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Abstract: The main goal of this work is to produce machine learning models 
that predict the outcome of a mammography from a reduced set of annotated 
mammography findings. In the study we used a dataset consisting of 348 
consecutive breast masses that underwent image guided core biopsy performed 
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between October 2005 and December 2007 on 328 female subjects. We applied 
various algorithms with parameter variation to learn from the data. The tasks 
were to predict mass density and to predict malignancy. The best classifier that 
predicts mass density is based on a support vector machine and has accuracy of 
81.3%. The expert correctly annotated 70% of the mass densities. The best 
classifier that predicts malignancy is also based on a support vector machine 
and has accuracy of 85.6%, with a positive predictive value of 85%. One 
important contribution of this work is that our model can predict malignancy in 
the absence of the mass density attribute, since we can fill up this attribute 
using our mass density predictor.  
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1 Introduction 

Mammography is considered the cheapest and most efficient method to detect cancer in a 
preclinical stage and breast screening programs were created precisely with the objective 
of detecting cancer in earlier stages. The breast screening programs usually generate a 
huge amount of data, annotated according to the Breast Imaging Reporting and Data 
System (BI-RADS) created by the American College of Radiology. The BI-RADS 
system determines a standard lexicon to be used by radiologists when studying each 
finding. Although the breast screening programs have helped reducing the number of 
women with undetected cancer, there is still room for improvement, since recent statistics 
show that one woman dies of breast cancer every 13 minutes in the US and in 2012, an 
estimated 39,510 women (15% of all deaths) and 410 men in the US are expected to die 
from breast cancer. Therefore, it is of utmost importance to improve these numbers and 
raise the life expectancy in the next years. 

We applied machine learning methods to 348 consecutive breast masses that 
underwent image-guided core biopsies performed between October 2005 and December 
2007 on 328 female subjects. These 348 findings are defined by 13 attributes, with one of 
them indicating if the finding is malignant or benign. Our main objective is to produce 
models that can have a good performance at predicting malignancy and a good 
performance at avoiding to expose healthy women to extra surgical or screening 
procedures. We are also interested in studying the actual relevance of mass density in the 
findings, since this is one of the attributes that usually is not regarded relevant by 
physicians. According to physicians, mass density is a feature usually considered to be 
difficult to annotate, because of the breast tissue, and fat composition. Previous works 
have shown that mass density can be an important attribute when predicting malignancy 
(Woods et al., 2010, 2011; Ferreira et al., 2011). The 348 mammography examinations 
used in this study have annotations of mass density, which allow to (1) investigate in 
more detail the role played by this feature and (2) produce models to predict this 
particular feature and help physicians distinguish between high and iso/low densities. 

Much work has been done on applying machine learning techniques to the area of 
breast cancer, one of the most common kinds of cancer in the world. In the University  
of California, Irvine (UCI) machine learning repository (http://archive.ics.uci.edu/ml/ 
datasets.html), there are four datasets whose main target of study is breast cancer. One of 
the first works on applying machine learning techniques to breast cancer data dates from 
1990. At this time, the first dataset donated to the UCI repository was created by 
Wolberg and Mangasarian after their work on a multi-surface method of pattern 
separation for medical diagnosis applied to breast cytology (Wolberg and Mangasarian, 
1990). Most works in the literature applies artificial neural networks to the problem of 
diagnosing breast cancer (Wu et al., 1993; Abbass, 2002). Others focus on prognosis of 
the disease using inductive learning methods (Street et al., 1995). More recently, Ayer  
et al. (2010) have evaluated whether an artificial neural network trained on a large 
prospectively collected dataset of consecutive mammography findings could discriminate 
between benign and malignant disease and accurately predict the probability of breast 
cancer for individual patients. Other works concentrate on the correlation of attributes in 
the mammograms, for example, the influence of mass density and other features on  
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predicting malignancy (Jackson et al., 1991; Sickles, 1991; Cory and Linden, 1993; 
Davis et al., 2005; Woods et al., 2010, 2011; Ferreira et al., 2011). Other recent works 
focus on extracting information from free text that appears in medical records of 
mammography screenings (Nassif et al., 2009, 2012) and on the influence of age in 
Ductal Carcinoma In Situ (DCIS) findings (Nassif et al., 2010). Yet other works focus on 
the mammography images themselves (Lesniak et al., 2011; Samulski and Karssemeijer, 
2011). These are orthogonal to the above mentioned and to our own work, whose focus is 
on the medical reports. 

