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Cardiovascular Diseases

• 17.3million

▫ died from CVDs in 2008
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• 80%
▫ of CVD deaths take place in low and 
middle-income countries

• 23.6million

▫ will die from CVDs by 2030

Source:World Health Organization (WHO) – June 2012
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DigiScope Project
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• Help General 
Practitioners (GPs) in their 
daily medical routinedaily medical routine

• Capable of automatically 
extract clinical features 
from collected data

• May provide clinical second 
opinion on specific heart 
pathologies



DigiScope Project
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Objectives

• Automatically learn classifiers that distinguish 
normal patients from patients with a cardiac 
pathology
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▫ Our classifiers rely only on the cardiologist provided 
annotation and not on the raw sound data itself

• Automatically extract new and relevant knowledge
from the dataset
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Machine Learning/Data Mining

Data

• 202 cases from 
children
• Pernambuco, Recife – Brazil

• Collected between June to 
September 2011

• [0-19] years old

• Average age: 7.31



Machine Learning/Data Mining
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Data
Data 

Preprocessing

Association
Rules

Classification

Feature 
Selection Predict

Cardiac Pathology

Non – RelationalPredict
Cardiac Pathology

RelationalILP
Predict

Cardiac Pathology Type

Best Attributes



202
xml files
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Machine Learning/Data Mining

Data

Data 
Preprocessing

xml files

169 instances

data cleaning

data transformation

data integration

33 instances 
removed



169 instances

13

13 attributes 

Machine Learning/Data Mining

53 attributes 
(41 original)

13 attributes 
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Feature 
Selection

Attribute

BMI_def

Age_def

Sex

Machine Learning/Data Mining

13 attributes 

SelectionSex

SystolicSystemicPressure_def

DiastolicSystemicPressure_def

Hypertension

Murmur

Grading

S2Status

IfAbnormal

PulmonaryComponent

CardiacPathology

CardiacPathologyType

Predict
Cardiac Pathology
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Machine Learning/Data Mining
Feature 
Selection Predict

Cardiac Pathology

Best Attributes

• With all 13 attributes:

▫Murmur

• In the absence of Murmur:

▫ S2Status

▫ IfAbnormal

▫ SystolicSystemicPressure_def
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Machine Learning/Data Mining

Classification

Non – Relational

with Murmur

Predict
Cardiac Pathology

without Murmur

Predict
Cardiac Pathology

without
Cardiac Pathology

Predict
Cardiac Pathology Type

without
CPType

for the 169 cases

• 40 (+)
• 129 (- ) 



• ZeroR (baseline classifier)

• OneR

• DTNB

• PART

• J48

• DecisionStump

• RandomForest

• SimpleCart
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rules
trees

Machine Learning/Data Mining

• PART

• NaiveBayes

• BayesNet (TAN)

• SMO

• SimpleCart

• NBTree

• AdaBoostM1

• Bagging

• Dagging

• Grading

• Stacking

• Vote

bayes

functions

meta-learning
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Machine Learning/Data Mining

Classification

Non – Relational

with Murmur

Predict
Cardiac Pathology

without Murmur

Predict
Cardiac Pathology

▫ 10 x 10 fold stratified 
cross validation with 
tuning sets

▫ Paired Corrected             
T-Tester

� Significance level:0.05

for the 169 cases

• 40 (+)
• 129 (- ) 

without
CPType
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Machine Learning/Data Mining

with Murmur

Predict
Cardiac Pathology

without
CPType

v - Results statistically better than ZeroR algorithm (baseline), with p=0.05

with Murmur
Metrics Tuning Test

CCI (%) 91.56 v 90.53

Sensitivity 0.72 v 0.70 

Specificity 0.98 0.97

AUC 0.85 0.83

in 7 folds: Grading
in 3 folds: SMO



Machine Learning/Data Mining
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Predict
Cardiac PathologyJ48 Decision Tree

without
CPType

with Murmur

Murmur
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Machine Learning/Data Mining

