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Abstract
The identification of clinically relevant bacterial amino acid changes can be performed using different methods aimed at the 
identification of genes showing positively selected amino acid sites (PSS). Nevertheless, such analyses are time consuming, 
and the frequency of genes showing evidence for PSS can be low. Therefore, the development of a pipeline that allows the 
quick and efficient identification of the set of genes that show PSS is of interest. Here, we present Auto-PSS-Genome, a 
Compi-based pipeline distributed as a Docker image, that automates the process of identifying genes that show PSS using 
three different methods, namely codeML, FUBAR, and omegaMap. Auto-PSS-Genome accepts as input a set of FASTA 
files, one per genome, containing all coding sequences, thus minimizing the work needed to conduct positively selected sites 
analyses. The Auto-PSS-Genome pipeline identifies orthologous gene sets and corrects for multiple possible problems in 
input FASTA files that may prevent the automated identification of genes showing PSS. A FASTA file containing all coding 
sequences can also be given as an external global reference, thus easing the comparison of results across species, when gene 
names are different. In this work, we use Auto-PSS-Genome to analyse Mycobacterium leprae (that causes leprosy), and 
the closely related species M. haemophilum, that mainly causes ulcerating skin infections and arthritis in persons who are 
severely immunocompromised, and in children causes cervical and perihilar lymphadenitis. The genes identified in these 
two species as showing PSS may be those that are partially responsible for virulence and resistance to drugs.
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1  Introduction

Adaptive features such as, but not limited to, host immune 
response escape or antibiotic resistance can be determined 
by protein amino acid changes. Amino acid positions that 
show more changes than expected under a neutral evolu-
tionary model are under positive selection and are named 
positively selected amino acid sites (PSS). PSS can be 
inferred using sequence data and phylogenetic (codeML [1] 
and FUBAR [2], for instance), or population-based methods 
(omegaMap [3], for instance). Therefore, it is of interest to 
perform these analyses at the genome level, especially in 
the case of pathogens. Here, we present Auto-PSS-Genome, 
a flexible and fully automated pipeline that can be used to 
identify genes that show PSS using three different meth-
ods, namely codeML, FUBAR, and omegaMap, starting 
from at least four FASTA files, each containing the cod-
ing sequences (CDS) that were annotated on that particular 
genome. The FASTA files can be downloaded, for instance, 
from the NCBI RefSeq database, by querying for the spe-
cies of interest at https://​www.​ncbi.​nlm.​nih.​gov/​assem​bly. 
The rationale behind the use of multiple methods is that, 
since both phylogenetic and population genetics methods 
have weaknesses, inferences on PSS should not rely on a 
single method.

Among the available methods that can be used to detect 
PSS, FUBAR is the one that requires the least amount 

of time to run. Nevertheless, since this method requires 
both an aligned set of CDS as well as a phylogenetic 
tree describing the relationship among them, large-scale 
detailed analyses can still take a large amount of time. 
Since only a small fraction of all genes will show PSS, 
the quick identification of the subset of genes that will 
likely show PSS when analysed in detail becomes neces-
sary. Pipelines such as FastScreen [4] and GenomeFast-
Screen [5] (an automated version of FastScreen for analy-
ses involving whole genomes) serve this purpose, allowing 
researchers to save a substantial amount of computational 
and research time, and thus were included in the Auto-
PSS-Genome pipeline. For instance, Osório et  al. [6] 
found evidence for PSS in only five out of 576 genes that 
were previously associated with drug resistance or encod-
ing membrane proteins, when using 73 publicly available 
genomes from all the main Mycobacterium tuberculosis 
(the causative agent of tuberculosis) complex lineages. 
Some of the identified PSS correspond to the position 
of confirmed drug-resistance-associated substitutions in 
the genes embB, rpoB, and katG [6], thus supporting the 
robustness of this approach. Moreover, we have recently 
found evidence for PSS in 31 out of 1587 M. leprae (the 
causative agent of leprosy) genes that could be analysed, 
including nine that are likely clinically relevant in the 
context of leprosy [5]. In that work, the GenomeFast-
Screen pipeline was used to create a short list of genes that 

https://www.ncbi.nlm.nih.gov/assembly
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when analysed in detail are likely to show PSS, and then, 
detailed analyses were performed using codeML models 
M1a, M2a, M7, and M8 using ADOPS [7].

