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DigiScope Project

Help General
Practitioners (GPs) in their
daily medical routine

Capable of automatically
extract clinical features
from collected data

May provide clinical second
opinion on specific heart
pathologies
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DigiScope

Heart Diseases in Children

6 million

500

8-10 out of 1000

Sources:

1) European Society of Cardiology — June 2013

2) Apifarma, Portuguese Association of the Pharmaceutical Industry — June 2013
3) Revista Brasileira de Cirurgia Cardiovascular— June 2013

4) Lucile Packard Children’s Hospital at Stanford— June 2013
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Objectives

Study relations between demographic and physiological
features in the occurrence of a pathological/non-
pathological heart condition in children

Build classifiers that, in a automatic way, distinguish
between normal and pathological cases
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vigiocope

Cleveland database

Goal: distinguish
presence/absence of a

cardiac disease
UCIRVINE

= Presence {1,2,3,4}

= Absence {0}



[1] D. Aha and D. Kibler, “Instance-based prediction of heart-disease presence with the
Cleveland database”, tech. rep., University of California, Mar. 1988.

= Accuracy: 75.7%

[2] S. M. Kamruzzaman, A. R. Hasan, A. B. Siddiquee, and M. E. H. Mazumder, “Medical
diagnosis using neural network”, in 3rd International Conference on Electrical & Computer
Engineering (ICECE), pp. 28—30, Dec. 2004.

= Accuracy: 87.5%

[3] B. O’Hora, J. Perera, and A. Brabazon, “Designing radial basis function networks for
classification using differential evolution”, inProc. International Joint Conference on
Neural Networks (IJCNN), pp. 2932 —2937, 2006.

s Accuracy: 84%
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State of the Art

[4]J. Wu, J. Roy, and W. F. Stewart, “Prediction modeling using EHR data: Challenges,
strategies, and a comparison of machine learning approaches”, Medical Care, vol. 48,
pp- 106—113, Jun. 2010.

Result: detection of
heart failure more than 6
months before the actual
date of clinical diagnosis

= AUC: 0.77
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Dataset

Recife, Pernambuco — Brazil

Collected between October
2003 to September 2009

[2-19] year old children
Average age: 8.60
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Methodology

17k Dataset

15t phase tasks

data cleaning

76() 3 data transformation
data normalization
2md phase
2507 (34.8%)
7199 instances | pathological (+)
404 instances removed 4692 (65.2%)

from phase 1 to phase 2 normal (-)
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Methodology

7199 iIlStaIlceS Dataset
mprocessing
tasks
h 4
~
. removal of .
33 attributes | irrelevant > 17 attributes
features*® )

* patient ID, name of the physician, health insurance information, etc.



e il |
O

vigiotopc

Methodology

Attribute
Height (cm) Dataset

Weight (kg)

Sex

Age Range

Body Mass Index Percentile

Systolic Blood Pressure (SBP) 1 7 attrib ute S
Diastolic Blood Pressure (DBP)

Result-SBP-DBP

Murmur
Second Heart Sound (S2)
Pulses
Note:
Heart Rate (bpm)
Current Disease History 1 (CDH 1) Some of the attributes are in fact

Sy A ) annotations provided by a cardiologist,

not features extracted from the raw sound

Secondary Reason data itself
Pathology (class)

Primary Reason
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Mutual

Bl mformation |

Independent
Metrics

[ A Chi-Squared Tests

Feature “ ’

Importance J

Mean
Model ——— Decrease Gini

Specific Random Forest
Metrics |

\,

Odds Ratio
Logistic Regression
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Methodology

Feature
Importance
Model
Independent
Metrics

The mutual information tells how the knowledge of a variable Y
reduces the uncertainty about a variable X:

[(X:Y) = H(X)— HX|Y)

We use a normalized version (bounded between 0 and 1):

Lom(X:Y) = I(X;Y)/H(X) = 1 — H(X|Y)/H(X)



Methodology

Feature
Importance
Model
Independent

Metrics

All 7199 cases
Feature Score
Murmur C0.61)
Secondary Reason 0.10
Weight 0.09
Primary Reason 0.05
HR 0.05

Results

MRS

FT!H(‘I:‘%])‘SE‘IIt Score

e

V&lsent _ Fm (£~0/)\
1%ontim"“" _ 404 (.8.1%)
tolic— 6 ( Ipathologlcal (+)

VRV |

Ir ,!l Ir

) Xﬁ%l. 2’@ 4596 (91.9%)

normal (-)
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The chi-squared test is used to test two different
hypothesis:
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Feature
Importance
Model
Independent
Metrics : :
Results
5000 cases where

All 7199 cases Murmur = “Absent”
Feature Score Feature Score
Murmur, {(5160.5D Weight 577.86
Weight 730.00 D) 255.56
Secondary Reason | 702.92 HR 149.01
Primary Reason 501.63 Height 125.22
HR 445.33 Secondary Reason | 62.89
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- Importance )
Mean
Model — Decrease Gini
Specific Random Forest

Metrics

Odds Ratio

Logistic Regression
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Feature
Importance
Model Mean
L Specific Decrease Gini
Metrics ] Random Forest

