Detecting Cardiac Pathologies from Annotated Auscultations

CBMS 2012 – June 20th 2012 – Rome, Italy

Pedro Ferreira Inês Dutra Daniel Pereira Felipe Mourato Sandra Mattos Miguel Coimbra Ricardo Cruz-Correia

Outline

- Cardiovascular Diseases
- DigiScope Project
 - Machine Learning / Data Mining
 - Objectives
 - Data
 - Feature Selection
 - Association Rules
 - Classification
 - Non Relational
 - Relational (ILP)
- Conclusions and Future Work

Outline

• Cardiovascular Diseases

- DigiScope Project
 - Machine Learning / Data Mining
 - Objectives
 - Data
 - Feature Selection
 - Association Rules
 - Classification
 - Non Relational
 - Relational (ILP)
- Conclusions and Future Work

Cardiovascular Diseases

- **17.3** million
 - died from CVDs in 2008

• **80%**

 of CVD deaths take place in low and middle-income countries

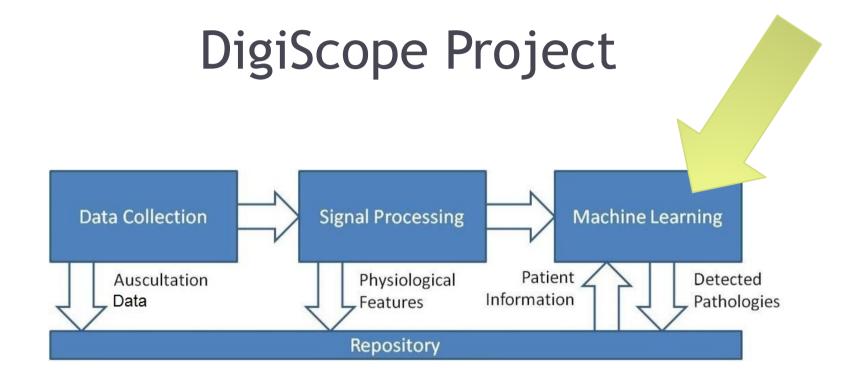
• **23.6** million

• will die from CVDs by 2030

Source: World Health Organization (WHO) – June 2012

Outline

- Cardiovascular Diseases
- DigiScope Project
 - Machine Learning / Data Mining
 - Objectives
 - Data
 - Feature Selection
 - Association Rules
 - Classification
 - Non Relational
 - Relational (ILP)
- Conclusions and Future Work


DigiScope Project

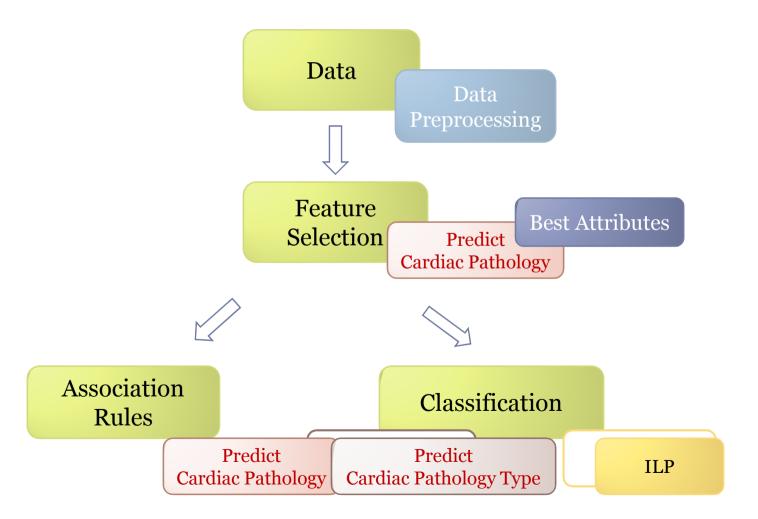
- Help General Practitioners (GPs) in their daily medical routine
- Capable of automatically extract clinical features from collected data
- May provide clinical second opinion on specific heart pathologies

Outline

- Cardiovascular Diseases
- DigiScope Project
 - Machine Learning / Data Mining
 - Objectives
 - Data
 - Feature Selection
 - Association Rules
 - Classification
 - Non Relational
 - Relational (ILP)
- Conclusions and Future Work