To illustrate the usefulness of the Auto-PSS-Genome 
pipeline, we re-ran the analyses previously performed for M. 
leprae to see how robust the conclusions that were drawn are 
when three methods for detecting PSS are used (codeML, 
FUBAR, and omegaMap). In addition, we used Auto-PSS-
Genome to analyse M. haemophilum, a species frequently 
found in environmental habitats, which can occasionally 
infect humans, causing ulcerating skin infections and arthri-
tis in persons who are severely immunocompromised, and 
in healthy children leads to the development of cervical and 
perihilar lymphadenitis [8]. Finally, we compare the results 
obtained for M. leprae and M. haemophilum. This way 
we can find if the genes showing evidence for PSS are the 
same in two closely related species that cause very different 
diseases. It should be noted that M. lepromatosis is more 
closely related to M. leprae than M. haemophilum [9], but 
there is a single genome at the NCBI Assembly database for 
M. lepromatosis, and thus this species could not be used for 
this purpose. Therefore, M. haemophilum, the sister species 
to M. leprae/M. lepromatosis is here used.

2 � Materials and Methods

2.1 � The Auto‑PSS‑Genome Compi Pipeline

The Auto-PSS-Genome1 pipeline here reported is imple-
mented as a Compi pipeline and distributed as a Docker 
image that allows running it effortlessly. The source code of 
the pipeline is publicly available at GitHub2 and the Docker 
image at Docker Hub.3 The Auto-PSS-Genome pipeline 
relies on the usage of three Compi pipelines developed by us. 
On one hand, GenomeFastScreen Compi pipeline recently 
reported [5], that uses the FastScreen Compi pipeline [4]. 
On the other hand, two new Compi pipelines specifically 
developed for this work, namely CheckCDS and Integrated 
Positively Selected Sites Analyses (IPSSA). These two 
new developments are described in detail in Sects. 2.2 and 
2.3. The Auto-PSS-Genome repositories provide detailed 

Fig. 1   Steps and files involved 
in the Auto-PSS-Genome 
pipeline

1  https://​www.​sing-​group.​org/​compi​hub/​explo​re/​5faa5​2ccf0​5e940​
c9c27​62e4.
2  https://​github.​com/​pegi3s/​auto-​pss-​genome.
3  https://​hub.​docker.​com/r/​pegi3s/​auto-​pss-​genome.

https://www.sing-group.org/compihub/explore/5faa52ccf05e940c9c2762e4
https://www.sing-group.org/compihub/explore/5faa52ccf05e940c9c2762e4
https://github.com/pegi3s/auto-pss-genome
https://hub.docker.com/r/pegi3s/auto-pss-genome
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instructions on how to run the pipeline with the sample data 
made available by us.

As Fig. 1 illustrates, Auto-PSS-Genome accepts as input 
the annotation of the genomes to be analysed as a FASTA 
formatted file, one per genome. First, it analyses these input 
files using GenomeFastScreen. This pipeline allows finding 
orthologous genes using a two-way BLAST approach, and 
performs several sanity checks of the input FASTA files. 
These checks include making sure that sequences are multi-
ple of three (if not, the pipeline automatically corrects them 
using a reference protein sequence), removing sequences 
with in-frame stop codons and/or ambiguous positions, 
and removing stop codons at the end of CDS, if present. 
This way, we guarantee that the pipeline is able to analyze 
the input data even when some problems are present. The 
GenomeFastScreen pipeline produces a list of files that are 
more likely to reveal PSS when analysed in detail than the 
ones not included in the list. To be as fast as possible, the 
alignment is performed at the nucleotide level using Clustal 
Omega, that performs big alignments quickly and accu-
rately [10], FastTree, that is two to three orders of magni-
tude faster than the PhyML 3.0 or RAxML 7 alternatives 
[11], is used for inferring a phylogeny, and PSS are inferred 
using FUBAR and only one (M2a) out of the six available 
codeML models. Since both FastScreen and GenomeFast-
Screen have been described previously, they will not be here 
further detailed. The following two subsections describe 
how the Auto-PSS-Genome pipeline uses the CheckCDS 
and IPSSA pipelines.

