
Algorithms and Data Structures (L.EIC011) 2024/2025
Exam Sample Questions

Student ID:

Full name:

Group 1 - Correctness Analysis and Asymptotic Complexity
1.1. For the following function pairs, write Θ, O, or Ω in the blank box to make the statement true. Note that you
must write the symbol that best characterizes the relationship.
n4 = [[]] (4n) 2n = [[]] (2n+2) 42 = [[]] 24 log(log n2) = [[]] (log n2)

√
n = [[]] (log4 n)

1.2. Describe the worst-case running time for the following code snippets, using O notation, as a function of n,
which is an integer (int). Use the tightest possible limit (e.g. indicating all as being O(n!) will result in 0 points).

a)

for (int i=0; i<n; i++)
for (int j=0; j<i; j++)

count++;

b)

int f1(int n) {
if (n <= 0) return 0;
return f1(n/2) + 1;

}

c)

int f2(std::vector<int> & v, int k) {
int n = v.size();
int m = 0, q = k, j = 0, s;
while(q <= n) { // assume 1 <= k < n

s = 0;
while(j < q) {

s += v[j];
j++;

}
if (s > m) m = s;
q += k;

}
return m;

}

1.3. Justify your answer to question 1.2.b). Use the recursion tree and you can assume that n is a power of 2.

1.4. Consider function f2 defined in question 1.2.c), with 1 ≤ k < n = v.size(), and v[j] > 0, for all j.
a) Justify your answer to question 1.2.c).

Exam Sample Questions Algorithms and Data Structures (L.EIC011)

b) We would like to prove that f2 returns the maximum of {
∑kp−1

t=k(p−1) x[t] | 1 ≤ p ≤ bn/kc }. State the invariant
of the while(q<n) loop that implies that. Give a brief explanation why that invariant is true (by checking the
properties we refer to as Initialization, Maintenance, Progress, Termination) and how that conclusion follows from it.

1.5. Predict Running Time.
Complete the table using the information already given in each line. For times, use a prediction based on the time
already filled in, taking into account the ratio between n1 and n2 (ms = milliseconds).

Program Complexity Usual name Time for n1 = 10 Time for n2 = 20

A constant 10ms

B linear 50ms

C Θ(n2) 20ms

D cubic 40ms

E Θ(2n) 10ms

1.6. Discuss the truthfulness or falsity of the sentence: “If bool func(std::vector<int> & v, int k) is any
function whose asymptotic time complexity O(1) then, for the same cost model, the execution times of func(x,p)
and of func(x,q) are equal, for all values p and q, and vectors x, such that x.size() >= 1.

Page 2

Student ID Name:

Group 2 - Searching and Sorting
2.1. Suppose you have an implementation (in C++) for sets of words that uses as container an (unordered) array of
type std::vector<string>, where the words of the set are stored (one for each position). Assume that all words
have less than 100 characters.

a) Using notation O or Θ, characterize the asymptotic time complexity, in the worst case, of optimal algorithms
for the following methods, when the set has n words. Justify your answers briefly.

Obtain the number of words in the set:

Check if some word is in the set:

b) If the vector was sorted in lexicographic increasing order, could the worst case time complexity of checking if a
given word w is in the set be improved? How?

c) We need to check whether K words belong to a given set of n words. Explain briefly why if K ∈ Ω(log n) it
can be worthwhile start sorting the vector by a comparative sorting algorithm. How large should K be if we use
SelectionSort for sorting in that preprocessing phase?

Page 3

Exam Sample Questions Algorithms and Data Structures (L.EIC011)

Group 3 - Lists, Stacks and Queues
3.1. Consider a template class SinglyLinkedList<T> representing a generic simply linked list similar to what was
done on classes.

Recall that the methods getNext, setNext and
getValue() of the class Node<T> were defined by
Node<T> *getNext() { return next; }
void setNext(Node<T> *n) { next = n; }
T & getValue { return value; }

a) Explain why the following method removes the element that is in position k, if k is a valid position, assuming
zero-based numbering, that is, the first element of the list is in position 0. Which is the loop invariant that allows us
to conclude that the function is correct?

void remove(int k) {
if (k >= length || k < 0) return;
Node<T> *prev = nullptr;
Node<T> *victim = first;
while (k > 0) {

prev = victim;
victim = victim -> getNext();
k--;

}
if (prev == nullptr)

first = victim -> getNext();
else prev -> setNext(victim->getNext());
delete victim;

}

b) Using either Θ, O, or Ω, characterize the time complexity of remove(k) as a function of k, in the worst case
and best case .

c) Write in C++ a method int count(const T & x, int a, int b) that counts the number of occurrences
of x between positions a and b, inclusive, if a and b are valid (otherwise, returns 0). Present its time complexity in
the worst case and in the best case , using a and b and either Θ, O, or Ω.

3.2. State a situation where it makes more sense to use a linked list instead of a simple array. Explain briefly.

Page 4

Student ID Name:

3.3. Explain the difference between a stack, a queue and a priority queue.

3.4. Recall the algorithm Graham scan (based on rotational sweep) and the incremental algorithm (by Edelsbrunner)
described in class for computing the convex hull of a set of n points in the plane.

a) Illustrate how the algorithm Graham Scan works.

b) Which step dominates the time complexity of Graham Scan? Explain why.

c) In the incremental algorithm we used a doubly linked circular list to represent the convex hull whereas in the
algoritm by Graham, we had a stack. Explain why.

