
Predicting Malignancy from Mammography Findings and Surgical Biopsies

Pedro Ferreira∗, Nuno A. Fonseca∗, Inês Dutra∗†, Ryan Woods‡ and Elizabeth Burnside§
∗CRACS-INESC Porto LA, Porto, Portugal

†CRACS-INESC Porto LA & DCC-FC, Universidade do Porto, Porto, Portugal
‡Department of Radiology, Johns Hopkins Hospital, Baltimore, MD, USA

§University of Wisconsin, Medical School, Madison, WI, USA

Abstract—Breast screening is the regular examination of
a woman’s breasts to find breast cancer earlier. The sole
exam approved for this purpose is mammography. Usually,
findings are annotated through the Breast Imaging Reporting
and Data System (BIRADS) created by the American College
of Radiology. The BIRADS system determines a standard
lexicon to be used by radiologists when studying each finding.
Although the lexicon is standard, the annotation accuracy
of the findings depends on the experience of the radiologist.
Moreover, the accuracy of the classification of a mammography
is also highly dependent on the expertise of the radiologist.
A correct classification is paramount due to economical and
humanitarian reasons.

The main goal of this work is to produce machine learning
models that predict the outcome of a mammography from a
reduced set of annotated mammography findings. In the study
we used a data set consisting of 348 consecutive breast masses
that underwent image guided or surgical biopsy performed
between October 2005 and December 2007 on 328 female
subjects. The main conclusions are threefold: (1) automatic
classification of a mammography, independent on information
about mass density, can reach equal or better results than
the classification performed by a physician; (2) mass density
seems to be a good indicator of malignancy, as previous studies
suggested; (3) a machine learning model can predict mass
density with a quality as good as the specialist blind to biopsy,
which is one of our main contributions. Our model can predict
malignancy in the absence of the mass density attribute, since
we can fill up this attribute using our mass density predictor.
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I. INTRODUCTION

Mammography is considered the cheapest and most effi-
cient method to detect cancer in a preclinical stage and breast
screening programs were created precisely with the objective
of detecting cancer in earlier stages. The breast screening
programs usually generate a huge amount of data, annotated
according to the Breast Imaging Reporting and Data System
(BIRADS) created by the American College of Radiology.
The BIRADS system determines a standard lexicon to be
used by radiologists when studying each finding. Although
the breast screening programs have helped reducing the
number of women with undetected cancer, there is still
room for improvement, since recent statistics show that one
woman dies of breast cancer every 13 minutes in the U.S.
and in 2009, an estimated 40,170 women (15% of all deaths)
and 440 men in the U.S. were expected to die from breast

cancer. Therefore it is of utmost importance to improve these
numbers and raise the life expectancy in the next years.

We applied machine learning methods to 348 consecutive
breast masses that underwent image guided or surgical
biopsy performed between October 2005 and December
2007 on 328 female subjects. These 348 findings are defined
by 14 attributes, with one of them indicating if the finding
is malignant or benign. Our main objective is to produce
models that can have a good performance at predicting
malignancy and a good performance at avoiding to expose
healthy women to extra surgical or screening procedures.
We are also interested in studying the actual relevance
of mass density in the findings, since this is one of the
attributes that usually is not regarded relevant by physicians.
According to physicians, mass density is a feature usually
considered to be difficult to annotate, because of the breast
tissue, and fat composition. Previous works have shown that
mass density can be an important attribute when predicting
malignancy [1], [2], [3]. The 348 mammographies used in
this study have annotations of mass density, which allow to
(1) investigate in more detail the role played by this feature,
and (2) produce models to predict this particular feature
and help physicians distinguish between high and iso/low
densities.

