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DigiScope Project 
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• Help General 
Practitioners (GPs) in their 
daily medical routine  

 

• Capable of automatically 
extract clinical features 
from collected data 

 

• May provide clinical second 
opinion on specific heart 
pathologies 

 

 

 



DigiScope Project 
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Heart Diseases in Children 
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• 6 million 

▫ children worldwide suffer from 
heart disease 1 

 

• 500 
▫ cardiac surgeries in children per year 

in Portugal 2 

 

• 8-10 out of 1000 
▫ babies are born with a congenital 

heart disease in Portugal, Brazil 

and USA 2,3,4 
 

 

 

 

Sources: 

1) European Society of Cardiology – June 2013 

2) Apifarma, Portuguese Association of the Pharmaceutical Industry – June 2013 

3) Revista Brasileira de Cirurgia Cardiovascular– June 2013 

4) Lucile Packard Children’s Hospital at Stanford– June 2013 
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Objectives 

• Study relations between demographic and physiological 
features in the occurrence of a pathological/non-
pathological heart condition in children  

 

• Build classifiers that, in a automatic way, distinguish 
between normal and pathological cases 
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State of the Art 
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• Cleveland database 

 

• Goal: distinguish 
presence/absence of a 
cardiac disease 

▫ Presence {1,2,3,4} 

▫ Absence {0} 

 



State of the Art 

• [1] D. Aha and D. Kibler, “Instance-based prediction of heart-disease presence with the 
Cleveland database”, tech. rep., University of California, Mar. 1988. 

▫ Accuracy: 75.7% 

 

• [2] S. M. Kamruzzaman, A. R. Hasan, A. B. Siddiquee, and M. E. H. Mazumder, “Medical 
diagnosis using neural network”, in 3rd International Conference on Electrical & Computer 
Engineering (ICECE), pp. 28–30, Dec. 2004. 

▫ Accuracy: 87.5% 

 

• [3] B. O’Hora, J. Perera, and A. Brabazon, “Designing radial basis function networks for 
classification using differential evolution”, inProc. International Joint Conference on 
Neural Networks (IJCNN), pp. 2932 –2937, 2006. 

▫ Accuracy: 84% 
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• [4] J. Wu, J. Roy, and W. F. Stewart, “Prediction modeling using EHR data: Challenges, 
strategies, and a comparison of machine learning approaches”, Medical Care, vol. 48, 
pp. 106–113, Jun. 2010. 
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State of the Art 

• Result: detection of 

heart failure more than 6 
months before the actual 
date of clinical diagnosis 

▫ AUC: 0.77 
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Methodology 

 
• Recife, Pernambuco – Brazil 

 

• Collected between October 
2003 to September 2009 

 

• [2-19] year old children 
• Average age: 8.60 

Dataset 



17k  

 

 

 

 

 
  

  

7199 instances 
 

15 

data cleaning 

data transformation 

data normalization 

404 instances removed  
from phase 1 to phase 2 

Methodology 

Preprocessing 
tasks 

7603 
 

 

 

 

   

  

1st phase 

2nd phase 

Dataset 

2507 (34.8%) 

pathological (+) 

4692 (65.2%)  

normal (-) 



7199 instances 
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33 attributes  

 

 

   

  

17 attributes  
 

 

 

   

  

removal of 
irrelevant 
features* 

Methodology 

Preprocessing 
tasks 

Dataset 

 

 

* patient ID, name of the physician, health insurance information, etc. 
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17 attributes  
 

 

 

   

  

Attribute 
Height (cm) 

Weight (kg) 

Sex 

Age Range 

Body Mass Index Percentile 

Systolic Blood Pressure (SBP) 

Diastolic Blood Pressure (DBP) 

Result-SBP-DBP 

Murmur 

Second Heart Sound (S2) 

Pulses 

Heart Rate (bpm) 

Current Disease History 1 (CDH 1) 

Current Disease History 2 (CDH 2) 

Primary Reason 

Secondary Reason 

Pathology (class) 

