Studying the relevance of Breast Imaging Features

HEALTHINF 2011 – January 28th – Rome, Italy

Pedro Miguel Ferreira

Inês Dutra Nuno A. Fonseca Ryan Woods Elizabeth Burnside

Outline

- Breast Cancer
- Objectives
- Data
- Methodology
- Results and Analysis
- Conclusions and Future Work

Outline

Breast Cancer

- Objectives
- Data
- Methodology
- Results and Analysis
- Conclusions and Future Work

Breast Cancer

- USA:
 - 1/8 women develops breast cancer
 - In 2006:
 - 191.410 with cancer
 - 40.820 (≈ 21%) died

Source: U. S. Cancer Statistics Working Group - October 2010

- Portugal:
 - Per year:
 - 4500 new cases
 - 1500 deaths (33%)

Source: *Liga Portuguesa Contra o Cancro* - October 2010

Breast Screening Programs

• Reduction of death rate in 30%

• Mammography:

The cheapest and most eficient method to detect cancer in a preclinical stage

Mammography

6

Shape

Oval

Round Lobular

Irregular

Margins

Obscured Indistinct

Spiculated

Density

Fat-containing Low Equal ("Iso")

High

Outline

- Breast Cancer
- Objectives
- Data
- Methodology
- Results and Analysis
- Conclusions and Future Work

Objectives

- Study the influence of **mass density** when predicting malignancy
- Find relations among features
 - Machine Learning techniques
- "Learn" models capable of helping physicians in the analysis of thousands of mammographies

Objectives

 Try to build classifiers capable of predicting mass density and malignancy

• Reduce the number of unnecessary biopsies

Outline

- Breast Cancer
- Objectives
- Data
- Methodology
- Results and Analysis
- Conclusions and Future Work

Data

- Provided by:
 - Dr. Ryan Woods
 - Dra. Elizabeth Burnside

- 348 cases
- Each case refers to a breast nodule **retrospectively** classified according the BI-RADS[®] system
- From mammographies results
- Collected between October 2005 and December 2007

Masses classification

(**prospectively** classified)

Masses classification

Prospective

Retrospective

- Classification of feature mass density for 180 cases just by one radiologist:
 - low density;
 - iso-dense;
 - high density;
- **Brief** and superficial medical **report** (at the time of imaging);
- Classification under stress.

- **Classification** by a **group of experienced physicians** in a periodic meeting in which they **re-assess** all **exams**;
- Review of mass density classification made by radiologist (prospective study);
- Classification without stress;
- **Reference standard** for **mass density**.

Outline

- Breast Cancer
- Objectives
- Data
- Methodology
- Results and Analysis
- Conclusions and Future Work

Methodology

• Paired Corrected T-Tester

10-fold stratified

cross-validation

Significance level: 0.01

Results and Analysis

• Q_1 – Is mass density predictive of malignancy?

Prediction of malignancy with and without mass density

180

16

 Q₂ – Can we obtain classifiers that predict mass density as well as a radiologist?

Prediction of mass density

180

- $\mathbf{Q_3}$ – Can the generated classifiers behave well on unseen data?

Prediction of mass density Prediction of malignancy with and without mass density

Results and Analysis

• Q_1 – Is mass density predictive of malignancy?

Prediction of malignancy with and without mass density

180

• Q₂ – Can we obtain classifiers that predict mass density as well as a radiologist?

Prediction of mass density

180

168

Q₃ – Can the generated classifiers behave well on unseen data?

Prediction of mass density Prediction of malignancy with and without mass density

Q₁ - Predicting malignancy with *retro_density* (E₁)

					19
	400				
SVIVI S	180	with mass density E ₃			P
	Metric	E1 Retrospective (retro_density)	E ₂ Prospective (density_num)	without mass density	INESCPORTO LA
C	Corrected Classified Instances	84.78% (+/- 7.96)	82.72% (+/- 8.32)	81.39% (+/- 8.81)	су?
	Kappa Statistic	0.68 (+/- 0.17)	0.63 (+/- 0.17)	0.60 (+/- 0.18)]
	F-Measure	0.80 (+/- 0.11)	0.77 (+/- 0.11)	0.75 (+/- 0.12)]

- **Mass density** has some **influence** when predicting **malignancy**, especially if we use density from the retrospective study (*E*₁)
- $(E_1) \rightarrow retro_density \rightarrow CCI = 84.78\%$ (+/-7.96) K = 0.68 (+/-0.17)
- (E_3) -> without density -> CCI = 81.39% (+/- 8.81) K = 0.60 (+/- 0.18)

Results and Analysis

- **Q**₁ Is mass density predictive of malignancy? Prediction of malignancy with and without mass density
- Q₂ Can we obtain classifiers that predict mass density as well as a radiologist?

