Knowledge on Heart Condition of Children based on Demographic and Physiological Features

CBMS 2013 – June 21st 2013 – Porto, Portugal

Pedro Ferreira Tiago T. V. Vinhoza Ana Castro Felipe Mourato Thiago Tavares Sandra Mattos Inês Dutra Miguel Coimbra

DigiScope Project

- Help General Practitioners (GPs) in their daily medical routine
- Capable of automatically
 extract clinical features
 from collected data
- May provide clinical second opinion on specific heart pathologies

- Heart Diseases in Children
- Objectives
- State of the Art
- Methodology
 - Dataset
 - Feature Importance
 - Model Independent Metrics
 - Model Specific Metrics
- Classification Tasks
- Conclusions and Future Work

- Heart Diseases in Children
- Objectives
- State of the Art
- Methodology
 - Dataset
 - Feature Importance
 - Model Independent Metrics
 - Model Specific Metrics
- Classification Tasks
- Conclusions and Future Work

Heart Diseases in Children

Sources:

1) European Society of Cardiology – June 2013

 ${\it 2)} Api farma, Portuguese Association of the Pharmaceutical Industry - {\it June 2013}$

3) Revista Brasileira de Cirurgia Cardiovascular – June 2013

4) Lucile Packard Children's Hospital at Stanford– June 2013

• 6 million

 children worldwide suffer from heart disease ¹

500

 cardiac surgeries in children per year in **Portugal**²

• 8-10 out of 1000

 babies are born with a congenital heart disease in **Portugal**, **Brazil** and **USA**^{2,3,4}

- Heart Diseases in Children
- Objectives
- State of the Art
- Methodology
 - Dataset
 - Feature Importance
 - Model Independent Metrics
 - Model Specific Metrics
- Classification Tasks
- Conclusions and Future Work

Objectives

- Study relations between demographic and physiological features in the occurrence of a pathological/nonpathological heart condition in children
- Build classifiers that, in a automatic way, distinguish between normal and pathological cases

- Heart Diseases in Children
- Objectives
- State of the Art
- Methodology
 - Dataset
 - Feature Importance
 - Model Independent Metrics
 - Model Specific Metrics
- Classification Tasks
- Conclusions and Future Work

State of the Art

UCIRVINE

- Cleveland database
- Goal: distinguish
 presence/absence of a cardiac disease
 - Presence {1,2,3,4}
 - Absence {0}

State of the Art

- [1] D. Aha and D. Kibler, "Instance-based prediction of heart-disease presence with the Cleveland database", tech. rep., University of California, Mar. 1988.
 - Accuracy: 75.7%
- [2] S. M. Kamruzzaman, A. R. Hasan, A. B. Siddiquee, and M. E. H. Mazumder, "**Medical diagnosis using neural network**", in 3rd International Conference on Electrical & Computer Engineering (ICECE), pp. 28–30, Dec. 2004.
 - Accuracy: 87.5%
- [3] B. O'Hora, J. Perera, and A. Brabazon, "Designing radial basis function networks for classification using differential evolution", inProc. International Joint Conference on Neural Networks (IJCNN), pp. 2932 –2937, 2006.
 - Accuracy: 84%

State of the Art

- [4] J. Wu, J. Roy, and W. F. Stewart, **"Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches"**, Medical Care, vol. 48, pp. 106–113, Jun. 2010.
 - <u>Result</u>: detection of heart failure more than 6 months before the actual date of clinical diagnosis

• AUC: 0.77

- Heart Diseases in Children
- Objectives
- State of the Art
- Methodology
 - Dataset
 - Feature Importance
 - Model Independent Metrics
 - Model Specific Metrics
- Classification Tasks
- Conclusions and Future Work

Methodology

Dataset

- Recife, Pernambuco Brazil
- Collected between October
 2003 to September 2009
- [2-19] year old children
 - Average age: 8.60

Methodology

* patient ID, name of the physician, health insurance information, etc.

Methodology

Attribute

Height (cm) Weight (kg) Sex Age Range Body Mass Index Percentile Systolic Blood Pressure (SBP) Diastolic Blood Pressure (DBP) Result-SBP-DBP Murmur Second Heart Sound (S2) Pulses Heart Rate (bpm)

Current Disease History 1 (CDH 1)

Current Disease History 2 (CDH 2)

Primary Reason

Secondary Reason

Pathology (class)

17 attributes

Note:

Some of the attributes are in fact **annotations provided by a cardiologist**, not features extracted from the raw sound data itself

- Heart Diseases in Children
- Objectives
- State of the Art
- Methodology
 - Dataset
 - Feature Importance
 - Model Independent Metrics
 - Model Specific Metrics
- Classification Tasks
- Conclusions and Future Work

• The **mutual information** tells how the knowledge of a variable *Y* **reduces the uncertainty** about a variable *X*:

$$I(X;Y) = H(X) - H(X|Y)$$

• We use a **normalized version** (bounded between 0 and 1):

 $I_{\text{norm}}(X;Y) = I(X;Y)/H(X) = 1 - H(X|Y)/H(X)$

 The chi-squared test is used to test two different hypothesis:

• The variables are dependent;

• The variables are independent.