We use the same dataset used by Woods et al. (2011). This dataset is unique in the 
sense that all findings were retrospectively assessed and all of them have accurate 
information about the density of the breast masses. In that work, they showed that high 
breast mass density is a significant predictor of malignancy, even after controlling for 
other well-known predictors of malignancy such as mass margin and mass shape. The 
metric used to evaluate performance was inter-observer agreement and they found a 
moderate k-value for mass density (0.53). 

The remaining of this paper is organised as follows. The next section introduces the 
dataset and the attributes used in this study. We then describe how we performed our 
experiments. In Section 4, we show results for the best classifiers found to predict mass 
density and malignancy. Lastly, we present the main contributions of this study and 
perspectives of future work. 

2 Breast cancer data 

Our study analyses 348 consecutive breast masses that underwent image guided core 
biopsies performed between October 2005 and December 2007 on 328 female subjects. 
Each one of the 348 cases refers to a breast nodule retrospectively classified according to 
the BI-RADS system. On the other hand, a clinical radiologist assessed (at the time of 
imaging and without biopsy results) the density of 180 of these masses, in an evaluation 
that can be considered as ‘performed under stress’ (prospective assessment). Pathology 
result at biopsy was the study endpoint. 

Table 1 shows the main attributes used from these data to learn the models along with 
their explanations. These attributes were collected by our co-authors who are medical 
doctors, specialists in mammograms. When learning models to predict malignancy the 
attribute outcome is the target class. It assumes values malignant and benign and was 
determined using the results of biopsies. From the 348 cases, 118 are malignant (≈34%), 
and 84 cases have high mass density (≈24%) retrospectively assessed. Other attributes 
are mass shape, mass margins, depth, size, among others (see Table 4 for more details). 
For the purpose of our study, we have two attributes that represent the same 
characteristics of the finding, but with different interpretations. These are retro_density 
and density_num. Both represent mass densities that can assume values high or iso/low. 
Retro_density was retrospectively assessed while density_num was prospectively (at the 
time of imaging) assessed. These two attributes are our target classes when learning 
models to predict mass density. 
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Table 1 Data attributes 

Attribute Description 
age_at_mammo Age of the patient when the mammogram was taken 
clockface_location Location of the mass  
mass_shape Mass shape descriptor  
mass_margins  Classification of the margins of the mass  
side  Breast where the mass was found (left or right)  
depth  Depth of the mass according to a measure from the skin surface to the 

centre of the lesion 
mass_margins_worst  Most worrisome mass margin descriptor  
quadrant_location_def  Quadrant location of the mass  
size  Greatest transverse width of the mass (in mm)  
breast_composition  Breast density assessment (e.g., almost entirely fat, scattered 

fibroglandular densities, heterogeneously dense, extremely dense)  
retro_density  Retrospective annotation of mass density  
density_num  Prospective annotation of mass density (at the time of imaging)  
outcome  Classification of the mass based on the results of the biopsy (malignant 

or benign)  

3 Methodology 

The whole dataset (348 findings) was split into two subsets: (1) training set: 180 cases, 
whose mass densities were classified by a radiologist at the exact time of imaging and  
(2) test set: 168 cases, whose mass densities were not annotated at the time of imaging, 
but instead in a reassessment of all the 348 exams performed by a group of experienced 
physicians. The attribute corresponding to the prediction of mass density by the specialist 
is density_num. The attribute corresponding to the retrospectively assessed mass density 
is retro_density. We have values for density_num for only 180 of the cases and have 
values for retro_density for all 348 cases. With these train and test datasets, we 
performed several experiments in order to generate models to (1) predict malignancy 
(outcome) and (2) to predict mass density. 

