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Abstract

The DigiScope project aims at developing a digitally en-
hanced stethoscope capable of using state of the art technol-
ogy in order to help physicians in their daily medical rou-
tine. One of the main tasks of DigiScope is to build a repos-
itory of auscultations (sound and medical related data). In
this work, we present a preliminary analysis and study of the
first auscultations performed on children of a Brazilian hos-
pital. Results indicate that classifiers can be obtained that
distinguish reasonably well patients with cardiac patholo-
gies from those that do not have pathologies.

1. Introduction

Since the invention of the first stethoscope, by the French
physician René Laënnec in 1816, the auscultation of the
heart and lungs, using a stethoscope, is often conducted on
patients thought to have cardiac or pulmonary disease be-
fore recommending additional diagnostic procedures, treat-
ment, or no further action. Because this process is sim-
ple, cheap, and quick to detect diseases, the stethoscope
still maintains a key position in medicine in the modern
era. Auscultation is a subjective process that depends on the
experience and hearing capability of the individual, which

may lead to a large variability in findings. Auscultation,
however, is a hard skill to master. Physically, a stethoscope
covers a broad sound spectrum and the average frequency
depends on the point of auscultation. It requires significant
practice for a human ear to distinguish between them.

Digital stethoscopes are medical devices that can collect,
store and sometimes transmit acoustic auscultation signals
in a digital format. These can then be replayed, sent to a col-
league for a second opinion, studied in detail after an aus-
cultation, used for training or, as we envision it, can be used
as a cheap powerful tool for screening cardiac pathologies.
DigiScope [16, 15] is one of the enhanced stethoscopes that
aims at using state of the art technology in order to help
physicians in their daily medical routine. DigiScope aims
to be a prototype of a digitally enhanced stethoscope, ca-
pable of automatically extracting clinical features from the
collected data, as well as providing a clinical second opin-
ion on specific heart pathologies. Several other electron-
ically enhanced and digital stethoscopes have been devel-
oped and described in the literature [10, 18, 2], including
models such as the iStethoscope Pro (application developed
for the iPhone) or products such as the stethoscope devel-
oped by Zargis Medical Corp. While all provide some in-
teresting ideas for digitally enhanced stethoscopes, their pri-
mary focus is on the technological development of the ap-
paratus itself. A published review [5] argues that the key to



robust solutions lies in a stronger interaction with the clin-
ical community, both for understanding the needs of car-
diologists and for robust clinical validation of not only the
methods but also the final prototype.

In this work, we use data collected by the DigiScope
Data Collector, which is being used in two hospitals, one
in Portugal and another one in Brazil [16]. The data col-
lected in Portugal is from adults while the data collected
from Brazil is from children. In this work, we concentrate
on analyzing the Brazilian children data. We discuss DigiS-
cope’s data model, give some statistics about the data be-
ing collected in Brazil, and report preliminary results on
the correlation among the data attributes that may lead to
valuable recommendations to the doctors and their patients.
This work was approved by the Ethical Review Board of the
Real Hospital Português.

This work has two goals:

1. automatically learn classifiers that distinguish between
normal patients and those with any cardiac pathology.
Our classifiers rely only on the cardiologist provided
annotation and not on the raw sound data itself.

2. automatically extract new and relevant knowledge
from the dataset.

Very few works in the literature report on prediction of
heart diseases using machine learning techniques. The Uni-
versity of California at Irvine (UCI) repository (http://
archive.ics.uci.edu/ml/) has some datasets re-
lated to cardiology. The one most related to our dataset is
the “Heart Disease”. According to the UCI website, this
database contains 76 attributes, but all published experi-
ments refer to using a subset of 14 of them. In particular,
the Cleveland database is the only one that has been used by
machine learning researchers to this date. The “goal” field
refers to the presence of heart disease in the patient. It is
an integer valued from 0 (no presence) to 4. Experiments
with the Cleveland database have concentrated on simply
attempting to distinguish presence (values 1,2,3,4) from ab-
sence (value 0). The results obtained with an instance-
base learning algorithm (IB1) report an accuracy of 75.7%
(±0.8). Another experiment with the same dataset, also
to diagnose disease, used a neural network algorithm and
reported an accuracy of 87.5% [12]. More recently, the
same dataset was used in experiments that use Radial Ba-
sis Function Networks, that report an accuracy of 84% [14].
A more recent work [19] had as objective to model the de-
tection of heart failure more than 6 months before the actual
date of clinical diagnosis using machine learning techniques
to Electronic Health Record (EHR) data. They compared
the performances of logistic regression, SVM and Boost-
ing along with various variable selection methods in heart
failure prediction. They reported a value of 0.77 for the

Area Under the ROC (AUROC) for the best classifier. With
our dataset and performing an exhaustive search for the best
classifier, we obtained an accuracy of 90.5% and AUROC
of 0.83 on unseen cases.

