = 5 (or indeed any larger value) yields worst heap results: ∞
indicates that the analysis failed to obtain any upper bound.

This loss of precision is caused by application of the widening operator during the

fixpoint approximation of insertRec. We can verify this by examining the constraints

for the first three iterations (i.e. before any application of the widening operator).

For brevity, we omit inequations that do not express an upper bound on the heap

cost z4.

φ0 : False

φ1 : 6z1 + z4 = 2 + 6z2 ∧ . . .

φ2 : 28 + 6z2 ≥ 6z1 + z4 ∧ 24 + 6z1 + z4 ∧ 28 ≥ z4 ∧ 8 + 10z1 ≥ z4 ∧ . . .

φ3 : 54 + 6z2 ≥ 6z1 + z4 ∧ 58z2 ≥ 50 + 6z1 + z4 ∧ 48 ≥ z4∧

8 + 15z1 ≥ z4 ∧ 18 + 10z1 ≥ z4 ∧ 10z1 + 10z2 ≥ 2 + z4 ∧ . . .

Approximations φ2 and φ3 express bounds 8+10z1 ≥ z4 and 8+15z1 ≥ z4 relating z4

to the size z1. We might expect that some bound of the form 8+cz1 ≥ z4 will hold for

fixpoint; indeed, for c = 20 the bound will be a sound approximation. However, the

fixpoint iterations will approximate it strictly from bellow (i.e. generating constraints
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with coefficients 10 < c < 20), which means that the constraints are unstable across

iterations. To ensure convergence, the widening operator is used at some point and

discards all unstable bounds, which means that no safe heap approximation is found.

When doing the approximation for insertRec with a cost lifting depth d < 5

there is some overestimation in the coefficients of cost annotations. This results in

reaching the stable bound 8 + 20z1 ≥ z4 after only two iterations. The widening

operator will then not discard this bound because it is stable. Therefore, the coarser

cost annotation results in some extrapolation that allows the widening to reach a

better fixpoint approximation.

While we do not attempt to solve this problem, we remark that choosing dif-

ferent cost depth allowed our analysis to avoid it in all (few) situations where we

encountered it.

Finally, we remark that although we have presented our analysis as one type and

effect system, the results of Table 7.4 indicate that we might obtain better results

by running the stack and heap analyses separately (so that we can employ different

depths for cost lifting).

7.3 Embedded systems

In this section we present some simplified embedded systems implemented as Hume

processes that respond to external inputs, maintain some internal state and produce

outputs. Such systems are typically intended to run indefinitely and are thus required

to have bounded space behaviour.

We chose problems that benefit from the expressiveness of the Core Hume lan-

guage (e.g. recursive data types and function definitions) and employ our cost anal-

ysis to obtain bounded space guarantees. Finally, we assess the accuracy of the

analysis by comparing the static bounds obtained with information obtained from

profiling.

7.3.1 Mine pump controller

Our first example is a simplified mine pump controller that has been presented as a

case-study in the design of real-time embedded systems; other languages solutions in-

clude ADA with real-time extensions (Burns and Wellings 1996), SparkADA (SPARK

Team 2005) and finite state Hume (Hammond and Michaelson 2002).

The software controls a pump that drains water accumulating in a mine shaft to

the surface. The pump operates in either automatic or manual mode. In automatic
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Figure 7.6: Diagram of box wiring for the mine pump controller.

mode, the pump turns on or off when the water level in the mine shaft reaches high

or low marks (indicated by two sensors in the shaft). In manual mode the pump

responds to operator requests.

Apart from the pump control itself, the system should also monitor environment

readings for methane and carbon monoxide gases and the flow of air in the mine;

these should be reported to a logging system. The main safety requirement is that

the pump must not be turned on when the methane level is too high to avoid the

risk of explosion; this must be enforced in both automatic and manual operation.

Our Core Hume implementation does not employ recursive data types or recursive

functions; this means that stack and heap bounds could be obtained by a simpler

static analysis such as the one by Hammond and Michaelson (2002). We chose to

apply our cost analysis to this simpler example to demonstrate that we still get tight

space bounds for non-recursive programs and that the analysis is practical in such

cases.

Figure 7.6 depicts the network of Hume boxes implementing the system processes.

The main reactive components are the pump control (pump) and environment mon-

itor (environment). In order to run the mine controller and collect profiling data,

the system also includes several processes providing simulated inputs: boxes water,

methane, carbmonoxide and airflow are simulators of the physical sensors; the oper-

ator box generates pseudo-random asynchronous requests from a human operator;

finally, the logger box simulates a console for event logging.

In the following sections we will describe the main component, namely the pump

box. For the complete listing of mine pump system in Core Hume, see Appendix B.1.
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Data types

We first define the data types for representing the pump state (on or off), the op-

eration mode (automatic or manual) and the requests from the operator (turn the

pump on or off, switch to automatic or manual mode).

data STATE = ON | OFF ; -- pump state

data MODE = AUTO | MANUAL ; -- pump operating mode

-- operator requests

data REQ = REQ_ON | REQ_OFF | REQ_AUTO | REQ_MANUAL ;

We also define a type synonym for the readings from the low and high level watermark

sensors.

type WATER = (Bool,Bool) -- (low,high)

Pump process

The inputs to the pump box are: the current state and mode, the water sensor

readings, the methane alarm; the outputs are the new state and mode and a log

string.

box pump

in (mode::MODE, state::STATE, water_sensors::WATER,

ch4_alarm::Bool, req::REQ)

out (mode’::MODE, state’::STATE, log::String)

The rule matching is unfair to be able to prioritise the inputs: the first rule deals

with the most critical response, i.e. turning the pump off if the methane alarm input

is True:

unfair

(mode, ON, water, True, *) ->

(copyMODE mode, OFF, "CH4 alarm: turning pump off")

In this rule and others we use functions copyMODE and copySTATE on the right-hand

side to copy values of the corresponding data types onto output wires.6 Note also
6 Since the data types are non-recursive, we could alternatively expand the box rules to cover

all possible cases. However, this would in general lead to an exponential blow-up in the number

of rules, so would be impractical for data types with a large number of constructors. The use of

copying functions does not suffer from this scalability issue.
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the use of a *-pattern to ignore (but not consume) the operator request input.

The next rules deal with responses when the pump is in automatic mode.

| (AUTO, state, water, alarm, REQ_MANUAL) ->

(MANUAL, copySTATE state, "Operator requested MANUAL mode")

| (AUTO, state, water, False, _*) ->

(AUTO, auto_control state water, "Running in auto mode")

The first of these rules acknowledges requests to switch to manual mode; the second

rule turns the pump on or off according to the water level sensors (implemented

in function auto control). Note that the second rule only applies if the methane

alarm is False; this prevents turning on the pump in an unsafe situation. Also, note

the use of the *-pattern to ignore and consume any other operator requests while

in automatic mode.

The remaining rules deal with responses in manual mode.

| (MANUAL, state, water, False, REQ_ON) ->

(MANUAL, ON, "Operator requested pump ON")

| (MANUAL, state, water, alarm, REQ_OFF) ->

(MANUAL, OFF, "Operator requested pump OFF")

| (MANUAL, state, water, alarm, REQ_AUTO) ->

(AUTO, copySTATE state, "Operator requested AUTO mode")

-- default rule:

| (mode, state, alarm, _*) -> (copyMODE mode, copySTATE state, *)

The first rule deals with operator requests to turn the pump on; again, it only

applies when the methane alarm is False. The final rule is a default that maintains

the current pump state and mode in all remaining situations. Note the use of a

*-expression on the right-hand side of the rule to indicate that no message should

be sent to the logger.

Results of size and cost analysis

Table 7.5 summarises the results obtained for cost analysis of the mine pump con-

troller. The results are discriminated for each wire identified by an output port. The

analysis results are the upper-bound reported by our static analysis. The profiling

data is the worst-case collected from running 104 scheduling iterations on the Core

Hume abstract machine interpreter. Since the simulation boxes generate random

inputs, no external input data was used.
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Stack Heap

Wire Profile Analysis Profile Analysis

airflow.level 3 3 14 14

airflow.time’ 3 3 4 4

carbmonoxide.level 3 3 14 14

carbmonoxide.time’ 3 3 4 4

environment.airflow alarm 5 5 3 3

environment.ch4 alarm 5 5 3 3

environment.ch4 alarm’ 5 5 3 3

environment.co alarm 5 5 3 3

logger.dummy 2 2 29 29

methane.level 3 3 14 14

methane.time’ 3 3 4 4

operator.time’ 3 3 0 0

operator.trigger 4 4 1 1

pump.log 5 5 31 31

pump.mode’ 7 7 1 1

pump.state’ 8 8 1 1

request.req 5 5 5 5

sink.dummy’ 1 1 0 0

water.sensors 5 5 19 19

water.time’ 3 3 4 4

Total (maximum/sum) 8 8 157 157

Table 7.5: Results of cost analysis for the mine pump controller.
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As might be expected since the mine pump is a finite-state machine, the upper

bounds obtained by the analysis match the worst-case profiling results exactly for

both stack and heap in all wires. This demonstrates that we can still obtain good

results from the type and effect analysis when applied to finite-state Hume programs.

7.3.2 Lifts controller

The second example is based on a Hume example by Greg Michaelson. The pro-

gram simulates a two-lift controller for a building with several floors (a parameter

of the problem). Passengers request a lift by pressing a button on the landing. The

controller should dispatch lifts to floors, minimising the number of stops and the

movement range for each lift. The complete listing for this example is included in

Appendix B.2.

Representation of lift states

We represent floors by integer numbers starting from zero. The pending requests for

a lift are represented by a list of booleans.7 If the i-th element is True then the lift

must wait at floor i; initially, the list consists only of False elements, i.e. there are

no pending requests.