2.2 � The CheckCDS Compi Pipeline

As reported in [5], for two out of 1597 genes analysed, 
the GenomeFastScreen Compi pipeline produced an error, 
because at least one sequence in these files presents non-
multiple of three alignment gaps when compared to the 
other sequences in the same file, leading to a non-multiple of 
three-nucleotide alignment. It should be noted that this could 
only happen if at least one sequence is annotated wrongly in 
the corresponding genome, or if the gene is a pseudogene in 
at least one genome. Very likely, this number will increase 
as the number of annotated genomes to be used increases. 
GenomeFastScreen puts the files that show such errors in a 
folder named “files_requiring_attention”, allowing research-
ers to fix them and re-run the analyses. These are the Files 
to re-analyze in Fig. 1.

The CheckCDS4 Compi Docker image here reported uses 
a greedy approach to solve this problem. It starts with the 
sequence indicated by the user as the reference and adds 

another sequence from the same sequence dataset to perform 
a nucleotide sequence alignment using the fast alignment 
algorithm Clustal Omega [10]. Then, it checks whether the 
resulting sequence alignment is multiple of three. If this is 
the case, it adds another sequence, performs again the align-
ment step using all accepted sequences and checks whether 
the resulting sequence alignment is multiple of three. If not, 
the sequence is removed from the output file. These steps are 
repeated until every available sequence is used.

After using the CheckCDS method to remove the prob-
lematic sequences (step 2 in Fig. 1), the Auto-PSS-Genome 
can now run the FastScreen step of the GenomeFastScreen 
pipeline without producing an error (step 3 in Fig. 1).

The source code of CheckCDS is publicly available at 
GitHub5 and the Docker image at Docker Hub.6

2.3 � The Integrated Positively Selected Sites 
Analyses (IPSSA) Compi Pipeline

GenomeFastScreen generates a short list of genes that when 
analysed in detail are more likely to reveal PSS than those 
not included in it. These files are the Candidate files for PSS 
in Fig. 1. The Integrated Positively Selected Sites Analy-
ses7 (IPSSA) Compi pipeline here presented, allows the 
user to perform such detailed analyses using three available 
approaches and those Candidate files files as input (step 4 in 
Fig. 1). The available approaches include two phylogenetic 
methods, FUBAR [2], and codeML [1] (models M1a and 
M2a, M7, and M8 can be chosen), as well as one population-
based method, omegaMap [3].

Figure 2 shows the main steps of the IPSSA pipeline. 
IPSSA accepts non-aligned CDS files in FASTA format. The 
first step removes stop codons and line breaks in each input 
file to guarantee that the subsequent steps can run without 
problems. The second step checks if there are ambiguous 
nucleotide positions or non-multiple of three sequences. 
If so, the pipeline execution is stopped and the user must 
correct such files (or remove them) before continuing. In 
the context of the Auto-PSS-Genome, this situation is not 
expected to occur, since the input files are produced by the 
GenomeFastScreen pipeline, but the IPSSA pipeline is also 
provided as an independent pipeline and thus it is important 
to check the validity of the input files before starting the 
analyses.

If the number of sequences in the dataset is larger than 
specified by the user, a random sample with the desired 
number of sequences is first obtained to produce the master 

4  http://​sing-​group.​org/​compi​hub/​explo​re/​5f588​ccb40​76820​01ad3​
a1d5.

5  https://​github.​com/​pegi3s/​check-​cds.
6  https://​hub.​docker.​com/r/​pegi3s/​check-​cds.
7  https://​sing-​group.​org/​compi​hub/​explo​re/​5fa91​80640​76820​01ad3​
a1e9.

http://sing-group.org/compihub/explore/5f588ccb407682001ad3a1d5
http://sing-group.org/compihub/explore/5f588ccb407682001ad3a1d5
https://github.com/pegi3s/check-cds
https://hub.docker.com/r/pegi3s/check-cds
https://sing-group.org/compihub/explore/5fa91806407682001ad3a1e9
https://sing-group.org/compihub/explore/5fa91806407682001ad3a1e9
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FASTA file (step 3 in Fig. 2). The sequences in the master 
FASTA file are then aligned using the T-coffee suite [11]. 
Five alignment algorithms can be used: clustalw, muscle, 
kalign, t_coffee, and amap. Sequences are aligned at the 
amino acid level using the chosen alignment algorithm, and 
the corresponding nucleotide alignment obtained (steps 4 
and 5 in Fig. 2). These are the master DNA alignment files 
(right branch on Fig. 2). The user can indicate how many 
times each method should be run, using a given number of 
sequences (also specified by the user for each method) sam-
pled from the master alignment (step 6 in Fig. 2).

