ExpertBayes: Automatically Refining Manually Built Bayesian Networks

ICMLA 2014– December 4th 2014 – Detroit, USA

Ezilda Almeida
Pedro Ferreira
Tiago T. V. Vinhoza
Inês Dutra
Paulo Borges
Yirong Wu
Elizabeth Burnside
Outline

• Objectives
• Dataset
• Methodology and Tools
• Results and Analysis
• *ExpertBayes* (graphical user interface)
• Conclusions and Future Work
Outline

- Objectives
- Dataset
- Methodology and Tools
- Results and Analysis
- ExpertBayes (graphical user interface)
- Conclusions and Future Work
Objectives

Network constructed manually

New network with better score
Outline

- Objectives
- Dataset
- Methodology and Tools
- Results and Analysis
- *ExpertBayes* (graphical user interface)
- Conclusions and Future Work
Dataset

- **Prostate Cancer:**
 - 496 cases
 - Each case refers to the clinical history of each patient

- **Breast Cancer (1):**
 - 100 cases
 - Each case refers to a breast nodule from mammography results

- **Breast Cancer (2):**
 - 241 cases
 - Each case refers to a breast nodule from mammography results
Attributes

- Prostate Cancer

11 Attributes

- Age (age)
- Weight (wt)
- Family history of cancer (hx)
- Systolic blood pressure (Sbp)
- Diastolic blood pressure (Dbp)
- Hmoglobin (hg)
- Clinical stage (stage)
- Doubling time PSA (Dtime)
- Size of the prostate (size)
- Bony metastases (bm)
- Status (status)

351 Dead (+)

145 Alive (-)
Attributes

- Breast Cancer (1)

33 Attributes

<table>
<thead>
<tr>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
</tr>
<tr>
<td>BreastDensity</td>
</tr>
<tr>
<td>MassesShape</td>
</tr>
<tr>
<td>MassesDensity</td>
</tr>
<tr>
<td>MassesSize</td>
</tr>
<tr>
<td>PostOpChange</td>
</tr>
<tr>
<td>MassesStability</td>
</tr>
<tr>
<td>Calc_Milk</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>BinaryDx</td>
</tr>
</tbody>
</table>

45 Benign (-)

55 Malignant (+)
Attributes

- Breast Cancer(2)

8 Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Mass_Shape</td>
</tr>
<tr>
<td>Mass_Margins</td>
</tr>
<tr>
<td>Depth</td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Overall_Breast_Composition</td>
</tr>
<tr>
<td>Retro_Density</td>
</tr>
<tr>
<td>Biopsy_Outcome</td>
</tr>
</tbody>
</table>

153 Benign

88 Malignant

(-) / (+)
Outline

- Objectives
- Dataset
- Methodology and Tools
- Results and Analysis
- ExpertBayes (graphical user interface)
- Conclusions and Future Work
Methodology and Tools

- **eclipse** to develop ExpertBayes using Java language

- **5-fold cross-validation** to train and test our models

- **t-test** was used to validate the results
 - Significance level: 0.05
Outline

• Objectives
• Dataset
• Methodology and Tools
• Results and Analysis
• ExpertBayes (graphical user interface)
• Conclusions and Future Work
Results and Analysis

• CCI(%) test set - averaged across 5-folds

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Original</th>
<th>ExpertBayes</th>
<th>WEKA-K2</th>
<th>WEKA-TAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate Cancer</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>71</td>
</tr>
<tr>
<td>Breast Cancer (1)</td>
<td>49</td>
<td>63</td>
<td>59</td>
<td>57</td>
</tr>
<tr>
<td>Breast Cancer (2)</td>
<td>49</td>
<td>64</td>
<td>80</td>
<td>79</td>
</tr>
</tbody>
</table>
Results and Analysis

- Precision-Recall Curves for various thresholds
 - Prostate
Results and Analysis

- Precision-Recall Curves for various thresholds
 - Breast Cancer (1)
Results and Analysis

