
Resource Analysis for Lazy Evaluation with Polynomial Potential
Sara Moreira

up201404984@fc.up.pt

Faculdade de Ciências,

Universidade do Porto

Porto, Portugal

Pedro Vasconcelos

pbv@dcc.fc.up.pt

LIACC, Faculdade de Ciências,

Universidade do Porto

Porto, Portugal

Mário Florido

amf@dcc.fc.up.pt

LIACC, Faculdade de Ciências,

Universidade do Porto

Porto, Portugal

ABSTRACT
Space and time requirements of lazy functional programs are hard

to predict for both programmers and compilers. Previous work

in compile-time amortised analyses for lazy functional languages

by Simões, Jost et.al. was limited to bounds that are linear on the

sizes of inputs. This paper presents an extension of these analy-

ses with the method of polynomial potential (due to Hofmann and

Hoffmann), allowing the system to derive univariate polynomial

resource bounds. We present the analysis as a type system for track-

ing allocations in a simple functional lazy functional language with

lists and pairs, an operational semantics (serving as cost model), and

worked examples of deriving resource bounds. We also highlight

some limitations and conclude with further research directions.

CCS CONCEPTS
• Theory of computation → Program analysis; Type theory; •
Software and its engineering→ Functional languages.

KEYWORDS
Resource analysis, Amortised analysis, Type-based analysis, Lazy

evaluation

ACM Reference Format:
SaraMoreira, Pedro Vasconcelos, andMário Florido. 2020. Resource Analysis

for Lazy Evaluation with Polynomial Potential. In IFL 2020: Proceedings of the
32nd Symposium on Implementation and Application of Functional Languages
(IFL ’20), September 2–4, 2020, Canterbury, United Kingdom. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3462172.3462196

1 INTRODUCTION
Lazy evaluation offers known advantages in terms of modularity

and higher abstraction [8]. However, the operational properties of

lazy languages (such as time and space behaviour) are harder to

predict than those of strict ones; this unpredictability remains “a

thorn in the side of lazy evaluation” [12].

Previous work on type-based amortised analysis for lazy lan-

guages has enabled the automatic prediction of resource bounds

for lazy higher-order functional programs with linear costs on the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IFL ’20, September 2–4, 2020, Canterbury, United Kingdom
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8963-1/20/09. . . $15.00

https://doi.org/10.1145/3462172.3462196

number of data and codata constructors [10, 16]. While these sys-

tems were important contributions, they were limited to linear

resource bounds — meaning that any programs exhibiting polyno-

mial or exponential resource use on input size would not admit a

type. In this paper we present an extension to derive univariate

polynomial bounds
1
using the polynomial potential of Hofmann

and Hoffmann [4, 5]. As a motivating example, consider the two

functions attach and pairs (adapted to Haskell from [4]):

pairs :: [a] −> [(a , a)]
pairs [] = []
pairs (x : xs) = attach x xs ++ pairs xs

attach :: a −> [a] −> [(a , a)]
attach _ [] = []
attach y (x : xs) = (x ,y): attach x ys

The function pairs takes a list and computes a list of pairs that

are elements of the given list; this uses an auxiliary definition attach
that pairs a single element to every element of the argument list.

It is straightforward to see that fully evaluating attach 𝑦 𝑥𝑠 re-

quires space that is linear on the length 𝑛 of the input list 𝑥𝑠 . In

fact, using the system in [10] we can automatically derive a precise

bound for allocations as an annotated type (simplified for presenta-

tion):

𝐴 → L (3, 𝐵) 1−→ L (0, 𝐴 × 𝐵)
Each element of the input list is annotated with potential 3 and

the function arrow is annotated with cost 1; this means that attach
requires 3𝑛 + 1 allocations. Function pairs, however, requires space
and time that is quadratic on the length its input. Hence, it does

not admit a type derivation in the mentioned system.

This paper extends type-based amortised analysis of lazy lan-

guages to polynomial resource bounds by following the approach

done for the strict setting by Hoffman [1, 5]. The analysis is pre-

sented for a small lazy functional language with higher-order func-

tions, pairs, lists and recursion. Finally, we give examples of the

application of our analysis to programs exhibiting polynomial re-

source behaviour.

We have also developed a prototype implementation of this

system and the code can be found in the Github repository:

https://github.com/ohhisara/lazy-potential-analysis

An example output (simplified for presentation) for pairs of the
implementation is:

L@(2.0,3.0)(A) -> L((A,A))

This corresponds to a quadratic cost bound of 2 × 𝑛 + 3 ×
(𝑛
2

)
=

2 × 𝑛 + 3

2
× 𝑛 × (𝑛 − 1) expressed as a function of the input list

1
E.g., allowing a bound 𝑛2 +𝑚2

but not 𝑛 ×𝑚 where 𝑛,𝑚 are input sizes.

1

https://doi.org/10.1145/3462172.3462196
https://doi.org/10.1145/3462172.3462196
https://github.com/ohhisara/lazy-potential-analysis

IFL ’20, September 2–4, 2020, Canterbury, United Kingdom Sara Moreira, Pedro Vasconcelos, and Mário Florido

length 𝑛. Details about the derivation of this cost equation will be

further explained in Section 5.

The rest of the paper is organised as follows. Section 2 surveys

relevant background and related work about amortised analysis.

Section 3 presents the language and its annotated operational se-

mantics. Section 4 presents the main contribution of this paper: a

type and system for resource analysis of lazy evaluation with poly-

nomial bounds. In Section 5, we show several worked examples of

the analysis. In section 6 we discuss cost overestimation and point

out some solutions. Finally, we conclude and present some future

work.

2 BACKGROUND AND RELATEDWORK
2.1 Type-based Analysis
Type-based analysis [13] is an approach to static analysis that at-

taches information to types. One advantage of this approach is the

fact that types are well-suited to interface information between soft-

ware components, thus enabling modular analyses. Types also facil-

itate communication with programmers by extending an already-

known notation. Finally, type theory provides a framework for

formulating and proving correctness and for deriving algorithmic

checking or inference methods.

2.2 Classic Amortisation
Amortised analysis is a method due to Tarjan for analysing the

complexity of a sequence of operations [14, 17]. Rather than reason

about the worst-case cost of individual operations, amortised analy-

sis is concerned with the worst-case cost of a sequence of operations.
The advantage of amortisation is that some operations can be more

expensive than others; distributing the cost of expensive operations

over the cheaper ones can simplify the analysis and produce better

bounds than analysing worst-case for individual operations.

To obtain an amortised analysis it suffices to define an amortised
cost for operations such that

𝑛∑
𝑖=1

𝑎𝑖 ≥
𝑛∑
𝑖=1

𝑡𝑖

i.e.for each sequence of operations the total amortised costs is an

upper-bound on the total actual costs (where 𝑎𝑖 and 𝑡𝑖 are, respec-

tively, the amortised costs and the actual costs of each operation).

As a consequence, for each intermediate step of the sequence, the

accumulated amortised cost is an upper bound on the accumulated

actual cost. This allows the existence of operations with an ac-

tual cost that exceeds their amortised cost (expensive operations).
Conversely, cheap operations have a lower actual cost than their

amortised cost. Expensive operations can only occur when the

difference between the accumulated amortised cost and the accu-

mulated actual cost (accumulated savings) is enough to cover the

extra cost.

There are three different methods for amortised analysis: the

aggregate method (using the above relation directly), the accounting
method (using credits and debits) and the potential method. The
choice of method depends on how convenient each is to the situ-

ation. The type-based analyses that we extend use the potential

method which we briefly review.

Potential method. This method defines a function Φ that maps

each state of the data structure 𝑑𝑖 to a real number (the potential
𝑑𝑖). This function should be chosen such that the potential of the

initial state is 0 and never becomes negative, that is, Φ(𝑑0) = 0 and

Φ(𝑑𝑖) ≥ 0, for all 𝑖 . This potential represents a lower bound to the

accumulated savings.

The amortised cost of an operation is then defined as its actual

cost 𝑡𝑖 , plus the change in potential between 𝑑𝑖−1 and 𝑑𝑖 :

𝑎𝑖 = 𝑡𝑖 + Φ(𝑑𝑖) − Φ(𝑑𝑖−1)

From this definition we get:

𝑗∑
𝑖=1

𝑡𝑖 =

𝑗∑
𝑖=1

(𝑎𝑖 + Φ(𝑑𝑖−1) − Φ(𝑑𝑖))

=

𝑗∑
𝑖=1

𝑎𝑖 +
𝑗∑

𝑖=1

(Φ(𝑑𝑖−1) − Φ(𝑑𝑖))

=

𝑗∑
𝑖=1

𝑎𝑖 + Φ(𝑑0) − Φ(𝑑 𝑗)

The sequence of potential function values forms a telescoping series

and thus all terms except the initial and final values cancel in pairs.

