
Graphs: Depth-First Search (DFS)

L.EIC

Algorithms and Data Structures

2024/2025

P Ribeiro, AP Tomas

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 1 / 40

Graph Search

One of the most important tasks it to traverse a graph, that is,
passing through all the nodes using the connections between
them

This is known as a graph search (or graph traversal)

There are two fundamental graph search methodologies that vary on
order in which they traverse the nodes:

I Depth-First Search - DFS
Traverse the entire subgraph connected to a neighbor before entering
the next neighbor node

I Breadth-First Search - BFS
Traverse the nodes by increasing distance of number of links to reach
them

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 2 / 40

Graph Search

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 3 / 40

Graph Search

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 4 / 40

Graph Search

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 5 / 40

Graph Search

In their essence, DFS and BFS do the ”same”:
traverse all the nodes

When to use one or the other depends on the order that betters
suits the problem that you are solving

We will show how to implement both and give examples of
applications

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 6 / 40

Representing Graphs in C++

To implement graph search we first need to represent a graph

There is no graph data structure in the C++ standard

I This is mainly due to the flexibility and different variations of a graph
(adj. list/matrix, node labeling, undirected/directed, weighted/unweighted,

nodes/edge colors, temporal graphs,etc)

I A ”one size fits them all” approach would have too much overhead
(a custom graph class can be much more suited for a specific situation)

I In case you are curious there is Boost Graph Library (BGL)

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 7 / 40

https://www.boost.org/doc/libs/1_77_0/libs/graph/doc/index.html

Representing Graphs in C++

For the purposes of this class we will (mainly) be using a simple
graph class to offer some reusability:

I The class should be very lightweight, with only the essentials
(add what’s needed for a problem, focus more on the algorithms)

I Support for simple graphs only (no self-loops or parallel edges)

I Support directed/undirected and weighted/unweighted graphs

I We will use adjacency lists as the edges representation

I We will assume nodes are labeled from 1 to |V |

(note: as explained before, we could have a .h with declarations and a .cpp with

implementation; here we will use a single .h file to simplify code submissions)

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 8 / 40

A simple lightweight Graph class

A simple lightweight graph class: graph.h

c l a s s Graph {
s t r u c t Edge {

i n t dest; // Destination node

i n t weight; // An integer weight
};

s t r u c t Node {
std::list<Edge> adj; // The list of outgoing edges (to adjacent nodes)

};

i n t n; // Graph size (vertices are numbered from 1 to n)

bool hasDir; // false: undirected; true: directed

std::vector<Node> nodes; // The list of nodes being represented

p u b l i c :
// Constructor: nr nodes and direction (default: undirected)

Graph(i n t nodes, bool dir = f a l s e) { ... }

// Add edge from source to destination with a certain weight

void addEdge(i n t src, i n t dest, i n t weight = 1) { ... }
};

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 9 / 40

A simple lightweight Graph class

The two included methods:

Graph(i n t num, bool dir = f a l s e) : n(num), hasDir(dir), nodes(num+1) {}

void addEdge(i n t src, i n t dest, i n t weight = 1) {
i f (src<1 || src>n || dest<1 || dest>n) return;
nodes[src].adj.push_back({dest, weight});

i f (!hasDir) nodes[dest].adj.push_back({src, weight});
}

Example usage:

Graph g(9, f a l s e); // 9 nodes, undirected graph
g.addEdge(1, 2); // assuming weight=1 (unweighted)

g.addEdge(1, 3);

g.addEdge(1, 4);

g.addEdge(2, 4);

g.addEdge(3, 4);

g.addEdge(4, 5);

g.addEdge(4, 6);

g.addEdge(4, 7);

g.addEdge(5, 8);

g.addEdge(7, 9);

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 10 / 40

Depth-First Search - DFS

The ”backbone” of a DFS:

DFS (recursive version)

dfs(node v):
mark v as visited
For all neighbors w of v do

If w has not yet been visited then
dfs(w)

Complexity:

Temporal:
I Adjacency List: O(|V |+ |E |)
I Adjacency Matrix: O(|V |2)

Spatial: O(|V |)
L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 11 / 40

DFS: Implementation

Let’s see a possible implementation with some livecoding

// we also need to add the attribute

// ’visited’ to a node

void dfs(i n t v) {
std::cout << v << " "; // show nodes

nodes[v].visited = true;
f o r (auto e : nodes[v].adj) {

i n t w = e.dest;
i f (!nodes[w].visited)
dfs(w);

}

}

DFS (recursive version)

dfs(node v):
mark v as visited
For all neighbors w of v do

If w has not yet been visited then
dfs(w)

Example execution (assuming graph g was already created)

g.dfs(1); // assuming nodes are unvisited before call

1 2 4 3 5 8 6 7 9

g.dfs(9); // assuming nodes are unvisited before call

9 7 4 1 2 3 5 8 6

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 12 / 40

Example Application: Connected Components

Find the number of connected components of a graph G

Example: the following graph has 3 connected components

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 13 / 40

Example Application: Connected Components

The ”backbone” of a program to solve it:

Finding connected components

counter ← 0
set all nodes as unvisited
For all nodes v of the graph do

If v has not yet been visited then
counter++
dfs(v)

return counter

Temporal complexity:

Adjacency List: O(|V |+ |E |)
Adjacency Matrix: O(|V |2)

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 14 / 40

Example Application: Connected Components

In C++ code (and some livecoding):

i n t connectedComponents() {
i n t counter = 0;
f o r (i n t v=1; v<=n; v++)
nodes[v].visited = f a l s e ;

f o r (i n t v=1; v<=n; v++)
i f (!nodes[v].visited) {
counter++;

std::cout << "connected component: ";

dfs(v);

cout << endl;

}

return counter;

}

cout << g.connectedComponents() << endl;

connected component: 1 11 7 12 2 8

connected component: 3 13 4 14 9 5

connected component: 6 10

3

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 15 / 40

Implicit Graphs

We do not always need to explicitly store the graph

Example: find the number of ”blobs” (connected spots) in a matrix.
Two cells are adjacent if they are connected vertically or horizontally.

#.##..## 1.22..33

#.....## 1.....33

...##... --> 4 blobs --> ...44...

...##... ...44...

To solve we simply need to do dfs(x , y) to visit the cell (x , y) where
the neighbors are (x + 1, y), (x − 1, y), (x , y + 1) and (x , y − 1)

Using DFS to ”color” the connected components is known as doing a
Flood Fill.

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 16 / 40

Topological Sorting

Given a DAG G (directed acyclic graph), find an order of nodes such
that u comes before v if and only if there is no edge (v , u)

Example: For the graph below a possible topological sorting would be:
1, 2, 3, 4, 5, 6 (or 1, 4, 2, 5, 3, 6 - there are other possible valid orders)

A classic example of application is to decide in which order to execute a
set of tasks with precedences.

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 17 / 40

Topological Sorting

How to solve this problem with DFS? What is the relationship
between topological sorting and the DFS node order?

Topological Sorting - time: O(|V |+ |E |) (list)

order ← empty
set all nodes as unvisited
For all nodes v of the graph do

If v has not yet been visited then
dfs(v)

return order

dfs(node v):
mark v as visited
For all neighbors w of v do

If w has not yet been visited then
dfs(w)

add v to the beginning of order

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 18 / 40

Topological Sorting

Example of execution:

order = ∅
start dfs(1) |order = ∅
start dfs(4) |order = ∅
start dfs(5) |order = ∅
start dfs(6) |order = ∅
end dfs(6) |order = 6
end dfs(5) |order = 5, 6
end dfs(4) |order = 4, 5, 6
end dfs(1) |order = 1, 4, 5, 6

start dfs(2) |order = 1, 4, 5, 6
end dfs(2) |order = 2, 1, 4, 5, 6

start dfs(3) |order = 2, 1, 4, 5, 6
end dfs(3) |order = 3, 2, 1, 4, 5, 6

order = 3, 2, 1, 4, 5, 6
L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 19 / 40