FUBAR and codeML require as input a phylogenetic 
tree describing the relationship between the sequences to be 
analysed. In IPSSA, the phylogenetic tree is obtained using 
MrBayes [12], using only codons that are aligned with a 
confidence score above a user-specified threshold (steps 7, 
8, 9, and 10, left branch on Fig. 2). The model of sequence 
evolution that is used is the GTR (allowing for among-site 
rate variation and a proportion of invariable sites). Third 
codon positions are allowed to have a gamma distribution 
shape parameter that is different from that for first and sec-
ond codon positions. Two independent runs of the number of 
generations specified by the user, with four chains each (one 
cold and three heated chains) are used. Trees are sampled 
every 100th generation. The first number of samples speci-
fied by the user are discarded (burn-in).

Since recombination can lead to the identification of false 
PSS, IPSSA also automatically runs the PhiPack software8 
that looks for evidence of recombination in the datasets. This 
is applied to the master DNA alignment files (step 11 in 
Fig. 2) as well as to the random subsets created for running 
each PSS detection method (step 12 in Fig. 2).

After running all PSS analyses (step 13 in Fig. 2), IPSSA 
creates a summary table (step 14 in Fig. 2) for each input 
file showing the sites identified by each method and runs, 
the location of sites showing alignment gaps, the location of 
sites with low support values in the alignment and whether 
there is evidence for recombination or not. All intermediate 
files generated by the underlying software used along with 
the output logs are saved and can be inspected by the user.

The source code of IPSSA is publicly available at GitHub9 
and the Docker image at Docker Hub.10 As in the cases of 
FastScreen and GenomeFastScreen, IPSSA uses Docker 
images available at the pegi3s Docker Images Project11 
for running every third-party software required (codeML, 
omegaMap, FUBAR, T-Coffee, ALTER [13], seqkit [14], 
and so on).

2.4 � Data Source and Pre‑processing

For M. leprae, we have used the set of 531 genes previously 
identified by us as likely showing PSS [5]. For M. haemo-
philum, the gene annotations of the five available genomes 
(GCF_000340435, GCF_001021405, GCF_001021415, 
GCF_001021435, and GCF_001021485) were downloaded 
from the NCBI Assembly RefSeq database on October 2020. 
GCF_000340435 was used as the M. haemophilum refer-
ence. Moreover, we downloaded from the NCBI Assembly 
RefSeq database the gene annotation of M. tuberculosis 
genome GCF_000195955 to be used as a global reference. 
Files downloaded from RefSeq were pre-processed using 
SEDA [15], to shorten header names (only accession num-
bers and gene names are kept).

For testing purposes regarding IPSSA running times (see 
Sect. 3.1.3), the FASTA file available at http://​bposi​tive.​i3s.​
up.​pt/​trans​cript​ion?​id=​122416 was used.

2.5 � Analyses

The IPSSA pipeline was used to analyse the 531 M. leprae 
genes that were previously identified as likely having PSS 
[5]. Moreover, here we identify the genes that likely show 
PSS in M. haemophilum, using the Auto-PSS-Genome pipe-
line. In both cases, muscle [16] was used as the alignment 
algorithm of choice, 1,000,000 generations and a burn-in 
of 25% was used for MrBayes, and all available methods 
for detecting PSS were used. Since for both M. leprae and 
M. haemophilum, a relatively small number of annotated 
genomes is available (less than 10), we have run each 
method once using all available sequences.

3 � Results

3.1 � Auto‑PSS‑Genome Running Times

First time users of the Auto-PSS-Genome pipeline (that 
involves running GenomeFastScreen, CheckCDS, and 
IPSSA) may be tempted to specify parameter values that 
imply very long running times. Therefore, in the following 
sections, we present the running times for the most time-
consuming steps of the Auto-PSS-Genome pipeline.

3.1.1 � GenomeFastScreen

The GenomeFastScreen pipeline [5] takes a moderate-to-
high amount of time to run. For instance, when running the 
M. haemophylum project (that involved the analysis of five 
M. haemophylum genomes plus one genome to be used as a 
global reference; see below), this task took about four and 
a half hours, when launching the pipeline with a maximum 

8  https://​www.​maths.​otago.​ac.​nz/​~dbrya​nt/​softw​are/​PhiPa​ck.​tar.
9  https://​github.​com/​pegi3s/​ipssa.
10  https://​hub.​docker.​com/r/​pegi3s/​ipssa.
11  https://​pegi3s.​github.​io/​docke​rfiles/.

http://bpositive.i3s.up.pt/transcription?id=122416
http://bpositive.i3s.up.pt/transcription?id=122416
https://www.maths.otago.ac.nz/~dbryant/software/PhiPack.tar
https://github.com/pegi3s/ipssa
https://hub.docker.com/r/pegi3s/ipssa
https://pegi3s.github.io/dockerfiles/
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50 parallel tasks in a computer with 96 CPUs (2.00 GHz) 
and 996 GB of RAM.

