Interpretable Models to Predict Breast Cancer

<u>Pedro Ferreira</u>, MSc¹; Inês Dutra, PhD^{1,2}; Rogerio Salvini, PhD³; Elizabeth Burnside, MD, MPH, MS⁴.

¹CRACS-INESC TEC, Porto, Portugal ²DCC-FC, University of Porto, Portugal ⁴University of Wisconsin, Madison, USA ³Institute of Informatics, Federal University of Goiás, Brazil

Outline

- Breast Cancer
- Approach & Objectives
- Variables Relevance
- ILP vs SVM
- Interpretable Classifiers
- Malignant Rules
- Conclusions & Future Work

Outline

- Breast Cancer
- Approach & Objectives
- Variables Relevance
- ILP vs SVM
- Interpretable Classifiers
- Malignant Rules
- Conclusions & Future Work

Breast Cancer

Breast Cancer

Breast Cancer

Source: U.S. Breast Cancer Statistics [1] - accessed December 2016

Approach

Approach

 Several works in the literature use propositional ("black box") approaches to generate prediction models.

• In this work **we employ** the **Inductive Logic Programming** technique, whose prediction model is **based on first order rules**, to the domain of breast cancer.

(+) Interpretable Rules

Objectives

• **Generate** more **interpretable models** based on first-order logic

 Compare ILP performance results with propositional classifiers
 LP vs SVM vs DT

• **Explore relevance** of some **variables** usually collected to predict breast cancer

Variables Relevance

MammoClass^[2]

Classification of a mammogram based in a set of mammography findings

	Patient's age 22
	Mass size 10
	Breast Composition Almost entirely fat
	Mass shape Lobular
10	→ Mass clockface location 2.0 ▼
12	Mass margins (1) Circumscribed V
Upper Upper	Mass margins (2)
inner outer	Mass margins worst Mass Margins (1)
е — — — е	Mass density Iso/Low
Lower Lower	Side Left T
inner Outer	Quadrant Lower Inner
	Depth Anterior
LEFT BREAST	Predict Reset
	Result
	Predicted mass density: iso (98.4%)

Enter Data

Prediction: mass benign with a probability of 99.9%.

Variables Relevance

- Side, Depth, Clockface and Quadrant are considered to be non indicative of malignancy by expert radiologists
- <u>However</u> some studies show that for some populations there can be a prevalence of breast cancer according to the value of some of these variables

GEC-ESTRO [3] says that the **upper outer quadrant** is the most common site of origin of **breast cancer**

GEC-ESTRO [3] says that **breast cancer** is **more common in the left** than in the right breast. Other studies on laterality confirm this tendency [4]

Can we **remove** these **variables** and still obtain the same results with the **test set** in this sample?

Dataset

- Breast Masses
- □ Annotated Data
- Test independent from training set

[2] Ferreira, P., Fonseca, N.A., Dutra, I., Woods, R., Burnside, E.:

Predicting Malignancy from Mammography Findings and Image-Guided Core Biopsies.

In: Int. Journal of Data Mining and Bioinformatics, 2015.

Tools

ALEPH

- ILP System
- Written in Prolog
- Powerful representation language
- User may choose the order of generation of rules, change the evaluation function and the search order

- Set of machine learning algorithms for data mining tasks
- Written in **Java**
- Contains tools for data preprocessing, classification, regression, clustering, association rules, etc
- Well-suited for developing new machine learning schemes
- Free software

Open Source

Methodology – Experiments

- **A** Trains **SVM** on 180, **without the 4 variables**, and evaluates on 168 test set
- **Prev**_[2] Trains **SVM** on 180, **using all variables**, and evaluates on 168 test set

- **B1** Trains **Aleph** on 180, **using all variables**, and evaluates on 168 test set
- **B2** Trains **Aleph** on 180, **without the 4 variables**, and evaluates on 168 test set

Variables Relevance - Results

TABLE I Performance of Classifiers on Test Set

	Platform	Exp.	CCI	K	F	AUROC	TPR	Р	TNR
All vars.	Aleph	* B1	77.4	0.37	0.52	—	0.43	0.65	0.91
w/o 4 vars.	Aleph	*B2	79.8	0.41	0.52	_	0.40	0.76	0.95
All vars.	WEKA	* Prev	79.2	0.47	0.62	0.82	0.60	0.64	0.87
w/o 4 vars.	WEKA	А	81.0	0.51	0.64	0.85	0.60	0.68	0.89

Variables Relevance - Results

TABLE I Performance of Classifiers on Test Set

	Platform	Exp.	CCI	K	F	AUROC	TPR	Р	TNR
All vars.	Aleph	* B1	77.4	0.37	0.52	_	0.43	0.65	0.91
w/o 4 vars.	Aleph	*B2	79.8	0.41	0.52	_	0.40	0.76	0.95
All vars.	WEKA	Prev	79.2	0.47	0.62	0.82	0.60	0.64	0.87
w/o 4 vars.	WEKA	A	81.0	0.51	0.64	0.85	0.60	0.68	0.89

ILP vs SVM

Searching for ILP classifiers that can be better than the SVM...