2. The DigiScope Data Model

Given the significant amount of data that DigiScope can
capture in a day, it is important to think on how to describe
the data in a meaningful way. Medical sub-specialties often
use a specific standardized lexicon to describe findings in a
patient (for example, in the area of breast cancer, the termi-
nology is based on the BIRADS - Breast Imaging Reporting
and Data System - lexicon [13]).

We defined metadata that is interesting for pathology
screening, and that is feasible to be annotated in this
context. Contributions to this definition also came from
the HL7 standard [11] and openEHR publicly available
archetypes [3]. We emphasized collecting data that could
be helpful for machine learning research for cardiac pathol-
ogy detection.

In particular, we focused on the following types of infor-
mation:

• The exam history of a patient. This information can
be useful for detecting temporal relationships between
diseases.

• Attributes that can be used to distinguish between nor-
mal and abnormal cases. In particular, the second heart
sound (S2) is very important for this task.

• Attributes that can differentiate between multiple dis-
eases for the same patient (multi-labeling [8]).

• Relationships between patients exams.

• Relationships between medications and a patient’s
health status.

The resulting data model defines both physician an-
notated attributes as well as other attributes that will re-
sult from future work involving signal processing (e.g.
A2 intensity).

3. Materials and Methods

3.1. Data

The DigiScope application has been used for four
months at two hospitals. During this period, June to
September 2011, around 200 patients (children) were aus-
cultated at the Real Hospital Português, in Pernambuco,
Brazil. Each auscultation was recorded, and a XML file
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containing the physician annotated data was associated with
each sound file. In this work, we focus only on the anno-
tated nominal data available in the XML files. For each
patient, we have 40 attributes, but we only use the variables
that were annotated for the majority of the annotations (i.e.,
those that have few missing values). These attributes are
shown in Table 1 along with their possible values. For each
numerical attribute, the table reports its average and stan-
dard deviation. For each categorical attribute, the table re-
ports the raw number of occurrences for each value along
with the percentage. We also show the number of occur-
rences according to the CardiacPathology values (last two
columns of Table 1). The average age for the children in the
study is 7.3 years.

We worked with the 169 cases that had almost com-
plete annotations and were not missing the class label Car-
diacPathology. 40 cases were labeled as having a Cardiac-
Pathology while the remaining 129 were annotated as being
normal. Besides being auscultated, every patient also had
an ecocardiogram. The final label for CardiacPathology was
determined during auscultation and possibly modified after
the ecocardiogram.

In Table 1, we highlight in bold 14 attributes that have
multiple values and are rarely missing.

3.2. Methodology

Besides the original attributes, we derived the fol-
lowing additional ones: body mass index (BMI, cal-
culated as the person’s weight in kilograms divided
by the square of the height in meters), and catego-
rized versions of SystolicSystemicPressure-mmHg and
DiastolicSystemicPressure-mmHg, according to the chil-
dren’s sex, age and respective height percentiles. Table 2
shows statistics about the derived attributes.

For training, we omitted the attributes related to weight,
height, and age, since these are captured by the derived at-
tributes. Attributes like S1Status, PressurePosition, S3Exist
and S4Exist are not predictive and therefore are omitted in
our experiments. StatusForm was not used either because
it only indicates if the patient information is complete. We
used the categorized versions of the attributes (the ones with
suffix “ def”) in order to ensure that the discretized versions
are medically relevant. No weighing was used to compen-
sate the class size imbalance.

Our main goals with this work are: (1) to distinguish
between abnormality (patients that have a cardiopathy) and
normality (patients that do not have any cardiopathy), and
(2) explore the data for new relevant knowledge.

For the first goal we focused on learning a classifier to
predict CardiacPathology using the other attributes. Ac-
cording to the specialists, the attribute Murmur is consid-
ered to be very important to predict a cardiac pathology.

In order to study the influence of the attribute Murmur, we
also performed experiments removing the attribute Murmur
from our dataset. These experiments were performed using
the WEKA tool [9]. We compared several classifiers with
a variety of parameters: ZeroR (reference), PART, OneR,
DTNB, SimpleCart, RandomForest, NBTree, J48, Deci-
sionStump, SMO, NaiveBayes, BayesNet(TAN) and 5 more
meta-learning algorithms: AdaBoostM1, Bagging, Dag-
ging, Grading, Stacking and Vote (with 3 different kinds
of combination rules: Majority Voting, Average of Prob-
abilities and Maximum Probability). Most meta-learning
algorithms use DecisionStump as the default base classi-
fier, with the exception of Bagging and Dagging, that use
REPTree and SMO, respectively. For all of these experi-
ments, we used stratified 10-fold cross-validation with 10
iterations, with tuning sets. We compared the results us-
ing a two-tailed corrected paired t-test, with p=0.05. The
best models found with the internal tuning were then ap-
plied to the test sets. We report the average number of Cor-
rectly Classified Instances (CCI), sensitivity and specificity,
calculated according to what is discussed by Forman and
Scholz [7].