A lift can be moving, stopped or waiting for passengers; this state is represented

by a sum type Move. The complete state of a lift is a 5-tuple consisting of the

movement direction, the current floor, the lowest and highest request and the list of

pending requests. The corresponding Core Hume type declarations are:

type Floor = Int

type Pending = List Bool

data Move = UP | WAIT UP | DOWN | WAIT DOWN | STOP

type State = (Move,Floor,Floor,Floor,Pending)

Changes to lift states are done by two functions with type signatures

req lift :: {State,Floor} → State

move lift :: State→ State

that, respectively, add a new request and move the lift (if it is not stopped). Both

7 Alternatively, we could extend Core Hume with a bit-vector primitive type with constant-

cost access. We do not pursue this optimisation here because it would not invalidate the results

obtained, except presumably by lowering the overall costs by some absolute constant.
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Figure 7.7: Diagram of box wiring for the two-lifts controller.

functions maintain the invariant that for any state (s, floor, lo, hi, pend),

s 6= STOP =⇒ (∀i. 0 ≤ i < floors ∧ pend[i] = True =⇒ lo ≤ i ≤ hi)

i.e. if the lift is moving then lo and hi are lower and upper bounds for the pending

requests (where floors is the number of floors and pend[i] is the i-th element of the

list pend).

Finally, we remark that req lift and move lift preserve the length of the list of

pending requests. This invariant will be inferred by the size analysis and is essential

in guaranteeing that the State data type has bounded heap cost.

Dispatching lifts to floors

The coordination of the lifts controller is implemented using one box for each lift and

one box for a dispatcher that splits requests across lifts. The only external input to

the controller is a port to request a lift.8 Each lift box maintains a representation

of the internal state wired as a feedback loop. For simplicity, there are no outputs

from the lifts (e.g. to command an engine). Figure 7.7 depicts the communication

wires between boxes.

To minimise the total distance travelled, each lift serves requests in a single

direction before reversing. To select which lift should serve a request, the dispatcher

computes the “distance” (a positive number of floors) that each lift must travel to

reach the requested floor, taking in account not just the current location but also

the destination and direction of the lift. This computation is encapsulated in the

8 Since there is no mechanism for hiding port visibility in Core Hume, the external/internal

distinction is merely illustrative of the intended use.
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function

distance :: {State,Floor} → Int

defined by cases analysis on the lift state. For example, the case for the lift moving

up is:

distance (UP, f loor, lo, hi, pend) dest

=

{
dest− floor if dest ≥ floor
2(hi− floor) + (floor − dest) if dest < floor

The expression 2(hi− floor) + (floor − dest) is the round-trip distance from floor

to hi plus the distance from floor to dest. Simplifying this expression, we get

distance (UP, f loor, lo, hi, pend) dest =

{
dest− floor if dest ≥ floor
2hi− floor − dest if dest < floor

The remaining cases are similar; we refer the reader to Appendix B.2 for the complete

listing.

Applying size and cost analysis

We can directly apply the cost analysis to the data structures and functions used

in the lift controller. The user-defined data type Move is unsized; integers and lists

have the default sizes.

The analysis obtains good size and cost bounds automatically for most of the

functions. The exceptions are req lift and move lift where the default analysis obtains

lower bounds for stack and heap costs, but no upper bounds. This is caused by the

use of the convex hull to simplify constraints: req lift and move lift are defined

by disjoint cases, some of which have constant costs while other have linear costs;

computing the convex hull across such disjunctions loses the upper bounds.

We can retain cost upper bounds by specifying an “no-hull” directive for the

analysis of the two functions. Although not hulling avoids the loss of precision,

it also results in a much larger constraint in disjunctive form.9 For example, the

9 We recall that our constraint solver computes the disjunctive form to employ operations for

systems of convex linear constraints (see Section 5.5).
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Stack Heap

Wire Profile Analysis Profile Analysis

dispatcher.s1 75 75 106 106

dispatcher.s1’ 54 57 48 48

dispatcher.s2 75 75 106 106

dispatcher.s2’ 54 57 48 48

dispatcher.req 16 16 5 5

Total (maximum/sum) 75 75 313 313

Table 7.6: Results of cost analysis for the lift controller.

analysis of req lift yeilds the annotated type and constraint

{(Move, Intz0 , Intz1 , Intz2 , Listz3 Bool), Intz4} z9;z10−−−−→

(Move, Intz5 , Intz6 , Intz7 , Listz8 Bool)

(z3 = z8 ∧ 13 + 4z4 = z10 ∧ z9 = 4 ∧ z0 = z5 ∧ z4 ≥ 0 ∧

z1 ≥ z6 ∧ z7 ≥ z4 ∧ z8 ≥ 1 + z4 ∧ z7 ≥ z2 ∧ z4 ≥ z6) ∨

(z3 = z8 ∧ 13 + 4z4 = z10 ∧ z9 =9 ∧z0 = z5 ∧ z4 ≥ 0 ∧

z1 ≥ z6 ∧ z7 ≥ z4 ∧ z8 ≥ 1 + z4 ∧ z7 ≥ z2 ∧ z4 ≥ z6) ∨ · · ·

where we have omitted the remaining 22 disjunctions. We could simplify the result

for presentation purposes by factoring common inequations (e.g. the list size invariant

z3 = z8 that holds in every disjunction). However, we are ultimately interested in

results of the coordination layer analysis which are always simple intervals for the

sizes and costs of wires. For this purpose the disjunctive form is more convenient.

Results of size and cost analysis

We ran the analysis and profiling for a simulation of a ten floor building. The

coordination level analysis obtains the following annotated type

(Move, Int[0, 9], Int[0, 9], Int[0, 9], List[10, 10] Bool)

for all wires carrying lift states, namely dispatcher.s1, dispatcher.s1’, dispatcher.s2

and dispatcher.s2’. The only remaining wire dispatcher.req has type Request with

no size information. From this we can verify that the lists of pending requests have

constant length 10 and that floor indices are always between 0 and 9.

Table 7.6 presents the corresponding results for cost analysis for the lift-controller.

Each line corresponds to one wire, identified by a dispatcher port. The profiling data

was obtained by running 104 scheduler iterations with random requests.
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The analysis obtains the exact stack and heap cost for most of the wires. There

is only a very slight overestimation for the stack cost of the output dispatcher.s1’

and dispatcher.s2’. The heap analysis matches the worst-case data from profiling

exactly.

The total results reflects the space requirements for the lift controller as a whole:

since the heap for each wire is separate, the total heap required is proportional to the

sum of the wire heaps.10 A single stack can be shared among wires11 and therefore

its size is the maximum of each wire. No extra dynamic memory is required for

the Core Hume machine, so we have obtained a tight prediction that guarantees

bounded space behaviour.

7.3.3 Geometric region server

Our third example is inspired by a comparison between Haskell and other languages

in an experiment on software prototyping described by Hudak and Jones (1994).

The experiment was conducted by the Naval Surface Warfare Center (NSWC) and

consisted of giving ten volunteer programmers an informal specification of a “geo-

metric region server” (geo-server). Each participant submitted a working prototype

in specific programming language together with documentation and a record of de-

velopment time. Hudak and Jones submitted an entry in the Haskell programming

language. All entries were independently assessed according to various software de-

velopment metrics.

The geo-server is a simplified component of a real NSWC system. The inputs of

the geo-server are positions of friend and foe “objects” (i.e. ships or aircraft); around

some of these there are geometric zones of different shapes; the geo-server should

detect and report the intersections of objects with these zones. The complete Core

Hume listing for this example is included in Appendix B.3.

Representing geometric regions

The Haskell solution described by Hudak and Jones represents a two-dimensional

region as a function from points to booleans:

type Point = (Float,Float)

type Region = Point→ Bool

10Since each wire is associated with two heap regions of equal size (see Section 6.2), the total

heap footprint is twice the sum of the wire heaps.
11Because the scheduler is non-preemptive.
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Testing for region membership is simply function application:

inRegion :: Point→ Region→ Bool

inRegion p r = r p

Simple regions can be defined directly, e.g. the region enclosed by a circle with a

given centre and radius:

circle :: Point→ Float→ Region

circle (x0, y0) r = λ(x, y)→ let dx = x− x0

dy = y − y0

in dx ∗ dx+ dy ∗ dy ≤ r ∗ r

Complex regions can be obtained by application of region combinators to simpler

ones. For example, the function

annulus :: Point→ Float→ Float→ Region

annulus p r1 r2 = intersect (circle p r2) (outside (circle p r1))

defines an annular region using circles and combinators for the outside of a region

and the intersection of regions:

outside :: Region→ Region

intersect :: Region→ Region→ Region

It is straightforward to define combinators like these and to add more basic shapes.

This “domain specific language” for geometric zones was one of the reasons why

the Haskell prototype was more concise and readable than the Ada and C++ so-

lutions, and so we would like to transpose it to our Hume program. However, we

cannot express higher-order combinators like outside and intersect in a first-order

language such as Core Hume. Instead, we first employ the standard defunctionali-

sation program transformation (Reynolds 1972, Danvy and Nielsen 2001) to replace

the higher-order representation by a first-order data type. Our data type for regions

is as follows (including half-planes shapes and a union operation):

data Region = Above Float | Below Float | Right Float | Left Float

| Circle Point Float | Outside Region

| Intersect Region Region | Union Region Region

The region membership test function is the “apply” function resulting from defunc-
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tionalisation:

inRegion :: {Point,Region} → Bool

inRegion (x, y) (Above y0) = y0 ≤ y

inRegion (x, y) (Below y0) = y ≤ y0

inRegion (x, y) (Right x0) = x0 ≤ x

inRegion (x, y) (Left x0) = x ≤ x0

inRegion (x, y) (Circle (x0, y0) r) = let dx = x− x0

dy = y − y0

in dx ∗ dx+ dy ∗ dy ≤ r ∗ r

inRegion p (Outside r) = not (inRegion p r)

inRegion p (Intersect r1 r2) = if inRegion p r1 then inRegion p r2 else False

inRegion p (Union r1 r2) = if inRegion p r1 then True else inRegion p r2

The function inRegion is now first-order and recursive, so we can apply our cost

analysis to obtain stack and heap bounds. All that remains to be done is to assign

a size measure to the region data type. It is immediate that, in the worst-case,

inRegion will perform a complete traversal of the data type; therefore, we define the

size measure for regions to be the total number of inner nodes:

data Regionn = Above Float {n = 0}
... (size zero for other shapes)

| Circle Point Radius {n = 0}

| Outside Regionp {0 ≤ p ∧ n = 1 + p}

| Intersect Regionp Regionq {0 ≤ p ∧ 0 ≤ q ∧ n = 1 + p+ q}

| Union Regionp Regionq {0 ≤ p ∧ 0 ≤ q ∧ n = 1 + p+ q}

(7.9)

With this data declaration our analysis obtains the following size and cost bounds:

inRegion :: {(Float,Float),Region^z0}-^z2^z3->Bool^z1 |

1>=z1, z1>=0, z0>=0, 9*z3>=1+z2, 89+101*z0+7*z3>=12*z2, z3>=1,

z2>=4, 15+9*z0>=z2, 13+13*z0>=z3

Among other relations, we obtain a stack upper bound 15 + 9z0 ≥ z2 and a heap

upper bound 13 + 13z0 ≥ z3 as functions of the region size z0.