3.1.2 � CheckCDS

Although CheckCDS uses a greedy algorithm, when a small 
number of genomes is being analysed, only a small number 
of files must be processed by CheckCDS, and thus this step 
does not take long. For instance, when running the M. hae-
mophylum project (see below), this task took 14 s only to be 
performed, when launching the pipeline with a maximum 
50 parallel tasks in a computer with 96 CPUs (2.00 GHz) 
and 996 GB of RAM.

3.1.3 � IPSSA

Since the IPSSA pipeline is also useful for small-scale 
projects by itself, and not only in the context of the Auto-
PSS-Genome pipeline, the following tests were run with a 
maximum one task on an average laptop with 7.7 GB of 
RAM and four 3.00 GHz CPUs. It should be noted that these 
values were obtained when not running any other process 
in parallel.

As can be seen in Table 1, even for a moderate number of 
sequences (e.g. 30), codeML takes almost four hours and a 
half to run. codeML needs as input the tree that is produced 
by MrBayes, that for 30 sequences takes about 36 min to be 
obtained. Therefore, running the codeML option alone can 
take more than 5 h even for a moderate number of sequences 
such as 30.

Although when using 90 sequences, FUBAR takes less 
than 70 s to run, results are produced after 3.1 h only, since 
this method also requires the tree produced by MrBayes. The 
only method that does not require a tree as input is omega-
Map, but still takes about 2.2 h to finish the analysis of 90 
sequences. Compared with the other processes, the time 

spent performing sequence alignments is negligible, unless 
T-coffee is used.

Based on these results, we have chosen as defaults for 
IPSSA the values shown in bold and underlined. This means 
that these values are used when the pipeline user does not 
provide values for them, either in the command line or in a 
configuration parameters file.

3.2 � Mycobacterium leprae Results

When the 531 M. leprae genes that were previously iden-
tified as likely having PSS [5] are analysed using IPSSA, 
the following 26 genes are identified as being positively 
selected by codeML: dnaA, dnaE, ftsX, gpsA, leuc, ML0051, 
ML0208, ML0240, ML0314, ML0606, ML0803, ML0825, 
ML1119, ML1182, ML1243, ML1286, ML1740, ML1750, 
ML2053, ML2570, ML2597, ML2630, ML2664, murE, recG, 
and tesB. This number is similar to that obtained when using 
ADOPS [7] and the same set of input genes [5]. Only one 
gene (ML1182) out of the 26 genes has not been identified in 
the previous analyses. The differences reflect the stochastic 
nature of codeML. Since only 4.9% (26/531) of all gene 
sets identified by GenomeFastScreen as possibly show-
ing PSS are identified, after detailed analyses, as having 
PSS, it seems unlikely that genes harbouring PSS are being 
excluded by GenomeFastScreen. Nevertheless, if surprised 
by the exclusion of a given gene from the dataset of genes 
worth to be analysed in detail, the user can run the stan-
dalone IPSSA pipeline here reported to analyse that gene in 
detail. On the other hand, if the user believes that PSS are 
identified at a given gene when only using the alignment 
algorithm that was specified, the IPSSA pipeline can also be 
used to quickly check the impact of using other alignment 
algorithms. The details of the IPSSA run are available as a 
0.5 GB zip tar file (M_leprae.tar.xz file made available at 
https://​doi.​org/​10.​5281/​zenodo.​42792​34).

