
Correctness and Loop Invariants

L.EIC

Algoritmos e Estruturas de Dados

2024/2025

P Ribeiro, AP Tomás

L.EIC (AED) Correctness and Loop Invariants 2024/2025 1 / 36

On Algorithms

What are algorithms? A set of instructions to solve a problem.

The problem is the motivation for the algorithm

The instructions need to be executable

Typically, there are different algorithms for the same problem
[how to choose?]

Representation: description of the instructions that is
understandable for the intended audience

Summing all integers from 1 to n

def my_sum(n):

return n*(n+1)//2

// Summing all integers from 1 to n

i n t my_sum(i n t n) {
return n*(n+1)/2;

}

L.EIC (AED) Correctness and Loop Invariants 2024/2025 2 / 36

On Algorithms
”Computer Science” version

An algorithm is a method for solving a (computational) problem

A problem is characterized by the description of its input and output

A classical example:

Sorting Problem

Input: a sequence of 〈a1, a2, . . . , an〉 of n numbers
Output: a permutation of the numbers 〈a′1, a

′
2, . . . , a

′
n〉 such that

a
′
1 ≤ a

′
2 ≤ . . . ≤ a

′
n

Example instance for the sorting problem

Input: 6 3 7 9 2 4
Output: 2 3 4 6 7 9

L.EIC (AED) Correctness and Loop Invariants 2024/2025 3 / 36

On Algorithms
What properties do we want on an algorithm?

Algorithm

Well-defined computational procedure that takes some value, or set of
values, as input and produces some value, or set of values, as output. The
number of steps must be finite.

Correctness

It has to solve correctly all instances of the problem

Instance: example of a concrete and valid input.

Efficiency

The performance (time and memory) has to be adequate.

This course is about being able to choose and design correct and efficient algorithms.

L.EIC (AED) Correctness and Loop Invariants 2024/2025 4 / 36

Dijkstra

Edsger W. Dijkstra (Wikipedia entry) (Wikiquote)
[1972 Turing Award]

“How do we convince people that in programming simplicity and clarity -
in short: what mathematicians call ”elegance” — are not a dispensable
luxury, but a crucial matter that decides between success and failure?”

“Program testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence.”

L.EIC (AED) Correctness and Loop Invariants 2024/2025 5 / 36

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

Algorithm Analysis

theoretical analysis experimental analysis

correctness
proof or correctness

argumentation
predefined or

randomized tests

efficiency
(time and space)

complexity and
asymptotic analysis

performance tests

“Testing shows the presence, not the absence of bugs” - Edsger Dijkstra
(a more succinct form of the previous quote)

L.EIC (AED) Correctness and Loop Invariants 2024/2025 6 / 36

About correctness

In the this lecture we will (mostly) worry about correctness

I Given an algorithm, it is not often obvious or trivial to know if it is
correct, and even less so to prove this.

I By learning how to reason about correctness, we also gain insight into
what really makes an algorithm work

L.EIC (AED) Correctness and Loop Invariants 2024/2025 7 / 36

Loops

We will tackle one of the most fundamental (and most used)
algorithmic patterns: a loop (e.g. for or while instructions)

// Summing all integers from 1 to n (using a loop, not n*(n+1)/2)

i n t sum = 0, i;
f o r (i=1; i<=n; i++)
sum += i;

// Equivalently with a while

i n t sum = 0;
i n t i = 1;
whi le (i<=n) {
sum +=i;

i++;

}

We will talk about how to prove that a loop is correct

We will show how this is also useful for designing new algorithms

L.EIC (AED) Correctness and Loop Invariants 2024/2025 8 / 36

Loop Invariants

Definition of Loop Invariant

A condition that is necessarily true immediately before (and immediately
after) each iteration of a loop

Note that this says nothing about its truth or falsity part way through an
iteration.

The loop program statements are ”operational”, they are ”how to
do” instructions

Invariants are ”assertional”, capturing ”what it means”
descriptions

L.EIC (AED) Correctness and Loop Invariants 2024/2025 9 / 36

Anatomy of a loop

Consider a simple loop: while (B) { S }
Q: precondition (assumptions at the beginning)
B: the stop condition (defining when the loop ends)
S: the body of the loop (a set of statements)
R: postcondition (what we want to be true at the end)

// Summing all integers from 1 to n

i n t sum = 0;
i n t i = 1;
whi le (i<=n) {
sum +=i;

i++;

}

Q: sum = 0 and i = 1
B: i ≤ n
S: sum += i followed by i++

R: sum =
n∑

k=1

k

L.EIC (AED) Correctness and Loop Invariants 2024/2025 10 / 36

The invariant?