Implementation of the geo-server

The geo-server itself is implemented as a Hume box with two inputs: the position of

a “friendly” object (called host) and a “foe” object (called target). The geo-server
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Stack analysis

Wire Profile default (c = 0) c = 3 c = 6 c = 9

geoserver.weapon 26 26 46 73 100

geoserver.tight 28 44 37 37 37

geoserver.engage 34 35 82 136 190

Total (maximum) 34 44 82 136 190

Heap analysis

Wire Profile default (c = 0) c = 3 c = 6 c = 9

geoserver.weapon 34 46 36 34 34

geoserver.tight 35 83 48 38 36

geoserver.engage 49 61 51 49 49

Total (sum) 118 190 135 121 119

Table 7.7: Results of cost analysis for the geo-server.

tracks three regions of interest:

1. an “engage-ability zone” with an annular shape centred on the host;

2. a “weapons doctrine zone” with a semi-circular shape centred on the host;

3. a “tight zone” of rectangular shape on fixed coordinates.

The outputs of the geo-server are three boolean values representing the intersection

of the target with each of these zones.

Results of cost analysis

Table 7.7 presents the results of cost analysis for the geo-server box. Each line

corresponds to one of the output wires. The first column contains profiling data

obtained from running 104 scheduler iterations with random input points for the

host and target positions. The remaining columns contain the upper-bounds ob-

tained with different values of a parameter (described ahead). We also include the

results for the maximum stack depth and total heap allocated for the three wires;

these accumulated results can be directly compared for precision across the different

analyses.

The “default” column reports results with the region data type as in (7.9). We

get relatively good stack upper bounds: there is a 30% over-estimative on the tight-

zone wire but the remaining two are (almost) exact. The default analysis for heap
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yields worse results: over 100% for the tight-zone wire and 61% over-estimative in

total.

The cause of heap over-estimation is our uniform choice of size for basic regions.

Inspecting the definition of inRegion we can see that the case of a circle incurs a

higher heap cost than other basic regions (i.e. the half-planes Above, Below, Left

and Right). However, since all basic regions are assigned the same size of zero, the

analysis over-approximates the costs of each of these to the worst-case.

We can attempt to improve precision by simply choosing the size measure of a

circle to be larger than that of a half-plane. The optimum value will depend on the

precise relation between costs of each shape (and, in fact, will be different for stack

and heap). However, since the soundness of analysis is not dependent on the size

measure, we can simply re-run the analysis with different size type declarations and

choose the best (lowest) prediction.

Table 7.7 includes also the results obtained with different sizes for the circle shape

(and all other basic shape with size zero). The best results for heap (in fact: almost

exact) were obtained for column marked c = 9 corresponds to running the analysis

with the sized type declaration:

data Regionn = Above Float {n = 0}
...

| Circle Point Radius {n = 9}

| Outside Regionp {0 ≤ p ∧ n = 1 + p}

| Intersect Regionp Regionq {0 ≤ p ∧ 0 ≤ q ∧ n = 1 + p+ q}

However, the stack prediction using the above declaration is worse than with uniform

sizes. This is because, unlike the heap costs, the stack costs of each shape are similar.

The example suggests that, in general, better cost predictions might be possible by

conducting separate stack and heap analyses with different size declarations.12

12 In Section 7.2.10 we made the same remark regarding the choice of cost annotation depth.
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Chapter 8

Conclusion

In this chapter we review our contributions, compare our approach with previous

research in automatic cost analysis, highlight the limitations of our approach and

point some directions for further research.

8.1 Summary

The research motivation for this thesis was to provide guaranteed time and space

bounds for functional programs in resource-sensitive systems; we chose the func-

tional language Hume that specifically targets embedded and real-time systems as

a basis for this research. Since resource bounds are incomputable for programming

languages of sufficient expressiveness (which full Hume certainly is), we set out to

explore a partial solution by restricting the programming language and by employing

a source-level analysis that infers approximate cost bounds and may yield uninfor-

mative answers.

Our aim was, therefore, only partially achieved: we considered a core subset of

Hume with first-order recursive functions and data structures but not higher-order

functions, and an analysis that predicts space but not time costs. Moreover, to

obtain an automatic analysis, we have restricted our attention to inferring space

bounds expressed as linear inequations. Nonetheless, our cost analysis is capable

of automatically obtaining sound and accurate worst-case bounds of dynamic stack

and heap costs for functional programs with lists, binary trees and other recursive

data structures and for simplified embedded systems using these.

In this chapter we review our contributions, the limitations of our approach and

highlight topics for further research.

249
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8.2 Contributions

We now review the contributions made in this thesis, in order of relevance.

8.2.1 A static analysis for size and space costs

In Chapter 6 we presented an automatic static analysis for bounding sizes, stack and

heap costs of Core Hume, a subset of the Hume language with first-order recursive

functions and recursive data types. Our analysis combines ideas from previous works

on sized type systems (Hughes et al. 1996, Chin and Khoo 2001), type and effect

systems for costs (Dornic et al. 1992, Reistad and Gifford 1994, Hughes and Pareto

1999) and cost analysis of Hume programs (Hammond and Michaelson 2002). It

extends previous approaches in three main directions:

1. previous sized type systems focused on natural numbers, lists and streams (Reis-

tad and Gifford 1994, Hughes et al. 1996, Chin and Khoo 2001); our extension

for user-defined sizes allows the application of sized types to non-linear data

structures e.g. binary trees;

2. the use of abstract interpretation techniques to automatically infer cost bounds

of recursive functions is also novel1 and avoids the need for insightful user-

supplied stack and heap bounds in type annotations required in previous

works (Hughes and Pareto 1999, Pareto 2000);

3. our size and cost analysis for Core Hume extends previous work for a finite-

state subset of Hume (Hammond and Michaelson 2002) and demonstrates that

it is possible to extend the guarantees on bounded space behaviour for Hume

programs employing recursive data types and functions.

Static analyses can be evaluated according to the range of language features

covered, the precision of information obtained and the efficiency of the analysis.

In general, improving some of these aspects involves a trade-off: a fast analysis

might yield less precise results; and dealing with more language features can increase

analysis time or reduce precision of simpler cases.

Assessing a cost analysis for a subset of a research language is particularly dif-

ficult, since case-studies must be hand-adapted or made up from scratch (as were

the examples of Chapter 7). Direct quantitative comparisons with other approaches

are also not straightforward because of differences in languages and cost models.

1 The use of widening and hulling for automatically inferring sizes (but not cost bounds) was

proposed by Chin et al. (2003).
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We instead resort to a qualitative comparison with the most directly related works,

namely the stack and heap analysis for Embedded ML of Hughes and Pareto (1999)

and the amortised heap analysis of Hofmann and Jost (2003):

1. Formal basis. Our analysis is formally specified in Section 6.4 as a type and

effect system; it is proved correct against a cost-instrumented semantics in

Section 6.5; the model of costs is specified in Section 6.2 as an abstract machine.

Both other approaches (Hughes and Pareto 1999, Hofmann and Jost 2003) are

also formally based.

2. Cost model. Our model of stack and heap costs is based on an abstract machine

that mimics a realistic implementation e.g. by accounting stack costs of call

frames and pattern matching, and heap costs for tags. We therefore argue that

the cost bounds can be transposed to a concrete realisation of the abstract

machine by a simple choice of units. Moreover, we have shown in Section 6.6

that both cost model and analysis can be extended to account for common

compiler optimisations. Our abstract machine is inspired by the one of Hughes

and Pareto which also accounts for stack and heap; the cost model of Hofmann

and Jost, however, accounts only for heap.

3. Automation. Our analysis can infer size and cost inequations for recursive and

non-recursive functions without requiring user intervention; in particular, it

does not require insightful cost annotations as does the analysis of Hughes and

Pareto. Like our analysis, however, the amortised analysis of Hofmann and

Jost is also automatic.

4. Modularity. Like other program analysis based on type and effect systems,

our cost analysis is modular, that is, it can infer cost information separate

from its uses; it is thus possible to perform separate analysis of libraries or

modules. Although we have not demonstrated it in this thesis, we believe

that this modularity is an important characteristic for ensuring the scalability

of the analysis to large programs. This should also apply to the approaches

taken by Hughes and Pareto and Hofmann and Jost.

5. Intelligibility. The bounds obtained by our cost analysis can be directly re-

lated to the source-code as augmented type signatures for functions; this is not

so straightforward e.g. in the case of analysis of machine code blocks (Ferdi-

nand et al. 2001). Moreover, it is possible to employ automatic simplifications

to report partial information (e.g. focus just on sizes, stack or heap costs).