Table 2 shows all experiments performed for each task, according to the attributes 
used to learn mass density or outcome. The first five experiments were performed with 
180 findings (training set) while the remaining were performed with 168 findings (test 
set). From the first five, the first three predict outcome and the other two predict mass 
density. In a nutshell, the experiments can be described as follows:   

• Experiment E1 aims at finding a classifier to predict outcome using the attribute mass 
density that was retrospectively annotated (retro_density). This classifier would be 
useful to help physicians make decisions on retrospectively studied patients. 

• Experiment E2 aims at finding a classifier to predict outcome from patients whose 
mass density was prospectively assessed (using the attribute density_num). This 
classifier would be helpful on the clinical daily routine of a physician.  
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• Experiment E3 was performed in order to assess the performance of a classifier 
trained  without any mass density information. This experiment was performed in 
order to assess the relevance of mass density when  predicting the outcome. It can be 
used on new data without any information about mass density.  

• Experiment E4 generates models to predict mass density based on retrospectively 
annotated density (i.e. using the attribute retro_density).  

• Experiment E5 generates models to predict mass density based on prospectively 
annotated density (i.e. using the attribute density_num).  

The last two experiments were performed to assess how well an automated classifier can 
predict the kinds of densities (high or iso/low) when compared to the physician. 
Table 2 Experiments on the training and test sets. In each line, we give the conditions of the 

experiment. For example, E1, E2 and E3 predict outcome, where E1 uses mass density 
as described by the attribute retro_density, E2 uses mass density as described by the 
attribute density_num and E3 does not use any information about mass density 

Exp. outcome retro_density density_num size output 
E1 class yes no 180 classifier for outcome (M1) 
E2 class no yes 180 classifier for outcome (M2) 
E3 class no no 180 classifier for outcome (M3) 
E4 no class no 180 classifier for mass density (M4) 
E5 no no class 180 classifier for mass density (M5) 
E6 no class no 168 test set with mass density filled up 

by model M4 
E7 no no class 168 test set with mass density filled up 

by model M5 
E8 class yes no 168 prediction of outcome using actual 

values of retro_density 
E9 class yes (E6) no 168 prediction of outcome using test 

set obtained in E6 
E10 class no yes (E7) 168 prediction of outcome using test 

set obtained in E7 
E11 class no no 168 prediction of outcome without 

mass density 

We evaluated several classification algorithms available in WEKA (Hall et al., 2009) and 
varied their parameters. The experiments were performed with the WEKA’s 
experimenter module using ten times ten-fold cross-validation on the training dataset. For 
each algorithm we selected the combination of parameters that produced the best 
classifiers, and then selected the top three classifiers for generating models: NaiveBayes 
(John and Langley, 1995), DTNB (a decision table algorithm whose leaves are Bayesian 
networks) and SMO (a support vector machine (Wang, 2005) implementation (Platt, 
1998)). A fourth classifier was selected, J48 (decision tree based on Quinlan’s C4.5 
algorithm), due to its ability to produce readable and easily understandable models. 

The last six experiments of Table 2 apply the models generated (M1, M2, M3, M4 and 
M5 generated by the first five experiments), to the test set containing 168 cases as 
follows:  
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1. Experiment E6 generates the values for mass density using model M4 trained with the 
attribute retro_density as the class variable (obtained by experiment E4).  

2. Experiment E7 generates the values for mass density using model M5 trained with the 
attribute density_num as the class variable (obtained by experiment E5).  

3. Experiment E8 predicts outcome using model M1 trained with the attribute 
retro_density (obtained by experiment E1) and uses the actual values of the attribute 
retro_density available in the test set.  

4. Experiment E9 predicts outcome using model M1 trained with the attribute 
retro_density (obtained by experiment E1) and uses the mass density values filled up 
by experiment E6 in the test set.  

5. Experiment E10 predicts outcome using model M2 trained with the attribute 
density_num (obtained by experiment E2) and uses the mass density values filled up 
by experiment E7 in the test set.  

6. Experiment E11 predicts outcome with model M3 that does not use any information 
about mass density, obtained in experiment E3. For this experiment, no mass density 
attribute is used in the test set. 