Predict
Cardiac Pathology

Metrics Tuning Test

CCI (%) 91.56 v 90.53

Sensitivity 0.72 v 0.70 

Specificity 0.98 0.97

with Murmur
without
CPType

v - Results statistically better than ZeroR algorithm (baseline), with p=0.05

without Murmur
Metrics Tuning Test

CCI (%) 79.37 79.29

Sensitivity 0.28 v 0.28

Specificity 0.95 0.95

AUC 0.65 0.60

in all folds: NaiveBayes

AUC 0.85 0.83



Machine Learning/Data Mining
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J48 Decision Tree

without Murmur

Predict
Cardiac Pathology

without
CPType

without Murmur
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Machine Learning/Data Mining
Feature 
Selection Predict

Cardiac Pathology

Best Attributes

• With all 13 attributes:

▫Murmur

• In the absence of Murmur:

▫ S2Status

▫ IfAbnormal

▫ SystolicSystemicPressure_def
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Machine Learning/Data Mining

Classification

Non – Relational

without
Cardiac Pathology

Predict
Cardiac Pathology Type

▫ 10 x 10 fold stratified 
cross validation

▫ Paired Corrected             
T-Tester

� Significance level:0.05
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Metrics AdaBoostM1

Machine Learning/Data Mining

without
Cardiac Pathology

Predict
Cardiac Pathology Type

v - Results statistically better than ZeroR algorithm (baseline), with p=0.05;

*
- Results statistically worst than ZeroR algorithm (baseline), with p=0.05.

Metrics AdaBoostM1
algorithm

CCI (%) 84.04 (+/- 5.30) v

Sensitivity 0.75 (+/- 0.27) v

Specificity 0.89 (+/- 0.06) *



Machine Learning/Data Mining
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J48 Decision Tree without
Cardiac Pathology

Predict
Cardiac Pathology Type

MurmurMurmur
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Machine Learning/Data Mining

Classification

Relational

ILP

Rule holds for 6 (15%) out of the 40 
patients with a Cardiac Pathology

Does not apply to any healthy patient (129)
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Conclusions and Future Work

a) Train a classifier with performance of 90.5%, sensitivity 0f 0.70 and
specificity 0f 0.97 to predict pathologies on unseen cases
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b) In order to correctly classify Cardiac Pathologies:
i. Murmur annotated by physicians

ii. Murmur extracted by signal processing

c) Intriguing rule found that relates BMI with Murmur and Cardiac 
Pathology

� BMI usually not considered relevant to predict Cardiac Pathologies in children



Conclusions and Future Work

a) Try to extract relevant knowledge from data regarding adults and 
pregnant women
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b) Final Goal: Integrated tool, capable of online predicting 
cardiac pathologies and recommending additional screening



Thank you!Thank you!

pedroferreira@dcc.fc.up.pt
ines@dcc.fc.up.pt
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Attribute Value

BMI_def {Normal Weight, Underweight, Overweight, Obese}

Age_def {Baby, Preschool, Scholar Age, Teenager}

Sex {Female, Male}

Machine Learning/Data Mining

Sex {Female, Male}

SystolicSystemicPressure_def {Normal, High}

DiastolicSystemicPressure_def {Normal, High}

Hypertension {No, Yes}

Murmur {No, Systolic, Diastolic}

Grading {1, 2, 3}

S2Status {Normal, Abnormal}

IfAbnormal {NA, Single, Fixed Split}

PulmonaryComponent {Normal,Hyperfonetic}

CardiacPathology {Yes,No}

CardiacPathologyType {None, IntraventricularCommunication (IC), ArterialHypertension
(AH), ValvularAorticDisease (VAD), PulmonaryHypertension (PH), 
OtherCardiacPathology (OCP), AH & VAD, IC & OCP, VAD & OCP}



10 x 10 fold stratified cross-validation
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Iteration

1

Machine Learning/Data Mining

Training

Test

2

3

4

5

(…) (…)
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Metrics

CCI

K

Machine Learning/Data Mining

K

MAE

Sensitivity

Specificity

Precision

F-Measure

AUC


