
University of Porto LEIC

Algorithms and Data Structures 2024/2025

Exercise Sheet 1
1. Consider the function REMOVE(v, x, n) which deletes all values greater than v from the array x of
integers. The final result will be in x[0], . . . , x[t− 1] and the function returns t. In the end, the values in the
positions t to n − 1 of x are not relevant (can be anything). Here, by “positions t to n − 1” we mean the remaining
ones, if there are any. As mentioned in the class, in this pseudocode,← stands for the assigning operation.

REMOVE(v, x, n)
1. t← 0
2. p← 0;
3. while (p < n) do
4. if x[p] ≤ v then
5. x[t]← x[p];
6. t← t+ 1;
7. p← p+ 1;
8. return t;

a) Let a0, a1, . . . , an−1 be the values of x[0], . . . , x[n−1] at line 1.
Find a loop invariant that we can use to conclude that the function
is correct (refer to line 3 to state the invariant). You must des-
cribe the state of all relevant variables and complete the sentence:
“When we are testing the condition in line 3 for the kth time, for
k ≥ 1, the value of p is k − 1 and p ≤ n, the value of v is . . . , the
value of t is . . . , and the array contains . . . ”

b) Using the invariant, justify that the loop terminates (check
Progress and Termination).

c) Using the invariant, conclude that, in line 8, the value we return
and the content of the array x satisfy the problem specification. We
assume that the array x is passed by reference and v and n are passed by value.

d) Show that the invariant is true, by checking the properties we refer to as Initialization and Maintenance.
Or, equivalently, prove the invariant by mathematical induction.

e) Find the number of times each instruction is executed in the worst case and in the best case. Define
them as a function of n, which is assumed to be fixed (i.e., constant). For lines 3 and 4, count the number
of times the condition is checked. The worst case occurs when all elements are less than or equal to v and
the best case occurs when all elements are greater than v.

f) Programming practice (in C++): implement the function REMOVE and a program to test it.

2. Consider FUNC(x, n, v, p), where the parameters x and v are arrays of integers of length n and p + 1,
and 1 ≤ x[k] ≤ p, for 0 ≤ k < n.

FUNC(x, n, v, p)
1 for k ← 0 to p do v[k]← 0;
2 s← x[0];
3 v[s]← 1;
4 t← 1;
5 for k ← 1 to n− 1 do
6 v[x[k]]← v[x[k]] + 1;
7 if s = x[k] ∨ v[x[k]] > v[s] then
8 s← x[k];
9 t← 1;
10 else if v[x[k]] = v[s] then t← t+ 1;
11 return (s, t);

a) Analyse FUNC(x, n, v, p) and state
the problem that it solves. For that, find
the meaning of s and t.

b) State an invariant of the loop 5-10
that allows us to conclude that the func-
tion is correct for that problem. Explain
how the invariant is kept in each itera-
tion and how we conclude that the result
(s, t) in line 11 is correct.

c) Programming practice (C++):
write a program to test the function.

1



3. Consider a function that reads a sequence of integers that ends with 0 and returns a pair (v, k), where v
is the the last negative odd number that was given and k is the number of odd numbers in the sequence.
If there is no negative odd number, the value of v is 0. You can assume that each line of the input contains
a single integer.

a) Write the function in pseudocode (let x%y be the remainder of the division of x by y). Do not use arrays
(i.e., the memory used by the algorithm does not depend on the number of elements given).

b) Prove that the function you wrote is correct. For the proof, define a (useful) loop invariant and prove it.

c) Find the number of times each instruction is executed in the worst case and in the best case (define them
as functions of the number n of input values). Characterize the best case and worst case instances.

d) Programming practice (in C++): implement the function and a program to test it.

4. Any integer greater than or equal to 2 is prime or product of primes, being the factorization unique
(except for the ordering of factors). For example, 368 = 2×2×2×2×23. We want a program to compute
the factorization of n.

a) Using C++, implement a function that given an integer n, such that 2 ≤ n ≤ 1000000, and an array with
the existing prime numbers between 2 and 1000, sorted in ascending order, as well as its length, outputs the
factorization of n into primes, ordered in the same way. Recall that:

• the factorization can be found by successive divisions, starting from 2;

• if any prime p greater than
√
n occurs in the factorization of n, then p occurs only once;

• if p1 and p2 are two prime numbers greater than
√
n then only one of them can divide n.

For n = 124992 the output must be: 2*2*2*2*2*2*3*3*7*31

For n = 19, the output is 19

For n = 807200, the output is 2*2*2*2*2*5*5*1009

Note that 1009 is not in the array of prime numbers we give, but
√
1009 < 11 and therefore, if no prime

less than or equal to
√
1009 divides 1009, then 1009 is a prime number.

In order to be efficient, your function must use the properties of prime numbers stated above.

b) Justify the correctness of your function.

5. Suppose that the array x contains in the positions 1 to 3k − 2 a sequence of integers

v1 p1 d1 v2 p2 d2 v3 . . . vk−1 pk−1 dk−1 vk ,

that represents information about a tour of a vehicle, for pick-up and delivery of a product. In that sequence,
the vi’s are locations and all distinct, pi ∈ {0, 1} indicates whether the link (vi, vi+1) has problems or not
that can delay the services (being 1 if it has), di is the maximum number of units that the vehicle can carry
in that link, for all i.

We want to send a minimum of a and a maximum of b units from a location s to a location t, being
1 ≤ a ≤ b. Can the vehicle pick up and deliver them? If it can, which is the maximum number of units that
we can send and which is the number of links with problems from v1 to t?

In order to solve the problem, we have implemented a function ANALISE(x, k, s, t, a, b), that must return
(0, 0) iff it is not possible to use that vehicle. Otherwise, it must return a pair with the values we asked for.

2



ANALISE(x, k, s, t, a, b)
1 p← 0;
2 j ← 1;
3 while k > 1 ∧ x[j] 6= s ∧ x[j] 6= t do
4 j ← j + 3;
5 p← p+ x[j − 2];
6 k ← k − 1;
7 if x[j] 6= s then return (0, 0);
8 c← b;
9 k ← k − 1;
10 while x[j] 6= t ∧ c ≥ a ∧ k > 0 do
11 j ← j + 3;
12 p← p+ x[j − 2];
13 if x[j − 1] < c then c← x[j − 1];
14 k ← k − 1;
15 if x[j] 6= t ∨ c < a then return (0, 0);
16 return (c, p);

Remark that, the position 0 of the array is not used! The problem statement says “Suppose that the array x contains
in the positions 1 to 3k − 2 . . . ”. We can assume that, k ≥ 2 initially, although the function returns (0, 0) if k = 1.

a) Let k0 be the value of k in line 1 and assume that the content of the array x is as stated above. Show the
following invariant for loop 3-6 (justify the properties that we refer to as Initialization and Maintenance):

For i ≥ 1, when we are testing the condition in line 3 for the ith time, j = 3(i − 1) + 1 =
3i − 2, p =

∑i−1
r=1 pr (that is, the number of links with problems from v1 to vi = x[j]), s

and t did not occur in v1 . . . vi−1, k = k0 − (i − 1) ≥ 1, and it remains to analyse k − 1
links, which correspond to the positions of x starting at the one with index j, which contain
vi pi di vi+1 . . . vk0−1 pk0−1 dk0−1 vk0 .

b) Complete the analysis of the correctness of the function. For that purpose:

• write the invariant of loop 10-14 and justify concisely how it is kept in each iteration;

• check and explain whether the values returned in lines 7, 15 and 16 are correct.

3