Much work has been done on applying machine learning
techniques to study breast cancer, one of the most common
kinds of cancer in the world. In the UCI (University of Cal-
ifornia, Irvine) machine learning repository1 there are four
data sets whose main target of study is breast cancer. One of
the first works on applying machine learning techniques to
breast cancer data dates from 1990. At this time, the first data
set donated to the UCI repository was created by Wolberg
and Mangasarian after their work on a multi-surface method
of pattern separation for medical diagnosis applied to breast
cytology [4]. Most works in the literature applies artificial
neural networks to the problem of diagnosing breast cancer
(e.g., [5] and [6]). Others focus on prognosis of the disease
using inductive learning methods (e.g., [7]). More recently,
Ayer et al. [8] have evaluated whether an artificial neural
network trained on a large prospectively collected data set
of consecutive mammography findings could discriminate

1http://archive.ics.uci.edu/ml/datasets.html.



between benign and malignant disease and accurately predict
the probability of breast cancer for individual patients. Other
works concentrate on the correlation of attributes in the
mammographies, for example, the influence of mass density
and other features on predicting malignancy [1], [2], [3],
[9], [10], [11], [12]. Other recent works focus on extracting
information from free text that appears in medical records of
mammography screenings [13], and on the influence of age
in ductal carcinoma in situ (DCIS) findings [14]. Yet other
works focus on the mammography images themselves [15],
[16]. These are orthogonal to the above mentioned and to
our own work, whose focus is on the medical reports.

We use the same data set used by Woods and Burnside [2].
This data set is unique in the sense that all findings were
retrospectively assessed and all of them have accurate infor-
mation about the density of the breast masses. In that work,
they showed that high breast mass density is a significant
predictor of malignancy, even after controlling for other
well-known predictors of malignancy such as mass margin
and mass shape. The metric used to evaluate performance
was interobserver agreement and they found a moderate k-
value for mass density (0.53).

II. BREAST CANCER DATA

Our study analyzes 348 consecutive breast masses that
underwent image guided or surgical biopsy performed be-
tween October 2005 and December 2007 on 328 female
subjects. Each one of the 348 cases refers to a breast nodule
retrospectively classified according to the BIRADS system.
On the other hand, a clinical radiologist assessed (at the
time of imaging and without biopsy results) the density of
180 of these masses, in an evaluation that can be consid-
ered as ”performed under stress” (prospective assessment).
Pathology result at biopsy was the study endpoint.

Table I shows the main attributes used from these data
to learn the models. When learning models to predict
malignancy the attribute outcome is the target class. It
assumes values malignant and benign and was determined
using the results of biopsies. From the 348 cases, 118 are
malignant (≈ 34%), and 84 cases have high mass density
(≈ 24%) retrospectively assessed Other attributes are mass
shape, mass margins, depth, size, among others. For the
purpose of our study, we have two attributes that represent
the same characteristics of the finding, but with different
interpretations. These are retro density and density num.
Both represent mass densities that can assume values high or
iso/low. Retro density was retrospectively assessed while
density num was prospectively (at the time of imaging)
assessed. These two attributes are our target classes when
learning models to predict mass density.

III. METHODOLOGY

The whole data set (348 findings) was split into two
subsets: (1) training set: 180 cases, whose mass densities

Table I
DATA ATTRIBUTES.

Attribute Description
age at mammo Age of the patient when the mam-

mogram was taken
clockface location Location of the mass
mass shape Shape of the mass
mass margins Classification of the margins of the

mass
side Breast where the mass was found

(left or right)
depth Depth of the mass according to a

measure from the skin surface to
the center of the lesion

mass margins worst Most worrisome mass margin de-
scriptor

quadrant location def Quadrant location of the mass
size Greatest transverse width of the

mass (in mm)
breast composition Composition of the breast (e.g., al-

most entirely fat, scattered fibrog-
landular densities, heterogeneously
dense, extremely dense)

retro density Retrospective annotation of mass
density

density num Prospective annotation of mass
density

outcome Classification of the mass based on
the results of the biopsy (malignant
or benign)

were classified by a radiologist at the exact time of imaging
and (2) test set: 168 cases, whose mass densities were not
annotated at the time of imaging, but instead in a reassess-
ment of all the 348 exams performed by a group of expe-
rienced physicians. The attribute corresponding to the pre-
diction of mass density by the specialist is density_num.
The attribute corresponding to the retrospectively assessed
mass density is retro_density. We have values for
density_num for only 180 of the cases, and have values
for retro_density for all 348 cases. With these train and
test datasets, we performed several experiments in order to
generate models to (1) predict malignancy (outcome), and
(2) to predict mass density.