Table 3 Classifiers’ performance for each task, for the training data. Values not in bold are 
statistically significantly worse than the classifier with highest accuracy (using paired 
t-test with α = 0.05) 

Exp. Algorithm CCI K F AUROC 
E1 SMO 85.6 7.3±  0.69 0.16±  0.80 0.11±  0.84 0.08±  
E1 DTNB 81.6 8.2±  0.60 0.18±  0.74 0.13±  0.88 0.07±  
E1 NaiveBayes 81.3 9.5±  0.61 0.20±  0.76 0.12±  0.88 0.08±  
E1 J48 80.7 9.3±  0.59 0.20±  0.75 0.13±  0.79 0.11±  
E2 SMO 83.9 7.7±  0.66 0.17±  0.78 0.11±  0.82 0.08±  
E2 NaiveBayes 80.3 9.3±  0.59 0.19±  0.75 0.12±  0.87 0.09±  
E2 DTNB 79.8 9.5±  0.56 0.21±  0.72 0.15±  0.86 0.09±  
E2 J48 75.4 9.5±  0.47 0.21±  0.65 0.15±  0.73 0.12±  
E3 SMO 83.8 7.7±  0.65 0.17±  0.78 0.11±  0.82 0.09±  
E3 J48 76.3 9.9±  0.49 0.22±  0.67 0.15±  0.76 0.13±  
E3 NaiveBayes 76.2 9.9±  0.51 0.20±  0.71 0.13±  0.85 0.09±  
E3 DTNB 75.7 9.0±  0.48 0.19±  0.67 0.13±  0.81 0.10±  
E4 SMO 81.3 8.2±  0.52 0.21±  0.64 0.17±  0.75 0.11±  
E4 J48 74.4 8.8±  0.32 0.24±  0.47 0.21±  0.67 0.15±  
E4 DTNB 73.5 10.0±  0.34 0.24±  0.51 0.19±  0.76 0.12±  
E4 NaiveBayes 72.8 9.9±  0.37 0.23±  0.56 0.18±  0.77 0.11±  
E5 NaiveBayes 67.2 12.1±  0.33 0.25±  0.62 0.15±  0.72 0.14±  
E5 SMO 66.8 10.7±  0.31 0.22±  0.55 0.16±  0.65 0.11±  
E5 J48 63.6 10.1±  0.26 0.21±  0.56 0.15±  0.62 0.13±  
E5 DTNB 62.1 11.9±  0.22 0.24±  0.54 0.16±  0.64 0.14±  
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We used the metrics Correctly Classified Instances (CCI, a.k.a. accuracy), F-measure 
(harmonic mean between Precision and Recall) and Kappa statistics to assess the 
classifiers. Whenever applicable we performed significance tests using paired t-test 
(α = 0.05). 

4 Results 

We first investigated the data and calculated simple frequencies to determine if there was 
some evidence of relationship between attributes, specially if mass density is related to 
malignancy. 

Table 4 shows the frequencies of attribute values. According to the frequencies of 
attribute values among the classes, from the 348 breast masses, 118 are malignant 
(≈34%) and 84 have high mass density (≈24%). If we consider that mass density and 
malignancy are independent and take 84 cases from the 348 at random, the probability of 
these being malignant should still be ≈ 34%. However, if it happens that all 84 cases 
selected at random have high density, then the percentage of malignant cases raises to 
70.2% and the probability of this being coincidence is very low. This simple calculation 
may already imply that high density has some relationship with malignancy. So may the 
other attributes such as age, mass shape and mass margins. In this work, we do not report 
on the importance of the other attributes. 
Table 4 Dataset attribute values and frequencies for the 348 instances 

 Benign(%) Malignant(%) Total(%) 
N 230(66.09%) 118(33.91%) 348(100%) 

Age    
(0,35] 12(5.22%) 1(0.85%) 13(3.74%) 

(35,45] 81(35.22%) 8(6.78%) 89(25.57%) 
(45,55] 58(25.22%) 29(24.58%) 87(25%) 
(55,65] 56(24.35%) 29(24.58%) 85(24.43%) 
(65,100] 23(10%) 51(43.22%) 74(21.26%) 