Because Φ(𝑑0) = 0 and Φ(𝑑 𝑗) ≥ 0 then

∑
𝑎𝑖 ≥ ∑

𝑡𝑖 . Note also

that the above reasoning requires that potential is used only once,
i.e.Φ(𝑑𝑖−1) cannot be re-used after state 𝑖 . This will impact the

structural proprieties of type systems for automatic amortisation

(cf.Section 4.2).

2.3 Automatic Amortisation
In 2003, Hofmann and Jost [6] proposed a system for static auto-

matic analysis of heap space usage for a strict first-order language.

This system was able to obtain linear bounds on the heap space

consumption of a program by using a type system refined with

resource annotations. This annotated type system allowed the anal-

yser to predict the amount of heap space needed to evaluate the

program by keeping track of the memory resources available. This

form of analysis would later be recognised as automatic amortised

resource analysis (AARA).

Further work has since then been done using this approach,

which is, more specifically, based on the potential method of amor-

tised analysis. The main idea behind this method is the association

of potential to data structures. This potential is assigned using type

annotations which express coefficients of the potential function.

Because the inference of suitable annotations can be reduced to a

linear programming problem, it is possible to automatically com-

pute the type annotations.

Subsequent work by the same authors applied automatic amor-

tisation to predict heap space for a small Java-like language with

explicit deallocations [7]. The data is assigned a potential related

to its input and layout, and the allocations are then paid with this

potential. This way, the potential provides an upper bound on the

heap space usage for the given input. Whereas in the previous work

a refined type consisted of a simple type together with a number,

object-oriented languages require a more complex approach due

to aliasing and inheritance, and so a refined type in this context

consists of a number together with refined types for the attributes

2

Resource Analysis for Lazy Evaluation with Polynomial Potential IFL ’20, September 2–4, 2020, Canterbury, United Kingdom

and methods. Jost and others also extended automatic amortised

analysis to higher-order and polymorphic programs [9].

In 2010, Hoffmann and Hofmann extended automatic amortisa-

tion from linear to (univariate) polynomial bounds [5]. The key idea
is the extension of potential annotations to vectors representing

polynomial coefficients of polynomials in special basis. The type

rules for the system with polynomial potential still generate only

linear constraints on annotations, meaning that the polynomial

analysis can still be implemented using an ordinary LP solver.

Hoffmann and others also extended the polynomial potential

method from univariate to multivariate [2], e.g.capable of express-

ing bounds such as 𝑛 ×𝑚 where 𝑛 and𝑚 are sizes of structures).

This work was later developed into Resource Aware ML [3], a static

analysis tool that derives polynomial resource bounds for a substan-

tial subset of the OCaml language, including user-defined inductive

types, pattern-matching and recursion and higher-order functions.

2.4 Lazy evaluation
While all the previous analyses considered eager languages, Simões

et.al. extended automatic amortisation to a lazy language [16]. The

key contribution is the representation of the delayed costs of thunks

as type construtors with annotations and a structural rule that

allows pre-paying costs in advance (thus preventing duplication).

As with the previous analyses, the proof system generates linear

constraints on annotations — thus allowing resource analysis using

an off-the-self LP solver, but was limited to linear bounds. Following

work address specific issues of co-recursive definitions [18] and to

a parametric cost model [10]. In this section, we briefly explain the

approach, focusing mainly on the key contributions that we build

upon for our system.

The main contributions of this system deal with the particular

mechanics that define lazy evaluation, namely, how it delays the

evaluation of arguments and uses references to prevent multiple

evaluations of the same terms.

One very important contribution is the introduction of an anno-

tated thunk structure to the type system. This structure essentially

denotes a delayed evaluation of a term, and maintains the cost of

evaluating the delayed term. T𝑝 (𝐴) means: to evaluate the delayed

expression of type A, we need 𝑝 resource units available.

The use of resource annotations is also crucial, much like in other

AARA systems. They are used during type inference to keep track

of the resource usage of an expression, and attached to the types of

functions to denote the overall cost evaluating the function.

Γ
𝑧′
𝑧
𝑒 : 𝐶

This judgement means, under the environment Γ and with 𝑧 re-

source unit available, the evaluation of 𝑒 has type 𝐶 and leaves 𝑧′

resource units available.

Finally, and possibly the most important contribution, the type

rule Prepay. This is a structural rule that allows the cost of a thunk

to be paid in advance. Because this pre-payment happens before

the actual use of the variable, it is possible to prevent the same cost

to be accounted for multiple times when there are multiple uses of

the same variable, "simulating" the memoization of a call-by-need

evaluation. This will become more clear later in this paper.

Γ, 𝑥 :T𝑞0 (𝐴)
𝑝′
𝑝

𝑒 : 𝐶

Γ, 𝑥 :T𝑞0+𝑞1 (𝐴)
𝑝′

𝑝+𝑞1
𝑒 : 𝐶

(Prepay)

These are the main points that we considered to understand how

we could handle lazy evaluation in our analysis.

Supplementary to these elements, we also took advantage of

most syntactic and semantic choices of this work to write our sys-

tem and the language that supports it. We will come back to these

choices next when we explain our language and operational se-

mantics. Having this system as a basis, we studied Hoffmann’s

contributions in [5] to understand how we could extend it to poly-

nomial bounds. This will be explained in more detail in the next

section.

2.5 Polynomial potential
In this section, we briefly explain Hoffman’s approach to (univari-

ate) polynomial potential [5]. This paper presents a technique that

allows amortised analysis to obtain polynomial resource bounds

but still requires only linear constraints on annotations as side-

conditions. This is a important because is allows implementations

to use of efficient LP solvers (as in the linear case).

The key idea is to annotate types of data structures with a vector

®𝑝 = (𝑝1, . . . , 𝑝𝑘) of annotations where 𝑘 represents the maximum

degree of polynomial bounds to be derived, e.g.𝑘 = 2 corresponds to

quadratic bounds; the case 𝑘 = 1 subsumes the system with linear

bounds.

A list of type 𝐿(®𝑝,𝐴), where ®𝑝 = (𝑝1, . . . , 𝑝𝑘), assigns potential
𝑝1 to every element of the list, 𝑝2 to every element of every suffix of

the list, 𝑝3 to every suffix of the suffixes of the list, and so on. This

means that the polynomial potential is expressed using the binomial

basis i.e.,

∑𝑘
𝑖=1 𝑝𝑖

(𝑛
𝑖

)
where 𝑛 is the length of the list. For example, a

type 𝐿((3, 2), 𝐴) 1−→ 𝐵 corresponds to a polynomial resource bound

3

(
𝑛

1

)
+ 2

(
𝑛

2

)
+ 1 = 3𝑛 + 2𝑛(𝑛 − 1)/2 + 1

The main advantage of using binomial coefficients is that sim-

plifies the treatment of pattern matching using an additive shift
operation. For a vector of coefficients ®𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑘), the addi-
tive shift of ®𝑝 is

�®𝑝 = (𝑝1 + 𝑝2, 𝑝2 + 𝑝3, . . . , 𝑝𝑘−1 + 𝑝𝑘 , 𝑝𝑘)

If 𝑥𝑠 admits type 𝐿(®𝑝,𝐴), then the tail of 𝑥𝑠 admits type 𝐿(�®𝑝,𝐴).
For the example above, if 𝑥𝑠 has type 𝐿((3, 2), 𝐴) then the tail 𝑥𝑠

has type 𝐿((3+ 2, 2), 𝐴) = 𝐿((5, 2), 𝐴). When defining a function by

case over a list, the potential assigned to the tail can then be used

to pay for any auxiliary functions or the recursive calls.

3 LANGUAGE AND OPERATIONAL
SEMANTICS

3.1 Syntax
We start by introducing a simple lazy functional language (SLFL)
composed by the syntactical terms 𝑒 for expressions and𝑤 for (weak

head) normal forms. Expressions 𝑒 include constants, variables,

lambda expressions, list constructors, let-expressions, and pattern

3

IFL ’20, September 2–4, 2020, Canterbury, United Kingdom Sara Moreira, Pedro Vasconcelos, and Mário Florido

matching. The values𝑤 are in weak head normal form2
and include

pairs, list constructors and lambda expressions.