Table II shows all experiments performed for each task,
according to the attributes used to learn mass density or
outcome. The first five experiments were performed with 180
findings (training set) while the remaining were performed
with 168 findings (test set). From the first five, the first three
predict outcome and the other two predict mass density. In
a nutshell, the experiments can be described as follows:

• Experiment E1 aims at finding a classifier to predict
outcome using the attribute mass density that was ret-
rospectively annotated (retro_density). This clas-
sifier would be useful to help physicians make decisions
on retrospectively studied patients.

• Experiment E2 aims at finding a classifier to
predict outcome from patients whose mass den-
sity was prospectively assessed (using the attribute



Table II
EXPERIMENTS ON THE TRAINING AND TEST SETS. IN EACH LINE, WE GIVE THE CONDITIONS OF THE EXPERIMENT. E.G., E1 , E2 AND E3 PREDICT
OUTCOME, WHERE E1 USES MASS DENSITY AS DESCRIBED BY THE ATTRIBUTE RETRO DENSITY, E2 USES MASS DENSITY AS DESCRIBED BY THE

ATTRIBUTE DENSITY NUM, AND E3 DOES NOT USE ANY INFORMATION ABOUT MASS DENSITY

Exp. outcome retro density density num size output
E1 class yes no 180 classifier for outcome (M1)
E2 class no yes 180 classifier for outcome (M2)
E3 class no no 180 classifier for outcome (M3)
E4 no class no 180 classifier for mass density (M4)
E5 no no class 180 classifier for mass density (M5)
E6 no class no 168 test set with mass density filled up by model M4

E7 no no class 168 test set with mass density filled up by model M5

E8 class yes no 168 prediction of outcome using actual values of
retro density

E9 class yes (E6) no 168 prediction of outcome using test set obtained in E6

E10 class no yes (E7) 168 prediction of outcome using test set obtained in E7

E11 class no no 168 prediction of outcome without mass density

density_num). This classifier would be helpful on
the clinical daily routine of a physician.

• Experiment E3 was performed in order to assess the
performance of a classifier trained without any mass
density information. This experiment was performed
in order to assess the relevance of mass density when
predicting the outcome. It can be used on new data
without any information about the mass density.

• Experiment E4 generates models to predict mass den-
sity based on retrospectively annotated density.

• Experiment E5 generates models to predict mass den-
sity based on prospectively annotated density.

The last two experiments were performed to assess how
well an automated classifier can predict the kinds of densities
(high or iso/low) when compared to the physician.

We evaluated several classification algorithms available in
WEKA [17] and varied their parameters. The experiments
were performed with the WEKA’s Experimenter module
using 10 times 10-fold cross-validation on the training
dataset. For each algorithm we selected the combination
of parameters that produced the best classifiers, and then
selected the top three classifiers for generating models:
NaiveBayes [18], DTNB (a decision table algorithm whose
leaves are Bayesian networks) and SMO (a support vec-
tor machine [19] implementation [20]). A fourth classifier
was selected, J48 (decision tree based on Quinlan’s C4.5
algorithm), due to its ability to produce readable and easily
understandable models.

The last six experiments of Table II apply the models
generated (M1, M2, M3, M4, and M5 generated by the first
five experiments), to the test set containing 168 cases as
follows:

1) Experiment E6 generates the values for mass den-
sity using the model trained with the attribute
retro_density as the class variable (obtained by
experiment E4).

2) Experiment E7 generates the values for mass den-
sity using the model trained with the attribute

density_num as the class variable, (obtained by
experiment E5).

3) Experiment E8 predicts outcome using the model M1

trained with the attribute retro_density (obtained
by experiment E1), and uses the actual values of the
attribute retro_density available in the test set.