P: an invariant (condition that holds at the start of each iteration)

To be useful, the invariant P that we seek should be such that:
P ∧ not(B)→ R

I For the example sum loop, it could be: sum =
i−1∑
k=1

k

L.EIC (AED) Correctness and Loop Invariants 2024/2025 11 / 36

How to show that an invariant is really one?

First, show that Q → P
(truth precondition Q guarantees truth of invariant P)

I For the example sum loop: sum=0 which is =
0∑

k=1

k

If P ∧ B, then P holds after executing S
(the statements S of the loop guarantee that P is respected)

I For the example sum loop:

(
i−1∑
k=1

k

)
+i =

i∑
k=1

k

L.EIC (AED) Correctness and Loop Invariants 2024/2025 12 / 36

How to show that the loop terminates?

We need to show that each iteration makes progress towards
termination in some way

This is typically done by choosing an integer function that keeps
getting closer (i.e., decreasing or increasing) towards the stop
condition

I For the example sum loop: we could simply use the value of i , which
keeps getting closer to n

I The loop ends when i = n + 1. Therefore, using the invariant, we
conclude that:

sum =
i−1∑
k=1

k =

(n+1)−1∑
k=1

k =
n∑

k=1

k

L.EIC (AED) Correctness and Loop Invariants 2024/2025 13 / 36

Some additional comments
Correctness of algorithms versus programs

// Summing all integers from 1 to n

i n t my_sum(i n t n) {
return n/2*(n+1); // Wrong (7/2*8 = 24 but 7*8/2 = 28)

}

i n t my_sum(i n t n) {
return n*(n+1)/2; // Correct: n*(n+1)/2 = (n*(n+1))/2

}

i n t my_sum(i n t n) { // Correct but not efficient (too many operations)

i n t sum = 0;
f o r (i n t i = 1; i <= n; i++) sum += i;

return sum;

}

In Maths:
n

2
(n + 1) =

n(n + 1)

2
= n

n + 1

2
=

n∑
i=1

i

In C++: n*(n+1)/2 is not equivalent to n/2*(n+1). Recall: 7/ 2 = 3

L.EIC (AED) Correctness and Loop Invariants 2024/2025 14 / 36

Steps to a proof using an invariant

• Initialization

The invariant is true prior to the first iteration of the loop

• Maintenance

If it is true before an iteration of the loop, it remains true before the next
iteration

• Termination

When the loop terminates, the invariant gives us a useful property that
helps show that the algorithm is correct

We also need to show that the loop terminates:

• Progress

Each iteration gets us closer to the end until eventually we finish

L.EIC (AED) Correctness and Loop Invariants 2024/2025 15 / 36

Motivation: a small puzzle

Suppose you have a jar of one or more marbles, each of which is either
RED or BLUE in color.

L.EIC (AED) Correctness and Loop Invariants 2024/2025 16 / 36

Red and Blue Marbles in a Jar

Suppose you have a jar of one or more marbles, each of which is either
RED or BLUE in color. You also have an unlimited supply of RED marbles
off to the side. You then execute the following ”procedure”:

Red and Blue Marbles in a Jar

while (# of marbles in the jar > 1) {

choose (any) two marbles from the jar;

if (the two marbles are of the same color) {

toss them aside;

place a RED marble into the jar;

} else { // one marble of each color was chosen

toss the chosen RED marble aside;

place the chosen BLUE marble back into the jar;

}

}

L.EIC (AED) Correctness and Loop Invariants 2024/2025 17 / 36

Red and Blue Marbles in a Jar

// selects two balls at random; Returns (0,0), (0,1), (1,1), or (1,0)

pair< int , int > select(i n t red, i n t blue); // Definition not shown

// playing the game

pair< int , int > play(i n t red, i n t blue) {
assert(red > 0 && blue > 0); // Ensure both positive

whi le (red + blue > 1) {
pair< int , int > selected = select(red, blue);
i n t s1 = selected.first;
i n t s2 = selected.second;
i f (s1 + s2 == 1 || s1 + s2 == 0) { // Distinct or RED

red -= 1;

} e l s e { // Both BLUE

blue -= 2;

red += 1;

}

}

return make_pair(red,blue); // Return the remaining balls

}

Does play terminate? Can we predict the return value?

L.EIC (AED) Correctness and Loop Invariants 2024/2025 18 / 36

Red and Blue Marbles in a Jar

Does it terminate?