𝑒 ::= 𝑛 | _𝑥. 𝑒 | 𝑒 𝑦 | let 𝑥 = 𝑒1 in 𝑒2

| (𝑥1, 𝑥2) | cons(𝑥ℎ, 𝑥𝑡) | nil

| match 𝑒0 with (𝑥1, 𝑥2) -> 𝑒1
| match 𝑒0 with cons(𝑥ℎ, 𝑥𝑡) -> 𝑒1 | nil -> 𝑒2

𝑤 ::= 𝑛 | _𝑥 . 𝑒 | (𝑥1, 𝑥2) | cons(𝑥ℎ, 𝑥𝑡) | nil

The term syntax is largely based on the semantics used by Jost et.
al. [10]; the main departure is that we consider only of constructor

and de-construction forms for pairs and lists rather than general

algebraic data types. This was done to simplify the presentation,

and we believe it should be straightforward to extend the system

to more general data structures.

As a shorthand, we will sometimes uses semicolons for nested

let-expressions, e.g.write

let 𝑥 = 𝑒1;𝑦 = 𝑒2 in 𝑒3

instead of

let 𝑥 = 𝑒1 in let 𝑦 = 𝑒2 in 𝑒3 .

3.2 Operational semantics
In this section we present an operational semantics for SLFL. The

semantics is based on Sestof’s revision of Launchbury’s semantics

for lazy evaluation [11, 15] instrumented to count the number of
let-expressions evaluated (corresponding to heap allocations).

The evaluation relation expresses judgements of the form

H, S,L
𝑚′
𝑚

𝑒 ⇓ 𝑤,H′

meaning that, under a heap H, a set of bound variables S and a

set of variables L, an expression 𝑒 evaluates to whnf𝑤 , provided

𝑚 initial resources are available; after evaluation𝑚′
resources are

left over and the final heap is H′
. The rules in Fig. 1 define the

evaluation following the structure of the expression.

A heap H is a mapping from variables to (possibly unevaluated)

expressions (thunks). To prevent cyclic evaluation, the set L is used

to keep track of the variables that are pending evaluation (cf.rule

Var⇓). Following Sestof [15], we also track the bound variables in

S to express the freshness side-condition (cf. rule Let⇓).
The operational semantics is instrumented by counters that keep

track of a specific resource; the objective of the cost analysis is to

statically approximate these counters. For simplicity, we consider

only the number of allocations; hence, only rule Let⇓ in Fig. 1 adds

1 unit of cost (corresponding to one allocation) and other rules

simply thread costs between sub-expressions. This could easily

be extended to consider different costs, such as the number of

steps, number of applications, etc.by assigning parameters to each

reduction rule to specifying how many resource units are required,

as was done in [5, 10].

Discussing the evaluation rules. As mentioned above, these rules

are largely based on the semantics from [10], their construction

and meaning are mostly identical. The main differences can be seen

in the definition for rules Match-L⇓, Match-P⇓ and Letcons⇓.

2
That is, evaluated to the outermost constructor or lambda-abstraction.

H, S,L 𝑚
𝑚

𝑤 ⇓ 𝑤,H
(whnf⇓)

H, S,L ∪ {𝑙}
𝑚′
𝑚

𝑒 ⇓ 𝑤,H′ 𝑙 ∉ L

H[𝑙 ↦→ 𝑒], S,L
𝑚′
𝑚

𝑙 ⇓ 𝑤,H′[𝑙 ↦→ 𝑤]
(Var⇓)

𝑙 is fresh wrtH, S H[𝑙 ↦→ 𝑒1 [𝑙/𝑥]], S,L 𝑚′
𝑚

𝑒2 [𝑙/𝑥] ⇓ 𝑤,H′

H, S,L
𝑚′
𝑚+1 let 𝑥 = 𝑒1 in 𝑒2 ⇓ 𝑤,H′

(Let⇓)

H, S,L
𝑚′
𝑚

𝑒 ⇓ _𝑥 . 𝑒 ′,H′ H′, S,L
𝑚′′
𝑚′

𝑒 ′[𝑦/𝑥] ⇓ 𝑤,H′′

H, S,L
𝑚′′
𝑚

𝑒 𝑦 ⇓ 𝑤,H′′

(App⇓)

H, S ∪ ({𝑥1, 𝑥2} ∪ BV(𝑒1) ∪ BV(𝑒2)),L 𝑚′
𝑚

𝑒0 ⇓ cons(𝑙1, 𝑙2),H′

H′, S,L
𝑚′′
𝑚′

𝑒1 [𝑙1/𝑥1, 𝑙2/𝑥2] ⇓ 𝑤,H′′

H, S,L
𝑚′′
𝑚 match 𝑒0 with cons(𝑥1, 𝑥2) -> 𝑒1 | nil -> 𝑒2 ⇓ 𝑤,H′′

(Match-L⇓)

H, S ∪ ({𝑥1, 𝑥2} ∪ BV(𝑒1) ∪ BV(𝑒2)),L 𝑚′
𝑚

𝑒0 ⇓ nil,H′

H′, S,L
𝑚′′
𝑚′

𝑒2 ⇓ 𝑤,H′′

H, S,L
𝑚′′
𝑚 match 𝑒0 with cons(𝑥1, 𝑥2) -> 𝑒1 | nil -> 𝑒2 ⇓ 𝑤,H′′

(Match-N⇓)

H, S ∪ ({𝑥1, 𝑥2} ∪ BV(𝑒1) ∪ BV(𝑒2)),L 𝑚′
𝑚

𝑒0 ⇓ (𝑙1, 𝑙2),H′

H′, S,L
𝑚′′
𝑚′

𝑒1 [𝑙1/𝑥1, 𝑙2/𝑥2] ⇓ 𝑤,H′′

H, S,L
𝑚′′
𝑚 match 𝑒0 with (𝑥1, 𝑥2) -> 𝑒1 ⇓ 𝑤,H′′

(Match-P⇓)

Figure 1: Evaluation rules for SLFL

Rule whnf⇓: Lambda expressions and constructors are whnfs,

so evaluation terminates immediately, leaving the heap unmodified

and incurring no cost.

Rule Var⇓: Evaluating a variable requires looking up and eval-

uating the (possibly unevaluated) expression 𝑒 associated to it in

the heap. The cost for evaluating the variable is simply the cost for

evaluating the expression. To correctly implement lazy evaluation,

we update the location in the final heap in with the normal form.

Rule Let⇓: a new thunk for the bound expression 𝑒1 is allocated

on the heap and associated with a fresh location 𝑙 before proceeding

to evaluate the body 𝑒2. This rule requires 1 unit of cost, plus the

cost of evaluating 𝑒2.

In a lazy language evaluation is forced by case expressions.

Hence, rules Match-P⇓ and Match-L⇓ force the evaluation of

4

Resource Analysis for Lazy Evaluation with Polynomial Potential IFL ’20, September 2–4, 2020, Canterbury, United Kingdom

[. . .]
0

0

_𝑥 .𝑥 ⇓ _𝑥 .𝑥, [. . .] Whnf⇓ (1)

[𝑙2 ↦→ _𝑥.𝑥, . . .]
0

0

𝑙2 ⇓ _𝑥.𝑥, [𝑙2 ↦→ _𝑥.𝑥, . . .] Var⇓ (1) (2)

[. . .]
0

0

_𝑦.𝑦 ⇓ _𝑦.𝑦, [. . .] Whnf⇓ (3)

[𝑙1 ↦→ _𝑦.𝑦, . . .]
0

0

𝑙1 ⇓ _𝑦.𝑦, [𝑙1 ↦→ _𝑦.𝑦, . . .] Var⇓ (3) (4)

[𝑙1 ↦→ _𝑦.𝑦, 𝑙2 ↦→ _𝑥 .𝑥, . . .]
0

0

𝑙1 𝑙2 ⇓ _𝑥 .𝑥, [𝑙1 ↦→ _𝑦.𝑦, 𝑙2 ↦→ _𝑥 .𝑥, . . .] App⇓ (4,2) (5)

[𝑙1 ↦→ _𝑦.𝑦, 𝑙2 ↦→ _𝑥.𝑥, 𝑙3 ↦→ 𝑙1 𝑙2, . . .]
0

0

𝑙3 ⇓ _𝑥.𝑥, [𝑙1 ↦→ _𝑦.𝑦, 𝑙2 ↦→ _𝑥.𝑥, 𝑙3 ↦→ _𝑥 .𝑥, . . .] Var⇓ (5) (6)