These remarks should equally apply to the approaches of Hughes and Pareto

and Hofmann and Jost.
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6. Accuracy. The experimental results reported in Table 7.1 of Section 7.2 demon-

strate that our analysis obtained exact worst-case costs for simple programs,

but was still able to obtain finite bounds (albeit less accurate) for more complex

ones e.g. the list sorting and tree insertion algorithms. The analysis of Hughes

and Pareto is limited to linear data structures and yields poor results with

irregular divide-and-conquer algorithms (e.g. quicksort); the analysis of Hof-

mann and Jost deals with these naturally by simply splitting the potential

between uses.

7. Trade-off between precision and time. Our analysis allows a selective trade-off

between the precision of cost bounds and analysis time by using known ab-

stract interpretation techniques (e.g. delaying the use of widening or hulling)

and more importantly, by the cost lifting transformation of Section 6.4.6 that

allows moving cost annotations from inner to enclosing expressions. The ef-

fectiveness of this heuristic was demonstrated in some examples e.g. red-black

tree insertion of Section 7.2.7. Moreover, cost lifting can be limited to specific

functions so that the precision loss is localised. Neither Hughes and Pareto

nor Hofmann and Jost have considered this issue.

8. Usability in a compiler. In Section 6.7 we have demonstrated that the bounds

obtained by our type and effect analysis for Core Hume expressions can be

automatically used in a compiler to obtain memory bounds for communication

wire of the coordination layer. The size and cost annotations of Hughes and

Pareto specify static sizes for memory regions which could, in principle, also

be used in a compiler; the analysis of Hofmann and Jost, however, obtains

heap costs as functions of unknown input and output sizes and therefore is not

usable in a compiler unless extra size information is provided.

9. Efficiency. Timing results from our prototype implementation reported in Ta-

bles 7.2 and 7.3 show that the analysis fits an average desktop computer and

that the analysis time is acceptable for a verification phase: our largest exam-

ple (red-black tree insertion) took 20 seconds to analyse.

The worst-case time- and space-complexity of the polyhedral computations we

employ (e.g. convex hull and widening) is exponential in the number of dimen-

sions (Khachiyan et al. 2006), i.e. the number of annotations in types. However,

we remark that the number of annotations grows with the size of types but not

the size of programs; admitting that the former remains bounded, we conjec-

ture that the exponential complexity should not prevent the practical use of

our analysis.

In contrast, the worst-case complexity of Presburger constraint checking re-
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quired by Hughes and Pareto is doubly-exponential on the number of variables;

yet our previous assumption that types remain bounded means this is not, by

itself, a prohibitive limitation. As far as we know, the stack and heap has not

been implemented; however, the size-only system has been implemented with

acceptable type checking times (Pareto 1998).

Finally, the amortised analysis of Hofmann and Jost requires solving a linear

programming problem with theoretical and practical polynomial worst-case

complexity.

8.2.2 Core Hume language and abstract machine

In Section 4.2 of Chapter 4 we presented a core subset of the Hume language with

recursive first-order functions and algebraic data types. The main novelty in this

language subset is a clear separation of values in the expression and coordination

layers of the core language:

• values of expressions are “unlifted”, that is, the void value “*” is allowed only

in box outputs;

• expressions in box outputs must construct heap results that are disjoint from

the input values.

These restrictions allow implementing communication wires using a simple region

mechanism and use region-reseting to recycle heap space. Unlike previous implemen-

tations that use a copying collector (e.g. the Hume Abstract Machine (Hammond

2003)) this ensures that each state transition requires only a bounded amount of

computation, making reasoning about costs at the language level simpler.

In Section 6.2 of Chapter 6 we presented an execution model for Core Hume in

the form of an abstract machine using region memory management. Although it

operates directly over expressions rather than compiled instructions, it accurately

mimics stack and heap costs of a realistic implementation, e.g. by using a single stack

for temporary values and call frames, by accounting stack costs for pattern matching

and for tags required in heap values.

8.2.3 Extensions for optimisations

In Section 6.6 of Chapter 6 we have exposed some standard optimisations—namely,

tail calls, unboxed representation of enumerations and explicit heap deallocation—

as language-level annotations and extended both the abstract machine and static

analysis to support them.
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Dealing with optimisations in the context of resource-sensitive systems is im-

portant not only because it reduces absolute costs but also because it can improve

predictability: our analysis was able to obtain bounds for optimised programs that

exhibit linear costs when it could not do so for the naive supra-linear ones (e.g. the

heap costs for the destructive list sorting algorithms of Section 7.2.5).

8.2.4 Experimental results

In Chapter 7 we conducted an experimental assessment of the cost bounds obtained

by static analysis against profiling data collected from an implementation of the

abstract machine. The examples chosen include some textbook functional algo-

rithms (Section 7.2) and prototype embedded systems (Section 7.3).

Tables 7.1, 7.5, 7.6 and 7.7 summarise the quantitative assessment of the relative

error of the predictions; the results indicate that our analysis yields exact bounds

for simple examples and good upper-bounds for moderately complex ones (e.g. list

sorting, red-black trees, lift controller and the geo-server examples).

8.2.5 Cost annotations and lifting

The initial naive formulation of our cost analysis in Section 6.4.3 introduced one dis-

junction for each syntax node in the program to account for the maximum stack costs

of subexpressions; this results in generating an exponential number of constraints

with respect to the program size. In order to obtain a more practical analysis we

have extended the core language in Section 6.4.4 with cost annotations for assign-

ing stack and heap costs to expressions; in retrospect, these are simply the “tick”

annotations of a cost monad.

The purpose of cost annotations is to allow moving costs from sub-expressions to

enclosing ones, synthesising constraints with maximum costs instead of disjunctions.

This is accomplished by a cost lifting transformation defined in Section 6.4.6. In

our prototype implementation of the analysis we left the decision of applying cost

lifting to the user; this allowed us to conduct an experimental assessment of the

technique. Furthermore, the cost lifting results in cost bounds that are no lower

than the original, and therefore is always sound.

The usefulness of the transformation was verified experimentally with the red-

black tree example of Section 7.2.7, Chapter 7; the results in Table 7.4 demonstrate

a trade-off between the precision of cost bounds and the analysis time and space

usage, e.g. the worst precision stack analysis has 5 times the relative error2 of the

2 But still yields a finite upper bound for stack.
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best one but is 50 times faster and uses less than 1/10 of the memory. One advantage

of this technique is that it allows losing precision in a gradual manner by specifying

a cut-off depth for cost annotations; moreover, it can be applied to specific functions

as required rather than the whole program.

8.2.6 Sized type analysis

We also identify two restricted contributions in the area of sized type analysis. The

size type system of Chapter 5 is based on the one by Chin and Khoo (2001); however,

the formulation of the size semantics and the formulation and soundness proofs of

Theorems 5.21 and 5.23 are new:

1. we allow user-defined sizes for data types; the definition of the size function

(Table 5.10 on page 122) and the soundness results (Theorems 5.21 and 5.23)

have been extended with the assumptions Σ for the data constructors.

2. the soundness proof of Chin and Khoo assumes the existence of a minimal size

constraint S for every value (including functions); however, this assumption

does not hold for the lattice of constraints. Our soundness proof corrects this

by defining the size S for non-functional values only and stating the size ap-

proximation for functions in a pointwise manner (Definition 5.10 on page 122).

8.3 Limitations

The principal limitations of our approach concern the range of language features

covered and the quality of size and cost bounds:

• We have consider only a first-order language. This restriction was imposed by

a technical requirement in the soundness proof of the size analysis of Chap-

ter 5, namely, the inclusiveness of the type semantics (Lemma 5.16). It would,

however, be possible to apply the cost analysis to some higher-order programs

even without size information (see Section 8.4.1). Alternatively, defunction-

alisation can be employed to transform the program into a first-order version

(e.g. the geo-server example of Section 7.3.3).

• Our analysis cannot infer information for elements inside collection types. This

limitation is caused by insufficient size polymorphism in the sized types of con-

structors (see Section 5.6.3). To obtain an automatic sized type reconstruction

algorithm, we considered only let-bound polymorphism and have not addressed

this limitation.
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• Our analysis can only synthesise size and cost bounds when these are expressible

as linear inequations. This limitation allows the use of computational solvers

(e.g. the Parma Polyhedra Library) which support not just the automatic sim-

plification of constraints, but also the algorithmic construction of invariants

for recursive functions.

8.4 Further work

8.4.1 Higher order functions

We have restricted our size analysis to a first-order language as a consequence of

our soundness proof: Lemma 5.16 (page 124) requires that the domain of values

satisfies the ascending chain condition; this holds trivially for a flat domain of zero-

order values but not for a function space. On the other hand, we have not found a

counterexample of the lemma in the higher-order setting, so we do not know whether

the result can be extended to a higher-order setting. We therefore leave the extension

of size analysis for higher-order functions as an open problem.

We do, however, believe that it is possible to extend our analysis to predict costs

of higher-order functions even without considering size information, i.e. as in the

time system of Dornic et al. (1992).

Extending the core language and abstract machine

Extending our core language and abstract machine to support higher-order functions

requires dynamic representations of functional values, i.e. closures (Landin 1964);

these will typically be allocated in the heap and so have to be accounted in the cost

analysis.

A closure for a function λx. e is a pair of the function’s code and the environment,

i.e. the values of free variables in λx. e. The code is shared by all dynamic instances

of the value and can be simply a pointer to a static area; the values of free variables

are dynamic and hence account for the variable heap cost of the closure.