4) Experiment E9 predicts outcome using the model M1

trained with the attribute retro_density (obtained
by experiment E1), and uses the mass density values
filled up by experiment E6 in the test set.

5) Experiment E10 predicts outcome using the model
trained M2 with the attribute density_num (ob-
tained by experiment E2), and uses the mass density
values filled up by experiment E7 in the test set.

6) Experiment E11 predicts outcome with the model M3

that does not use any information about mass density,
obtained in experiment E3. For this experiment, no
mass density attribute is used in the test set.

We used the metrics CCI (Correctly Classified Instances,
a.k.a. accuracy), F-measure (harmonic mean between Preci-
sion and Recall) and Kappa statistics to assess the classifiers.
Whenever applicable we performed significance tests using
paired t-test (α = 0.05).

IV. RESULTS

We first investigated the data and calculated simple
frequencies to determine if there was some evidence of
relationship between attributes, specially if mass density is
related to malignancy.

According to the frequencies of attribute values among
the classes, from the 348 breast masses, 118 are malignant
(≈ 34%), and 84 have high mass density (≈ 24%). If we
consider that mass density and malignancy are independent,
and take 84 cases from the 348 at random, the probability of
these being malignant should still be ≈ 34%. However, if
it happens that all 84 cases selected at random have high
density, then the percentage of malignant cases raises to
70.2% and the probability of this being coincidence is very



Table III
CLASSIFIERS’ PERFORMANCE FOR EACH TASK. VALUES NOT IN BOLD

ARE STATISTICALLY SIGNIFICANTLY WORSE THAN THE CLASSIFIER
WITH HIGHEST ACCURACY (USING PAIRED T-TEST WITH α = 0.05).

Exp. Algorithm CCI K F AUROC
E1 SMO 85.6±7.3 0.69±0.16 0.80±0.11 0.84±0.08

E1 DTNB 81.6±8.2 0.60±0.18 0.74±0.13 0.88±0.07

E1 NaiveBayes 81.3±9.5 0.61±0.20 0.76±0.12 0.88±0.08

E1 J48 80.7±9.3 0.59±0.20 0.75±0.13 0.79±0.11

E2 SMO 83.9±7.7 0.66±0.17 0.78±0.11 0.82±0.08

E2 NaiveBayes 80.3±9.3 0.59±0.19 0.75±0.12 0.87±0.09

E2 DTNB 79.8±9.5 0.56±0.21 0.72±0.15 0.86±0.09

E2 J48 75.4±9.5 0.47±0.21 0.65±0.15 0.73±0.12

E3 SMO 83.8±7.7 0.65±0.17 0.78±0.11 0.82±0.09

E3 J48 76.3±9.9 0.49±0.22 0.67±0.15 0.76±0.13

E3 NaiveBayes 76.2±9.9 0.51±0.20 0.71±0.13 0.85±0.09

E3 DTNB 75.7±9.0 0.48±0.19 0.67±0.13 0.81±0.10

E4 SMO 81.3±8.2 0.52±0.21 0.64±0.17 0.75±0.11

E4 J48 74.4±8.8 0.32±0.24 0.47±0.21 0.67±0.15

E4 DTNB 73.5±10.0 0.34±0.24 0.51±0.19 0.76±0.12

E4 NaiveBayes 72.8±9.9 0.37±0.23 0.56±0.18 0.77±0.11

E5 NaiveBayes 67.2±12.1 0.33±0.25 0.62±0.15 0.72±0.14

E5 SMO 66.8±10.7 0.31±0.22 0.55±0.16 0.65±0.11

E5 J48 63.6±10.1 0.26±0.21 0.56±0.15 0.62±0.13

E5 DTNB 62.1±11.9 0.22±0.24 0.54±0.16 0.64±0.14

Table IV
CLASSIFIERS’ PERFORMANCE FOR THE TEST SET.