[. . .]
0

0

_𝑦.𝑦 ⇓ _𝑦.𝑦, [. . .] Whnf⇓ (7)

[. . .]
0

0

_𝑥 ._𝑦.𝑦 ⇓ _𝑥 ._𝑦.𝑦, [. . .] Whnf⇓ (8)

[. . .]
0

0 (_𝑥 ._𝑦.𝑦) 𝑙4 ⇓ _𝑦.𝑦, [. . .] App⇓ (8,7) (9)

[. . .]
0

1 let 𝑧 = 𝑧 in (_𝑥._𝑦.𝑦) 𝑧 ⇓ _𝑦.𝑦, [𝑙4 ↦→ 𝑙4, . . .] Let⇓ (9) (10)

[𝑙1 ↦→ let 𝑧 = 𝑧 in (_𝑥 . _𝑦.𝑦) 𝑧, . . .]
0

1

𝑙1 ⇓ _𝑦.𝑦, [𝑙1 ↦→ _𝑦.𝑦, 𝑙4 ↦→ 𝑙4, . . .] Var⇓ (10) (11)

[𝑙1 ↦→ let 𝑧 = 𝑧 in (_𝑥. _𝑦.𝑦) 𝑧, 𝑙3 ↦→ 𝑙1 𝑙2, . . .]
0

1

𝑙1 𝑙3 ⇓ _𝑥 .𝑥, H′
App⇓ (11,6) (12)

[𝑙1 ↦→ let 𝑧 = 𝑧 in (_𝑥. _𝑦.𝑦) 𝑧, 𝑙2 ↦→ _𝑥.𝑥]
0

2 let 𝑣 = 𝑙1 𝑙2 in 𝑙1 𝑣 ⇓ _𝑥 .𝑥,H′
Let⇓ (12) (13)

[𝑙1 ↦→ let 𝑧 = 𝑧 in (_𝑥. _𝑦.𝑦) 𝑧]
0

3 let 𝑖 = _𝑥 .𝑥 ; 𝑣 = 𝑙1 𝑖 in 𝑙1 𝑣 ⇓ _𝑥 .𝑥,H′
Let⇓ (13) (14)

0

4 let 𝑓 = let 𝑧 = 𝑧 in (_𝑥. _𝑦.𝑦) 𝑧 ; 𝑖 = _𝑥.𝑥 ; 𝑣 = 𝑓 𝑖

in 𝑓 𝑣 ⇓ _𝑥 .𝑥, [𝑙1 ↦→ _𝑦.𝑦, 𝑙2 ↦→ _𝑥 .𝑥, 𝑙3 ↦→ _𝑥 .𝑥, 𝑙4 ↦→ 𝑙4]︸ ︷︷ ︸
H′

Let⇓ (14) (15)

Figure 2: Example of lazy evaluation

the scrutinized expression 𝑒0 and proceed with evaluation of the

suitable branch with the variables bound by the pattern matching

replaced by the locations of arguments. The final value and heap

are the result of evaluating the branch taken.

Example 3.1. Consider the term

let 𝑓 = let 𝑧 = 𝑧 in (_𝑥 . _𝑦.𝑦) 𝑧 ;
𝑖 = _𝑥.𝑥 ;

𝑣 = 𝑓 𝑖

in 𝑓 𝑣

(1)

Fig. 2 represents the evaluation of (1) to the whnf _𝑥 . 𝑥 and fi-

nal heap H′ = [𝑙1 ↦→ _𝑦.𝑦, 𝑙2 ↦→ _𝑥.𝑥, 𝑙3 ↦→ _𝑥 .𝑥, 𝑙4 ↦→ 𝑙4]. For
simplicity, we omit sets S,L of bound variables and those under

evaluation.

This example illustrate how the rules of Fig. 1 implement lazy

evaluation: evaluating 𝑓 causes the allocation of a cyclic thunk 𝑧 that

is never needed; the final judgement is annotated 4, 0 corresponding

to the requirement of 4 resource units for allocating the four let-

bound expressions.

4 ANALYSIS WITH POLYNOMIAL
POTENTIAL

In this section, we present our type system to analyse resource

usage and provide a detailed description of how the analysis works

using some illustrating examples.

4.1 Annotated Types
Here, we present the syntax for the annotated types of our language

and the type rules used to perform the cost analysis. Types include

primitives, functions, thunks, pairs and lists. Variables 𝑝 ,𝑞 represent

potential and cost annotations and ®𝑝, ®𝑞 represent vectors of such
annotations, ®𝑝 = (𝑝1, . . . , 𝑝𝑛).

𝐴, 𝐵 ::= int | 𝐴
𝑞
−→ 𝐵 | T𝑞 (𝐴) | 𝐴 × 𝐵 | L𝑞 (®𝑝,𝐴)

The primitive types and pairs have no annotations. The annotation

𝑞 on a function type 𝐴
𝑞
−→ 𝐵 represents an upper bound on the

(constant part) of the cost of applying the function. The annotation

𝑞 on a thunk type T𝑞 (𝐴) represents an upper bound on the cost of

evaluating to whnf a thunk giving a value of type 𝐴. The list type

L𝑞 (®𝑝,𝐴) is annotated with 𝑞, representing the cost of evaluating

each new constructor of the list (i.e.the spine cost) and a vector ®𝑝 ,
which representing the potential associated with the list elements.

3

Following Hoffmann (see section 2.5), we define the additive shift
�®𝑝 of a vector of annotations:

�(𝑝1, 𝑝2, . . . , 𝑝𝑛) = (𝑝1 + 𝑝2, 𝑝2 + 𝑝3, . . . , 𝑝𝑛−1 + 𝑝𝑛, 𝑝𝑛)

We also define an addition operation and comparison on vectors ®𝑝
and ®𝑞 of equal length 𝑛:

®𝑝 + ®𝑞 = (𝑝1 + 𝑞1, 𝑝2 + 𝑞2, . . . , 𝑝𝑛 + 𝑞𝑛)
®𝑝 ≥ ®𝑞 ⇐⇒ 𝑝𝑖 ≥ 𝑞𝑖 , for all 𝑖

3
Note that, unlike Hoffman [5], and for consistency with the annotations in thunk

types, we use superscripts for delayed costs.

5

IFL ’20, September 2–4, 2020, Canterbury, United Kingdom Sara Moreira, Pedro Vasconcelos, and Mário Florido

int / {int, . . . , int}
(ShareInt)

𝐴 / {𝐴1, . . . , 𝐴𝑛} 𝐵 / {𝐵1, . . . , 𝐵𝑛}
𝐴 × 𝐵 / {𝐴1 × 𝐵1, . . . , 𝐴𝑛 × 𝐵𝑛}

(SharePair)

𝐴 / {𝐴1, . . . , 𝐴𝑛} ®𝑝 ≥ ∑
𝑖 ®𝑝𝑖 𝑞𝑖 ≥ 𝑞

L𝑞 (®𝑝,𝐴) / {L𝑞1 (®𝑝1, 𝐴1), . . . , L𝑞𝑛 (®𝑝𝑛, 𝐴𝑛)}
(ShareList)

𝐴𝑖 / {𝐴} 𝐶 / {𝐶𝑖 } 𝑞𝑖 ≥ 𝑝 (1 ≤ 𝑖 ≤ 𝑛)

𝐴
𝑝
−→ 𝐶 / {𝐴1

𝑞1−−→ 𝐶1, . . . , 𝐴𝑛

𝑞𝑛−−→ 𝐶𝑛}
(ShareFun)

𝐴 / {𝐴1, . . . , 𝐴𝑛} 𝑞𝑖 ≥ 𝑝 (1 ≤ 𝑖 ≤ 𝑛)
T𝑝 (𝐴) / {T𝑞1 (𝐴1), . . . , T𝑞𝑛 (𝐴𝑛)}

(ShareThunk)

Γ / ∅
(ShareEmptyCtx)

𝐴 / {𝐵1, . . . , 𝐵𝑛} Γ / Δ

𝑥 : 𝐴, Γ / (𝑥 : 𝐵1, . . . , 𝑥 : 𝐵𝑛, Δ)
(ShareCtx)

Figure 3: Sharing rules

4.2 Sharing and Subtyping
Because types can be annotated with potential, it is necessary to

limit the duplication of typing assumptions (i.e.contraction) so that

potential is not re-used; this is done by a sharing relation. Informally,

a type𝐴 shares to a set of types {𝐵1, . . . , 𝐵𝑛} if any potential in𝐴 is

distributed over 𝐵1, . . . , 𝐵𝑛 . The sharing relation 𝐴 / {𝐵1, . . . , 𝐵𝑛}
is defined inductively over the structure of the types 𝐴 and 𝐵𝑖 in

Fig. 3. It is straightforward to verify that if 𝐴 / {𝐵𝑖 } then 𝐴 and

all 𝐵𝑖 differ only in annotations (i.e.have the same structure). Note

that we also extend sharing to typing contexts (rules ShareCtx

and ShareEmptyCtx).