Clockface location    
1.0 34(14.78%) 16(13.56%) 50(14.37%) 
2.0 15(6.52%) 4(3.39%) 19(5.46%) 
3.0 14(6.09%) 7(5.93%) 21(6.03%) 
4.0 12(5.22%) 4(3.39%) 16(4.6%) 
5.0 9(3.91%) 1(0.85%) 10(2.87%) 
6.0 24(10.43%) 7(5.93%) 31(8.91%) 
7.0 9(3.91%) 6(5.08%) 15(4.31%) 
8.0 10(4.35%) 2(1.69%) 12(3.45%) 
9.0 3(1.3%) 5(4.24%) 8(2.3%) 

10.0 13(5.65%) 12(10.17%) 25(7.18%) 
11.0 31(13.48%) 24(20.34%) 55(15.8%) 
12.0 39(16.96%) 20(16.95%) 59(16.95%) 

C 17(7.39%) 10(8.47%) 27(7.76%) 
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Table 4 Dataset attribute values and frequencies for the 348 instances (continued) 

 Benign(%) Malignant(%) Total(%) 
Mass shape    

L 32(13.91%) 14(11.86%) 46(13.22%) 
O 108(46.96%) 26(22.03%) 134(38.51%) 
R 41(17.83%) 11(9.32%) 52(14.94%) 
X 19(8.26%) 56(47.46%) 75(21.55%) 

Mass margins1    
D 92(40%) 14(11.86%) 106(30.46%) 
I 36(15.65%) 35(29.66%) 71(20.4%) 

M 6(2.61%) 8(6.78%) 14(4.02%) 
S 2(0.87%) 29(24.58%) 31(8.91%) 
U 45(19.57%) 16(13.56%) 61(17.53%) 

Mass margins2    
D 87(37.83%) 13(11.02%) 100(28.74%) 
I 38(16.52%) 36(30.51%) 74(21.26%) 

M 6(2.61%) 8(6.78%) 14(4.02%) 
S 2(0.87%) 32(27.12%) 34(9.77%) 
U 48(20.87%) 13(11.02%) 61(17.53%) 

Mass margins worst    
Circumscribed 87(37.83%) 13(11.02%) 100(28.74%) 

Indistinct 38(16.52%) 36(30.51%) 74(21.26%) 
Microlobulated 6(2.61%) 8(6.78%) 14(4.02%) 

Obscured 48(20.87%) 13(11.02%) 61(17.53%) 
Spiculated 2(0.87%) 32(27.12%) 34(9.77%) 

Side    
L 116(50.43%) 44(37.29%) 160(45.98%) 
R 114(49.57%) 74(62.71%) 188(54.02%) 

Size    
(0,5] 21(9.13%) 3(2.54%) 24(6.9%) 
(5,10] 94(40.87%) 45(38.14%) 139(39.94%) 

(10,15] 56(24.35%) 30(25.42%) 86(24.71%) 
(15,20] 37(16.09%) 19(16.1%) 56(16.09%) 
(20,200] 21(9.13%) 21(17.8%) 42(12.07%) 
Depth    

A 63(27.39%) 29(24.58%) 92(26.44%) 
M 94(40.87%) 53(44.92%) 147(42.24%) 
P 54(23.48%) 29(24.58%) 83(23.85%) 
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Table 4 Dataset attribute values and frequencies for the 348 instances (continued) 

 Benign(%) Malignant(%) Total(%) 
Quadrant    

Lower Inner 52(22.61%) 21(17.8%) 73(20.98%) 
Lower Outer 8(3.48%) 5(4.24%) 13(3.74%) 
Upper Inner 38(16.52%) 21(17.8%) 59(16.95%) 
Upper Outer 86(37.39%) 57(48.31%) 143(41.09%) 

Breast composition    
Almost entirely fat 20(8.7%) 30(25.42%) 50(14.37%) 
Extremely dense 21(9.13%) 3(2.54%) 24(6.9%) 