Page 5

Exam Sample Questions Algorithms and Data Structures (L.EIC011)

Group 4 - Binary Trees

4.1. Considering the tree in the following figure, answer to the following questions:

a) The nodes of the tree in preorder:

b) The nodes of the tree in inorder:

c) The nodes in a breadth-first order:

4.2. Consider a template class BTree<T> representing a generic binary tree similar to what was done on classes.

Recall that the nodes are structs:
struct Node {

T value; // The value stored on the node
Node *left, *right; // Pointers to left and right child

};

And that the root is a pointer to a node:
Node *root; // Pointer to the root node

You can assume that the tree is already created.

a) Implement a method height() for the
class BTree<T> that returns the height of the
tree. You can access the root and the attributes
of a node, but you cannot use any other class
method. Please indicate the time complexity
of the method you wrote.

b) Implement a method level(k) for the
class BTree<T> that returns the number of
nodes at depth k. You can access the root and
the attributes of a node, but you cannot use any
other class method. Please indicate the time
complexity of the method you wrote

Page 6

Student ID Name:

Group 5 - Binary Search Trees
5.1. Suppose you insert the following numbers on a binary search search tree: 42, 20, 24, 50, 53, 11.
For the following 3 questions draw the resulting tree (after the corresponding operation is complete):

a) What is the original tree after
the 6 numbers are inserted?

b) How does the (original) tree
look like after we add 51?

c) How does the (original) tree
look like after we remove 42?

5.2. In what node is smallest element on a binary search tree? Give a brief justification.

5.3. Suppose you want to insert the 15 integers from 1 to 15 on a binary search tree. What is the minimum height
possible of the resulting tree? In what order should you insert the elements to guarantee that minimal height?

Minimal Height: Insertion Order:

5.4. Explain (in words) an algorithm for searching for an element on a binary search tree. What is the time
complexity of the method you described assuming the tree is balanced? Briefly justify.

5.5. Explain the key ideas of an AVL tree, indicating what restrictions it imposes, how it maintains these properties
and what its temporal complexities are for an insertion and removal.

5.6. Name one advantage and one disadvantage of AVL trees compared to Red-Black trees.

Page 7

Exam Sample Questions Algorithms and Data Structures (L.EIC011)

Group 6 - Graphs
6.1. Explain what the diameter of a graph is and draw a graph with diameter 3 where all the nodes have degree > 1.

6.2. Graph Representation
Complete each of the blank boxes with the words LIST or MATRIX to indicate whether the answer should be an
adjacency list or an adjacency matrix. Assume we are dealing with sparse graphs.

takes up less memory

is better for checking if there is a link between a pair of nodes

is better to remove a single edge

is better for deleting all edges connected to a given node

6.3. Graph Traversal Order
a) Consider the graph in the following figure. Imagine that you start a search at vertex G and that the neighbor
nodes are always traversed in alphabetical order. Indicate the order in which the nodes would be visited in a:

Depth-First Search (DFS):

Breadth-First Search (BFS):

b) Fill in the blank spaces assuming G = (V, E) and using V and E as the variables and using O notation.

A DFS or a BFS using an adjacency matrix has time complexity

A DFS or a BFS using an adjacency list has time complexity

6.4. Topological Sorting. Indicate two possible topological sorting node orders for the following graph:
Two different topological sortings:

1)

2)

6.5. Strongly Connected Components. Indicate the strongly connected components (SCCs) of the following graph:
Nr SCCs:

Nodes in each SCC:

6.6. Code for DFS. Write (in code or pseudo-code) a function dfs(G,v) to make a depth-first search starting from
node v in graph G. The function should return the number nodes that were visited.

Page 8

Student ID Name:

6.7. BFS Application.
Explain how BFS can be used for finding the shortest distance from a node u to a node v in unweighted graphs
and indicate the time complexity of finding that shortest distance. Briefly explain why BFS would not produce the
correct answer for a weighted graph.

Group 7 - Hash Tables
7.1. Give a brief explanation of what a hash function is.

7.2. Explain why and in what types of positive integers would the following hash function be a bad choice.

int hash(int n) {
int h = 0;
while (n>0) {

h += n % 10;
n /= 10;

}
return h;

}

7.3. Imagine you have an initially empty hash table with an open addressing strategy, linear probing and capacity
for 5 elements. Suppose you use the hash function from 7.2 (with modular hashing for fitting in the table).

a) Draw the state of the hash table after the following consecutive insertions (assume a 0-based index):
insert(4) insert(9) insert(1231) insert(1001)

b) What is the load factor after the insertions?

c) Explain of advantage and one disadvantage of open addressing when compared with separate chaining.

Page 9

Exam Sample Questions Algorithms and Data Structures (L.EIC011)

Group 8 - Priority Queues and Heaps
8.1. Imagine a maxHeap described by the following array: 9 8 7 4 5 6
For the following 3 questions draw the tree (the heap) always with the invariant restored.

a) What is the heap represented
by the original array?

b) What does (original) heap look
like if we add a 10?

c) What does (original) heap look
like if we remove the max?

8.2. Suppose you read a set of n numbers, inserting them one by one into a priority queue implemented with a
maxHeap. Then you removes them one by one from the heap and print the values as they are removed.

a) In what order do the numbers appear in the output?

b) Indicate, justifying, the temporal and spatial complexity of the whole process.

(this is just a selection of sample exam questions
aimed towards showing the type of questions you might encounter)

(the number and difficulty of questions of the real exam will be calibrated for its duration)

(you will be able to (pre)choose a portuguese or an english version of the exam)

Page 10