Note:  

Some of the attributes  are in fact 
annotations provided by a cardiologist, 
not features extracted from the raw sound 
data itself 

Methodology 

Dataset 
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Methodology 
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Feature 
Importance 

Model  
Independent  

Metrics 

Chi-Squared Tests 

Mutual 
Information 

Mean  
Decrease Gini  

Random Forest 

Odds Ratio  
Logistic Regression 

Model  
Specific  
Metrics 



Methodology 
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Model  
Independent  

Metrics 

Methodology 

 

 
 

• The mutual information tells how the knowledge of a variable Y 
reduces the uncertainty about a variable X: 

 
 

 

 

• We use a normalized version (bounded between 0 and 1): 
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Feature 
Importance 

Mutual 
Information 



Model  
Independent  

Metrics 

Methodology 
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Feature 
Importance 

All 7199 cases 

5000 cases where 
Murmur = “Absent” 

Results 

Mutual 
Information 

Murmur 
 

Absent – 5000 (69%) 

Continuous – 7 (0%) 

Diastolic – 6 (0%) 

Systolic – 2186 (30%) 

5000  
 

404 (8.1%) 

pathological (+) 

4596 (91.9%)  

normal (-) 

Murmur 

Absent 

 



Model  
Independent  

Metrics 

Methodology 

 

 
 

 

• The chi-squared test is used to test two different 
hypothesis: 
 

▫ The variables are dependent; 

 

▫ The variables are independent.  
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Feature 
Importance 

Chi-Squared Tests 
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Feature 
Importance 

All 7199 cases 

5000 cases where 
Murmur = “Absent” 

Results 

Chi-Squared Tests 



Methodology 
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Feature 
Importance 

 

 
 

 

• We calculate the variable importance as measured by a random 
forest classifier 

 

• Variable importance is related to the degree of node purity 

 

• Mean Decrease Gini: related to the Gini Index which shows how 
unequal is the frequency of occurences in a distribution 
 

 

Mean  
Decrease Gini  

Random Forest 



Model  
Specific  
Metrics 

Methodology 
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Feature 
Importance 

All 7199 cases 

5000 cases where 
Murmur = “Absent” 

Results 

Mean  
Decrease Gini  

Random Forest 
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Metrics 

Methodology 
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Feature 
Importance 

 

 
 

• In a logistic regression, we can think of the class variable x as having a 
Bernoulli distribution with parameter p given by: 
 

 

 

• y is the feature vector and Θ are the regression coefficient vector 

• Categorical features are converted into binary features 

▫ E.g. Murmur ∈ {Absent, Systolic, Diastolic, Continuous} 

 

 

    Murmur_Absent ∈ {0,1} 

    Murmur_Systolic ∈ {0,1} 

    Murmur_Diastolic ∈ {0,1} 

    Murmur_Continuous ∈ {0,1} 

 

Odds Ratio  
Logistic Regression 



Model  
Specific  
Metrics 

Methodology 
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Feature 
Importance 

 
• Odds Ratio: how an increase (presence) of a numerical 

(categorical) feature influence the probability of ocurrence of the 
class variable 
 

 

 

▫ Murmur_Systolic: 320 

▫ S2_Hyperphonetic: 6 

pathology 

Results 

Odds Ratio  
Logistic Regression 
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Classification Procedure 

 

• Training set:  

          7199 cases 

 

• External Test set:  

            169 cases 

                  (from previous work [5]) 

• Nested Cross-Validation 
 

7199 

 

(9:1) 

6479        720  

 
 

   10 x c. v.          internal test 

  

 

31 

• [5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in 

Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012. 