Sharing also allows relaxing information by lowering potential

on the left-hand side (rule ShareList) or raising costs on the right-

hand side (rules ShareFun, ShareThunk and ShareList). This in

turn allows defining a subtyping relation for approximations as a

special case of sharing:

𝐴 <: 𝐵 ⇐⇒ exists 𝐵′
such that 𝐴 / {𝐵, 𝐵′}

If 𝐴 <: 𝐵 then the cost information in 𝐴 is more precise but

compatible with the one in 𝐵. It is straightforward to check that

the following properties are admissible:

T𝑞 (𝐴) <: T𝑞
′
(𝐴′) ⇐⇒ 𝐴 <: 𝐴′ ∧ 𝑞 ≥ 𝑞′

𝐴 × 𝐵 <: 𝐴′ × 𝐵′ ⇐⇒ 𝐴 <: 𝐴′ ∧ 𝐵 <: 𝐵′

𝐴
𝑞
−→ 𝐵 <: 𝐴′ 𝑞′

−−→ 𝐵′ ⇐⇒ 𝐴′ <: 𝐴 ∧ 𝐵 <: 𝐵′ ∧ 𝑞 ≥ 𝑞′

L𝑞 (®𝑝,𝐴) <: L𝑞
′
(®𝑝 ′, 𝐴′) ⇐⇒ 𝐴 <: 𝐴′ ∧ 𝑞 ≥ 𝑞′ ∧ ®𝑝 ≥ ®𝑝 ′

Note that, as usual, the subtyping relation is co-variant for pairs,

lists and co-domain of functions but contra-variant for the domain

of functions.

4.3 Type Rules
The type rules deriving judgements for the different syntax forms

our term language are presented in Fig. 4; these are complemented

with the structural rules in Fig. 5. Typing judgements have the form

Γ
𝑝′
𝑝

𝑒 : 𝐴

and state that, under a typing context Γ and with 𝑝 resource units

available, we can derive the annotated type𝐴 for expression 𝑒 , leav-

ing 𝑝 ′ resource units available. While the type rules are based on

previous work [5, 10], there are important differences in rules that

concern the use of potential, namely, Letcons, Cons andMatch.

We describe each rule informally, focusing on on how type annota-

tions express resource usage. Recall that we consider cost bounds

for the number of allocations, i.e.the number of let-expressions

evaluated.

Rule Const does require any resources as evaluating a primitive

value incurs no additional cost.

Rule Var deals with the elimination of a thunk type, so it suffices

to pay the cost associated in the annotation.

Rules Let and Letcons require paying 1 unit of cost (corre-

sponding to the newly allocated expression); note also that (as

in the operational semantics) the bound variable 𝑥 can be used

recursively in the bound expression. Note that rule Letcons ac-

counts not only for the allocation cost but also the potential 𝑞1
in the type annotation; this why we need a separate rule rather

than just allow a combination of Let and Cons. The side condition

𝐴 / {𝐴, . . . , 𝐴′} is used to guarantee that the type 𝐴′
is identical

to 𝐴 except that it cannot hold any potential; this is for soundness

(so that self-referencing structures cannot consume arbitrary po-

tential [10]). Rule Let counts the cost of 𝑒1 only once, even in the

case of self-reference; the intuition for this is that any productive

uses of the bound variable in self-referencing definitions must be

to an evaluated form [18].

Rules Cons and Pair require that constructors and pairs refer-

ence variables of the correct types. For Cons, it requires that the tail

of a list be annotated with the additive shift of the list’s potential.

Note that the potential is accounted for in rule Letcons rather than

Cons; this is done to distinguish referencing an existing constructor

from allocating of a new one.

Rule App requires that the cost associated with a function type

is count for each time the function is applied.

Rule Abs captures the cost of the expression as the type anno-

tation of the function type. The side-condition Γ / {Γ, Γ} ensures
that the typing context Γ can only have zero potential; this ensures

that the function may be freely applied without re-use of potential.

6

Resource Analysis for Lazy Evaluation with Polynomial Potential IFL ’20, September 2–4, 2020, Canterbury, United Kingdom

0

0

𝑛 : int
(Const)

𝑥 :T𝑝 (𝐴)
0

𝑝
𝑥 : 𝐴

(Var)

Γ
𝑧′
𝑧
𝑒 : 𝐴

𝑝
−→ 𝐶

Γ, 𝑦 : 𝐴
𝑧′
𝑧+𝑝

𝑒 𝑦 : 𝐶
(App)

Γ, 𝑥 :𝐴
0

𝑝
𝑒 : 𝐶 𝑥 ∉ Γ Γ / {Γ, Γ}

Γ
0

0

_𝑥 .𝑒 : 𝐴
𝑝
−→ 𝐶

(Abs)

𝐴 / {𝐴,𝐴′} 𝑥 ∉ {Γ,Δ} 𝑒1 ≠ cons(𝑥ℎ, 𝑥𝑡)
Γ, 𝑥 : T0 (𝐴′)

0

𝑝
𝑒1 : 𝐴 Δ, 𝑥 : T𝑝 (𝐴)

𝑧′
𝑧
𝑒2 : 𝐶

Γ,Δ
𝑧′
1+𝑧 let 𝑥 = 𝑒1 in 𝑒2 : 𝐶

(Let)

𝐴 = L𝑝 (®𝑞, 𝐵) ®𝑞 = (𝑞1, . . . , 𝑞𝑘) 𝐴 / {𝐴, 𝐴′}
Γ, 𝑥 : T0 (𝐴′)

0

0 cons(𝑥ℎ, 𝑥𝑡) : 𝐴 Δ, 𝑥 : T0 (𝐴)
𝑧′
𝑧
𝑒 : 𝐶

Γ,Δ
𝑧′

1+𝑧+𝑞1
let 𝑥 = cons(𝑥ℎ, 𝑥𝑡) in 𝑒 : 𝐶

(Letcons)

𝑥1:𝐴1, 𝑥2:𝐴2
0

0 (𝑥1, 𝑥2) : 𝐴1 ×𝐴2

(Pair)

0

0 nil : L𝑞 (®𝑝,𝐴)
(Nil)

𝑥ℎ :𝐵, 𝑥𝑡 :T
𝑝 (L𝑝 (�®𝑞, 𝐵))

0

0 cons(𝑥ℎ, 𝑥𝑡) : L𝑝 (®𝑞, 𝐵)
(Cons)

Γ
𝑧′
𝑧
𝑒0 : 𝐴1 ×𝐴2 Δ, 𝑥1 : 𝐴1, 𝑥2 : 𝐴2 𝑧′′

𝑧′
𝑒1 : 𝐶

Γ,Δ
𝑧′′
𝑧 match 𝑒0 with (𝑥1, 𝑥2) -> 𝑒1 : 𝐶

(Match-P)

Γ
𝑧′
𝑧
𝑒0 : L𝑝 (®𝑞,𝐴)

Δ, 𝑥ℎ : 𝐴, 𝑥𝑡 : T𝑝 (L𝑝 (�®𝑞,𝐴))
𝑧′′

𝑧′+𝑞1
𝑒1 : 𝐶 Δ

𝑧′′
𝑧′

𝑒2 : 𝐶

Γ,Δ
𝑧′′
𝑧 match 𝑒0 with cons(𝑥ℎ, 𝑥𝑡) -> 𝑒1 | nil -> 𝑒2 : 𝐶

(Match-L)

Figure 4: Syntax directed type rules

Γ, 𝑥 :T𝑞0 (𝐴)
𝑝′
𝑝

𝑒 : 𝐶

Γ, 𝑥 :T𝑞0+𝑞1 (𝐴)
𝑝′

𝑝+𝑞1
𝑒 : 𝐶

(Prepay)

Γ
𝑝′
𝑝

𝑒 : 𝐶

Γ, 𝑥 :𝐴
𝑝′
𝑝

𝑒 : 𝐶
(Weak)

Γ, 𝑥 :𝐴1, 𝑥 :𝐴2 𝑝′
𝑝

𝑒 : 𝐶 𝐴 / {𝐴1, 𝐴2}

Γ, 𝑥 :𝐴
𝑝′
𝑝

𝑒 : 𝐶
(Share)

Γ
𝑝′
𝑝

𝑒 : 𝐴 𝑞 ≥ 𝑝 𝑞 − 𝑝 ≥ 𝑞′ − 𝑝 ′

Γ
𝑞′
𝑞

𝑒 : 𝐴
(Relax)

Γ
𝑝′
𝑝

𝑒 : 𝐴 𝐴 <: 𝐵

Γ
𝑝′
𝑝

𝑒 : 𝐵
(Subtype)

Figure 5: Structural type rules

Rule Match-P deconstructs a pair, introducing in the context

the pattern variables with the corresponding types.