For the second goal, we focused on exploring the data
trying to discover new knowledge. In WEKA, we used
association rule mining, feature selection and used classi-
fiers that produce interpretable results (e.g., J48). When
trying to find relations among attributes, in the WEKA sys-
tem, we tested all possible combinations of “Attribute Eval-
uator” and “Search Method”. The most frequent ranked
attributes were used again to further filter and select the
best attributes. Interestingly, the attribute Murmur was
highly ranked. This step was done using 10-fold cross-
validation and in each run, we selected the attributes that
were most frequently selected in the 10 folds. We also used
Aleph [17], an inductive logic programming system that
produces human-readable first-order rules. Experiments
with Aleph were performed over the entire dataset.

4. Results

The best models found in the internal 10-fold cross-
validation (tuning) were applied to the test sets. When
predicting CardiacPathology, with the attribute Murmur, in
seven folds, the best classifier was Grading, and in the re-
maining folds, SMO. The overall performance on the tuning
and test sets are shown in Table 3. The results on the tuning
sets are statistically better than ZeroR, which we use as the
reference classifier.

It is interesting to note that results in the literature using
meta-learning algorithms (more specifically, AdaBoostM1),
report that boosting yields minor to modest performance on
the classification of heart diseases [1]. In our work, the re-
sults of AdaBoostM1 using DecisionStump as the base clas-
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Attribute Range/ Percent/ Stdev/ Missing Pathology
Values Average Qty Yes No

Age 0–19 7.31 ±4.17 2 6.80 7.46
Height-cm 49–183 122.22 ±26.85 4 116.03 124.02
Weight-kg 3–97 29.36 ±16.87 1 25.98 30.42
SystolicSystemicPressure-mmHg 90–145 100.79 ±7.51 36 104.78 99.95
DiastolicSystemicPressure-mmHg 50–90 61.44 ±5.70 36 63.48 61.01

Sex Female 35.50 60 0 18 42
Male 64.50 109 22 87

AuscultationPosition Sit 12.65 21 3 3 18
Lying downwards 87.35 145 36 109

SystemicPressureMethod Manometry 96.38 133 31 23 110
Unknown 3.62 5 2 3

Murmur
No 80.47 136 0 11 125
Systolic 18.93 32 28 4
Diastolic 0.60 1 1 0

S2Status Normal 98.22 166 0 37 129
Abnormal 1.78 3 3 0

IfAbnormal
NA 98.22 166 0 37 129
Single 1.18 2 2 0
Fixed split 0.59 1 1 0

PulmonaryComponent
Normal 99.41 168 0 39 129
Hypophonetic 0 0 0 0
Hyperphonetic 0.59 1 1 0

CardiacPathology Yes 23.67 40 0
No 76.33 129

CardiacPathologyType

PulmonaryHypertension (PH) 0 0 0 0
ArterialHypertension (AH) 1.18 2 2 0
ValvularAorticDisease (VAD) 0.59 1 1 0
IntraventricularCommunication (IC) 3.55 6 6 0
OtherCardiacPathology (OCP) 13.61 23 23 0
AH and VAD 1.18 2 2 0
IC and OCP 2.37 4 4 0
VAD and OCP 0.59 1 1 0
None 76.92 130 1 129

S1Status Normal 100 169 0 40 129
PressurePosition Sit 99.41 168 1 40 128
S3Exist No 100 169 0 40 129
S4Exist No 100 169 0 40 129

StatusForm Complete 56.80 96 0 25 71
Incomplete 43.20 73 15 58

Table 1. Attributes associated with the auscultations and their values

Attribute Values Qty Percentage

BMI

Normal 88 53.33
Overweight 24 14.55
Underweight 23 13.94
Obese 30 18.18

SystolicSystemicPressure-mmHgDisc High 2 1.53
Normal 129 98.47

DiastolicSystemicPressure-mmHgDisc High 2 1.53
Normal 129 98.47

Table 2. Extra derived attributes
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Metrics Tuning Test
CCI (%) 91.56 90.53
Sensitivity 0.72 0.70
Specificity 0.98 0.97

Table 3. Results with Murmur

sifier (the same as the one reported in the literature) pro-
duces results that are statistically close to the ones reported
in Table 3.