Table 1   Running times of the main steps involved in the IPSSA pipeline using a different number of sequences

In bold-underline are the default values  for IPSSA

# Sequences Alignment method’s execution times (s) MrBayes (min) FUBAR (s) codeml (h) omegaMap (min)

Clustalw Muscle Kalign t_coffee amap

10 3 2 2 20 5 8.35 17 0.15 0.12
20 5 3 3 86 18 16.17 18 1.19 9.92
30 7 3 3 166 42 36.13 25 4.24 21.12
40 12 3 3 305 75 73.4 32 13.26 33.72
50 22 4 3 493 138 97.03 45 23.35 45
60 22 5 4 677 209 137.43 50 n.a 54.32
70 31 6 4 995 350 155.53 65 n.a 77.23
80 37 7 4 1281 413 182.7 67 n.a 102.67
90 48 8 5 1559 546 187.65 68 n.a 132.22

https://doi.org/10.5281/zenodo.4279234
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Of the 26 genes identified by codeML as having PSS, 
21 (dnaA, ftsX, gpsA, leuc, ML0051, ML0208, ML0240, 
ML0606, ML0803, ML0825, ML1119, ML1243, ML1286, 
ML1740, ML2053, ML2570, ML2597, ML2664, murE, recG, 
and tesB) are also identified by FUBAR as being positively 
selected, although for three of these (ML0208, ML0825, 
and tesB), codeML identified more PSS than FUBAR. For 
the remaining 23 cases, FUBAR and codeML identified 
the same amino acid sites as being positively selected. In 
only one case, FUBAR identified a gene as being positively 
selected that codeML did not (glcB), that was, however, pre-
viously identified as having PSS when using ADOPS [5], 
showing again the stochastic nature of codeML.

When running omegaMap, only 24 out of 531 genes did 
not show PSS. A possible explanation could be that omega-
Map misbehaves, because the assumption that the indi-
viduals analysed come from the same population is being 
violated. Nevertheless, it is also possible that the observed 
low variation and recombination levels, coupled with the 
blocks approach used by omegaMap (oBlock and rBlock is 
set to 30 as recommended in omegaMap’s manual) causes 
the observed problem. Indeed, for 529 out of 531 genes, 
inferences regarding recombination could not be performed 
when using PhiPack with a window size of 80 bp, because 
there are too few informative sites. For the two genes that 
could be analysed, there is no evidence for recombination.

When the biological functions of the genes that show 
PSS are taken into account, there are eight genes (ML0051, 
ML0240, ML0314, ML0803, ML1243, ML2597, recG, and 
tesB, that are the orthologues of M. tuberculosis PPE68, 
rpfB, lipU, Rv3220c, lipQ, Rv0177, recG, and tesB1 genes) 
for which the phenotypic traits being positively selected are 
likely the modulation of the host inflammatory response 
(Rv0177; [17]), the establishment and maintenance of 
infection (PPE68  [18];), resuscitation from dormancy 
(rpfB; [19]), protection against mitomycin C, methyl meth-
ane sulfonate and UV induced cell death (recG; [20]), as 
well as survival, persistence, and virulence (lipQ, lipU, 
Rv3220c, and tesB1; [21]), discussed in detail in [5]. Of 
these, only ML0314 has been identified by codeML only 
(see above), suggesting that genes identified by both FUBAR 
and codeML as having PSS may indeed harbour amino acid 
variation that may have an impact on important M. leprae 
phenotypic traits.

3.3 � Mycobacterium haemophilum Results

Out of the 3884 orthologous gene sets identified by the 
GenomeFastScreen step of the Auto-PSS-Genome pipeline, 
1179 were identified as deserving further detailed analy-
ses. For these, the details of the IPSSA run are available 
as a 1.4 GB zip tar file (M_haemophylum.tar.xz file made 
available at https://​doi.​org/​10.​5281/​zenodo.​42792​34). Out 

of the 1179 gene sets analysed, FUBAR identified 184 M. 
haemophilum genes as being positively selected. Neverthe-
less, codeML identified 47 genes only as being positively 
selected (Supplementary Table 1). There are 24 genes in 
common between the two datasets (asnB, cobN, mfd, secA, 
nrdI, RS03750, RS06295, RS07170, RS08670, RS08955, 
RS09760, RS09875, RS11065, RS13820, RS14355, RS14775, 
RS16965, RS17140, RS18085, RS18250, RS19140, RS19480, 
RS19720, and RS20035; gene names are for the M. haemo-
philum strain ATCC 29548 (ASM34043v3), the one used as 
a local reference). For these, the evidence for PSS is strong-
est. In the set of 24 genes where PSS have been identified by 
both methods, FUBAR identified 46 PSS of which 44 were 
also identified by codeML. Nevertheless, codeML identified 
many more PSS (370) than FUBAR (46). This result stands, 
even if the genes where codeML identified more than 10 PSS 
are viewed as suspicious and, therefore, discarded, in which 
case the total would be 88.