Objectives

- Automatically learn classifiers that distinguish normal patients from patients with a cardiac pathology
 - Our classifiers rely only on the cardiologist provided annotation and not on the raw sound data itself
- Automatically extract new and relevant knowledge from the dataset



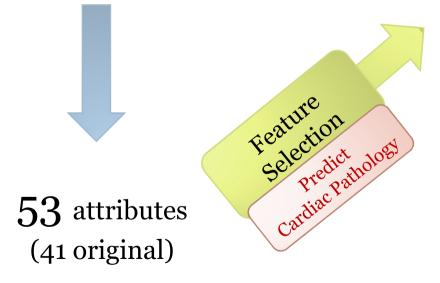
Data

- 202 cases from children
 - Pernambuco, Recife Brazil
 - Collected between June to September 2011
 - [0-19] years old
 - Average age: 7.31

202 xml files

33 instances removed data cleaning data transformation data integration

169 instances


Data Data

Preprocessing

169 instances

13 attributes

DigiScope

Machine Learning/Data Mining

Attribute

BMI_def

Age_def

Sex

SystolicSystemicPressure_def

DiastolicSystemicPressure_def

Hypertension

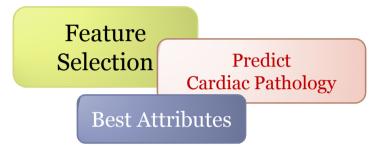
Murmur

Grading

S2Status

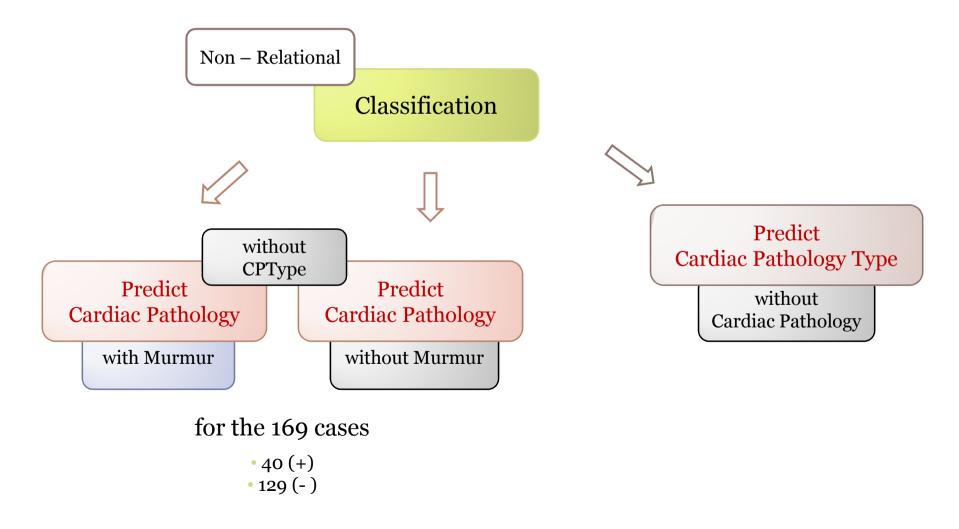
IfAbnormal

PulmonaryComponent


CardiacPathology

CardiacPathologyType

13 attributes



- With all 13 attributes:
- In the absence of Murmur:

• Murmur

- S2Status
- IfAbnormal
- SystolicSystemicPressure_def

DigiScope

Machine Learning/Data Mining

- ZeroR (baseline classifier)
- OneR
- DTNB
- PART

• SMO

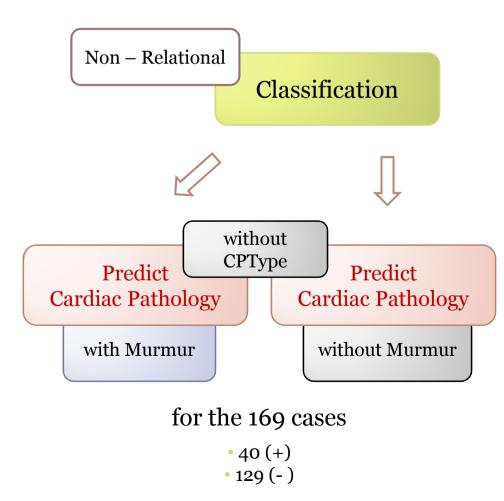
rules

NaiveBayesBayesNet (TAN)

functions

bayes

- J48
- DecisionStump
- RandomForest 占
- SimpleCart
- NBTree
- AdaBoostM1
- Bagging
- Dagging
- Grading
- Stacking
- Vote