We calculate the variable importance as measured by a random
forest classifier

Variable importance is related to the degree of node purity

Mean Decrease Gini: related to the Gini Index which shows how
unequal is the frequency of occurences in a distribution
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Feature gy
Importance
Model Mean
Specific ‘ Decrease Gini
Metrics Random Forest
Results
5000 cases where
[ All 7199 cases ] Murmur = “Absent”
Feature Mean Decrease Gini Feature Mean Decrease Gini
@ 1975.98 Weight 131.59
Secondary Reason 216.44 Height 119.36
Weight 189.82 HR 84.64
Height 172.65 CDH 1 48.05
HR 149.61 Secondary Reason 46.45
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Moc'!el Odds Ratio
Specific —- Logistic Regression
Metrics 8l 8 y

In a logistic regression, we can think of the class variable x as having a
Bernoulli distribution with parameter p given by:

p=Plr=10"y) =1 (67y)

y is the feature vector and @ are the regression coefficient vector

Categorical features are converted into binary features
E.g. Murmur € {Absent, Systolic, Diastolic, Continuous}

!

Murmur_Absent € {0,1}
Murmur_ Systolic € {0,1}
Murmur_ Diastolic € {0,1}
Murmur_ Continuous € {0,1}
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Importance
Moc'!el Odds Ratio
Specific —~ Logistic Regression
Metrics 8t 8 ’

Results

Odds Ratio: how an increase (presence) of a numerical
(categorical) feature influence the probability of ocurrence of the
class variable

pathology

Murmur_Systolic: 320

S2 Hyperphonetic: 6
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Classification Procedure

Nested Cross-Validation
Training set:

7190 cases 7199

External Test set: (9:1)
169 cases
(from previous work [5]) 6479 720
10 X C. V. internal test

[5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in
Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012.
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Classification - Algorithms

Z.eroR (baseline classifier) J 48 ;’L*” :
OneR L Ules DecisionStump
DTNB RandomForest  trees
PART | SimpleCart
NBTree
NaiveBayes AdaBoostM1
BayesNet (TAN) } bayes Bagging
Dagging ~ meta-learning
Grading
SMO } functions Stacking
Vote ,
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Classification Procedure

Nested Cross-Validation
Training set:

7190 cases 7199

(9:1)

—

6479 720

10 X C. V. internal test
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Classification - Results

CCI (%) 93.31 93.32

71 9 9 Sensitivity 0.85 0.85
Specificity 0.98 0.98

AUC 0.93 0.93

CCI (%) 01.56 90.53

[5] cre s

169 Sensitivity 0.72 0.70

Specificity 0.98 0.97

AUC 0.85 0.83

[5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in
Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012.
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Classification Procedure

Nested Cross-Validation
Training set:

7190 cases 7199

External Test set: (9:1)
169 cases
(from previous work [5]) 6479 720
10 X C. V. internal test

[5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in
Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012.
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Classification - Results

q169[5]

\ J Lo

CCI (%) 93.31 93.32 91.12
Sensitivity 0.85 0.85 0.73
Specificity 0.98 0.98 0.97

AUC 0.93 0.93 0.85

[5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in
Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012.
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Conclusions

It is crucial to have accurate information on murmur presence,
according to the feature importance metrics

Nested Cross-Validation produced a model that can achieve a
performance of 91.1%, sensitivity of 0.73 and specificity of
0.97 on predicting cardiac pathologies on an external dataset
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Future Work

Build classifiers when murmur = absent

Try to correctly distinguish innocent murmurs from
pathological ones

Incorporate models in the DigiScope Prototype, for cardiac
pathology assessment



Thank you!

pedroferreira@dcc.fc.up.pt

www.dcce.fc.up.pt/~pedroferreira
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Attribute

Height (cm)

Weight (kg)

Sex

Age Range

Body Mass Index Percentile
Systolic Blood Pressure (SBP)
Diastolic Blood Pressure (DBP)
Result-SBP-DBP

Murmur

Second Heart Sound (S2)
Pulses

Heart Rate (bpm)

Current Disease History 1 (CDH 1)

Current Disease History 2 (CDH 2)

Primary Reason
Secondary Reason

Pathology (class)

Methodology D

Value

Numeric

Numeric

{Female, Male}

{Pre-School, School, Pre-Teen, Teenager}
{Low Weight, Normal, Overweight, Obese}
{Normal, Limit, Hypertense}

{Normal, Limit, Hypertense}

{Normal, Limit, Hypertense}

{Absent, Systolic, Diastolic, Continuous}
{Normal, Fixed Split, Unique, Hyperphonetic}
{Normal, Diminished Femoral}

Numeric

{Asymptomatic, Cyanosis, Precordial pain, Dyspnea, Palpitation, Faint/Dizziness,
Weight Gain}

{Cyanosis, Precordial pain, Dyspnea, Palpitation, Faint/Dizziness, Weight Gain}

{Cardiopathy, Routine check-up, Cardiology Screening, Possible Cardiopathy,
Others}

{Physical Activity, Congenital Cardiopathy, Surgery, Risk factors, Presence of
Murmurs, Others}

{Yes, No}
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Classification

10 x 10 fold stratified cross-validation

Iteration

1

2

3

(...) (... Training
Test
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Classification - Metrics

CCI

K

MAE
Sensitivity
Specificity
Precision

F-Measure
AUC