Environments are implemented in the original SECD machine as linked struc-

tures shared among different closures (Kogge 1991); this makes it difficult to ac-

count the relative contribution of each closure to the heap residency. Modern im-

plementations of functional languages, use a flat representation of environments as

contiguous blocks of values, e.g. the SML-New Jersey compiler (Appel 1992) and

the STG-machine (Jones 1992)); the heap cost of a closure is then proportional the

number of free variables in the lambda-abstraction, thus making it better suited
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FV(λx. e) = {y1, . . . , yn} ui = E(yi)

a /∈ dom(H) a at r ui at r

E′ = [y1 7→ u1, . . . , yn 7→ un]

〈eval(λx. e) : C, E, S, H〉 r
↪→ 〈C, E, a : S, H[a 7→ 〈λx. e, E′〉]〉

(8.3)

〈eval(e1 e2) : C, E, S, H〉 r
↪→ 〈eval(e1) : eval(e2) : apply : C, E, S, H〉 (8.4)

H(a) = 〈λx. e, E′〉

〈apply : C, E, u : a : S, H〉 r
↪→

〈bind(x) : eval(e) : ret(1) : [], E′, u : 〈C, E〉 : S, H〉

(8.5)

Table 8.1: Core Hume machine extensions for higher-order functions.

for syntax-directed cost analysis. Moreover, experimental measurements show that

shared representations of closures have no performance advantage and may lead to

unexpected memory leaks (Appel 1992, chapters 12 and 15). We therefore choose a

flat representation of closures for the Core Hume machine; this will be reflected in

the heap cost metric for closures.

Consider the extension of the Core Hume language with expressions for functional

abstraction and application:

e ::= · · · | λx. e | e1 e2 (8.1)

For simplicity, we consider only single argument applications; multiple arguments

can be encoded in (heap) tuples. We also extend the boxed (heap) values of the

Core Hume abstract machine with closures 〈λx. e, E〉 where E is an environment,

i.e. a mapping from variables to (unboxed) values.

b ::= · · · | 〈λx. e, E〉 (8.2)

Our abstract machine will maintain the invariant that closure environments are

always minimal, i.e. for every closure 〈λx. e, E〉 we have dom(E) = FV(λx. e); this

means that the environment is implemented as a contiguous block of unboxed values.

Letting n = |FV(λx. e)|, we we will therefore assume that a closure 〈λx. e, E〉 has a

heap cost of 2 + n: one word for a tag, one word for a code pointer and n words for

the values3 of free variables.

Table 8.1 presents the extended machine transitions:

3These are unboxed integers or pointers to heap-allocated objects.



258 CHAPTER 8. CONCLUSION

Γ, x : τ ′ C̀OST e : τ $ s ;h | φ

Γ C̀OST λx. e : τ ′
s;h−−→ τ $ s′ ;h′ | φ ∧ s′ = 1 ∧ h′ = 2 + n

n = |FV(λx. e)| (8.6)

Γ C̀OST e1 : τ ′
s0;h0−−−→ τ $ s1 ;h1 | φ1 Γ C̀OST e2 : τ ′ $ s2 ;h2 | φ2

Γ C̀OST e1 e2 : τ $ s ;h | φ1 ∧ φ2 ∧ s = max(s0 + 2, s1, s2 + 1)

∧h = h0 + h1 + h2

(8.7)

Table 8.2: Cost analysis rules for higher-order abstraction and application.

• Rule (8.3) specifies the evaluation of a lambda-abstraction: a new closure is

allocated and the address pushed on top of the stack. Note that we impose

side conditions to prevent cross-region references in the closure environment;

this is done to avoid possibility of dangling references after region-resetting

(see Section 6.2).

• Rule (8.4) specifies the evaluation applications: first evaluate the function

obtaining a closure, then the argument and finally evaluate the closure; we

introduce a new apply machine directive for the final step.

• Rule (8.5) implements the apply transition: fetch the closure and argument

from the stack, push a continuation, evaluate the function body under an

augmented environment and restore the continuation.

Extending the cost analysis

Table 8.2 presents extended type and effect judgements with costs of closure cre-

ation and application. Rule (8.6) specifies the cost of creating a new closure for an

abstraction with n free variables, namely, 2 + n heap cells and one stack cell. The

stack and heap costs of the body are simply transposed into latent costs. Rule (8.7)

expresses the costs for an application as a combination of costs for the function and

argument parts plus the latent costs. The constant offsets of stack costs s0 + 2 and

s2 + 1 reflect the evaluation order chosen in Table 8.1: the argument is evaluated

on a stack extended by one word (for the closure); the latter is evaluated on a stack

extended by two words (the argument and continuation).

While we have not formally proved the correctness of the rules in Table 8.2, we

believe they should follow the same methodology used for proving Lemma 6.4 of

Chapter 6.

This extension should be sufficiently expressive for obtaining costs of simple
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higher-order combinators. For example, for the higher-order composition function

let compose (f, g, x) = f (g x) in . . .

we would derive a type annotated with costs but no sizes:

compose : ∀s1, h1, s2, h2, s, h. 〈∀abc. (b
s1;h1−−−→ c)× (a

s2;h2−−−→ b)× a s;h−−→ c,

s = max(s1, s2) + · · · ∧ h = h1 + h2 + · · · 〉

where a, b, c are unsized type variables.

This extension should also be sufficient for obtaining costs of a higher-order

version of the geo-server example of Section 7.3.3, i.e. without requiring the defunc-

tionalisation of regions. It would not, however, be sufficient for obtaining costs of

functions that traverse recursive data structures, e.g. the list map function with the

following annotated type:

map : (a
s′;h′

−−−→ b)× Listn a
s;h−−→ Listm b

The difficulty is that the heap cost h of map is the product of two variables (the

latent cost h′ and list length n) and thus not expressible as a linear constraint.

8.4.2 Time analysis

Our framework of cost annotations should allow extending our analysis to account

for time. The treatment of time should be similar to that of heap except for the

absence of deallocation. To allow flexibility in cost assignment, we would treat time

costs via annotations as we did for stack and heap: timek ê assigns a time cost

k (expressed in suitable units) to expression e. To extend our analysis to predict

real-time bounds we propose adapting the methodology of Bonenfant et al. (2007):

1. design a virtual instruction set and associated compiler for our Core Hume

abstract machine; in particular, variables need to be replaced by relative stack

offsets (e.g. de Brujin indices); this is a straightforward exercise in language

implementation that consists essentially of a sequence of program transforma-

tions (Ager et al. 2003a).

2. implement the virtual machine interpreter in the concrete machine, e.g. directly

or using C compiler;

3. use the aiT analysis tool (Ferdinand et al. 1999, 2001) to obtain guaranteed

worst-case time of each virtual instruction for the target architecture, e.g. in

processor cycles;
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4. transpose the time costs obtained for virtual instructions to the source-level

analysis using time cost annotations; this assignment can be done trivially by

modifying the compiler to annotate expressions instead of generating virtual

code.

Worst-case time bounds for individual virtual instructions are likely to be too

pessimistic because little is known in advance about the cache and pipeline states.

To improve precision, it is possible to consider the basic blocks of virtual instructions

generated for specific programs.

We believe this approach should, in principle, yield at least as accurate time costs

as the ones obtained for the HAM machine by Bonenfant et al. (2007) because each

transition in our abstract machine performs only a bounded amount of computation.

Hence, each virtual instruction should compile into machine code performing sequen-

cial or (at most) statically-bounded loops computations, which fit the capabilities of

the aiT tool.

However, one important limitation still applies: the cost analysis is only able to

synthesise linear inequations, so we can only obtain upper bounds for linear-time

algorithms.

8.4.3 Polynomial cost bounds

An interesting research direction is to explore recent proposals for abstract interpre-

tation with polynomial inequalities of bounded degree (Bagnara et al. 2005). This

technique approximates non-linear terms in polynomials as additional independent

variables and uses convex polyhedra to represent this extended algebraic structure.

Unlike methods based on quantifier elimination, which are computationally-

prohibitive, e.g. Kapur (2004), the proposal of Bagnara et al. can be implemented

using the same underlying machinery of convex polyhedra used for linear relation

analysis. Moreover, it can express not just polynomial equalities but also inequalities

which are essential for cost approximations.

The experimental results of Bagnara et al. show that the technique can obtain

quadratic polynomial invariants in reasonable time; we conjecture that this technique

can be used to extend our analysis to obtain low-degree (e.g. quadratic or cubic)

polynomial cost bounds.
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Mathematical notation

In this appendix we review some mathematical notation and results that are used in

this thesis. Since all the notions and results are well-known, we include them only

to fix notation and refer the reader to standard textbooks on mathematical foun-

dations of programming language semantics for a thorough presentation (Mitchell

1996, Winskel 1993, Davey and Priestley 1990).

A.1 Partially ordered sets

Partial orders play a pivotal role in both denotational semantics of programming

languages (Stoy 1977, Winskel 1993) and program analyses (Nielson et al. 1999). We

briefly review some definitions and elementary results that are used in this thesis.

A.1.1 Order relations

A pre-order on a set A is a binary relation @⊆ A×A that is reflexive and transitive.

A partial order on A is a pre-order that is also antisymmetric, i.e. a binary relation

v⊆ A×A that is reflexive, transitive and antisymmetric.

A.1.2 Bottom and top elements

Let (A, v) be a partial order; if A has a smallest element, i.e. an element ⊥ ∈ A such

that ⊥ v x for all x ∈ A, then we say that ⊥ is the bottom element of A. Dually, if

A has a greatest element, it is designated the top element and represented by >. It

follows from the antisymmetry of v that the bottom and top elements, if they exist,

are unique.

261
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A.1.3 Least upper-bounds and greatest lower-bounds

Let (A, v) be a partial order and X ⊆ A; u ∈ A is upper-bound of X iff x ∈ X

implies x v u. Dually, l ∈ A is a lower-bound of X iff x ∈ X implies l v x.

The least upper-bound (or join) of X is u ∈ A such that (1) u is an upper-bound

of X; (2) for all u′ such that u′ is an upper-bound of X, we have u v u′. We write⊔
X for the least upper-bound of X whenever it exists (in which case it is unique)

and
d
X for the dual notion of greatest lower-bound (also called meet).

A.1.4 Lattices

A lattice is a partial order (D, v) such that every pair of elements x, y ∈ D has a

least upper bound x t y ∈ D and greatest lower bound x u y ∈ D.

A complete lattice is a partial order (D,v) such that every subset X ⊆ D has a

least upper bound
⊔
X ∈ D and greatest lower bound

d
X ∈ D. It is straightforward

to check that every complete lattice must have a least element ⊥ =
d
D =

⊔
∅ and

a greatest element > =
⊔
D =

d
∅.