Let f (n) be the number of marbles in the jar

After each iteration, f (n) decreases exactly by one

When f (n) ≤ 1, the loop stops

L.EIC (AED) Correctness and Loop Invariants 2024/2025 19 / 36

Red and Blue Marbles in a Jar

Let’s state it a bit more formally. . .

Let f (n) be the number of marbles in the jar when we start
iteration n. In the program, f (n) = red+blue

After each iteration, f (n) decreases exactly by one, i.e,
f (n + 1) = f (n)− 1. (Check the update of red and blue)

When f (n) ≤ 1, the loop stops

If red ≥ 1 and blue ≥ 1 at start, then f (n) = 1 when the loop stops

L.EIC (AED) Correctness and Loop Invariants 2024/2025 20 / 36

Red and Blue Marbles in a Jar

Suppose we know the initial contents of the jar
(number of marbles of each color)

Can we predict which will be the last marble left in the jar?

More formally, we need a function f : N× N→ {RED,BLUE}

It turns that this function exists! The key to identifying it, is to first
identify an invariant of the loop having to do with the number of
BLUE marbles in the jar

Consider the effect of one iteration:
I If both marbles chosen are the same, the number of blue marbles either

stays the same or decreases by two
I If the marbles are different, the number of blue marbles stays the same

An iteration does not affect the parity of the number of blues!
I If it was odd, it stays odd
I If it was even, it stays even

L.EIC (AED) Correctness and Loop Invariants 2024/2025 21 / 36

Red and Blue Marbles in a Jar

A: initial number of blue marbles

B: (current) number of blue marbles at the start of an iteration

Invariant

B is odd if and only if A is odd

This is the same saying that both A and B are odd, or both are even

Because at the end we are left with one marble either B = 0 or B = 1

So, if A is even, at the end B = 0 (the remaining marble is RED)

If A is odd, then at the end B = 1 (the remaining marble is BLUE)

Thus F (,A) = {RED if A is even, BLUE otherwise}
Interestingly, the color of the last remaining marble does not depend at all
upon the number of RED marbles initially in the jar.

L.EIC (AED) Correctness and Loop Invariants 2024/2025 22 / 36

Back to computer programs

In order to prove the correctness of a loop using invariants, we must first
find a suitable loop invariant condition and then show the following
three things:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains
true before the next iteration.

Termination: When the loop terminates, the invariant gives us a
useful property that helps show that the algorithm is correct.

We also need to show that the loop terminates:

Progress: Each iteration gets us closer to the end until eventually we
finish

L.EIC (AED) Correctness and Loop Invariants 2024/2025 23 / 36

Useful loop invariants?

i n t func1(i n t n) {
i n t i=1, s;
whi le (i < n/2) {
s += 2; n = n/2;

}

return s;

}

i n t func2(i n t n) {
i n t s = 0;
whi le (1 < n/2) {
s += 2; n = n/2;

}

return s;

}

i = 1 is a loop invariant in func1.
How helpful is it?

A more interesting loop invariant that
is true for both: for all k ≥ 1, if we
are testing the loop condition for the
kth time then s = s0 + 2(k − 1) and
n = n0/2k−1, being s0 and n0 the
values of s and n before the loop.

Although we cannot say anything
about the value of s0 for func1, that
invariant can be proved.

For func2, we have s0 = 0 and func2(n) =

{
2blog2(n)c − 2 if n > 3
0 otherwise

L.EIC (AED) Correctness and Loop Invariants 2024/2025 24 / 36

A simple example - checking if a number is prime

Let’s try to prove the following program is correct:

// for simplicity, assume n is an integer > 1

bool isPrime(i n t n) {
f o r (i n t i = 2; i*i <= n; i++) // why i*i <= n?

i f (n % i == 0) return f a l s e ;
return true;

}

Invariant: (start of an iteration)

there is no divisor d of n such that 1 < d < i

Initialization: at the beginning, i = 2, and therefore trivially there is no d
such that d > 1 and d < 2. (so, there is no divisor d such that 1 < d < 2).

Maintenance: start of the iteration i : the invariant is true (no divisors
1 < d < i); if loop continues, i does not divide n; therefore at the start of
iteration i + 1 the invariant is still true (no divisors 1 < d < i + 1)
Termination: Either the loop terminated early (and we found a divisor
d ≤
√
n) or we know that there are no such divisors and therefore the

number must be prime

Progress: i is increased until it surpasses
√
n

L.EIC (AED) Correctness and Loop Invariants 2024/2025 25 / 36

Checking if a number is prime
Why it is correct to stop when i × i > n

Theorem (that supports our argument): For all n, i ∈ Z+, if i divides n
then n/i divides n. Thus, n ∈ Z+ is a prime number iff n 6= 1 and there is
no integer i such that 2 ≤ i ≤

√
n and i divides n.