Algorithm CCI K F AUROC
E6 SMO 84.52 0.46 0.91 0.74
E7 NaiveBayes 75.60 0.35 0.84 0.81
E8 SMO 80.95 0.50 0.87 0.74
E9 SMO 77.98 0.45 0.85 0.80
E10 SMO 79.17 0.49 0.85 0.83
E11 SMO 76.19 0.42 0.83 0.71

low. This simple calculation may already imply that high
density has some relationship with malignancy. So may other
attributes such as age, mass shape and mass margins. In
this work, we do not report on the importance of the other
attributes.

A. Performance Analysis

The best models produced for experiments (E1), (E2),
(E3) and (E4) were obtained with the algorithm SMO, with
main parameters: polynomial kernel with exponent E = 1
and complexity constant C = 0.05. For experiment (E4),
the best classifier was obtained with no data normaliza-
tion/standardization (N = 2), while the other 3 experiments
used N = 1 (the training data was standardized). The
parameter C at SMO controls how soft the class margins
are. In practice it controls how many instances are used
as ’support vectors’ to draw the linear separation boundary
in the transformed Euclidean feature space. The fact that
C = 0.05 produces better results seems to indicate that the
default value (1.0) somehow generates an over-fitted trained
classifier, whose performance is not so good on the cross-
validation test sets. For experiment (E5), the best classifier
was obtained using the naive Bayes algorithm with default
parameters. Most probably, naive Bayes performed better
with this data set because this data is noisy containing

errors associated to the prospectively annotated density num
attribute.

Table III shows, for each experiment E1 to E5, the best
performance of each algorithm after parameter variation
(classifiers are sorted in descending order after CCI). The
SMO classifier consistently achieves better results for the
training data set, even when NaiveBayes wins (experiment
E5, note that there is no statistically significant difference
between NaiveBayes and SMO with respect to CCI and K).

All classifiers behave better when trained on retrospec-
tively annotated data (experiment E1), which seems to
indicate that in practical clinical routine, this would be the
best classifier to use. However, since it is hard to obtain
retrospectively annotated data, the approach followed in E2,
using prospectively annotated mass density values, can also
be used with good results. It is important to notice that the
SMO obtained with experiment E2 has performance only
slightly lower than the SMO of experiment E1 and the
difference is not statistically significant.

Experiment E5 is the most difficult as it consists of
predicting mass density from noisy data. It is interesting to
note that all algorithms achieve lower performance for this
experiment than for the other tasks, with NaiveBayes achiev-
ing a performance that is close to that of the physician, who
has CCI of 70% when compared with the retrospectively
annotated mass density.

All results of Table III, with exception of AUROC, are
higher for the best classifier. The AUROC is higher for
algorithms other than the best.

B. Training to predict outcome

In the three experiments, (E1), (E2) and (E3), the best
classifiers found were based on SMO. First of all, these
results show that mass density has some influence on the
outcome, specially when mass density is the one observed on
the retrospective data (experiment E1). The classifier trained
without mass density has an overall performance of 83.8%
while the classifier trained with the retrospectively assessed
mass has an overall performance of 85.6%. If we look at
the K value, we can confirm that the relation between mass
density and outcome is not by chance, given the relatively
high observed agreement between the real data and the
classifier’s predicted values. The F-measure balances the
values of Precision and Recall and also indicates that the
classifiers are behaving reasonably well.

The results obtained with experiments (E1), (E2) and (E3)
confirm findings in the literature regarding the relevance of
mass density [1], [2], [12], [21], and also show that good
classifiers can be obtained to predict outcome (with a high
percentage of correctly classified instances and good values
of precision and recall, according to F).

Another evidence that mass density is somehow related
to malignancy are the decision trees generated by the J48
algorithm, in which retro_density and density_num



were chosen as the most important attributes appearing in
the top of the trees. Despite the fact that J48 was not
the best classifier to predict outcome, this fact reveals that
the attribute mass density has some influence over all the
remaining features. Another important fact to note is that,
according to J48, the second most important attribute that
helps discriminating between malignant and benign cases is
mass margins.