A.1.5 Complete partial orders

A countable subset X = {x0, x1, x2, . . .} of a partial order (D, v) is an ω-ascending

chain (or simply ascending chain) iff X ⊆ D and xi v xi+1 for all i ∈ N.

A partial order (D, v) is complete (a CPO) if and only if every ω-ascending

chain in D has a least upper-bound in D, i.e. xi ∈ D and xi v xi+1 for all i ∈ N
implies

⊔
{xi : i ∈ N} ∈ D.

Our definition of CPO follows Winskel (1993) and Mitchell (1996) and does not

require the existence of least elements, and thus corresponds to the notion of pre-

CPO in Stoy (1977) and Davey and Priestley (1990). We designate by pointed CPO

a CPO with least element.

It is immediate to verify that every complete lattice is a (pointed) CPO; the

converse implication does not hold because a CPO need not have a top element.

A.1.6 Continuity and fixed points

Let (A, vA) and (B, vB) be CPOs. A function f : A→ B is monotone if and only

if x vA y implies f(x) vB f(y) for all x, y. A function f is continuous if and only

if f is monotone and f(
⊔
AX) =

⊔
B f(X) for all ascending chains X ⊆ A, i.e. f

preserves least-upper bounds of chains.
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If f : A → A is a continuous function on a pointed CPO (A, v) then it has a

unique least fixed-point, which we designate by fix (f).

Theorem A.1 (Fixed point theorem) Let (A, v) be a pointed CPO and f :

A→ A a continuous function. Define

fix (f) =
⊔
n∈N

fn(⊥) .

Then fix (f) is the least-fixed point of f i.e. f(fix (f)) = fix (f) and if f(x) v x then

fix (f) v x.

Proof: See, for example, Davey and Priestley (1990, chapter 4, page 89). �

A.1.7 Constructing complete partial orders

We now review some standard constructions of CPOs.

Discrete order: Any set A is a CPO under the discrete partial order x v y
def⇐⇒

x = y.

Lifting: We can turn any CPO (A, v) into a pointed CPO (A⊥, v′) by adding a

distinct element A⊥ = A ∪ {⊥} with ⊥ 6∈ A and defining x v′ y def⇐⇒ x =

⊥ ∨ x v y.

Cartesian product: If (A, vA) and (B, vB) are CPOs, then (A×B, v) is a CPO

with the ordering (x, y) v (x′, y′) def⇐⇒ x vA x′ ∧ y vB y′. (A × B, v) is

a pointed CPO whenever (A, vA) and (B, vB) are pointed: if ⊥A, ⊥B are,

respectively, the least elements of A and B, then the least element of A×B is

(⊥A, ⊥B).

Continuous function space: If (A, vA) and (B, vB) are CPOs, then [A→ B] is

the set of continuous functions from A to B. If B is pointed then ([A→ B], v)

is a pointed CPO under the pointwise ordering :

f v g def⇐⇒ ∀x ∈ A f(x) vB g(x)

The bottom element of [A→ B] is the constant function that yields ⊥B , which

we represent by ⊥[A→B] or simply ⊥ when the carrier set [A→ B] is clear from

the context.
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A.1.8 Ascending chain condition

A partial order (D, v) satisfies the ascending chain condition (ACC) if and only if

every ascending chain in D eventually stabilises, i.e. for all chains {(xi)i∈N} in D,

we have:

∃k ∈ N ∀i ∈ N (i ≥ k =⇒ xi = xk)

Any discrete partial order satisfies (ACC); and if (A,vA), (B, vB) both satisfy (ACC)

then so do A⊥, B⊥ and A×B. However, [A→ B] might not satisfy (ACC) even if A

and B do. For a counter-example, let A = N with the discrete order and B = {⊥, >}
the two-point lattice; then

fi(j)
def=

{
>, if i < j

⊥, otherwise

defines an ascending chain of continuous functions {fi : i ∈ N} with least upper

bound the constant function that yields >. But fi(i) = ⊥ and fi+1(i) = >, therefore

fi 6= fi+1 for all i, which shows that the chain is not stabilising.

A.1.9 Ideals

Let (D, v) be a CPO; a subset X ⊆ D is downwards closed iff whenever x ∈ X and

y v x then y ∈ X. A subset X ⊆ D is consistently closed iff whenever Y ⊆ X and⊔
Y exists in D, then

⊔
Y ∈ X.

A non-empty subset X of a CPO (D, v) is an ideal iff X is downwards closed

and consistently closed. The set of all ideals of D is designated I(D).

Lemma A.2 If (D, v) is a pointed CPO then (I(D), ⊆) is a pointed CPO.

It is straightforward to verify that the singleton {⊥D} and D are, respectively, is

the bottom and top elements of (I(D), ⊆).

A.2 Interval constraints and solutions

In this section we formally define the interval constraints used in the coordination

layer analysis of Section 6.7, prove the existence of minimal solutions and describe

an algorithm for obtaining a solution.

A.2.1 Interval constraints

An interval constraint ` w φ is pair of a variable ` and a convex size constraint φ

(see Section 5.5). A system of interval constraints is a finite set {(`i w φi)Ni=1} where
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the variables `i on the left-hand sides are not necessarily distinct.

Informally, a constraint ` w φ expresses a lower-bound for ` as the projection of a

formular φ over variable `; to define this formally, we begin by defining the solutions

of interval constraints.

A solution of a system of interval constraints is an assignment V : ZVar →
Interval of intervals to variables. The projection of a constraint φ over a variable `

under a solution V is an element of Interval defined by:

JφK` V
def=
{
z ∈ Z : [` 7→z] |= ∃~̀′.

(
φ ∧

∧
1≤i≤n inf V(`′i) ≤ `′i ≤ supV(`′i)

)}
where {`′1, . . . , `′n} = FZV(φ) \ {`}

(A.1)

In (A.1) we consider inf ⊥ = +∞ and sup⊥ = −∞; also, inequalities of the form

` ≤ ∞ and −∞ ≤ ` are interpreted as true, while inequalities such as ` ≤ −∞ and

∞ ≤ ` are interpreted as false; these conventions deal with empty intervals with no

need for special cases.

We remark that projection is well-defined because the expression on the right-

hand side of � in (A.1) yeilds the same set regardless of the choice of ordering

among the free variables of φ. Second, note that when φ is a convex constraint (i.e.

a conjunction of linear inequalities) then the projection defines an convex subset of

Z, i.e. an interval. We abuse notation and take the result of (A.1) as an element of

Interval.

A solution V satisfies a constraint ` w φ if and only if the interval V(`) contains

the projection JφK` V. Formally, we write V |= ` w φ and define it by1:

V |= ` w φ def⇐⇒ V(`) w JφK` V (A.2)

Finally, a solution satisfies a system if it satisfies every constraint:

V |= {(`i w φi)Ni=1}
def⇐⇒

∧
1≤i≤N V |= `i w φi (A.3)

A.2.2 Existence of solutions

A system of interval constraints {(`i w φi)Ni=1} always has a trival solution, namely

the assignment V(`) def= [−∞, +∞] for all `. This is the greatest solution with

respect to v and corresponds to the least informative analysis. Dually, the most

informative analysis corresponds to the least solution with respect to v. We will

show that a unique least solution exists by showing the “model intersection property”

for satisfiability. First, we prove an auxiliary result concerning projection.
1 We abuse the symbol w and use it on the left of ⇔ as the syntatic connective in a constraint

and on the right as the semantic relation of interval inclusion.
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Lemma A.3 JφK` (
d
i Vi) =

d
i(JφK` Vi) i.e. projection is a complete meet-morphism.

Proof: We need to prove the equality of two sets defined by predicates that differ

only in the bounds of the free variables of φ. Consider a variable `′ ∈ FZV(φ), `′ 6= `;

the bounds for `′ in the definition of JφK` (
d
i Vi) are

inf (
d
i Vi)(`′) ≤ `′ ≤ sup (

d
i Vi)(`′)

But

inf (
d
i Vi)(`′) = max {inf Vi(`′) : i ∈ N}

sup (
d
i Vi)(`′) = min {sup Vi(`′) : i ∈ N}

Substitution in the previous equation yields:

max {inf Vi(`′) : i ∈ N} ≤ `′ ≤ min {sup Vi(`′)) : i ∈ N} ⇐⇒

⇐⇒ ∀i ∈ N. inf Vi(`′) ≤ `′ ≤ sup Vi(`′)

The last equation caracterizes the bounds of `′ in the definition of
d
i(JφK` Vi) as

required. �

Corollary A.4 |= has the model intersection property, i.e.

(∀i ∈ N. Vi |= ` w φ) =⇒
d
i Vi |= ` w φ

Proof: The hypothesis is Vi(`) w JφK` Vi for all i ∈ N. Since Interval is a complete

lattice, this implies
d
i Vi(`) w

d
i(JφK` Vi). By Lemma A.3, this is equivalent to

d
i Vi(`) w JφK` (

d
i Vi), which is the desired result. �

The model intersection property implies that constraint systems have a least

solution, namely the meet of the solutions of all constraints: such a set is countable

and not empty (it contains at least the trivial solution); therefore, by Corollary A.4,

the meet is also a solution. From the properties of the lattice, it is immediate that

this solution is unique and minimal.

A.2.3 Iterative approximation of solutions

The projection function is monotone over solutions, that is, we cannot invalidate a

constraint by moving to a larger solution.

∀φ. ∀`. ∀V. ∀V ′. V v V ′ =⇒ JφK` V v JφK` V ′ (A.4)

Monotonicity suggests that might employ a method based on chaotic iteration for

solving a constraint system; these are typically used for solving constraint systems

resulting from program analyses (Nielson et al. 1999, chapter 6).
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1. start with the least solution V(`) := ⊥ for all variables `;

2. while there exists i such that V(`i) 6w JφiK`i V:

assign V(`i) := V(`i) t JφiK`i V.

3. terminate with answer V

If the iteration of step 2 terminates, then V satisfies {(`i w φi)Ni=1}. Since the lattice

of intervals is complete, the solution obtained is unique and in fact the least solution

with respect to interval ordering.

