
Hash Tables

L.EIC

Algorithms and Data Structures

2024/2025

P Ribeiro, AP Tomas

L.EIC (AED) Hash Tables 2024/2025 1 / 34

Motivation

Consider the following simple problem: store a set of n integer
numbers xi with 0 ≤ xi < m and support search, insert and remove

How can we solve this? What time complexities can we obtain?
I We could use balanced BSTs and guarantee O(log n)
I Can we do better than logarithmic time?

We could use a boolean array of size m and have O(1) operations!
Example: S = {1, 4, 95, 96, 99},m = 100

i 0 1 2 3 4 5

a[i] F T F F T F
...

94 95 96 97 98 99

F T T F F T

I search(x): return position x
I insert(x): change position x to true
I remove(x): change position x to false

Can we generalize this type of solution?
I What if m is really large? (not enough memory...)
I What if the keys we want to store are not integers?

L.EIC (AED) Hash Tables 2024/2025 2 / 34

Hash Tables: Key Ideas

Save items in a key-indexed table
(index as function of the key)

Hash function: method for
computing array index from key.

Main issues:
I How to compute the hash function?
I How to handle collisions? (keys that hash to the same array index)

Classic space-time tradeoff:
I No space limitation: trivial hash function with key as index
I No time limitation: trivial collision resolution with sequential search
I Space and time limitations: hashing (the real world...)

L.EIC (AED) Hash Tables 2024/2025 3 / 34

Hash Functions: Goals

Goals:

I Should be efficiently computable

If we spend too much time computing, it defeats our purpose

I Should minimize collisions

F It should spread the values along the table; ideally, each index should
be equally likely, that is, keys are uniformly distributed

F It should use all bits of the key (otherwise almost equal keys will collide)

Example of a ”bad” hash function
for strings:

hash(string) = length(string)

All equally sized strings would hash
to the same value, regardless of
their content

L.EIC (AED) Hash Tables 2024/2025 4 / 34

Hash Functions: Modular Hashing

Can be implemented in (general use) hash tables in two steps:
1 h = hash(key) (hash could be a really large positive number)
2 index = h % table size (convert to the size of the table, % = mod)

The 1st step guarantees we can use the same
hash function for different table sizes

The 2nd step is known as modular hashing,
also know as division hashing
(the image on the left shows an example)

For a general case, we usually choose a prime number as the table size
I Due to the mathematical properties of modular arithmetic, this might help to avoid

collisions if the keys follow a biased distribution (see this, for example)
I If keys follow an uniform distribution this does not matter
I Even prime number sizes are ”exploitable” if an ”attacker” knows the exact hash

function and table size (see this, for example)

L.EIC (AED) Hash Tables 2024/2025 5 / 34

https://cs.stackexchange.com/questions/11029/why-is-it-best-to-use-a-prime-number-as-a-mod-in-a-hashing-function/64191
https://codeforces.com/blog/entry/62393

Hash Functions: Implementation

How to create an hash function? (assuming for now it should return an

unsigned integer to be used with the modular hashing as described before)

We will now show some (naive) examples of possible hash functions.

For an integer key we could just trivially use the identity function

unsigned myHash(i n t i) {
return i;

}

cout << myHash(42) << endl;

cout << myHash(-42) << endl;

42

4294967254

(wait: a negative value interpreted as a positive? Yes, here we are really using underflow

arithmetic, while using all the bits. An alternative such as using abs(i) would actually

not use the entire bitspace and attribute the same hash to a number and its negative...)

L.EIC (AED) Hash Tables 2024/2025 6 / 34

Hash Functions: Implementation

For the string type we could use polynomial hashing:
I A string of size k can be seen a sequence of chars c0, c1, . . . , ck−2, ck−1

I A char can be interpreted as an integer (its ascii code)
I We choose a non-zero constant a and compute the hash as:

c0a
k−1 + c1a

k−2 + . . .+ ck−2a
1 + ck−2

(this is similar to how we interpret 1234 = 1 × 103 + 2 × 102 + 3 × 101 + 4,

but we will be using base a instead of base 10)
I For reasons similar to the modular hashing, choosing a as a prime

might be a good choice (see this, for example)
I To reduce the number of multiplications we can use Horner’s Rule.