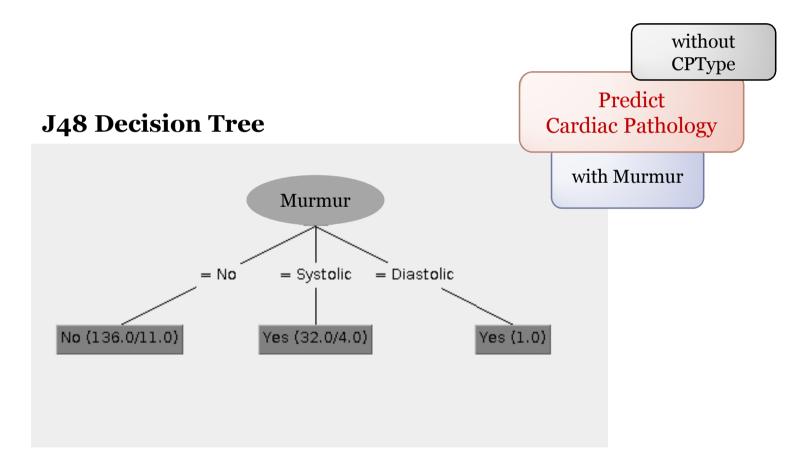

trees

meta-learning

DigiScope

Machine Learning/Data Mining

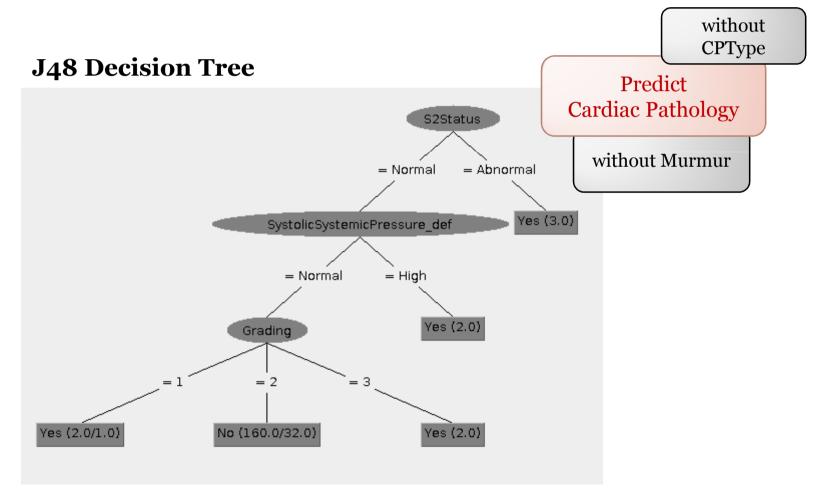
- 10 x 10 fold stratified cross validation with <u>tuning sets</u>
- Paired Corrected T-Tester
 - Significance level: 0.05



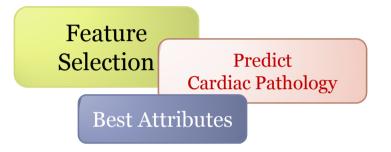
Machine Learning/Data Mining without СРТуре Predict **Cardiac Pathology** with Murmur Tuning **Metrics** Test CCI (%) 91.56 v 90.53 Sensitivity **0.72** v 0.70 in 7 folds: Grading Specificity 0.98 0.97 in 3 folds: SMO AUC 0.85 0.83