However, there is no guarantee that the iteration in the lattice of intervals will

terminate because the former does not respect the ascending chain condition. In

this case the solution to employ a widening operator to accelerate converge to a

post-fixed point (see Section 2.3.3). Let ∇ be a widening operator for intervals (e.g.

the one defined in Section 2.3.5); to perform the iteration with widening we simply

replace the upper-bound t in step 2 by ∇:

2. while there exists i such that V(`i) 6w JφiK`i V:

assign V(`i) := V(`i)∇JφiK`i V.

Example A.5 Consider the cyclic system of constraints {i w i = 0, i w i =

j+1, j w j = i} envolving two variables i, j. The method chaotic iteration constructs

the following ascending sequence increasing intervals for i and j:

⊥ v [0, 0] v [0, 1] v [0, 2] v . . .

This iteration does not converge in finite number of steps to the least solution

[0, +∞]. By contrast, the iteration with the widening operator of Section 2.3.5

yields

⊥ v [0, 0] v [0, 1] v [0, +∞]

and stabilises after the second iterate. �

A.2.4 Practical implementation

A number of improvements can be made to the method outlined in the previous

section to obtain a practical and efficient implementation. Traversing the constraints

according to dependencies can reduce the amount of work to be done; moreover,

iterative approximations are required only for the truly cyclic components; therefore,

the natural choice is to start by partitioning constraints into strongly connected

components and iterate over those (Nielson et al. 1999, chapter 6, pages 381–384).
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A second possibility is to employ a more refined widening operator for intervals:

the naive widening introduced in Section 2.3.5 looses all precision of interval bounds

in a single step. A more refined variant is obtained by considering a gradual widening

of bounds given by a set K of integer constants, e.g. a set of integers explicitly

mentioned in the program text or as user annotations. Define the operator ∇K
parametrised by K as

⊥∇K int = int∇K⊥ = int

[z1, z2]∇K [z′1, z
′
2] = [l, u]

where l =

{
z1 if z1 ≤ z′1
max{k ∈ K ∪ {−∞} : k ≤ z′1} otherwise

u =

{
z2 if z′2 ≤ z2

min{k ∈ K ∪ {+∞} : z′2 ≤ k} otherwise

Then ∇K is a also widening operator (Nielson et al. 1999, pages 228–229); in fact,

the simpler widening is a special case of the above definition when K = ∅.

We have implemented a solver with both these techniques (iterating through

strongly-connected components and widening with constants) as part of our size and

cost analysis, and have found it to yield quite accurate results for the coordination

layer analysis of the embedded system examples in Section 7.3.
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Program listings

This appendix contains the listings for the Core Hume examples, namely the mine

pump controller, the lift controller and the geometric region server.

B.1 Mine pump controller

{-
Simplified mine pump controller

This is a simplified controller for a pump operating
in a mine subject to dangerous gases like methane (CH4)
and carbon monoxide (CO).

The pump can operate in two modes: auto or manual;
default is auto. In auto mode, the pump is operated
when the water level goes high (indicated by high_water_level)
and is switched off when the level goes low. In manual mode,
the pump is turned on or off under the control of the operator.

At no time should the pump be running when the methane level
reaches a critical value. When the methane level or the
carbone monoxide level reached critical values an appropriate
alarm is raised; when the methane level reaches its critical
value, the pump is turned off.

Reference: A. Burns, A. Wellings, Real-Time Systems and
their Programming Languages, Addison Wesley, 1990

-}

-- pump operation mode
data MODE = AUTO | MANUAL ;

269
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-- control signal to the pump engine to turn on and off
data STATE = ON | OFF ;

-- copy the mode and control data types
copyMODE :: MODE -> MODE;
copyMODE AUTO = AUTO;
copyMODE MANUAL = MANUAL ;

copySTATE :: STATE -> STATE;
copySTATE ON = ON;
copySTATE OFF = OFF;

-- operator requests
data REQ = REQ_ON | REQ_OFF | REQ_AUTO | REQ_MANUAL ;

-- low and high water level sensors
type WATER = (Bool,Bool) ;

--
-- the pump controller box
--
box pump
in (mode::MODE, state::STATE, water_sensors::WATER,

ch4_alarm::Bool, req::REQ)
out (mode’::MODE, state’::STATE, log::String)
unfair
(mode, ON, water, True, *) ->

(copyMODE mode, OFF, "CH4 alarm: turning pump off")
| (AUTO, state, water, alarm, REQ_MANUAL) ->

(MANUAL, copySTATE state, "Operator requested MANUAL mode")
| (AUTO, state, water, False, _*) ->

(AUTO, auto_control state water, "Running in auto mode")
| (MANUAL, state, water, False, REQ_ON) ->

(MANUAL, ON, "Operator requested pump ON")
| (MANUAL, state, water, alarm, REQ_OFF) ->

(MANUAL, OFF, "Operator requested pump OFF")
| (MANUAL, state, water, alarm, REQ_AUTO) ->

(AUTO, copySTATE state, "Operator requested AUTO mode")
-- default rule
| (mode, state, water, alarm, _*) -> (copyMODE mode, copySTATE state, *)
;

wire pump.mode pump.mode’;
wire pump.state pump.state’;

initial pump.state OFF;
initial pump.mode AUTO;
initial pump.water_sensors (False,False);
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-- automatic pump control based on readings from water level sensors
auto_control :: {STATE,WATER} -> STATE;
auto_control OFF (_,high) = if high then ON else OFF;
auto_control ON (low,_) = if low then OFF else ON;

------------------------------------------------------------------------
-- monitor the environment
-- triggers alarms in appropriate conditions
------------------------------------------------------------------------
box environment
in (ch4_level::Float, co_level::Float, airflow_level::Float)
out (ch4_alarm::Bool, ch4_alarm’::Bool,

co_alarm::Bool, airflow_alarm::Bool)
match
(ch4, co, air) -> (ch4>.high_ch4_level, ch4>.high_ch4_level,

co>.high_co_level, air<.low_airflow_level)
;

high_ch4_level :: Float;
high_ch4_level = 15.0;

high_co_level :: Float;
high_co_level = 15.0 ;

low_airflow_level :: Float;
low_airflow_level = 4.0;

wire environment.ch4_alarm pump.ch4_alarm;
wire environment.ch4_alarm’ logger.ch4_alarm;
wire environment.co_alarm logger.co_alarm;
wire environment.airflow_alarm logger.airflow_alarm;

-----------------------------------------------------------------------------
-- simulators for environment sensors
-----------------------------------------------------------------------------
box water
in (time::Float)
out (time’::Float, sensors::WATER) -- (lo,hi) booleans
match

(t) -> (t+.0.2,
let wl = 10.0+.10.0*.(sin# t) in
(wl<.low_water_level, wl>.high_water_level))

;

low_water_level :: Float;
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low_water_level = 2.0;

high_water_level :: Float;
high_water_level = 10.0;

box methane
in (time::Float)
out (time’::Float, level::Float)
match

(t) -> (t+.0.1, 8.0+.10.0*.(sin# (0.5+.t)))
;

box carbmonoxide
in (time::Float)
out (time’::Float, level::Float)
match

(t) -> (t+.0.2, 8.0+.10.0*.(sin# (0.3 +. t)))
;

box airflow
in (time::Float)
out (time’::Float, level::Float)
match
(t) -> (t+.0.3, 10.0+.10.0*.(sin# (0.6 +. t)))

;

wire water.time water.time’;
wire methane.time methane.time’;
wire carbmonoxide.time carbmonoxide.time’;
wire airflow.time airflow.time’;

wire water.sensors pump.water_sensors;
wire methane.level environment.ch4_level;
wire carbmonoxide.level environment.co_level;
wire airflow.level environment.airflow_level;

initial water.time 0.0;
initial methane.time 0.0;
initial carbmonoxide.time 0.0;
initial airflow.time 0.0;

-------------------------------------------------------------------------
-- simulator for operator requests
-------------------------------------------------------------------------
box operator
in (time::Int)
out (time’::Int, trigger::Bool)
match
(t) -> (t+1, (rem# t 50) == 0)
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;

box request
in (trigger::Bool)
out (req::REQ)
match

(True) -> (let k = rem# (abs (randomInt# 0)) 4
in mkREQ k)

| (False) -> (*)
;

abs :: Int -> Int;
abs x = if x>=0 then x else (negate# x);

mkREQ :: Int -> REQ;
mkREQ n = if n==0 then REQ_OFF

else if n==1 then REQ_ON
else if n==2 then REQ_AUTO
else REQ_MANUAL;

wire operator.time operator.time’;
wire operator.trigger request.trigger;
wire request.req pump.req;

initial operator.time 0;

-------------------------------------------------------------------------
-- logger box
-------------------------------------------------------------------------
box logger
in (ch4_alarm::Bool, co_alarm::Bool, airflow_alarm::Bool, pump::String)
out (dummy::Int)
fair
(True, *, *, *) -> (putStrLn# "ALARM: CH4 level too high")

| (False, *, *, *)-> (*)
| (*, True, *, *) -> (putStrLn# "ALARM: CO level too high")
| (*, False, *, *)-> (*)
| (*, *, True, *) -> (putStrLn# "ALARM: airflow level too low")
| (*, *, False, *)-> (*)
| (*, *, *, str) -> (putStrLn# str)
;

box sink
in (dummy::Int)
out (dummy’:: Int)
match
(_*) -> (*)

;

wire logger.dummy sink.dummy;
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wire pump.log logger.pump;

B.2 Lifts controller

{- Two lift simulator based on an example by Greg Michaelson
Pedro Vasconcelos 2006, 2007

-}

type Floor = Int; -- floor number, starting at 0

type Pending = [Bool]; -- list of floors to be visited

-- lift movement: going up, down, waiting or stopped
data Move = UP | DOWN | WAIT_UP | WAIT_DOWN | STOP ;