- We calculate the variable importance as measured by a random forest classifier
- Variable importance is related to the degree of **node purity**
- Mean Decrease Gini: related to the Gini Index which shows how **unequal** is the **frequency of occurences** in a distribution

• In a **logistic regression**, we can think of the **class variable** *x* as having a **Bernoulli distribution** with parameter *p* given by:

$$p = P(x = 1 | \boldsymbol{\Theta}^T \mathbf{y}) = h\left(\boldsymbol{\Theta}^T \mathbf{y}\right)$$

- **y** is the feature vector and $\boldsymbol{\Theta}$ are the regression coefficient vector
- Categorical features are converted into binary features
 - E.g. Murmur ∈ {Absent, Systolic, Diastolic, Continuous}

Murmur_Absent ∈ {0,1} Murmur_Systolic ∈ {0,1} Murmur_Diastolic ∈ {0,1} Murmur_Continuous ∈ {0,1}

• <u>Odds Ratio</u>: how an **increase (presence)** of a numerical (categorical) **feature influence** the **probability of ocurrence** of the **class** variable

- Murmur_Systolic: 320
- S2_Hyperphonetic: 6

- Heart Diseases in Children
- Objectives
- State of the Art
- Methodology
 - Dataset
 - Feature Importance
 - Model Independent Metrics
 - Model Specific Metrics
- Classification Tasks
- Conclusions and Future Work

Classification Procedure

Nested Cross-Validation

Classification - Algorithms

- ZeroR (baseline classifier)
- OneR
- DTNB
- PART •

- NaiveBayes BayesNet (TAN)

bayes

rules

• SMO functions

- J48
- DecisionStump
- RandomForest
- SimpleCart
- **NBTree**
- AdaBoostM1
- Bagging
- Dagging
- Grading
- Stacking
- Vote

trees

meta-learning

Classification Procedure

Nested Cross-Validation

Classification - Results

	Metrics	Nested c.v.	internal test	
7199	CCI (%)	93.31	93.32	est algorithm in all
	Sensitivity	0.85	0.85	olds: NaiveBayes
	Specificity	0.98	0.98	
	AUC	0.93	0.93	
	Metrics	Nested c.v.	internal test	
	CCI (%)	91.56	90.53	
169 ^[5]	CCI (%) Sensitivity	91.56 0.72	90.53 0.70	
169 ^[5]	CCI (%) Sensitivity Specificity	91.56 0.72 0.98	90.53 0.70 0.97	

Classification Procedure

Nested Cross-Validation

Classification - Results 169^[5] Best algorithm in all **NaiveBayes** folds: NaiveBayes model applied **Metrics** Nested internal external test (169) test **C.V.** CCI (%) 91.12 93.31 93.32 7199 Sensitivity 0.85 0.85 0.73 Specificity 0.98 0.98 0.97

36

• [5] P. Ferreira et al., "**Detecting cardiac pathologies from annotated auscultations**", in Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012.

0.93

0.93

0.85

AUC

- Heart Diseases in Children
- Objectives
- State of the Art
- Methodology
 - Dataset
 - Feature Importance
 - Model Independent Metrics
 - Model Specific Metrics
- Classification Tasks
- Conclusions and Future Work

Conclusions and Future Work

a) It is **crucial** to have accurate **information on murmur presence**, according to the feature importance metrics

b) Nested Cross-Validation produced a model that can achieve a performance of 91.1%, sensitivity of 0.73 and specificity of 0.97 on predicting cardiac pathologies on an external dataset

Conclusions and Future Work

- a) **Build** classifiers when **murmur = absent**
- b) Try to correctly **distinguish innocent murmurs from pathological** ones
 - i. Detailed murmur description
- c) Incorporate models in the DigiScope Prototype, for cardiac pathology assessment

Thank you!

pedroferreira@dcc.fc.up.pt

www.dcc.fc.up.pt/~pedroferreira

Appendices

Methodology

Dataset

Attribute	Value
Height (cm)	Numeric
Weight (kg)	Numeric
Sex	{Female, Male}
Age Range	{Pre-School, School, Pre-Teen, Teenager}
Body Mass Index Percentile	{Low Weight, Normal, Overweight, Obese}
Systolic Blood Pressure (SBP)	{Normal, Limit, Hypertense}
Diastolic Blood Pressure (DBP)	{Normal, Limit, Hypertense}
Result-SBP-DBP	{Normal, Limit, Hypertense}
Murmur	{Absent, Systolic, Diastolic, Continuous}
Second Heart Sound (S2)	{Normal, Fixed Split, Unique, Hyperphonetic}
Pulses	{Normal, Diminished Femoral}
Heart Rate (bpm)	Numeric
Current Disease History 1 (CDH 1)	{Asymptomatic, Cyanosis, Precordial pain, Dyspnea, Palpitation, Faint/Dizziness, Weight Gain}
Current Disease History 2 (CDH 2)	{Cyanosis, Precordial pain, Dyspnea, Palpitation, Faint/Dizziness, Weight Gain}
Primary Reason	{Cardiopathy, Routine check-up, Cardiology Screening, Possible Cardiopathy, Others}
Secondary Reason	{Physical Activity, Congenital Cardiopathy, Surgery, Risk factors, Presence of Murmurs, Others}
Pathology (class)	{Yes, No}

Classification

43

10 x 10 fold stratified cross-validation

Classification - Metrics

CCI	
K	
MAE	
Sensitivity	
Specificity	
Precision	
F-Measure	
AUC	