(e.g. 1234 = 4 + 10 × (3 + 10 × (2 + 10 × 1)))

unsigned myHash(string s) {

unsigned hash = 0;
f o r (i n t i=0; i<(i n t)s.length(); i++)
hash = 31 * hash + s[i]; // Horner’s Rule

return hash;

}

(we are also ignoring overflows - this is equivalent to always applying mod 232

given how an unsigned is interpreted, assuming unsigned uses 32 bits)
L.EIC (AED) Hash Tables 2024/2025 7 / 34

https://stackoverflow.com/questions/1145217/why-should-hash-functions-use-a-prime-number-modulus

Hash Functions: Implementation

What if we need to hash several types (for instance a vector or a
class with several attributes?)
We could use polynomial hashing to combine elements or another
operation such as a XOR (exclusive or) (see this for example)
(XORing two numbers with roughly random distribution results in another number still

with roughly random distribution, but which now depends on the two values)

c l a s s Person {
p u b l i c :
string name;

i n t age;
Person(string n, i n t a) {name=n; age=a;}

};

unsigned myHash(Person p) { // naive combine

return myHash(p.name) ˆ myHash(p.age);

}

Person p("John", 42);

cout << myHash(p) << endl;

3904197

L.EIC (AED) Hash Tables 2024/2025 8 / 34

https://stackoverflow.com/questions/5889238/why-is-xor-the-default-way-to-combine-hashes

Hash Functions in C++ standard

std::hash is a template with multiple specializations for common types
It produces a size t integer (64 bits on a typical 64-bits computers)

hash< int > hi;
hash<double > hd;
hash<string> hs;

cout << "hash(42) = " << hi(42) << endl;

cout << "hash(3.14) = " << hd(3.14) << endl;

cout << "hash(\"hello\") = " << hs("hello") << endl;

hash(42) = 42

hash(3.14) = 5464867211497793177

hash("hello") = 2762169579135187400

(implementation may vary from compiler to compiler; gcc with C++11

std::hash<string> used a variant of the murmur family of hash functions)

For a more robust combine function see for instance boost::hash combine

seed ˆ= hash_value(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);

L.EIC (AED) Hash Tables 2024/2025 9 / 34

https://en.cppreference.com/w/cpp/utility/hash
https://en.wikipedia.org/wiki/MurmurHash
https://www.boost.org/doc/libs/1_55_0/doc/html/hash/combine.html

Hash Functions

Out of scope to do an in-depth analysis of hashing in this class

There are years of research and a multitude of hash functions

Hash functions have other applications besides hash tables
I Other data structures such as bloom filters
I Algorithms such as Rabin-Karp Algorithm
I Cryptographic hash functions (e.g. for file integrity verification)

There is no perfect practical ”one size fits them all” hash function
I It depends on the distribution of the keys, machine architecture, etc
I Here some empirical comparisons of existing hash functions:

smhasher, strchr.com, stackexchange

If you know the exact keys beforehand, you can devise a ”perfect”
hash function (for instance, using GNU’s gperf tool)

L.EIC (AED) Hash Tables 2024/2025 10 / 34

https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Rabin-Karp_algorithm
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://github.com/rurban/smhasher/
https://www.strchr.com/hash_functions
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://www.gnu.org/software/gperf/

Collisions in Hash Tables

Collisions: distinct keys hashing to the same index

Collisions are almost inevitable...

Challenge: how to deal with collisions efficiently

L.EIC (AED) Hash Tables 2024/2025 11 / 34

Collision Strategy: Separate Chaining

Separate Chaining (also known as open hashing)
Use an array of lists

I Hash: map key to integer between 0 and table size − 1
I Insert: put in front of i-th chain (if not already there)
I Search: need to search only i-th chain
I Delete: remove from i-th chain

L.EIC (AED) Hash Tables 2024/2025 12 / 34

Visualizing Separate Chaining

You can try the indicated url:

https://www.cs.usfca.edu/˜galles/visualization/OpenHash.html

L.EIC (AED) Hash Tables 2024/2025 13 / 34

https://www.cs.usfca.edu/~galles/visualization/OpenHash.html

Separate Chaining: Analysis

Let’s define the load factor of an hash table as λ = n
m

I n: number of keys stored
I m: size of hash table

The average size of a list will be λ

Let’s assume that the hash function uniformly distributes keys.
In this case the probability that a list size is within a constant factor
of λ is extremely close to 1 (list size follows a binomial distribution)

Binomial Distribution (n = 104,m = 103, λ = 10)

Consequence: Number of probes for search is proportional to λ.
I m too large → too many empty chains
I m too small → chains too long
I Typical choice: λ ∼ 4→ constant-time ops (can be less if you can afford the space)

L.EIC (AED) Hash Tables 2024/2025 14 / 34

Separate Chaining: Resizing

Keep λ close to 4
I Double size of array m when λ = n/m ≥ 8
I Halve size of array m when λ = n/m ≤ 2
I Need to rehash all keys when resizing

L.EIC (AED) Hash Tables 2024/2025 15 / 34

Collision Strategy: Open Addressing

Open Addressing (also known as closed hashing)
Store keys on array. When a new key x collides, find an empty slot,
and put it there.