-- lift state
-- movement, current floor, lo/hi floors, pending requests
type State = (Move, Int, Int, Int, Pending) ;

-- request either lift
data Request = LIFT1 Int | LIFT2 Int;

-- number of floors
floors :: Int;
floors = 10;

-- create a list of n items
repeat :: {Int,a} -> [a];
repeat n x = if n==0 then [] else x:repeat (n-1) x ;

-- copy a state (not shared with the input)
copy_State :: State -> State;
copy_State (state, floor, lo, hi, pending)

= (copy_Move state, floor, lo, hi, copy_Pending pending);

copy_Move :: Move -> Move;
copy_Move UP = UP;
copy_Move DOWN = DOWN;
copy_Move WAIT_UP = WAIT_UP;
copy_Move WAIT_DOWN = WAIT_DOWN;
copy_Move STOP = STOP;

copy_Pending :: Pending -> Pending;
copy_Pending [] = [];
copy_Pending (p:ps) = copy_Bool p : copy_Pending ps;

copy_Bool :: Bool -> Bool;
copy_Bool True = True;
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copy_Bool False = False;

-- initial configuration (with n floors)
initialState :: Int -> State;
initialState n = (STOP, 0,0,0, repeat n False);

-- test if some boolean value is true
any :: Pending -> Bool;
any [] = False;
any (True:xs) = True;
any (False:xs) = any xs;

abs :: Int -> Int;
abs x = if x>=0 then x else 0-x;

max :: {Int,Int} -> Int;
max x y = if x>=y then x else y;

min :: {Int,Int} -> Int;
min x y = if x>=y then y else x;

-- get the nth element of a list
index :: {Int,[a]} -> a;
index n (x:xs) = if n==0 then x else index (n-1) xs;

-- modify the nth element of a list
modify :: {Int,a,[a]}->[a];
modify n y (x:xs) = if n==0 then (y:xs) else x:modify (n-1) y xs;

set :: {Floor,Pending} -> Pending;
set n p = modify n True p;

reset :: {Floor,Pending} -> Pending;
reset n p = modify n False p;

-- request a lift to visit a floor
pragma "nohull"
req_lift :: {State,Floor} -> State;
req_lift (STOP, floor, lo,hi, pending) req

= if req>floor then
(WAIT_UP, floor, req,req, set req pending)

else if req<floor then
(WAIT_DOWN, floor, req,req, set req pending)

else (STOP, floor, floor,floor, pending);
req_lift (state, floor, lo,hi, pending) req

= (state, floor, min lo req, max hi req, set req pending);

-- move a lift
pragma "nohull"
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move_lift :: State -> State;
move_lift (UP, floor, lo,hi, pending)

= if index floor pending then
(WAIT_UP, floor, lo,hi, reset floor pending)

else if floor<hi then
(UP, floor+1, lo,hi, pending)

else
(WAIT_DOWN, floor, lo,hi, pending);

move_lift (DOWN, floor, lo,hi, pending)
= if index floor pending then

(WAIT_DOWN, floor, lo,hi, reset floor pending)
else if floor>lo then

(DOWN, floor-1, lo,hi, pending)
else

(WAIT_UP, floor, lo,hi, pending);
move_lift (WAIT_UP, floor, lo,hi, pending)

= if any pending then
(UP, floor, lo,hi, pending)

else
(STOP, floor, floor, floor, pending);

move_lift (WAIT_DOWN, floor, lo,hi, pending)
= if any pending then

(DOWN, floor, lo,hi, pending)
else

(STOP, floor, floor, floor, pending);
move_lift (STOP, floor, lo, hi, pending)

= (STOP, floor, lo, hi, pending);

-- distance between a lift and a floor
-- takes in account the lift configuration and
-- computes the roundtrip distance
distance :: {State,Floor} -> Int;
distance (UP, floor,lo,hi,pending) dest

= if dest>=floor then
dest-floor

else
2*hi-floor-dest;

distance (WAIT_UP, floor,lo,hi,pending) dest
= if dest>=floor then

dest-floor
else

2*hi-floor-dest;
distance (DOWN, floor, lo,hi,pending) dest

= if floor>=dest then
floor-dest

else
dest+floor-2*lo;

distance (WAIT_DOWN, floor, lo,hi,pending) dest
= if floor>=dest then

floor-dest
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else
dest+floor-2*lo;

distance (STOP, floor, lo,hi,pending) dest
= if floor>=dest then floor-dest else dest-floor;

-- the dispatcher for 2-lifts
box dispatcher
in (s1::State, s2::State, floor::Floor)
out (s1’::State, s2’::State, req::Request)
match
(s1, s2, floor) ->

(copy_State s1,
copy_State s2,
let d1 = distance s1 floor ;

d2 = distance s2 floor
in if d1<=d2 then LIFT1 floor else LIFT2 floor)

| (s1, s2, *) ->
(copy_State s1, copy_State s2, *)

;

-- single lift controlers
--
box lift1
in (s::State, req::Request)
out (s’::State)
match

(s, LIFT1 floor) -> (req_lift (copy_State s) floor)
| (s, *) -> (move_lift (copy_State s))
;

box lift2
in (s::State, req::Request)
out (s’::State)
match
(s, LIFT2 floor) -> (req_lift (copy_State s) floor)

| (s, *) -> (move_lift (copy_State s))
;

-- generator for random floor requests
data Maybe a = Nothing | Just a ;

-- generator for a random requests
box generator
in (timer::Maybe Int)
out (timer’::Maybe Int, floor::Int)
match



278 APPENDIX B. PROGRAM LISTINGS

(Nothing) -> (let delay = rem# (abs (randomInt# 0)) 10
in Just delay,
rem# (abs (randomInt# 0)) floors)

| (Just t) -> (decr t, *)
;

decr :: Int -> Maybe Int;
decr n = if n>0 then Just (n-1) else Nothing ;

wire lift1.s dispatcher.s1’;
wire lift1.s’ dispatcher.s1;
wire lift1.req dispatcher.req;

wire lift2.s dispatcher.s2’;
wire lift2.s’ dispatcher.s2;
wire lift2.req dispatcher.req;

wire generator.floor dispatcher.floor;
wire generator.timer generator.timer’;

initial generator.timer Nothing;

initial dispatcher.s1 (initialState floors);
initial dispatcher.s2 (initialState floors);

B.3 Geometric region server

{- A "geometric region server" in Hume inspired by the paper
"Haskell vs. Ada vs. C++ vs. Awk vs...:
An Experiment in Software Prototyping Productivity"

by Paul Hudak and Mark P. Jones -}

type Point = (Float,Float)

-- a geometric region
-- the size measure is the number of inner constructors
data Region^n

= Left Float { n=0 }
| Right Float { n=0 }
| Below Float { n=0 }
| Above Float { n=0 }
| Circle Point Float { n=0 }
| Union Region^p Region^q { 0<=p, 0<=q, n=1+p+q }
| Intersect Region^p Region^q { 0<=p, 0<=q, n=1+p+q }
| Outside Region^p { 0<=p, n=1+p }
;

-- test if a point is inside a region
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inRegion :: {Point, Region} -> Bool ;

inRegion (x,y) (Left x0) = x<=.x0 ;
inRegion (x,y) (Right x0) = x0<=.x ;
inRegion (x,y) (Below y0) = y<=.y0 ;
inRegion (x,y) (Above y0) = y0<=.y ;
inRegion (x,y) (Circle (x0,y0) r)

= let dx = x-.x0 ;
dy = y-.y0

in dx*.dx+.dy*.dy <=. r*.r ;

-- intersection, union operators
-- using "if-then-else" to be non-strict on the 2nd argument
inRegion p (Intersect r1 r2)

= if inRegion p r1 then inRegion p r2 else False ;

inRegion p (Union r1 r2)
= if inRegion p r1 then True else inRegion p r2 ;

-- complement operator
inRegion p (Outside r) = not (inRegion p r) ;

-- logical negation (not a primitive function)
not :: Bool -> Bool ;
not True = False ;
not False = True;

-- some combinators for more elaborate regions
-- an annular region (r1 < r2)
annulus :: {Point, Float, Float} -> Region ;
annulus p r1 r2 = Intersect (Circle p r2) (Outside (Circle p r1)) ;

-- a vertical strip
vstrip :: {Float,Float} -> Region ;
vstrip x0 x1 = Intersect (Right x0) (Left x1) ;

-- an horizontal strip
hstrip :: {Float,Float} -> Region ;
hstrip y0 y1 = Intersect (Above y0) (Below y1) ;

-- a rectangular region
rect :: {Point, Point} -> Region ;
rect (x0,y0) (x1,y1) = Intersect (vstrip x0 x1) (hstrip y0 y1) ;

-- top half of a circle
halfcircle :: {Point, Float} -> Region ;
halfcircle (x0,y0) r = Intersect (Circle (x0,y0) r) (Above y0) ;

-- copy a 2D-point
-- behaves as the identity function but creates a new heap tuple
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copyPt :: Point -> Point;
copyPt (x,y)= (copyFloat# x, copyFloat# y);

{- the geoserver box
inputs are: positions of a target and host vessel
outputs are: boolean flags for zone membership

-}
box geoserver
in (target::Point, host::Point)
out (engage::Bool, weapon::Bool, tight::Bool)
match
(target, host) ->

(inRegion target (annulus (copyPt host) 10.0 20.0),
inRegion target (halfcircle (copyPt host) 30.0),
inRegion target (rect (0.0,0.0) (50.0,10.0)))

;

-- the logger box reports zone intersections
box logger
in (engage::Bool, weapon::Bool, tight::Bool)
out (log::String)
fair
(True, *, *) -> ("target in engageability zone")

| (False,*, *) -> (*)
| (*, True, *) -> ("target in weapon doctrine zone")
| (*, False,*) -> (*)
| (*, *, True) -> ("target in tight zone")
| (*, *, False) -> (*)
;

-- connect the geoserver and logger together
wire geoserver.engage logger.engage ;
wire geoserver.weapon logger.weapon ;
wire geoserver.tight logger.tight ;
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