Aleph's Internal Parameters

• *Noise* – controls the maximum number of **false positives allowed** by the model during training

• *Evalfn* – controls the **evaluation function** used to assess the quality of each hypothesis generated

coverage, <u>mestimate</u>, cost, entropy, gini, and wracc

ILP vs SVM

Fig. 1. ROC points for SVM and ILP

McNemar's Tests

noise = 19 -> p-value = 0.84 *noise* = 93 -> p-value = 0.23

Not Statistically Significant

Interpretable Classifiers

Interpretable Classifiers

```
is_malignant(A) :-
 shape(A,'Round'),
 depth(A,'Middle'),
 density(A,high).
```

	TRAINING SET	TEST SET
Pos Cover by Rules	6	1
Neg Cover by Rules	0	0
TOTAL Pos /Negs	71 + / 109 -	47 + / 121 -

is_malignant(A) : shape(A,'Irregular'),
 margins(A,'Spiculated').

	TRAINING SET	TEST SET
Pos Cover by Rules	17	7
Neg Cover by Rules	0	0
TOTAL Pos /Negs	71 + / 109 -	47 + / 121 -

TRAIN

	A	B C D E F C H I J K L M N O										0	Ρ	Q						
1				Malig	inant I	Rules						Benign Rules								
2	Instance	R1	R2	R3	R4	R5	R6	R7	R8	F1	R2	R3	R4	R5	R6	R7	R8			
3	2	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0			
4	3	0	T	0	1	0	0	0	1	0	0	0	1	0	0	0	0			
5	7	0	0	1	0	0	1	0	1	0	0	0	1	0	0	0	0			
6	13	0	1	0	0	0	1	0	1	0	0	0	0	0	0	1	0			
7	17	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0			
8	23	0	0	0	1	1	0	0	0	1	0	0	1	0	1	0	1			
9	24	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0			
10	25	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0			
11	34	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0			
12	39	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0			
13	41	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0			
14	52	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0			
15	59	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0			
16	60	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0			
17	65	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1			
18	68	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0			
19	69	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0			
20	74	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0			
173	316	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0			
174	321	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0			
175	328	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0			
176	332	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0			
177	334	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0			
178	336	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0			
179	338	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0			
180	339	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0			
181	342	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0			
182	348	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0			
188	TP	23	19	24	20	23	19	3	15	52	43	26	21	17	15	15	20			
184	TN	103	101	108	97	103	99	101	102	63	61	65	59	65	69	61	60			
185	FP	6	8	1	12	6	10	8	1	8	10	6	12	6	2	10	11			
186	FN	48	52	47	51	48	52	68	56	57	66	83	88	92	94	94	89			
187	CCI	0,70	0,67	0,73	0,65	0,70	0,66	0,58	0,65	0,64	0,58	0,51	0,44	0,46	0,47	0,42	0,44			
188)						
	• N •	train	test	predict	ions															
= 🗙	Find				Ţ			All	Sea	rch Fo	rmatte	ed Dis	play SI	tring	Ma	itch Ca	ise (a		
Sheel	t1of3												Def	ault						
Silee	1015												Deli	autt						