Heterogeneously dense 104(45.22%) 31(26.27%) 135(38.79%) 
Scattered fibroglandular 

densities 
85(36.96%) 54(45.76%) 139(39.94%) 

Retro density    
High 25(10.87%) 59(50%) 84(24.14%) 

Iso/low 205(89.13%) 59(50%) 264(75.86%) 
Density num    

High 30(13.04%) 51(43.22%) 81(23.28%) 
Iso/low 79(34.35%) 20(16.95%) 99(28.45%) 

4.1 Performance analysis 

The best models produced for experiments (E1), (E2), (E3) and (E4) were obtained with 
the algorithm SMO, with main parameters: polynomial kernel with exponent E = 1 and 
complexity constant C = 0.05. For experiment (E1), the best classifier was obtained with 
data standardisation (N = 1), while the other three experiments used N = 2 (the training 
data was not normalised/standardised). The parameter C at SMO controls how soft the 
class margins are. In practice, it controls how many instances are used as ‘support 
vectors’ to draw the linear separation boundary in the transformed Euclidean feature 
space. The fact that C = 0.05 produces better results seems to indicate that the default 
value (1.0) somehow generates an over-fitted trained classifier, whose performance is not 
so good on the cross-validation test sets. For experiment (E5), the best classifier was 
obtained using the NaiveBayes algorithm with default parameters. Most probably, 
NaiveBayes performed better with this dataset because this data is noisy containing 
errors associated to the prospectively annotated density_num attribute. 

Table 3 shows, for each experiment E1 to E5, the best performance of each algorithm 
after parameter variation (classifiers are sorted in descending order after CCI). The SMO 
classifier consistently achieves better results for the training dataset, even when 
NaiveBayes wins (experiment E5, note that there is no statistically significant difference 
between NaiveBayes and SMO with respect to CCI and K). 

All classifiers behave better when trained on retrospectively annotated data 
(experiment E1), which seems to indicate that in practical clinical routine, this would be 
the best classifier to use. However, since it is hard to obtain retrospectively annotated 
data, the approach followed in E2, using prospectively annotated mass density values, can 
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also be used with good results. It is important to notice that the SMO obtained with 
experiment E2 has performance only slightly lower than the SMO of experiment E1 and 
the difference is not statistically significant. 

Experiment E5 is the most difficult as it consists of predicting mass density from 
noisy data. It is interesting to note that all algorithms achieve lower performance for this 
experiment than for the other tasks, with NaiveBayes achieving a performance that is 
close to that of the physician, who has CCI of 70% when compared with the 
retrospectively annotated mass density. 

All results of Table 3, with exception of AUROC, are higher for the best classifier. 
The AUROC is higher for algorithms other than the best. 

4.2 Training to predict outcome 

In the three experiments, (E1), (E2) and (E3), the best classifiers found were based on 
SMO. First of all, these results show that mass density has some influence on the 
outcome, specially when mass density is the one observed on the retrospective data 
(experiment E1). The classifier trained without mass density has an overall performance 
of 83.8% while the classifier trained with the retrospectively assessed mass has an overall 
performance of 85.6%, which is a statistically significant difference of 1.8 (p = 0.05). If 
we look at the K value, we can confirm that the relation between mass density and 
outcome is not by chance, given the relatively high observed agreement between the real 
data and the classifier’s predicted values. The F-measure balances the values of Precision 
and Recall and also indicates that the classifiers are behaving reasonably well. 

The results obtained with experiments (E1), (E2) and (E3) confirm findings in the 
literature regarding the relevance of mass density (Davis et al., 2005, 2007; Ferreira  
et al., 2011; Woods et al., 2010, 2011), and also show that good classifiers can be 
obtained to predict outcome (with a high percentage of correctly classified instances and 
reasonable values of precision and recall, according to F). 

Another evidence that mass density is somehow related to malignancy are the 
decision trees (Figures 1(a) and 1(b)) generated by the J48 algorithm, in which retro_ 
density and density_num were chosen as the most important attributes appearing in the 
top of the trees. Despite the fact that J48 was not the best classifier to predict outcome, 
this fact reveals that the attribute mass density has some influence over all the remaining 
features. Another important fact to note is that, according to J48, the second most 
important attribute that helps discriminating between malignant and benign cases is 
mass_margins. 