Rule Match-L deconstructs a list, considering the empty and

non-empty cases. Note that, when typing the right-hand side 𝑒1 for

the non-empty case, we gain access to both the excess potential 𝑞1
and the variable 𝑥𝑡 for the tail associated with the additive shift

of the original potential; to allows paying for (possible recursive)

application. This rule also requires that both branches admit the

same type 𝐶 and that the resources 𝑧′′ available after each branch

are identical; this may require the use of structural rules for costs

or types (cf.rules Relax and Subtype in Fig. 5).

Regarding the structural type rules in Fig. 5: rule Prepay allow

paying ahead (part of) the cost annotated in thunk; this is identical

to the rules in [10, 16]. Note also that the type system allows weak-

eningWeak but requires a constrained contraction rule Share. As

mentioned in Section 4.2, this is done to prevent re-using potential

annotated in types.

4.4 Soundness
We do not have a formal proof of soundness yet, but we believe that

previous work in [10] can be adapted to the polynomial potential

case; in particular, we need some auxiliary definitions:

• the (shallow) potential of an expression 𝑒 wrt an annotated

type 𝐴;

• a global type of each location ℓ that justifies the overall po-

tential forH(ℓ);
• a global context of each location ℓ used for typing the expres-

sionH(ℓ);
7

IFL ’20, September 2–4, 2020, Canterbury, United Kingdom Sara Moreira, Pedro Vasconcelos, and Mário Florido

attach = _𝑛. _𝑙 .match 𝑙𝑘1 with
nil->nil
cons(𝑥, 𝑥𝑠 𝑗1)-> let 𝑝 = (𝑥, 𝑛); 𝑓 = attach 𝑛 𝑥𝑠𝑛1

in cons(𝑝, 𝑓)

app′ = _𝑙1 . _𝑙2 .match 𝑙
𝑣1
2

with
nil->𝑙1
cons(𝑥, 𝑥𝑠𝑤1)-> let 𝑓 = app′ 𝑙1 𝑥𝑠𝑚1

in cons(𝑥, 𝑓)

pairs = _𝑙 .match 𝑙 (𝑞1,𝑞2) with
nil->nil
cons(𝑥, 𝑥𝑠 (𝑟1,𝑟2))-> let 𝑓1 = pairs 𝑥𝑠 (𝑠1,𝑠2) ;

𝑓2 = attach 𝑥 𝑥𝑠 (𝑝1,𝑝2)

in app′ 𝑓1 𝑓2

Figure 6: Translation of the pairs function and auxiliary def-
initions into SLFL.

• a type consistency relation between configurations of the

operational semantics and global types and contexts.

Informally the soundness theorem should state that if an expres-

sion 𝑒 admits an (annotated) type 𝐴, the heap H can be typed, and

the evaluation of 𝑒 is successful, then the result also admits type

𝐴. Furthermore, the potential in global types is preserved, the final

type can also be typed, and the static bounds from the typing for 𝑒

give safe upper-bounds on the evaluation costs.

5 WORKED EXAMPLES
To better understand how the resource analysis works, derive an-

notated type judgements for the example presented in Section 1.

5.1 Examples
Example 5.1. Let us consider function pairs in Fig. 6; this is a

translation into SLFL of the example from Section 1. Function pairs
takes a list as an argument and computes a list of pairs that are two-

element sub-lists the given list, while function attach combines each

element of a list with the first argument. The auxiliary function app′

is the list append argument order flipped, i.e.app′ = flip (++);
this is done so that the type rules allow assigning potential to this

argument.
4
.

To facilitate the presentation of annotated type assignments,

we have added potential annotations to list variables in Fig. 6: 𝑙 ®𝑞

means that variable 𝑙 has type L0 (®𝑞, 𝐵) for some 𝐵, i.e.𝑙 is a list

with potential ®𝑞 and zero thunk cost for the spine. Since we expect

function pairs has quadratic cost on the argument list length, we

annotate it with pair of coefficients ®𝑞 = (𝑞1, 𝑞2). Conversely, we
expect functions attach and app′ to have linear cost, hence we

annotated these with a single coefficient.

Function app′ is defined by structural recursion on the second

argument 𝑙2 and uses a single let-expression for each constructor

in the argument; this means that 𝑙2 should have a potential of at

least 1 resource unit for each constructor. In attach we can see two

4
In particular, the side condition for rule Abs requires that the typing context Γ has

no potential.

let-expressions being used, which means the input potential should

be at least 2. However, when analysing the body of function pairs,
we can see that the output of attach is also the second input of

app’. This means that to be able to type pairs, the output of attach
must be compatible with the input of app’, and because of that, its

potential should be at least 1. Because the output potential needs

to be accounted for in the input, we need to add it to the potential

2 we mentioned before.

Using the annotations for attach and app′ in Fig. 6, we derive

the following constraints:

𝑗1 = 𝑘1 (additive shift)

𝑗1 = 𝑛1 (share)

𝑛1 = 𝑘1 (recursive call)

𝑘1 ≥ 2 + 𝑣1

(two let-expressions plus the potential of the output of attach/input
of app’)

𝑤1 = 𝑣1 (additive shift)

𝑤1 =𝑚1 (share)

𝑚1 = 𝑣1 (recursive call)

𝑣1 ≥ 1 (single let-expression)

We can solve this system of equations with 𝑣1 = 𝑚1 = 𝑤1 = 1

and 𝑞1 = 𝑟1 = 𝑠1 = 3 and derive the following annotated types:

app′ : T0 (L0 (0, 𝐵 × 𝐵)) 0−→ T0 (L0 (1, 𝐵 × 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)

attach : 𝐵
0−→ T0 (L0 (3, 𝐵)) 0−→ L0 (1, 𝐵 × 𝐵)

To better understand how the analysis works, we are going to

illustrate the inference steps with more detail. The rules are applied

in a very straightforward way, but it is important to pay attention

to how resource usage is passed from and onto the judgements. Let

us start by assuming:

Γ = app′ : T0 (L0 (0, 𝐵 × 𝐵)) 0−→ T0 (L0 (1, 𝐵 × 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)

Σ = attach : 𝐵
0−→ T0 (L0 (3, 𝐵)) 0−→ L0 (1, 𝐵 × 𝐵)

We will derive a type for pairs as follows:

Θ = pairs : T0 (L0 ((𝑞1, 𝑞2), 𝐵)︸ ︷︷ ︸
𝐿𝐼𝑛

)
𝑝
−→ L0 ((0, 0), 𝐵 × 𝐵)︸ ︷︷ ︸

𝐿𝑂𝑢𝑡

For simplicity, sometimes we omit certain elements of the type

context that are not needed for the derivation in question. We also

divide the definition of pairs into two sub-expressions as shown:

pairs = _𝑙 .