Prediction of mass density

180

168

180

Q₃ – Can the generated classifiers behave well on unseen data?

Prediction of mass density Prediction of malignancy with and without mass density

Q2 - Can we obtain classifiers that predict mass density as well as a radiologist?

- 70% of masses classified by the radiologist in the prospective study (180 findings) agreed to the classified masses in the retrospective study
 - Radiologist's accuracy: 70%

naïve Baue	25	
	180	Prediction of mass density
	Metric	E ₄ retro_density
	Corrected Classified Instances	72.83% (+/- 9.89)
Γ	Kappa Statistic	0.37 (+/- 0.23)
	F-Measure	0.56 (+/- 0.18)

Results and Analysis

- Q₁ Is mass density predictive of malignancy?
 Prediction of malignancy with and without mass density
 180
- Q₂ Can we obtain classifiers that predict mass density as well as a radiologist?

Prediction of mass density

180

- $\mathbf{Q_3}$ – Can the generated classifiers behave well on unseen data?

Prediction of mass density Prediction of malignancy with and without mass density

naïve Baye	2.5	
	168	Prediction of mass density
	Metric	E ₆ retro_density
	Corrected Classified Instances	82.14%
	Kappa Statistic	0.45
	F-Measure	0.56

Classifier based on *naïve Bayes* algorithm

Summary (Predicting density - class *high*)

24

Precision-Recall Curves

naïve Bayes predicting retro_density (class high)

Summary (Predicting density - class *iso*)

Precision-Recall Curves

\mathbf{Q}_3 - Can the generated classifiers behave well on unseen data?

169	Prediction of malignancy			
100	with mass density		E ₁₁	
Metric	Es Retrospective (real values)	E ₉ Retrospective (predicted values by classifier <i>naïve Bayes</i>)	without mass density	
Corrected Classified Instances	81.55%	79.76%	77.38%	
Kappa Statistic	0.52	0.48	0.42	
F-Measure	0.64	0.62	0.57	

Classifiers based on SVM's

Conclusions and Future Work

- a) Automatic classification of a mammography can achieve results as good as specialists;
- b) Mass density seems to be a good evidence of malignancy;
- c) Using machine learning classifiers to predict mass density can reach equal or better results than the ones obtained by radiologists.

Conclusions and Future Work

- a) Extend this work to larger and geographically distinct datasets ;
- b) Apply other machine learning techniques based on statistical relational learning;
- c) Investigate how other features can affect malignancy or are related to the other attributes;
- d) Incorporate the generated models into a mammography classification system.

Thank you!

Pedro Miguel Ferreira

pedroferreira@dcc.fc.up.pt

http://cracs.fc.up.pt

Methodology

10-fold stratified cross-validation

Data distribution

32

• 348

348	retro_density		
outcome_num	high	iso	Total
malignant	59 (70.2%)	59 (22.3%)	118 (33.9%)
benign	25 (29.8%)	205 (77.7%)	230 (66.1%)
Total	84 (24.1%)	264 (75.9%)	

Data distribution

• 180

180	retro_density		
outcome_num	high	iso	Total
malignant	42 (75.0%)	29 (23.4%)	71 (39.4%)
benign	14 (25.0%)	95 (76.6%)	109 (60.6%)
Total	56 (31.1%)	124 (68.9%)	

180	density_num		
outcome_num	high	iso	Total
malignant	51 (63.0%)	20 (20.2%)	71 (39.4%)
benign	30 (37.0%)	79 (79.8%)	109 (60.6%)
Total	81 (45.0%)	99 (55.0%)	

Data distribution

• 168

168	retro_density		
outcome_num	high	iso	Total
malignant	17 (60.7%)	30 (21.4%)	47 (28.0%)
benign	11 (39.3%)	110 (78.6%)	121 (72.0%)
Total	28 (16.7%)	140 (83.3%)	

ROC CURVES (Predicting density - class *high*)

ROC Curves

ROC CURVES (Predicting density - class *iso*)

ROC Curves