Pairing positive divisors for n=30 and for n=100

1 30 1 100

2 15 2 50

3 10 4 25

5 6 5 20

10

Thus, if i > n/i , or equivalently if i2 > n⇔ i >
√
n, then n/i has

been checked already (therefore, i has been checked implicitly).

L.EIC (AED) Correctness and Loop Invariants 2024/2025 26 / 36

Examples of proofs

Problem 1: Find the maximum of an array

Write a function PosMax(v , n) that finds the position of the first
occurrence of the maximum value of v [1], v [2], . . . , v [n] in v , for n ≥ 1.

Consider 3 cases:

(Case a) v is not sorted.

(Case b) We know that v [1] < v [2] < . . . < v [n].

(Case c) We know that v [1] ≤ v [2] ≤ . . . ≤ v [n].

L.EIC (AED) Correctness and Loop Invariants 2024/2025 27 / 36

Proof of correctness - Example 1b)

Problem 1b):

To find the position of the first occurrence of the maximum value of v , assuming
that v [1] < v [2] < . . . < v [n].

PosMaxSorted(v , n)
return n;

Correctness: Under the assumption that v [1] < v [2] < . . . < v [n], it is trivial to
conclude that n is the correct answer.

Time complexity: The running time does not depend on the input size. Later, we will

describe it as O(1).

L.EIC (AED) Correctness and Loop Invariants 2024/2025 28 / 36

Proof of correctness - Example 1a)

Problem 1a):

To find the position of the first occurrence of the maximum value of v , which can
be in any order.

PosMax(v , n)
1 imax ← 1;
2 i ← 2;
3 while i ≤ n do
4. if v [i] > v [imax] then
5. imax ← i ;
6. i ← i + 1;
7. return imax ;

Loop Invariant: At line 3, when we are testing the condition for the k-th time, with
k ≥ 1, we have 2 ≤ i = k + 1 ≤ n + 1, the index of the first occurrence
max(v [1], v [2] . . . v [k]) is imax , we have not analysed v [k + 1], . . . , v [n]. The value of n
does not change in the loop.

Termination: The loop ends with i = n + 1 and imax is the index of the first

occurrence of max(v [1], . . . , v [n]). So, imax has the correct value at line 7.

L.EIC (AED) Correctness and Loop Invariants 2024/2025 29 / 36

Proof of correctness - Example 1a)

How can we prove that the invariant is valid?

Loop Invariant: At line 3, when we are testing the condition for the k-th time,
with k ≥ 1, we have 2 ≤ i = k + 1 ≤ n + 1, the index of the first occurrence
max(v [1], v [2] . . . v [k]) is imax , we have not analysed v [k + 1], . . . , v [n]. The
value of n does not change in the loop.

Sketch of the Proof by induction on k

If we show conditions (1) and (2) then, by the induction principle, it follows that the
property is true for all k ≥ 1.

1 Initialization or Base case:

The property (invariant) holds for k = 1.

2 Maintenance or Induction step or Inheritance

For all k ≥ 1, if the property holds at iteration k then it holds at iteration k + 1.

L.EIC (AED) Correctness and Loop Invariants 2024/2025 30 / 36

Proof of correctness - Example 1a)

Loop Invariant: At line 3, when we are testing the condition for the k-th time, with

k ≥ 1, we have 2 ≤ i = k + 1 ≤ n + 1, the index of the first occurrence

max(v [1], v [2] . . . v [k]) is imax , we have not analysed v [k + 1], . . . , v [n]. The value of n

does not change in the loop.

Proof by induction on k

1 Initialization or Base case:
The property (invariant) holds for k = 1.

Indeed, the values of imax and i are 1 and 2, when we start the loop, and 2 ≤ i = k + 1 ≤ n + 1, if we assume n ≥ 1.

So, the value of imax is the index of max(v [1]), which is 1. It is true that we have not analysed v [2], . . . , v [n] yet.

L.EIC (AED) Correctness and Loop Invariants 2024/2025 31 / 36

Proof of correctness - Example 1a)

Loop Invariant: At line 3, when we are testing the condition for the k-th time, with

k ≥ 1, we have 2 ≤ i = k + 1 ≤ n + 1, the index of the first occurrence

max(v [1], v [2] . . . v [k]) is imax , we have not analysed v [k + 1], . . . , v [n], and n is

constant along the loop.

Proof by induction on k

1 Maintenance or Induction step or Inheritance

For all k ≥ 1, if the property holds at iteration k then it holds at iteration k + 1.