Cycle Detection

Find if a (directed) graph G is acyclic

Example: the left graph has a cycle; the right graph doesn’t

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 20 / 40

Cycle Detection

Let’s use 3 ”colors”:

White - unvisted node
Gray - node being visited (we are exploring its descendants)
Black - node already visited (we visited all its descendants)

Cycle Detection - O(|V |+ |E |) (list)

color[v ∈ V] ← white
For all nodes v of the graph do

If color [v] = white then
dfs(v)

dfs(node v):
color[v] ← gray
For all neighbors w of v do

If color[w] = gray then
write(”Cycle found!”)

Else if color[w] = white then
dfs(w)

color[v] ← black

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 21 / 40

Cycle Detection
Example (starting on node 1) - graph with two cycles

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 22 / 40

Cycle Detection
Example (starting on node 1) - acyclic graph

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 23 / 40

Classifying DFS Edges
Another ”angle” of DFS

A DFS visit separates the edges into 4 categories
I Tree Edges - Edges from the DFS tree
I Back Edges - Edge from a node to one of its tree ancestors
I Forward Edges - Edge from a node to one of its tree descendants
I Cross Edges - All other edges (from one branch to another)

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 24 / 40

Classifying DFS Edges
Another ”angle” of DFS

Example application: finding cycles is finding... Back Edges!

Knowing the edge types may help to solve problem!

Note: an undirected graph has only Tree Edges and Back Edges.

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 25 / 40

Strongly Connected Components
A more complex DFS application

Decompose a graph into its strongly connected components

A strongly connected component (SCC) its a maximal subgraph where
there is a (directed) path between each of its nodes.

An example graph with 3 SCCs:

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 26 / 40

Strongly Connected Components
A more complex DFS application

How to compute SCCs?

Let’s try to use our knowledge about DFS edge types:

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 27 / 40

Strongly Connected Components
A more complex DFS application

Let’s look at the generated tree:

What is the ”lowest”
ancestor reachable by a
node?

I 1: it’s 1
I 2: it’s 1
I 5: it’s 1

I 3: it’s 3
I 4: it’s 3
I 8: it’s 3

I 7: it’s 7
I 6: it’s 7

Et voilà! Here are our
SCCs!

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 28 / 40

Strongly Connected Components
A more complex DFS application

Let’s add 2 attributes to the nodes in a DFS visit:
I num(i): order in which i is visited
I low(i): smallest num(i) reachable by the subtree that starts in i .

It’s the minimum between:
F num(i)
F smallest num(v) between all back edges (i , v)
F smallest low(v) between all tree edges (i , v)

i num(i) low(i)

1 1 1

2 2 1

3 3 3

4 4 3

5 8 1

6 7 6

7 6 6

8 5 4

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 29 / 40

Strongly Connected Components
A more complex DFS application

Main ideas of Tarjan Algorithm to find SCCs:

Make a DFS and in each node i :

I Keep pushing the nodes to a stack S

I Compute and store the values of num(i) and low(i).

I If when finishing the visit of a node i we have that num(i) = low(i),
then i is the ”root” of a SCC. In that case, remove all the elements in
the stack until reaching i and report those elements as belonging to a
SCC!

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 30 / 40

Strongly Connected Components
A more complex DFS application

Example of execution: in the moment we leave dfs(7), we find that
num(7) = low(7) (7 is the ”root” of a SCC)

State of Stack S:

6

7

8

4

3

2

1

Remove elements from stack until reaching 7; output SCC: {6, 7}

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 31 / 40

Strongly Connected Components
A more complex DFS application

Example of execution: in the moment we leave dfs(3), we find that
num(3) = low(3) (3 is the ”root” of a SCC)

State of Stack S:

8

4

3

2

1

Remove elements from stack until reaching 3; output SCC: {8, 4, 3}

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 32 / 40

Strongly Connected Components
A more complex DFS application

Example of execution: in the moment we leave dfs(1), we find that
num(1) = low(1) (1 is the ”root” of a SCC)

State of Stack S:

5

2

1

Remove elements from stack until reaching 1; output SCC:: {5, 2, 1}

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 33 / 40

Strongly Connected Components

Tarjan Algorithm for SCCs

index ← 1 ; S ← ∅
For all nodes v of the graph do

If num[v] is still undefined then
dfs scc(v)

dfs scc(node v):
num[v]← low [v]← index ; index ← index + 1 ; S.push(v)
/* Traverse edges of v */
For all neighbors w of v do

If num[w] is still undefined then /* Tree Edge */
dfs scc(w) ; low [v]← min(low [v], low [w])

Else if w is in S then /* Back Edge */
low [v]← min(low [v], num[w])

/* We know that we are at the root of an SCC */
If num[v] = low [v] then

Start new SCC C
Repeat

w ← S.pop() ; Add w to C
Until w = v
Write C

Complexity: O(|V |+ |E |) (adjacency list)

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 34 / 40

Articulation Points and Bridges

An articulation point is a node whose removal increases the number of
connected components.

A bridge is an edge whose removal increases the number of connected
components.

Example (in red the articulation points; in blue the bridges):

A graph without articulation points is said to be biconnected.

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 35 / 40

Articulation Points
A more complex DFS application

Finding articulation points is a very useful problem
I For instance, a ”robust” graph should not have articulation points that

when ”attacked” will disconnect them.

How to compute? A possible (naive) algorithm:
1 Make a DFS and count the number of connected components
2 Remove a node from the original graph and execute a new DFS,

counting again the connnected components. If this number increased,
them the node is an articulation point.

3 Repeat step 2 for all nodes in the graph

What would be the complexity of this method? O(|V |(|V |+ |E |)),
because we will make |V | calls to DFS, each one taking |V |+ |E |.

It is possible to do much better... using a single DFS!

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 36 / 40

Articulation Points
A more complex DFS application

An idea:

Apply DFS to the graph and obtain the DFS tree

If a node v has a child w without any path to an ancestor of v ,
then v is an articulation point! (since removing it would disconnect
w from the rest of the graph)

I This corresponds to verify if low [w] ≥ num[v]

The only exception is the root of the DFS tree. If it has more than
one child in the tree... it is also an articulation point!

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 37 / 40

Articulation Points
A more complex DFS application

An example graph:

num[i] - numbers inside the node

low [i] - blue numbers

articulation points: yellow nodes

(here we are assuming that we cannot lower the low value of a node going ”back” on tree edges - this is why for instance

low[5]=5 and not 3; the algorithm would still work even if you also assume these edges as ”back edges”, with low[5]=3)

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 38 / 40

Articulation Points
A more complex DFS application

3 is an articulation point:
low [5] = 5 ≥ num[3] = 3

5 is an articulation point:
low [6] = 6 ≥ num[5] = 5
ou
low [7] = 5 ≥ num[5] = 5

10 is an articulation point:
low [11] = 11 ≥ num[10] = 10

1 is not an articulation point:
it only has one tree edge

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 39 / 40

Articulation Points

Algorithm very similar to Tarjan, but with different DFS:

Algorithm to find articulation points

dfs art(node v):
num[v]← low [v]← index ; index ← index + 1 ; S.push(v)
For all neighbors w of v do

If num[w] is not yet defined then /* Tree Edge */
dfs art(w) ; low [v]← min(low [v], low [w])
If low [w] ≥ num[v] then

write(v + ”is an articulation point”)
Else if w is in S then /* Back Edge */

low [v]← min(low [v], num[w])
S.pop()

Instead of a stack, we could have used colors (gray means it is in the stack)

Remember that the root node of the dfs must be treated differently and is an
articulation point if and only if it has more than one child on the dfs tree

L.EIC (AED) Graphs: Depth-First Search (DFS) 2024/2025 40 / 40