C. Training to predict mass density

Our set of experiments E4 and E5 are related to predicting
mass density. As the data set has two annotated mass den-
sities, one for the prospective study and another one for the
retrospective, we generated two classifiers: one is trained on
the prospective values of mass density (density num), and
another one is trained on the retrospective (retro density)
values of mass density. Once more, we used the 180 cases as
training set and 10-fold cross-validation. The best classifier
for predicting retro density was SMO and the best to predict
density num was NaiveBayes.

During the prospective study, the radiologist predicted
70% of masses on the 180 findings compared with the
annotated masses of the retrospective study. The SMO clas-
sifier predicted 81.3% of correct instances when training on
the retrospective annotated mass (retro density) and Naive-
Bayes predicted 67.2% of correct instances when training
on prospective masses annotated by the radiologist. These
results are quite good and indicate that either the SMO or
the Bayesian classifier generated in this study can be well
applied as a support tool to help physicians/radiologists to
classify mass density in mammograms.

The values of K and F-measure for this experiment are
not so good as the ones obtained with the classifiers that
predict outcome. The K value, once more, indicates that both
NaiveBayes and SMO have a moderate level of agreement.

D. Performance of the best classifiers on unseen data

Table IV summarizes the results of predicting outcome on
the 168 unseen cases as well as the results of filling up the
attribute mass density in the test set.

The first two lines of Table IV refer to experiments to
fill up values of the attribute mass density in the test set.
The CCI indicates how well models M4 and M5, obtained
respectively with experiments E4 and E5, performed on
filling up those values, when compared with the actual values
of retro density available in the test set. The SMO classifier,
which had a very good performance on the training set
(CCI=81.3%), behaves even better when filling up values
for retro density, making mistakes in only 16% of the
actual masses. The NaiveBayes classifier (M5), obtained
with experiment E5, which had CCI=67.2% in the training
set, performed very well in the task of filling up the missing
values of density num, correctly classifying 75.6% of the

instances. A result that surpasses the result obtained by the
specialist, which is 70%.

For the tasks of predicting outcome, the classifiers also
perform very well, with the worst predictions being pro-
duced by model M3, which does not use any information
about mass density. This result confirms once more the
relevance of mass density on predicting outcome. In the
absence of this information, the data could be filled up by
M4 or M5, that, as mentioned, have a good performance on
performing this job.

E. MammoClass Application

The best models were integrated into an online application
(called MamoClass). It allows a practitioner to quickly
and easily assess mammograms by obtaining a prediction
for mass density and/or classify a mammography given
a reduced set of mammography findings. The application
is freely available at http://cracs.fc.up.pt/mammoclass. This
application will start to be used at Hospital São João in
Porto, Portugal, and at the Medical School, in the University
of Wisconsin, Madison, by our collaborators.

V. CONCLUSIONS AND FUTURE WORK

In this work, we were provided with 348 cases of patients
that went through mammography screening and biopsies.
The objective of this work was twofold: i) find non trivial
relations among attributes by applying machine learning
techniques to these data, and; ii) learn models that could
help medical doctors to quickly assess mammograms.

The conclusions are threefold: (1) automatic classification
of a mammography, independent on information about mass
density, can reach equal or better results than the classifi-
cation performed by a physician; (2) mass density seems
to be a good indicator of malignancy, as previous studies
suggested; (3) machine learning classifiers can predict mass
density with a quality as good as the specialist blind to
biopsy, which is one of our main contributions. Our classifier
can predict malignancy in the absence of the mass density
attribute, since we can fill up this attribute using our mass
density predictor.

As future work, we plan to extend this work to larger
data sets, and apply other machine learning techniques based
on statistical relational learning, since classifiers that fall in
this category provide a good explanation of the predicted
outcomes as well as can consider the relationship among
mammograms of the same patient. We would also like to
investigate how other attributes can affect malignancy or are
related to the other attributes. Yet another stream would be to
study why the parameter variation in the WEKA algorithms
has a strong impact on the performance of the classifiers.
Another important step forward would be to investigate
with the physician, why some instances are consistently
misclassified by all algorithms.
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