As for M. leprae, when using omegaMap, 1093 out of 
1179 gene sets (92.7%) showed evidence for PSS. Moreover, 
for most gene sets, many PSS were identified. As pointed out 
above, the reasons for the omegaMap misbehaviour may be 
the violation of the assumption that the individuals come 
from the same population, or the observed low variation and 
recombination levels coupled with the blocks approach used 
by omegaMap (oBlock and rBlock is set to 30 as recom-
mended in omegaMap’s manual). Indeed, for 1171 gene sets, 
inferences regarding recombination could not be performed 
using PhiPack with a window size of 80 bp, because there 
are too few informative sites. For the eight genes that could 
be analysed, there is no evidence for recombination.

In M. tuberculosis, the orthologous genes of the 24 genes 
M. haemophilum dataset, as determined by GenomeFast-
Screen are, respectively: asnB, cobN, mfd, secA1, nrdI, 
−, Rv1354c, dxr, −, Rv1433, Rv1638A, pks7, −, −, −, −, 
Rv0791c, −, −, Rv3675, embB, esxA, −, and −, where “−” 
means that no orthologous gene was identified. When the 
biological function of these genes in M. tuberculosis is 
taken into account, for five genes (asnB, dxr, pks7, embB, 
and esxA) the phenotypic trait being positively selected can 
be inferred as likely being resistance to drugs and virulence.

Mycobacteria are naturally resistant to multiple drugs and 
asnB plays a role in the setting of this natural resistance [22]. 
Therefore, although the codeML and FUBAR analyses do 
not agree on the identified PSS (codeML identifies align-
ment positions 35 and 49 as PSS, while FUBAR identifies 
position 66 as a PSS), it is conceivable that changes at these 
amino acid positions do play a role in the resistance to drugs 
used in the treatment of M. haemophilum infections.

In Mycobacteria, dxr is responsible for the intrinsic 
resistance to fosmidomycin [23]. Therefore, as in the above 
case, it may play a role in the resistance to drugs used in the 
treatment of M. haemophilum infections. codeML identified 
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five alignment positions as being PSS (11, 50, 75, 233 and 
264), while FUBAR identified one (75).

The pks7 gene seems to be involved in the synthesis of 
phthiocerol dimycocerosates [24] and is a well-known viru-
lence factor in M. tuberculosis [25]. In the M. tuberculo-
sis Beijing family, that is of interest since it is increasingly 
associated with drug resistance throughout the world, there 
is a lineage specific amino acid replacement at this gene 
[25]. Here, for M. haemophilum, codeML identified eight 
alignment positions as being PSS (1160, 1442, 1443, 1445, 
1493, 1618, 1772, and 2063) of which FUBAR identified 
five (1160, 1443, 1445, 1493, and 1772). These positions 
may thus be associated with different virulence levels.

In clinical M. tuberculosis isolates, missense mutations 
in embB are associated with Ethambutol resistance [26], and 
this drug is used in the treatment of M. haemophilum infec-
tions (see for instance [8]). Therefore, the four PSS (posi-
tions 14, 16, 140, and 265 in the alignment) identified by 
codeML (three of which were also identified by FUBAR, 
namely positions 14, 16, and 265 in the alignment) may be 
clinically relevant.

The EsxA protein is also a major virulence factor of M. 
tuberculosis [27]. Both codeML and FUBAR identified 
alignment positions 28 and 36 as PSS. Therefore, these posi-
tions may also be associated with different virulence levels.

It should be noted that there is little to no overlap between 
the genes inferred to be under positive selection in M. lep-
rae and M. haemophilum despite being two closely related 
species. Indeed, in the analyses here presented there is no 
overlap, although there is a two gene (mfd and Rv1354c) 
overlap between the results here obtained for M. haemophi-
lum and a previous analysis performed for M. leprae [5]. 
The relevance of such genes in the context of resistance to 
drugs is, however, unknown. Therefore, it seems that M. 
leprae and M. haemophilum are under very different selec-
tive pressures, which may be expected since they cause very 
different diseases.

4 � Conclusion

Auto-PSS-genome allows the identification of genes show-
ing PSS, using multiple methods, quickly and almost with-
out user intervention, starting from FASTA files, one per 
genome, containing all annotated coding sequences. We 
show the usefulness of such a pipeline using M. leprae and 
M. haemophilum. A Docker image is made available for the 
Auto-PSS-Genome pipeline together with detailed instruc-
tions on how to use it, and thus even researchers without a 
background in informatics should be able to easily run it.
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