 



• ZeroR (baseline classifier) 

• OneR 

• DTNB 

• PART 

 

 

• NaiveBayes 

• BayesNet (TAN) 

 

 

• SMO 

 

 

 

• J48 

• DecisionStump 

• RandomForest 

• SimpleCart 

• NBTree 

 

• AdaBoostM1 

• Bagging 

• Dagging 

• Grading 

• Stacking 

• Vote 

32 

rules 
trees 

bayes 

functions 

meta-learning 

Classification – Algorithms 



Classification Procedure 

 

• Training set:  

          7199 cases 

 

• External Test set:  

            169 cases 

                  (from previous work [5]) 

• Nested Cross-Validation 
 

7199 

 

(9:1) 

6479        720  

 
 

   10 x c. v.          internal test 
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• [5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in 

Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012. 

 



Classification – Results 

Metrics Nested c.v. internal test 

CCI (%) 93.31 93.32 

Sensitivity 0.85 0.85  

Specificity 0.98 0.98 

AUC 0.93 0.93 
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Metrics Nested c.v. internal test 

CCI (%) 91.56  90.53 

Sensitivity 0.72  0.70  

Specificity 0.98 0.97 

AUC 0.85 0.83 

7199 

169
[5] 

• [5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in 

Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012. 

 

Best algorithm in all 
folds: NaiveBayes 
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• [5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in 

Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012. 
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Metrics 

 
Nested 

c.v. 

 
internal 

test 

 
external 

test (169) 

CCI (%) 93.31 93.32 91.12 

Sensitivity 0.85 0.85  0.73 

Specificity 0.98 0.98 0.97 

AUC 0.93 0.93 0.85 

Classification – Results 

NaiveBayes  
model applied 

Best algorithm in all 
folds: NaiveBayes 

7199 

169
[5] 

• [5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in 

Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012. 
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Conclusions and Future Work 
 

 

 

a) It is crucial to have accurate information on murmur presence, 
according to the feature importance metrics 

 

 

b) Nested Cross-Validation produced a model that can achieve a 
performance of 91.1%, sensitivity 0f 0.73 and specificity 0f 
0.97 on predicting cardiac pathologies on an external dataset 
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Conclusions and Future Work 
 

 

a) Build classifiers when murmur = absent  
 

 

b) Try to correctly distinguish innocent murmurs from 
pathological ones 

i. Detailed murmur description 
 

 

c) Incorporate models in the DigiScope Prototype, for cardiac 
pathology assessment 
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Thank you! 

 

 

www.dcc.fc.up.pt/~pedroferreira 

 

pedroferreira@dcc.fc.up.pt 
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Methodology Dataset 

Attribute Value 
Height (cm) Numeric 

Weight (kg) Numeric 

Sex {Female, Male} 

Age Range {Pre-School, School, Pre-Teen, Teenager} 

Body Mass Index Percentile {Low Weight, Normal, Overweight, Obese} 

Systolic Blood Pressure (SBP) {Normal, Limit, Hypertense} 

Diastolic Blood Pressure (DBP) {Normal, Limit, Hypertense} 

Result-SBP-DBP {Normal, Limit, Hypertense} 

Murmur {Absent, Systolic, Diastolic, Continuous} 

Second Heart Sound (S2) {Normal, Fixed Split, Unique, Hyperphonetic} 

Pulses {Normal, Diminished Femoral} 

Heart Rate (bpm) Numeric 

Current Disease History 1 (CDH 1) {Asymptomatic, Cyanosis, Precordial pain, Dyspnea, Palpitation, Faint/Dizziness, 
Weight Gain} 

Current Disease History 2 (CDH 2) {Cyanosis, Precordial pain, Dyspnea, Palpitation, Faint/Dizziness, Weight Gain} 

Primary Reason {Cardiopathy, Routine check-up, Cardiology Screening, Possible Cardiopathy, 
Others} 

Secondary Reason {Physical Activity, Congenital Cardiopathy, Surgery, Risk factors, Presence of 
Murmurs, Others} 

Pathology (class) {Yes, No} 



10 x 10 fold stratified cross-validation 
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Training 
 

Test 

Iteration 

1 

2 

3 

4 

5 

(…) (…) 

Classification 
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CCI 

K 

MAE 

Sensitivity 

Specificity 

Precision 

F-Measure 

AUC 

Classification – Metrics 