𝑒1︷ ︸︸ ︷
match 𝑙 with

nil->nil

cons(𝑥, 𝑥𝑠)->

𝑒2︷ ︸︸ ︷
let 𝑓1 = pairs 𝑥𝑠 ;

𝑓2 = attach 𝑥 𝑥𝑠

in app′ 𝑓1 𝑓2

8

Resource Analysis for Lazy Evaluation with Polynomial Potential IFL ’20, September 2–4, 2020, Canterbury, United Kingdom

We start by stating the typing obligation for the outer part of

the recursive definition:

Γ, Σ
0

1 let 𝑝𝑎𝑖𝑟𝑠 = _𝑙 . 𝑒1 in 𝑝𝑎𝑖𝑟𝑠 :T0 (𝐿𝐼𝑛)
𝑝
−→ 𝐿𝑂𝑢𝑡 (2)

By rule Let, we need to prove:

Γ, Σ,Θ
0

0

_𝑙 . 𝑒1 : T0 (𝐿𝐼𝑛)
𝑝
−→ 𝐿𝑂𝑢𝑡 (3)

The later follows from rule Abs if we prove:

Γ, Σ,Θ, 𝑙 :T0 (𝐿𝐼𝑛) 0

𝑝
𝑒1 : 𝐿𝑂𝑢𝑡 (4)

By rule Match-L we get three new obligations; the first two corre-

spond to the scrutinised list and the right-hand side of nil-case:

𝑙 :T0 (𝐿𝐼𝑛) 0

0

𝑙 :𝐿𝐼𝑛 (Var)

0

0 nil:𝐿𝑂𝑢𝑡 (Nil)

The remaining case for non-empty lists is:

Γ, Σ,Θ, 𝑥 :𝐵, 𝑥𝑠:T0 (L0 ((𝑞1 + 𝑞2, 𝑞2), 𝐵))
0

𝑞1
𝑒2:𝐿𝑂𝑢𝑡 (5)

We now apply the Share rule to distribute the potential of the

tail 𝑥𝑠 for the two uses in right-hand side expression 𝑒2. The side

condition is:

L0 ((𝑞1 + 𝑞2, 𝑞2), 𝐵) / {L0 ((𝑝1, 𝑝2), 𝐵), L0 ((𝑠1, 𝑠2), 𝐵)} (6)

for some annotations 𝑝1, 𝑝2, 𝑠1, 𝑠2 such that 𝑞1 +𝑞2 ≥ 𝑝1 + 𝑠1 ∧𝑞2 ≥
𝑝2 + 𝑠2. The two contexts are:

Δ1 = 𝑥𝑠 :T0 (L0 ((𝑠1, 𝑠2), 𝐵)) (for the recursive call to pairs)

Δ2 = 𝑥𝑠 :T0 (L0 ((𝑝1, 𝑝2), 𝐵)) (for the call to attach)

We can now type the recursive right-hand side 𝑒2:

Γ, Σ,Θ, 𝑥 :𝐵, Δ1,Δ2
0

2 let 𝑓1 = pairs 𝑥𝑠;
𝑓2 = attach 𝑥 𝑥𝑠

in app′ 𝑓1 𝑓2

: 𝐿𝑂𝑢𝑡 (7)

The cost annotation on the turnstile correspond to the two uses of

let for 𝑓1 and 𝑓2, as will be confirmed from the remaining derivation.

We continue by typing the bound sub-expressions:

Θ,Δ1
0

0 pairs 𝑥𝑠 : L0 ((0, 0), 𝐵 × 𝐵) (8)

Σ,Δ2, 𝑥 :𝐵
0

0 attach 𝑥 𝑥𝑠 : L0 (0, 𝐵 × 𝐵) (9)

Judgments (8) and (9) follow immediately from Var and App. Note

that, while the annotations on the turnstile are zero, the uses of

App impose constraints on the annotations in Δ1 and Δ2: 𝑝1 = 3,

𝑝2 = 0, 𝑠1 = 𝑞1 and 𝑠2 = 𝑞2. It remains to type the inner expression:

Δ2, Γ,Θ, 𝑓1:T0 (𝐿𝑂𝑢𝑡) 0

1 let 𝑓2 = 𝑎𝑡𝑡𝑎𝑐ℎ 𝑥𝑥𝑠 in 𝑎𝑝𝑝 ′ 𝑓1 𝑓2:𝐿𝑂𝑢𝑡

(10)

This follows from the rules Var and App twice:

Γ, 𝑓1:T0 (𝐿𝑂𝑢𝑡), 𝑓2:T0 (L0 (1, 𝐵 × 𝐵))
0

0

𝑎𝑝𝑝 ′ 𝑓1 𝑓2:𝐿𝑂𝑢𝑡 (11)

With this detailed illustration it is easy to see where the con-

straints mentioned before come from. From (8), (9) and (10) we get

𝑝1 = 3, 𝑝2 = 0, 𝑠1 = 𝑞1 and 𝑠2 = 𝑞2. From (5) and (7) we get 𝑞1 ≥ 2.

From (6) we get that 𝑞1 + 𝑞2 = 𝑠1 + 𝑝1 and 𝑞2 = 𝑠2 + 𝑝2. These con-

straints admit the solution 𝑝1 = 𝑠2 = 𝑞2 = 3, 𝑠1 = 𝑞1 = 2, 𝑝2, 𝑝 = 0,

giving us the following typing:

pairs : T0 (L0 ((2, 3), 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)

This typing ensures that pairs can be applied to an input list 𝑙

with potential 2 × |𝑙 | + 3 ×
(|𝑙 |
2

)
leaving no leftover potential. This

corresponds to a quadratic cost bound of 2 × 𝑛 + 3 ×
(𝑛
2

)
+ 0 =

2×𝑛+ 3

2
×𝑛× (𝑛−1) expressed as a function of the input list length

𝑛 = |𝑙 |.

Example 5.2. In the previous derivation we choose zero annota-

tions for the thunks in the list spine; this corresponds to deriving

a cost bound for the case where the spine of the input list is fully

evaluated. Let us now consider the case where the input list 𝑙 is

annotated with L1 ((𝑞1, 𝑞2), 𝐵), i.e., evaluating each list successive

constructor costs 1.

Because of the rule Match, when we introduce the tail element

of the list to our environment it will be associated with a unitary

cost thunk. We can use the structural rule Prepay to pay for its

thunk cost only once, rather than for each use, before using Share

to duplicate it. Because the rule Prepay is structural, we could have

chosen not to use it and the inference would still have obtained an

acceptable but less precise type.

Again, we are going to illustrate the inference steps with more

detail. Note that, again, we omit certain elements of the type context

that are not needed for the derivation in question. The expression

is divided into 3 sub-expressions as illustrated before.

As before we assume annotated type for the auxiliary functions:
5

Γ = app′ : T0 (L0 (0, 𝐵 × 𝐵)) 0−→ T0 (L0 (1, 𝐵 × 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)

Σ = attach : 𝐵
0−→ T0 (L1 (4, 𝐵)) 0−→ L0 (1, 𝐵 × 𝐵)

let us derive a type for pairs as follows:

Θ = pairs : T𝑝 (L1 ((𝑞1, 𝑞2), 𝐵)︸ ︷︷ ︸
𝐿𝐼𝑛

) 𝑎−→ L0 ((0, 0), 𝐵 × 𝐵)︸ ︷︷ ︸
𝐿𝑂𝑢𝑡

The derivation is very similar to the previous example. It is when

we reach the point of sharing the potential of the list that the main

difference appears.

Γ, Σ,Θ, 𝑥 :𝐵, 𝑥𝑠:T𝑝 (L1 ((𝑞1 + 𝑞2, 𝑞2), 𝐵))
0

𝑞1
𝑒2:𝐿𝑂𝑢𝑡 (12)

Because this time the list is associated with a unitary cost thunk

rather than a 0 annotated thunk, if we applied the rule Share as

before, that cost would be replicated for both lists, meaning that we

would have to pay for both uses. To prevent this from happening,

we use the structural rule Prepay right before we use Share. We

can see how the lists that result from sharing end up associated

with a 0 annotated thunk:

Γ, Σ, 𝑥 :𝐵, 𝑥𝑠:T1 (L1 ((𝑞1 + 𝑞2, 𝑞2), 𝐵))
0

3

𝑒2:𝐿𝑂𝑢𝑡 (Prepay)

Γ, Σ, 𝑥 :𝐵, 𝑥𝑠:T0 (L1 ((𝑞1, 𝑞2), 𝐵))
0

2

𝑒2:𝐿𝑂𝑢𝑡 (Share)

5
Note that we need a different annotation for the input list of attach.

9

IFL ’20, September 2–4, 2020, Canterbury, United Kingdom Sara Moreira, Pedro Vasconcelos, and Mário Florido

The use of Share generates the following side condition:

T0 (L1 ((𝑞1 + 𝑞2, 𝑞2), 𝐵)) / {T0 (L1 ((𝑝1, 𝑝2), 𝐵)), T0 (L1 ((𝑠1, 𝑠2), 𝐵))}
(13)

Note that, although the outermost thunks have been reduced by

the use of Prepay, the list spine thunks still cost 1 because sharing

distributes potential but not costs (See Fig. 3).