4.3 Training to predict mass density 

Our set of experiments E4 and E5 are related to predicting mass density. As the dataset 
has two annotated mass densities, one for the prospective study and another one for the 
retrospective study, we generated two classifiers: one is trained on the prospective values 
of mass density (density_num) and another one is trained on the retrospective 
(retro_density) values of mass density. Once more, we used the 180 cases as training set 
and ten times ten-fold cross-validation. The best classifier for predicting retro_density 
was SMO and the best to predict density_num was NaiveBayes. 
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Figure 1 Decision trees and mass density 

 

(a) Decision tree generated by the J48 algorithm when predicting outcome with 
retro density (E1). The numbers between parentheses refer to the effective 
number of instances in those locations 

 

(b) Decision tree generated by the J48 algorithm when predicting outcome 
with density num (E2). The numbers between parentheses refer to the 
effective number of instances in those locations 

During the prospective study, the radiologist predicted 70% of masses on the 180 
findings compared with the annotated masses of the retrospective study. The SMO 
classifier predicted 81.3% of correct instances when training on the retrospective 
annotated mass (retro_density) and NaiveBayes predicted 67.2% of correct instances 
when training on prospective masses annotated by the radiologist. These results are quite 
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good and indicate that either the SMO or the Bayesian classifier generated in this study 
can be well applied as a support tool to help physicians/radiologists to classify mass 
density in mammograms. 

The values of K and F-measure for this experiment are not so good as the ones 
obtained with the classifiers that predict outcome. The K value, once more, indicates that 
both NaiveBayes and SMO have a moderate level of agreement.  

4.4 Performance summary 

Figure 2 shows the errors associated to the different algorithms for experiments E1 to E5, 
in terms of numbers of common misclassified examples. From each one of the Venn 
diagrams, we can identify the total number of misclassified examples and the actual 
examples that are being misclassified by the several algorithms. From the experiments to 
predict outcome, the one that produces the lowest error rate is E1 with 41 misclassified 
examples. This is also one of the two experiments that has lower error rate for all 
classifiers (only nine examples are commonly misclassified by all algorithms). The 
experiment that produces the highest error rate is E5, with all classifiers commonly 
misclassifying 16 instances. 

Figure 2 Errors of the classifiers on the 180 cases (see online version for colours) 

 
(a) E1 

 
(b) E2 
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Figure 2 Errors of the classifiers on the 180 cases (see online version for colours) (continued) 

 
(c) E3 

 
(d) E4 

 
(e) E5 
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It is interesting to note that some classifiers make mistakes in completely different parts 
of the dataset. For example, SMO, DTNB and J48 do not have any intersection in 
experiment E5. 

We plotted Precision-Recall curves and CCI curves according to the predicted 
probabilities of the SMO algorithms for experiments E1 to E4 and of NaiveBayes for 
experiment E5. The Precision-Recall and CCI curves give a good overview of how well 
the classifiers behave when one needs a cut-off point. 

When predicting mass density, our classifiers ( 4M  in Figure 3(d) and 5M  in Figure 4(a)) 
produce results comparable with the ones obtained by the physician (the physician’s 
result is plotted with a star symbol). These curves show the performance of the classifiers 
for predicting malignancy 1(E  to 3 )E  and high density masses 4(E  and 5 ).E  

Figure 3 Precision-Recall curves and CCI according to cut-off (SMO based models). The dotted 
grey line and star on the graphics of 4E  indicate the performance of the physician  
(see online version for colours) 

 
(a) E1 

 
(b) E2 
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Figure 3 Precision-Recall curves and CCI according to cutoff (SMO based models). The dotted 
grey line and star on the graphics of 4E  indicate the performance of the physician  
(see online version for colours) (continued) 

 
(c) E3 

 
(d) E4 

Figure 4 Precision-Recall curves and CCI according to cut-off (NaiveBayes based model). The 
dotted grey line and star on the graphics indicate the performance of the physician  
(see online version for colours) 