By the induction hypothesis, the property holds at iteration k. So, if we are testing the condition for the (k + 1)th time
then, when the iteration k started, we had i = k + 1 ≤ n, and imax contained the index of the first occurrence of
max(v [1], . . . , v [i − 1]) and v [i], . . . , v [n] had not been checked yet.

In iteration k, we changed imax to i , if v [i] > v [imax], which is correct because
v [i] > v [imax] = max(v [1], . . . , v [i − 1]). After this update, imax contains the index of the first occurrence of
max(v [1], . . . , v [i − 1], v [i]). If v [i] ≤ v [imax], we keep imax unchanged, which is correct as, by the hypothesis, imax
contains the index of the first occurrence of max(v [1], . . . , v [i − 1]), which is the same for
max(v [1], . . . , v [i − 1], v [i]).

In line 6, we increase i by 1. Thus, when we test the condition on line 3 for the (k + 1)th time, we have

2 ≤ i = (k + 1) + 1 ≤ n + 1 and the invariant holds at iteration k + 1.

L.EIC (AED) Correctness and Loop Invariants 2024/2025 32 / 36

Proof of correctness – Case 1c)

Problem 1c):

To find the position of the first occurrence of the maximum value of v , assuming
that v [1] ≤ v [2] ≤ . . . ≤ v [n].

How can we prove that the following function is correct?

PosMaxSorted(v , n)
1. i ← n − 1;
2. while i ≥ 1 ∧ v [i] = v [i + 1] do
3. i ← i − 1;
4. return i + 1;

Can we state a useful loop invariant?

By “useful” we mean that it helps us show that the function computes the correct
answer. . .

L.EIC (AED) Correctness and Loop Invariants 2024/2025 33 / 36

Proof of correctness – Case 1c)

Problem 1c):

To find the position of the first occurrence of the maximum value of v , assuming
that v [1] ≤ v [2] ≤ . . . ≤ v [n].

How can we prove that the following function is correct?

PosMaxSorted(v , n)
1. i ← n − 1;
2. while i ≥ 1 ∧ v [i] = v [i + 1] do
3. i ← i − 1;
4. return i + 1;

Loop Invariant: When we are testing the condition in line 2 for the k-th time, for
k ≥ 1, the value of i is n − k, we have not analysed v [1], . . . , v [i] yet and we know that
v [i + 1] = v [i + 2] = . . . = v [n] and i = n− k ≥ 0. The sequence in v [] has not changed.

Therefore, the loop terminates and i + 1 at line 4 is the correct answer. Why?
Note that, when the loop stops, either i = 0 or i ≥ 1 ∧ v [i] 6= v [i + 1]

L.EIC (AED) Correctness and Loop Invariants 2024/2025 34 / 36

Proof of correctness – Case 1c) (cont)

PosMaxSorted(v , n)
1. i ← n − 1;
2. while i ≥ 1 ∧ v [i] = v [i + 1] do
3. i ← i − 1;
4. return i + 1;

Indeed, the loop stops when either i = 0 or i ≥ 1 ∧ v [i] < v [i + 1].
(because v [i] ≤ v [i + 1] for every instance in case 1c))

The invariant says that v [i + 1] = v [i + 2] = . . . = v [n].

In line 4, either i = 0 or i ≥ 1 ∧ v [i] < v [i + 1]
The function returns the correct value, because, from the invariant,
we conclude that:

I if i = 0 then v [1] = v [2] = . . . = v [n]. The index of the first
occurrence of max(v [1], v [2], . . . , v [n]) is 1, which is i + 1.

I if i ≥ 1 then v [i] < v [i + 1] = v [i + 2] = . . . v [n]. So, the index is i + 1.

L.EIC (AED) Correctness and Loop Invariants 2024/2025 35 / 36

Final Remarks

Invariants capture the ”semanting meaning” of loops, the logic
and intuition behind them
Thinking about invariants and their properties they will help you
reason about a correct solution
Along the course sometimes we will refer to invariants to help you
understand how an algorithm works and why it is correct

Correctness is often not trivial to prove are there are many other
methodologies, but thinking about it and understanding a proof will
give you crucial insight

”If you want more effective programmers, you will discover that they
should not waste their time debugging, they should not introduce the
bugs to start with.” - Edsger Dijkstra

Presentation based on CLRS textbook. Not a formal representation of the

semantics, required for automated reasoning: e.g, Hoare logic, other notions, like

partial and total correctness, loop invariants and variants, . . .

L.EIC (AED) Correctness and Loop Invariants 2024/2025 36 / 36