TEST

	A	В	С	D	F	F	C.	Н		J	K	L	М	Ν	0	Ρ	Q	R		T	U
1				Malignant Predictions							Benign Predictions								Max Value		
2	Instance	Class	R1	R2	R3	R4	R5	R6	R7	R8	R1	R2	R3	R4	R5	R6	R7	R8	Malignant	Benign	All
3	4	1	0,00	0.00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
4	5	1	0,00	0,67	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,46	0,00	0,42	0,00	0,67	0,46	0,67
5	6	1	0,00	0,00	0,00	0,00	0,70	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,70	0,00	0,70
б	10	1	0,70	0,00	0,00	0,00	0,70	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,70	0,00	0,70
7	12	1	0,00	0,00	0,00	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,42	0,44	0,65	0,44	0,65
8	20	1	0,00	0,00	0,00	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,65	0,00	0,65
9	32	1	0,70	0,00	0,00	0,00	0,00	0,66	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,47	0,00	0,00	0,70	0,47	0,70
10	33	1	0,00	0,67	0,73	0,00	0,00	0,66	0,00	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,42	0,00	0,73	0,42	0,73
11	37	1	0,70	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,51	0,00	0,00	0,00	0,42	0,00	0,70	0,51	0,70
12	40	1	0,00	0,00	0,00	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,51	0,00	0,00	0,00	0,00	0,00	0,65	0,51	0,65
13	63	1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14	66	1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
15	70	1	0,00	0,67	0,00	0,00	0,00	0,00	0,00	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,42	0,00	0,67	0,42	0,67
16	71	1	0,00	0,00	0,00	0,00	0,70	0,66	0,00	0,00	0,00	0,00	0,00	0,44	0,00	0,00	0,00	0,00	0,70	0,44	0,70
17	72	1	0,00	0,00	0,00	0,00	0,70	0,66	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,70	0,00	0,70
18	80	1	0,70	0,00	0,73	0,00	0,00	0,66	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,73	0,00	0,73
19	90	1	0,00	0,00	0,00	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,44	0,46	0,00	0,00	0,00	0,65	0,46	0,65
20	91	1	0,00	0,67	0,00	0,65	0,00	0,00	0,00	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,67	0,00	0,67
21	114	1	0,00	0,00	0,00	0,00	0,00	0,66	0,00	0,00	0,64	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,66	0,64	0,66
22	117	1	0,70	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,58	0,51	0,00	0,46	0,00	0,00	0,00	0,70	0,58	0,70
23	122	1	0,00	0,00	0,73	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,73	0,00	0,73
24	129	1	0,70	0,00	0,73	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,51	0,00	0,00	0,00	0,00	0,00	0,73	0,51	0,73
25	141	1	0,00	0,00	0,73	0,00	0,00	0,00	0,00	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,73	0,00	0,73
26	154	1	0,00	0,67	0,73	0,65	0,00	0,00	0,58	0,65	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,73	0,00	0,73
27	160	1	0,00	0,00	0,00	0,00	0,00	0,66	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,66	0,00	0,66
28	164	1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,58	0,00	0,00	0,00	0,00	0,00	0,44	0,00	0,58	0,58
29	166	1	0,00	0,00	0,73	0,00	0,00	0,00	0,00	0,65	0,00	0,58	0,00	0,00	0,00	0,00	0,42	0,00	0,73	0,58	0,73
30	181	1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,64	0,00	0,00	0,00	0,00	0,00	0,00	0,44	0,00	0,64	0,64
31	182	1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,58	0,00	0,44	0,46	0,00	0,00	0,00	0,00	0,58	0,58
32	197	1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,47	0,00	0,44	0,00	0,47	0,47
33	203	1	0,00	0,00	0,00	0,00	0,70	0,00	0,00	0,00	0,00	0,00	0,00	0,44	0,00	0,00	0,00	0,44	0,70	0,44	0,70
34	204	1	0,70	0,00	0,00	0,00	0,70	0,66	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,70	0,00	0,70
35	215	1	0,00	0,00	0,00	0,00	0,00	0,66	0,00	0,00	0,00	0,00	0,00	0,00	0,46	0,00	0,00	0,44	0,66	0,46	0,66

Fig. 2. ROC points for SVM and malignant rules from ILP

Fig. 3. ROC points for malignant rules from ILP and decision tree classifier

ILP BETTER THAN DT

False positive rate

Conclusions

- We explored alternatives to our best SVM classifier and have shown that it is possible to obtain more interpretable classifiers with same performance on the test set
- We can generate interpretable classifiers with higher performance than our best decision tree classifier
 ILP BETTER THAN DT
- We concluded that **Side**, **Clockface**, **Depth** and **Quadrant** are **not relevant** variables for **our dataset**

Future Work

 Search for smoothing function that can produce less discrete results for ILP

• Apply same techniques and methodology presented in this work to **larger** and **more varied datasets**

Keel Repository [5]

GEO Datasets [6]

TCGA Datasets [7]

Thanks

Questions?

Appendix

References

[1] N. B. C. Foundation. (2016) Breast Cancer Statistics. [Online]. Available: <u>http://www.breastcancer.org/symptoms/understand_bc/statistics</u>

[2] P. Ferreira, N. A. Fonseca, I. de Castro Dutra, R. W. Woods, and E. S. Burnside, "**Predicting malignancy from mammography findings and image-guided core biopsies**", IJDMB, vol. 11, no. 3, pp. 257–276, 2015. [Online]. Available: <u>http://dx.doi.org/10.1504/IJDMB.2015.067319</u>

[3] E. S. for Radiotherapy and Oncology. (2016) Handbook of brachytherapy. [Online]. Available: <u>http://www.estro.org/binaries/content/assets/estro/about/gec-estro/</u> <u>handbook-of-brachytherapy/j-18-01082002-breast-print proc.pdf</u>

[4] M. H. Amer, "Genetic factors and breast cancer laterality", Cancer Manag Res, vol. 16, no. 6, pp. 191–203, April 2014.

[5] Keel Dataset Repository. (2016). [Online]. Available: <u>http://sci2s.ugr.es/keel/datasets.php</u>

[6] GEO Datasets. (2016). [Online]. Available: <u>https://www.ncbi.nlm.nih.gov/gds</u>

[7] TCGA Datasets. (2016). The Cancer Genoma Atlas. [Online]. Available: <u>https://cancergenome.nih.gov/</u>