 
(a) E5 
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4.5 Performance of the best classifiers on unseen data 

Table 5 summarises the results of predicting outcome on the 168 unseen cases as well as 
the results of filling up the attribute mass density in the test set. 
Table 5 Classifiers’ performance for the test set 

   Algorithm CCI K F AUROC 

6E  SMO 84.52 0.46 0.55 0.74 

7E  NaiveBayes 75.60 0.35 0.49 0.81 

8E  SMO 80.95 0.50 0.63 0.74 

9E  SMO 80.36 0.49 0.62 0.73 

10E  SMO 80.95 0.52 0.65 0.76 

11E  SMO 76.19 0.42 0.58 0.71 

The first two lines of Table 5 refer to experiments to fill up values of the attribute mass 
density in the test set. The CCI indicates how well models 4M  and 5M , obtained 
respectively with experiments 4E  and 5E , performed on filling up those values, when 
compared with the actual values of retro_density available in the test set. The SMO 
classifier, which had a very good performance on the training set (CCI = 81.3%), behaves 
even better when filling up values for retro_density, making mistakes in only 15% of the 
actual masses. The NaiveBayes classifier ( 5M ), obtained with experiment 5E , which had 
CCI = 67.2% in the training set, performed very well in the task of filling up the missing 
values of density_num, correctly classifying 75.6% of the instances. A result that 
surpasses the result obtained by the specialist, which is 70%. 

For the tasks of predicting outcome, the classifiers also perform very well, with the 
worst predictions being produced by model 3M , which does not use any information 
about mass density. This result confirms once more the relevance of mass density on 
predicting outcome. In the absence of this information, the data could be filled up by 4M  
or 5 ,M  that, as mentioned, have a good performance on performing this job. 

4.6 MammoClass application 

The best models were integrated into an online application (called MamoClass). It allows 
a practitioner to quickly and easily assess mammograms by obtaining a prediction for 
mass density and/or classify a mammography given a reduced set of mammography 
findings. The application is freely available at http://cracs.fc.up.pt/mammoclass. This 
application will start to be used at Hospital São João in Porto, Portugal, and at the 
Medical School, in the University of Wisconsin, Madison, USA, by our collaborators. 

5 Conclusions and future work 

In this work, we were provided with 348 cases of patients who went through 
mammography screening and biopsies. The objective of this work was twofold: (i) find 
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non-trivial relations among attributes by applying machine learning techniques to these 
data and (ii) learn models that could help medical doctors to quickly assess 
mammograms. The best models to predict outcome were obtained with Support Vector 
Machines (SVM), implemented in WEKA’ SMO algorithm, with the parameters 
polynomial kernel with exponent =1E  and complexity constant =0.05C . The fact that 

=0.05C  produces better results seems to indicate that the default value (1.0 ) somehow 
generates an over-fitted trained classifier, whose performance is not so good on the cross-
validation test sets. 

The best model to predict mass density based on retrospective data was also based on 
SVM. The best model to predict mass density based on prospective data is based on the 
naive Bayes algorithm with default parameters. The higher levels of noise in the data 
used for predicting mass density, that results from the errors associated to the 
prospectively annotated density_num attribute, must have contributed to the better 
performance of naive Bayes (which is known to be robust to noise). 

In general, SVM classifiers showed to be the best for predicting both malignancy and 
mass density with the retrospective data. The experiments that use the retrospective data 
are the ones that generate classifiers with the lowest error rate. Predicting malignancy 
using the models that can fill up missing values of mass density seem to work very well 
in the test set. An analysis of precision-recall curves and errors indicate that choosing a 
good threshold, one can have good classifiers, with an acceptable false positive rate and 
good recall, in all experiments. 

We plan to extend this work to larger datasets, and apply other machine learning 
techniques based on statistical relational learning, since classifiers that fall in this 
category provide a good explanation of the predicted outcomes as well as can consider 
the relationship among mammograms of the same patient. We would also like to 
investigate how other attributes can affect malignancy or are related to the other 
attributes. 
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