The remaining derivation is:

Γ, Σ, 𝑥 :𝐵, 𝑥𝑠:T0 (L1 ((𝑝1, 𝑝2), 𝐵)), 𝑥𝑠:T0 (L1 ((𝑠1, 𝑠2), 𝐵))
0

2

𝑒2:𝐿𝑂𝑢𝑡

(14)

The main constraints that result from this derivation are very

similar to the ones from the example above, with the exception of

𝑝1 = 4 (because of the different type assumption for attach) and
𝑞1 ≥ 3 (because of the use of Prepay after (14)). These constraints

can be solved by 𝑝1 = 𝑠2 = 𝑞2 = 4, 𝑠1 = 𝑞1 = 3, 𝑝2 = 0, 𝑝 = 0, giving

us the type

pairs : T0 (L1 ((3, 4), 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)
This type corresponds to a cost bound of 3 × 𝑛 + 4 ×

(𝑛
2

)
+ 0 =

3 × 𝑛 + 2 × 𝑛 × (𝑛 − 1) for list of length 𝑛.

5.2 Cost Overestimation
Comparing the bounds obtained for the examples we note an over-

estimation. The example 5.2 is identical to 5.1 except for the extra

cost for each list constructors; hence we would expect to pay only

extra 𝑛 units. However, the difference between the bounds is 3 ×
𝑛 + 2 × 𝑛 × (𝑛 − 1) − (3

2
× 𝑛 × (𝑛 − 1)) = 𝑛 + 1

2
× 𝑛 × (𝑛 − 1).

The overestimation results from the two uses of xs in the body

of pairs: sharing allows distributing the list potential but not the

spine thunk costs. Recall equation (13):

T0 (L1 ((𝑞1 + 𝑞2, 𝑞2), 𝐵)) / {T0 (L1 ((𝑝1, 𝑝2), 𝐵))︸ ︷︷ ︸
attach

, T0 (L1 ((𝑠1, 𝑠2), 𝐵))︸ ︷︷ ︸
pairs

}

The uses for attach and the recursive call each pay for the unit

thunk cost for the spine even though thunks are evaluated once.

It might appear that we should always allow costs to be shared,

i.e.replace the side condition 𝑞𝑖 ≥ 𝑞 of rule ShareList (cf.Fig. 3):

𝐴 / {𝐴1, . . . , 𝐴𝑛} ®𝑝 ≥ ∑
𝑖 ®𝑝𝑖

∑
𝑖 𝑞𝑖 ≥ 𝑞

L𝑞 (®𝑝,𝐴) / {L𝑞1 (®𝑝1, 𝐴1), . . . , L𝑞𝑛 (®𝑝𝑛, 𝐴𝑛)}
(ShareList’)

In the above example the revised rule would allow deriving e.g.

T0 (L1 ((𝑞1 + 𝑞2, 𝑞2), 𝐵)) / {T0 (L1 ((𝑝1, 𝑝2), 𝐵))︸ ︷︷ ︸
attach

, T0 (L0 ((𝑠1, 𝑠2), 𝐵))︸ ︷︷ ︸
pairs

}

meaning only attach would pay for the thunk costs (alternatively,

we could also have the cost in the recursive call). However, note

that rule ShareList’ is, in general, unsound: firstly, we may discard

assumptions with positive cost (possibly leading to cost under-

estimating); secondly, even if assumptions are used, there is no

guarantee that two uses evaluate the list to the same depth.

The first issue can be solved by making the type system relevant
i.e., removing the rule for weakening and introducing binders that

do not add variables to typing contexts. We conjecture that the

second issue could be avoided in some cases, e.g.in a tail strict

context [19]. Note that pairs is not tail strict but nonetheless, we

believe ShareList’ should be sound; we leave further research into

the characterisation of sound contexts as an open problem.

6 CONCLUSION AND FURTHERWORK
In this paper, we present the first amortised resource analysis for

higher-order lazy functional programs with polynomial bounds.

We show how we combine main concepts from previous systems in

order to reach this goal: the usage of thunk types and prepaying for

lazy evaluation and the additive shift for polynomial potential. Our

type system has been successfully applied to some small examples.

Our analysis does not allow resource polymorphic recursion, i.e.,

recursive calls with different resource annotations. As it happens

in the strict setting, we expect that this will cause many programs

that are not in tail-recursive form to fail to admit an annotated

type [1, 5]. For example, if we consider our definition of pairs and
change the order in which the arguments are sent to app’, the
inference of annotations eventually reaches some inconsistency.

This problem was already addressed by Hoffmann in the strict

setting by using a cost-free resource metric that assigns zero costs

for each evaluation step and extending the algorithmic type rules

with resource polymorphic recursion. We believe that the same

approach can be used in our system.

REFERENCES
[1] Jan Hoffmann. 2011. Types with potential: polynomial resource bounds via auto-

matic amortized analysis. Ph.D. Dissertation. Ludwig Maximilians University

Munich.

[2] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2011. Multivariate amortized

resource analysis. In ACM SIGPLAN Notices, Vol. 46. ACM, 357–370.

[3] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards automatic

resource bound analysis for OCaml. In ACM SIGPLAN Notices, Vol. 52. ACM,

359–373.

[4] Jan Hoffmann and Martin Hofmann. 2010. Amortized resource analysis with

polymorphic recursion and partial big-step operational semantics. In Asian Sym-
posium on Programming Languages and Systems. Springer, 172–187.

[5] Jan Hoffmann and Martin Hofmann. 2010. Amortized resource analysis with

polynomial potential. In European Symposium on Programming. Springer, 287–
306.

[6] Martin Hofmann and Steffen Jost. 2003. Static prediction of heap space usage

for first-order functional programs. In ACM SIGPLAN Notices, Vol. 38. ACM,

185–197.

[7] Martin Hofmann and Steffen Jost. 2006. Type-based amortised heap-space analy-

sis. In European Symposium on Programming. Springer, 22–37.
[8] John Hughes and Chalmers Hogskola. 1999. Why Functional Programming

Matters. (05 1999).

[9] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. 2010.

Static determination of quantitative resource usage for higher-order programs.

In ACM Sigplan Notices, Vol. 45. ACM, 223–236.

[10] Steffen Jost, Pedro Vasconcelos, Mário Florido, and Kevin Hammond. 2017. Type-

based cost analysis for lazy functional languages. Journal of Automated Reasoning
59, 1 (2017), 87–120.

[11] John Launchbury. 1993. A natural semantics for lazy evaluation. In Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 144–154.

[12] Neil Mitchell. 2013. Leaking space. Commun. ACM 56, 11 (2013), 44–52.

[13] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of
program analysis. Springer.

[14] Chris Okasaki. 1999. Purely functional data structures. Cambridge University

Press.

[15] Peter Sestoft. 1997. Deriving a lazy abstract machine. Journal of Functional
Programming 7, 3 (1997), 231–264.

[16] Hugo Simões, Pedro Vasconcelos, Mário Florido, Steffen Jost, and Kevin Ham-

mond. 2012. Automatic amortised analysis of dynamic memory allocation for lazy

functional programs. In ACM SIGPLAN International Conference on Functional
Programming, ICFP’12. 165–176.

[17] Robert Endre Tarjan. 1985. Amortized computational complexity. SIAM Journal
on Algebraic Discrete Methods 6, 2 (1985), 306–318.

10

Resource Analysis for Lazy Evaluation with Polynomial Potential IFL ’20, September 2–4, 2020, Canterbury, United Kingdom

[18] Pedro Vasconcelos, Steffen Jost, Mário Florido, and Kevin Hammond. 2015. Type-

Based Allocation Analysis for Co-recursion in Lazy Functional Languages. In

Programming Languages and Systems, Jan Vitek (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 787–811.

[19] Philip Wadler and R. J. M. Hughes. 1987. Projections for strictness analysis. In

Functional Programming Languages and Computer Architecture, Gilles Kahn (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 385–407.

11

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Type-based Analysis
	2.2 Classic Amortisation
	2.3 Automatic Amortisation
	2.4 Lazy evaluation
	2.5 Polynomial potential

	3 Language and Operational Semantics
	3.1 Syntax
	3.2 Operational semantics

	4 Analysis with polynomial potential
	4.1 Annotated Types
	4.2 Sharing and Subtyping
	4.3 Type Rules
	4.4 Soundness

	5 Worked examples
	5.1 Examples
	5.2 Cost Overestimation

	6 Conclusion and Further Work
	References