Linear Probing: to find an empty slot traverse consecutive positions
starting on the hashed index

L.EIC (AED) Hash Tables 2024/2025 16 / 34

Linear Probing and Clustering

Cluster: A contiguous block of items.

New keys likely to hash into middle of big clusters (and to close gaps
between clusters, forming even bigger clusters)...

L.EIC (AED) Hash Tables 2024/2025 17 / 34

Linear Probing Analysis

Assuming a uniform distribution of keys, the average number of
probes in linear probing is:

I Search hit: ∼ 1
2 (1 + 1

1−λ)

I Search miss/insert: ∼ 1
2 (1 + 1

(1−λ)2)

Table size needs to be bigger than the number of keys (m > n)
I m too large → too many empty array entries
I m too small → search time blows up
I Typical choice: λ = 1

2
probes for search hit is about 3/2, # probes for search miss is about 5/2

L.EIC (AED) Hash Tables 2024/2025 18 / 34

Linear Probing: Resizing

A possible resize strategy: keep λ < 0.5
I Double size of array m when λ = n/m ≥ 1

2
I Halve size of array m when λ = n/m ≤ 1

8
I Need to rehash all keys when resizing

L.EIC (AED) Hash Tables 2024/2025 19 / 34

Linear Probing: Deletion

Deleting a key requires some care
I We can’t just delete completely the array entry and do nothing else, as

this could invalidate future searches

L.EIC (AED) Hash Tables 2024/2025 20 / 34

Linear Probing: Lazy Deletion

Idea: leave a marker (tombstone) saying it was deleted so that linear
probing can pass through it

Tombstones still count towards the load factor λ

When inserting you can occupy these indexes
L.EIC (AED) Hash Tables 2024/2025 21 / 34

Open Addressing: Other Probing Strategies

Linear probing could be framed in a more general sequential probing
framework: sequentially probe positions H1(x),H2(x),H3(x), . . .

Hi (x) = (hash(x) + f (i)) % m

Under this assumption, Linear Probing is using f (i) = i

Another possible strategy could be Quadratic Probing: f (i) = i2

I This eliminates ”primary” clustering as existed with linear probing
I However, it might not find an empty cell if table more than half full

L.EIC (AED) Hash Tables 2024/2025 22 / 34

Open Addressing: Other Probing Strategies

We could also use Double Hashing: f (i) = i × hash function2(x)

I Effectively avoids clustering
I Capable of using full table
I However, it needs another good ”independent” hash function and

increases the cost of the hash computation

L.EIC (AED) Hash Tables 2024/2025 23 / 34

Visualizing Open Addressing

You can try the indicated url:

https://www.cs.usfca.edu/˜galles/visualization/ClosedHash.html

L.EIC (AED) Hash Tables 2024/2025 24 / 34

https://www.cs.usfca.edu/~galles/visualization/ClosedHash.html

Separate Chaining vs Open Addressing

Separate Chaining
(a.k.a. open hashing)

I Performance degrades
gracefully

I Clustering less sensitive to
poorly-designed hash function

Open Addressing
(a.k.a. closed hashing)

I Less wasted space
I Better cache performance

L.EIC (AED) Hash Tables 2024/2025 25 / 34

Hash Tables vs Other Data Structures

Hash Tables can provide constant time operations in an amortized sense (amortized
means on average even on worst possible sequence) but are very sensitive to several
factors (e.g. hash function used and keys distribution)

method
guarantee

(worst case)
average case ordered

ops?
core

interfaces
search insert delete search insert delete

Sequential Search
(unordered list)

O(n) O(n) O(n) O(n) O(n) O(n) no equality

Binary Search
(ordered array)

O(log n) O(n) O(n) O(log n) O(n) O(n) yes comparator

Balanced BST O(log n) O(log n) O(log n) O(log n) O(log n) O(log n) yes comparator

Hash Tables O(n) O(n) O(n) O(1) O(1) O(1) no
equality
hash

Hash Tables:
I Simpler to code
I No effective alternative for unordered keys
I Faster for simple keys (a few arithmetic ops versus log n compares)

Balanced BSTs:
I Stronger performance guarantees
I Support for ordered operations (e.g. max, min, lower bound, ordered iterators)
I Easier to implement comparison correctly than equality and hash function

L.EIC (AED) Hash Tables 2024/2025 26 / 34

Hash Tables in C++ Standard

(Unordered) Associative Containers
I unordered_set - collection of unique keys
I unordered_map - collection of key-value pairs, keys are unique
I unordered_multiset - collection of keys
I unordered_multimap - collection of key-value pairs

Usual (non-ordered) operations are available:
I Non-ordered iterator over keys
I Lookup (find)
I Modifiers (clear, insert, erase)

Hash table related operations (e.g.: rehash, load factor, bucket):

Template class that relies on two key functions: hash function and
key eq (already implemented for common types)

Current implementations use separate chaining

L.EIC (AED) Hash Tables 2024/2025 27 / 34

https://en.cppreference.com/w/cpp/container#Associative_containers

Example Usage

Let’s use a real dataset to play a little bit

Suppose you have a dictionary with words on a file words.txt
(in my case 370 103 words)

claps

snoops

agglutination

...