Metrics Tuning Test
CCI (%) 79.37 79.29
Sensitivity 0.28 0.28
Specificity 0.95 0.95

Table 4. Results without Murmur

We repeated the same experiment, removing the attribute
Murmur from our dataset. For this experiment, the best re-
sults were always obtained with a Naive Bayesian network
classifier in all folds. The accuracy (CCI) is statistically
worse than the accuracy achieved by the classifier that uses
Murmur, and not statistically different from the reference
classifier ZeroR. Not every murmur is related to a pathol-
ogy, but in our dataset, the attribute Murmur seems to be
very important to predict it. These results suggest that, if
possible, the attribute Murmur should always be annotated.
If not, with only the attributes we have, our classifier would
have a poor performance. One alternative would be to ex-
tract the attribute Murmur from the wave sound through
signal processing, but this is an open research issue and
could be a challenging task. Concluding, the attribute Mur-
mur needs to be annotated and, according to these experi-
ments, is crucial to obtain a classifier that can predict car-
diac pathology with good sensitivity and specificity.

When doing feature selection, the relevant attributes
chosen by all algorithms were: BMI def, Age def,
Sex, SystolicSystemicPressure def, DiastolicSystemicPres-
sure def, Hypertension, Murmur, Grading, S2Status, IfAb-
normal, PulmonaryComponent, CardiacPathology and Car-
diacPathologyType, which coincide with the attributes we
used for classification.

The HotSpot algorithm correlated the CardiacPathology
attribute (class variable) with BMI (these results were also
obtained using a reduced set of patients [6], where the re-
lationship was for height and weight, which are the basic
attributes used for computing the BMI). Removing the at-
tribute Murmur maintains this relationship, but BMI is re-
placed by Sex. Similarly, when trying to discover the best
attributes to predict the class variable (CardiacPathology),
all algorithms select CardiacPathologyType and Murmur.

In the absence of either or both of these attributes, S2Status,
IfAbnormal and SystolicSystemicPressure def are selected.
These are all clinically relevant variables related to car-
diopathies.

When learning first-order rules, we found an intriguing
rule shown in Figure 1. This rule says that if a child has a
systolic murmur and a high BMI (Body Mass Index), it is
very likely that the child has a pathology. BMI in children is
rarely related to cardiac pathologies according to most spe-
cialists. This rule may open a new stream of research into
this relationship in clinical practice. This rule does not con-
tain the sex and age of the child and this omission needs to
be further investigated. The rule holds for 6 out of the 40
patients with a cardiac pathology, and does not apply to any
healthy patient (129). This finding has been discussed in
other work. Daniels et al. [4] mention that classic signs and
symptoms of heart failure are not always present in obese
patients, whose body habitus may mask signs of edema and
may muffle the heart and lung sounds during auscultation.
In their study, patients with high BMI were less likely to
have documented murmurs. In our dataset, the opposite
seems to be true, since we had 6 patients with annotated
murmurs and a high BMI.

’CardiacPathology’(A) if
bmi(A,obese) and
’Murmur’(A,’Systolic’).

Figure 1. Example of Aleph rule.

5 Conclusions and Future Work

In this work, we studied the first data collected in the
context of the DigiScope project. An application is being
routinely used in 2 hospitals, and already recorded auscul-
tations and medical information for 200 patients. We stud-
ied the data annotated for the patients with the intention of
producing classifiers to predict cardiac pathologies. Our re-
sults indicate that the attribute Murmur is relevant to predict
a cardiac pathology. In the absence of this attribute, a clas-
sifier has a very poor sensitivity. When learning rules, we
uncovered an intriguing one that relates BMI with Murmur
and CardiacPathology. Usually, BMI is not considered rel-
evant to predict cardiac pathologies in children.

When learning classifiers, results show that we can train
a classifier close to a specialist with a performance of
90.5%, sensitivity of 0.70 and specificity of 0.97 to pre-
dict pathologies on unseen cases. The area under the ROC
curve was 0.83. We consider these results very promising
and have been working to acquire more data to improve the
classification task.
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The work developed in the context of DigiScope has
been paving the way to a new vision of cardiology. One
important stream to follow is that of education in cardiol-
ogy. The sounds recorded by DigiScope are being used to
train novices to identify basic and more challenging car-
diopathies. A second and also challenging path is to pro-
cess the signal and extract important indicators such as
amplitude and distance between signals (A1, P1, A2, P2
etc). With these indicators, we believe it will be possible
to learn more effective classifiers. Our final goal is to have
an integrated tool, capable of online predicting the cardiac
pathologies and recommending additional screening.

Ongoing work is being done to acquire data from more
patients. We also have been working with data from adults
and from pregnant women, which poses new challenges on
the auscultations and annotations of the sounds.
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