- Precision-Recall Curves for various thresholds
 - Breast Cancer (2)
Results and Analysis

Original Network

ExpertBayes

CCI : 74%

CCI : 76%
Results and Analysis

Weka TAN

CCI : 71%

ExpertBayes

CCI : 76%
Outline

• Objectives
• Dataset
• Methodology and Tools
• Results and Analysis
• *ExpertBayes* (graphical user interface)
• Conclusions and Future Work
ExpertBayes

• Allow the user:
 ▫ Load new Network;
 ▫ Load new data;
 ▫ Load new tables of conditional probabilities;
 ▫ Save the network;
 ▫ Add / Remove vertex;
 ▫ Add / Remove edge;
 ▫ Return edge;
 ▫ Visualize the score, confusion matrix, CPT of an node, precision-recall curve and ROC curve;

• Graphical user interface
Outline

• Objectives
• Dataset
• Methodology and Tools
• Results and Analysis
• ExpertBayes (graphical user interface)
• Conclusions and Future Work
Conclusions and Future Work

- ExpertBayes produces better results than the original model and better results than models learned with other tools.

- ExpertBayes also provides a graphical user interface (GUI) where users can play with their models thus exploring new structures that give rise to a search for other models.
Conclusions and Future Work

• Improve the algorithm in order to have better prediction performance.

• Using more (and quality) data, different search and parameter learning methods.
Thank you!

ezildacv@gmail.com
pedroferreira@dcc.fc.up.pt
tiago.vinhoza@gmail.com
ines@dcc.fc.up.pt
pauloraborges@gmail.com
eburnside@uwhealth.org
Appendices
State of the Art

• Previous works considered as initial network a naive Bayes or empty network [9], [4]:

State of the Art

- The R packages deal [2] and bnlearn [11], [13] can refine any input network. However, deal and bnlearn refine input networks by successive refinements instead of performing the refinement only over the original network:

State of the Art

- WEKA, whose bayesian algorithms apply successive refinements to the newly built models:

Methodology

WEKA:

- **K2** is a greedy algorithm that, given an upper bound to the number of parents for a node, tries to find a set of parents that maximizes the likelihood of the class variable [6].

- **TAN** (Tree Augmented Naive Bayes) generates a tree over naive Bayes structure, where each node has at most two parents, being one of them the class variable [8].
Data Distribution

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of Instances</th>
<th>Number of Variables</th>
<th>Pos.</th>
<th>Neg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate Cancer</td>
<td>496</td>
<td>11</td>
<td>352</td>
<td>144</td>
</tr>
<tr>
<td>Breast Cancer (1)</td>
<td>100</td>
<td>34</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>Breast Cancer (2)</td>
<td>241</td>
<td>8</td>
<td>88</td>
<td>153</td>
</tr>
</tbody>
</table>
The pseudo-code for ExpertBayes

Data:
OriginalNet, // initial network structure;
Train // training set;
Test // test set

Result:
scoreTrain // scores in the training set for BestNet
scoreTest // scores in the test set for BestNet
BestNet // best scored network on Train

1. Read OriginalNet;
2. Read Train and Test sets;
3. BestNet = OriginalNet;
4. Learn parameters for OriginalNet from training set;
5. repeat
 6. Randomly choose a pair of nodes N_1 and N_2;
 7. if there exists an edge between N_1 and N_2 then
 8. randomly choose: revert or remove
 else
 9. choose add operation;
 10. randomly choose edge direction
 end
 11. Apply operation to OriginalNet obtaining NewNet;
 12. Rebuild necessary CPT entries, if necessary;
 13. Compute scoreTrain of the NewNet;
 14. if scoreTrain NewNet > scoreTrain BestNet then
 15. BestNet = NewNet
 end
6. until N iterations using OriginalNet and Train;
7. Apply BestNet to Test and compute scoreTest;
ExpertBayes Advantages

- Reduces the computational costs;
- Embed knowledge of an expert in the newly built network;
- Allows the construction of fresh new networks, through its graphical interface.