// Example that reads all strings from stdin and prints them (one per line)

string w;

whi le (cin >> w) {
cout << w << endl;

}

Example compilation using gcc:

g++ -o example example.cpp

Example execution (< redirects stdin, ./ indicates current dir)

./example < words.txt

L.EIC (AED) Hash Tables 2024/2025 28 / 34

Example Usage

Let’s insert all the words into a hash table and check the load factor

unordered_set <string> ht;

string s;

whi le (cin >> s) {
ht.insert(s);

}

cout << "nr keys: " << ht.size() << endl;

cout << "load factor: "<< ht.load_factor() << endl;

ht.rehash(400000); // rehash to at least 400 000 positions

cout << "load factor: "<< ht.load_factor() << endl;

ht.rehash(1000000); // rehash to at least 1 000 000 positions

cout << "load factor: "<< ht.load_factor() << endl;

nr keys: 370103

load factor: 0.519299

load factor: 0.900807

load factor: 0.350369

L.EIC (AED) Hash Tables 2024/2025 29 / 34

Example Usage

Let’s check if a word exists and test the erase method

string s = "algorithm";

i f (ht.find(s) != ht.end()) cout << "Found: " << s << endl;
e l s e cout << "Not found: " << s << endl;

cout << "Erasing: " << s << endl;

ht.erase(s);

i f (ht.find(s) != ht.end()) cout << "Found: " << s << endl;
e l s e cout << "Not found: " << s << endl;

Found: algorithm

Erasing: algorithm

Not found: algorithm

L.EIC (AED) Hash Tables 2024/2025 30 / 34

Example Application

Let’s try to determine the frequency of word terminations of size k
For instance, for the word ”algorithm” its termination of size 4 is ”ithm”

i n t k = 4; // size of the word termination
string w;

unordered_map <string, int > ht; // associating frequency to termination
whi le (cin >> w) { // read words from standard input as before

i n t len = w.length();
i f (len>=k) { // Only words with at least k chars matter
string tmp = w.substr(len-k, k); // Extract last k chars

i f (ht.find(tmp) == ht.end()) ht[tmp] = 1; // new termination
e l s e ht[tmp]++; // already existing termination, increment count

}

}

cout << "Some example frequencies:" << endl;

cout << "less " << ht["less"] << endl;

cout << "ting " << ht["ting"] << endl;

cout << "ally " << ht["ally"] << endl;

Some example frequencies:

less 1845

ting 3731

ally 4316

L.EIC (AED) Hash Tables 2024/2025 31 / 34

Example Application

What if we now want to extract the 5 most frequent terminations?
I No order on our hash table (and key is termination)

Idea: combine with BSTs that provide order!
I Use the frequency as key and the word as the value
I Use a multimap (there can be several keys with the same frequency)

multimap < int , string> mm; // associate frequencies to words
// iterate over pairs (key, value)

f o r (auto i : ht) mm.insert({i.second, i.first});

// reverse iterator: start at the maximum and not the minimum

// (natural order is increasing)

auto ri = mm.rbegin();
f o r (i n t i=0; i<5; i++) { // assuming there are at least 5

cout << ri->second << " " << ri->first << endl;

ri++;

}

ness 9564

tion 7245

able 4609

ally 4316

ting 3731

L.EIC (AED) Hash Tables 2024/2025 32 / 34

Final Notes

Associative Containers (BSTs and Hash Tables) are powerful data
structures that should be part of your algorithmic arsenal

C++ provides ready to use implementations of both
(but knowing them is important to understand what and how to use)
(and in some cases you might need a customized data structure)

We only covered the essentials of these topics and in both there is
much more to know: never stop learning, as the algorithmic and
data structures landscape is always evolving!

L.EIC (AED) Hash Tables 2024/2025 33 / 34

Christmas Fun

https://adventofcode.com/ - Advent of Code

Advent of Code is an annual set of Christmas-themed computer
programming challenges that follow an Advent calendar. It has been
running since 2015.

The programming puzzles cover a variety of skill sets and skill levels and
can be solved using any programming language. Participants also
compete based on speed on both global and private leaderboards.

The event was founded and is maintained by software engineer Eric Wastl.

L.EIC (AED) Hash Tables 2024/2025 34 / 34

https://adventofcode.com/