1C

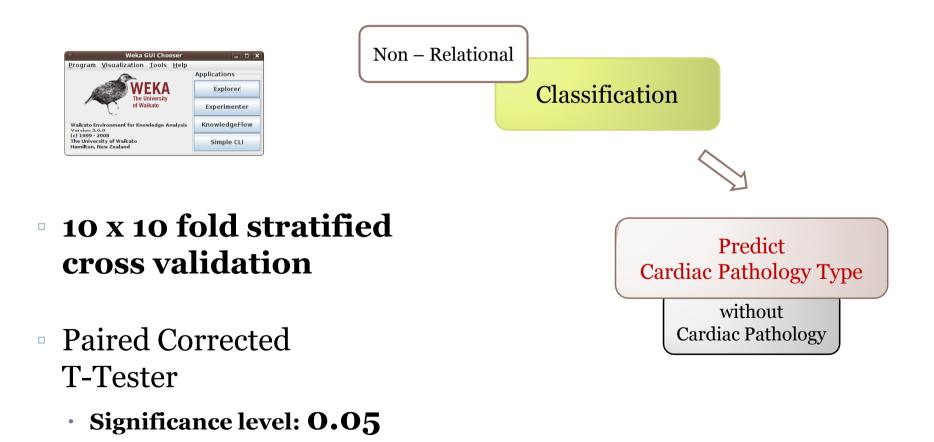
v - Results statistically better than ZeroR algorithm (baseline), with p=0.05


DigiScope

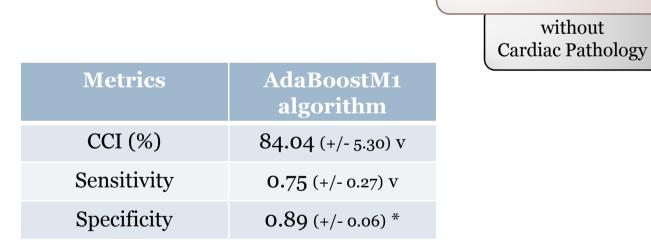
Machine Learning/Data Mining


Metrics	Tuning	Test		without
CCI (%)	91.56 v	90.53 ^w	vith Murmur	СРТуре
Sensitivity	0.72 v	0.70		Predict
Specificity	0.98	0.97		Cardiac Pathology
AUC	0.85	0.83	Test	without Murmur
	CCI (%)	79.37	79.29	
	Sensitivity	0.28 v	0.28	
	Specificity	0.95	0.95	in all folds: NaiveBayes
	AUC	0.65	0.60	

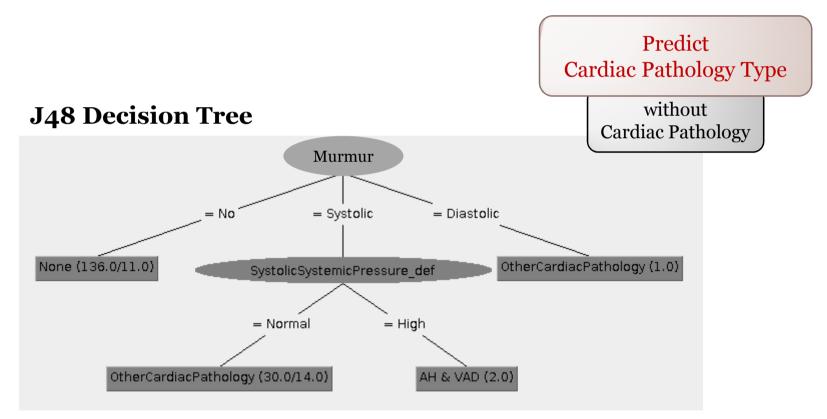
v - Results statistically better than ZeroR algorithm (baseline), with p=0.05



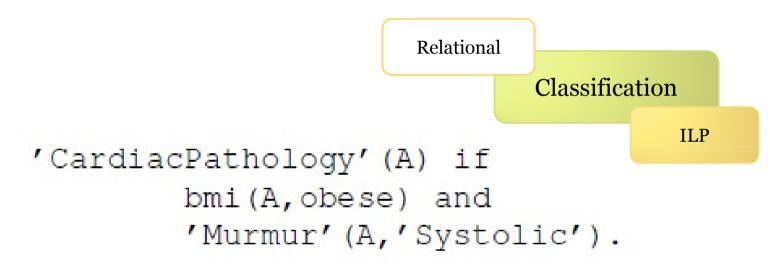
- With all 13 attributes:
 - In the absence of Murmur:


• Murmur

- S₂Status
- **IfAbnormal**
- SystolicSystemicPressure_def


- v Results statistically better than ZeroR algorithm (baseline), with p=0.05; *
 - Results **statistically worst** than ZeroR algorithm (baseline), **with p=0.05**.

Predict


Cardiac Pathology Type

without

Rule holds for **6 (15%) out of the 40 patients** with a **Cardiac Pathology**

Does not apply to any healthy patient (129)

Outline

- Cardiovascular Diseases
- DigiScope Project
 - Machine Learning / Data Mining
 - Objectives
 - Data
 - Feature Selection
 - Association Rules
 - Classification
 - Non Relational
 - Relational (ILP)

Conclusions and Future Work

Conclusions and Future Work

- a) Train a classifier with performance of **90.5%**, sensitivity of **0.70** and specificity of **0.97** to predict pathologies on unseen cases
- b) In order to correctly classify Cardiac Pathologies:
 - i. Murmur annotated by physicians
 - ii. Murmur extracted by signal processing
- c) Intriguing **rule found** that relates **BMI** with **Murmur** and **Cardiac Pathology**
 - **BMI** usually not considered relevant to predict Cardiac Pathologies in children

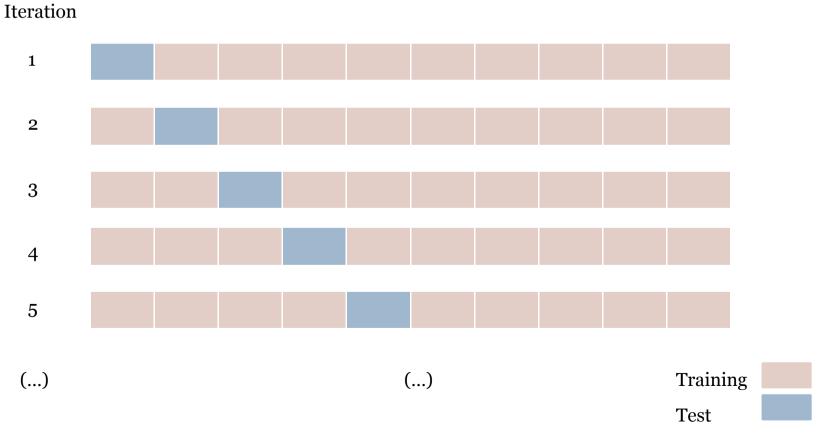
Conclusions and Future Work

- a) Try to extract relevant **knowledge** from data regarding **adults** and **pregnant women**
- b) Final Goal: Integrated tool, capable of online predicting cardiac pathologies and recommending additional screening

Thank you!

pedroferreira@dcc.fc.up.pt ines@dcc.fc.up.pt

UPORTO 👔 🖓 🤤 🛄 🎪 👜 UF 📶 G FCT


DigiScope

Machine Learning/Data Mining

Attribute	Value	
BMI_def	{Normal Weight, Underweight, Overweight, Obese}	
Age_def	{Baby, Preschool, Scholar Age, Teenager}	
Sex	{Female, Male}	
SystolicSystemicPressure_def	{Normal, High}	
DiastolicSystemicPressure_def	{Normal, High}	
Hypertension	{No, Yes}	
Murmur	{No, Systolic, Diastolic}	
Grading	{1, 2, 3}	
S2Status	{Normal, Abnormal}	
IfAbnormal	{NA, Single, Fixed Split}	
PulmonaryComponent	{Normal,Hyperfonetic}	
CardiacPathology	{Yes,No}	
CardiacPathologyType	{None, IntraventricularCommunication (IC), ArterialHypertension (AH), ValvularAorticDisease (VAD), PulmonaryHypertension (PH), OtherCardiacPathology (OCP), AH & VAD, IC & OCP, VAD & OCP}	

10 x 10 fold stratified cross-validation

	Metrics
CCI	
Κ	
MAE	
Sensitivity	
Specificity	
Precision	
F-Measure	
AUC	