Complexity and Asymptotic Analysis

L.EIC

Algoritmos e Estruturas de Dados

2024/2025

P Ribeiro, AP Tomás

L.EIC (AED)

Complexity and Asymptotic Analysis

The Joy of Algorithms

"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing."

Francis Sullivan, The Joy of Algorithms, 2000

Algorithms + Data Structures = Program

A textbook by Niklaus Wirth, 1976

Algorithm: a well-defined computational procedure for solving a problem. It must **terminate after a finite number of steps**.

Correctness

It has to solve correctly **all instances** of the problem

Efficiency

The performance (**time** and **memory**) has to be adequate.

L.EIC (AED)

Complexity and Asymptotic Analysis

Efficient Algorithms

From textbook "Algorithms", by Jeff Erickson, chapter 12. https://jeffe.cs.illinois.edu/teaching/algorithms/

• A minimal requirement for an **algorithm** to be considered "efficient" is that its running time is bounded by a polynomial function of the input size: $O(n^c)$ for some constant c, where n is the size of the input.

(this kind of notation will be the focus of this class)

- Researchers recognized early on that not all problems can be solved this quickly, but had a hard time figuring out exactly which ones could and which ones couldn't.
- There are several so-called **NP-hard problems**, which most people believe cannot be solved in polynomial time, even though nobody can prove a super-polynomial lower bound.

Some NP-hard problems

To be addressed in Design of Algorithms (2nd semester)

• SAT: Given a CNF formula $\Phi(x_1, \ldots, x_n) = C_1 \wedge \ldots \wedge C_m$, is Φ satisfiable, i.e., is there a truth assignment that satisfies all clauses?

e.g., is $\Phi(p, q, r, s) = (\neg p \lor q \lor r) \land (\neg q \lor r \lor \neg s) \land (s \lor p) \land (\neg r \lor \neg q \lor p)$ satisfiable?

- Partition: Given a set S = {a₁, a₂,..., a_n} of n positive integers, is there a set A ⊂ S such that ∑_{x∈A} x = ∑_{y∈S∖A} x?
- Hamiltonean Cycle: Given an undirected graph G = (V, E), does G contain a cycle that visits all nodes exactly once?
- TSP (travelling salesperson problem): Given a complete weighted graph G = (V, E, d), with $d(e) \in \mathbb{Z}^+$, for all $e \in E$, and $k \in \mathbb{Z}^+$, is there a hamiltonean cycle γ with $d(\gamma) \leq k$? Optimization version asks for shortest hamiltonean cycle.
- Vertex Cover: Given an undirected graph G = (V, E) and k ∈ Z⁺, is there a subset C of V such that |C| ≤ k and each edge in V is incident to a vertex in C? Optimization version asks for the smallest vertex cover.

L.EIC (AED)

Complexity and Asymptotic Analysis

Analysis of Algorithms

Complexity and Asymptotic Analysis

Brute force: For many non-trivial problems, there is a natural **brute force search algorithm** that checks every possible solution.

- Typically takes 2^N time or worse for inputs of size N.
- Unacceptable in practice.

Brute-force for SAT:

Given a CNF formula Φ in *n* (boolean) variables, enumerate all truth assignments to check whether any of them satisfies all clauses. In the worst case, there are 2^n **truth assignments** to check.

Brute-force for Hamiltonean Cycle:

Given a graph G = (V, E), with |V| = n, check whether any permutation of Vdefines a cycle in G. In the worst case, there are $n! = n \times (n-1) \times \cdots \times 2 \times 1$ **permutations** to check.

$$\lim_{n\to\infty}\frac{n!}{2^n}=\infty, \text{ that is } n!\gg 2^n$$

Common Functions

Function	Name	Examples
1	constant	summing two numbers
log n	logarithmic	binary search, inserting in a heap
п	linear	find maximum value
n log n	linearithmic	sorting (ex: mergesort, heapsort)
n ²	quadratic	verifying all pairs, bubblesort
n ³	cubic	Floyd-Warshall
2 ⁿ	exponential	exhaustive search (ex: subsets)
<i>n</i> !	factorial	all permutations

n on the base \rightarrow **polynomial** function *n* on the exponent \rightarrow **exponencial** function

Asymptotic Growth

A practical view

If an operation takes 10^{-9} seconds...

	log n	n	n log n	n ²	n ³	2 ⁿ	<i>n</i> !
10	< 0.01s	< 0.01s	< 0.01s	< 0.01 <i>s</i>	< 0.01 <i>s</i>	< 0.01 <i>s</i>	< 0.01 <i>s</i>
20	< 0.01s	< 0.01s	< 0.01s	< 0.01 <i>s</i>	< 0.01 <i>s</i>	< 0.01s	77 years
30	< 0.01s	< 0.01s	< 0.01s	< 0.01 <i>s</i>	< 0.01 <i>s</i>	1.07 <i>s</i>	
40	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01 <i>s</i>	18.3 min	
50	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	13 days	
100	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	10 ¹³ years	
10 ³	< 0.01s	< 0.01s	< 0.01s	< 0.01s	1 <i>s</i>		
104	< 0.01s	< 0.01s	< 0.01s	0.1 <i>s</i>	16.7 min		
10 ⁵	< 0.01s	< 0.01s	< 0.01s	10 <i>s</i>	11 days		
106	< 0.01s	< 0.01s	0.02 <i>s</i>	16.7 min	31 years		
10 ⁷	< 0.01s	0.01 <i>s</i>	0.23 <i>s</i>	1.16 days			
10 ⁸	< 0.01s	0.1 <i>s</i>	2.66 <i>s</i>	115 days			
10 ⁹	< 0.01s	1 <i>s</i>	29.9 <i>s</i>	31 years			

An experience: - Permutations

• What is the execution time of a program that goes through all permutations?

(the following times are approximated) (what we want to show is **order of growth**)

- $\mathbf{n} \leq \mathbf{7}$: < 0.001s
- n = 8: 0.001s
- n = 9: 0.016s
- n = 10: 0.185s
- **n** = **11**: 2.204*s*

. . .

n = **12**: 28.460*s*

n = 20: 5000 years !

How many permutations per second? About 10^7

On computer speed

 Will a faster computer be of any help? No! If n = 20 → 5000 years, hypothetically:

- ▶ 10x faster would still take 500 years
- 5,000× would still take 1 year
- 1,000,000x faster would still take two days, but
 - n = 21 would take more than a month
 - n = 22 would take more than a year!
- The growth rate of the execution time is what matters!

Algorithmic performance vs Computer speed

A better algorithm on a slower computer **will always win** against a worst algorithm on a faster computer, for sufficiently large instances

Example: Evaluate a polynomial at a point

Compute the value of the polynomial $p(x) = \sum_{i=0}^{n} a_i x^i$ of degree *n*, at a point x, given the array of coefficients, the value of x and the degree n.

```
eval_pol1(a,x,n):
    res = a[0]
    for k = 1 to n do
        pot = x
        for j = 2 to k do
            pot = pot*x
        res = res + a[k]*pot
    return res
```

```
eval_pol2(a,x,n):
    res = a[0]
    pot = x
    for k = 1 to n do
        res = res + a[k]*pot
        pot = pot*x
    return res
```

A useful loop invariant: in the for k loop, res contains $\sum_{i=0}^{k-1} a[i]x^i$ immediately before the instruction res = res+a[k]*pot and pot contains x^k .

Time complexity: The number of computation steps is very different in the two functions, e.g., we have $\sum_{k=1}^{n} (1 + (k-1)) = n(n+1)/2$ products in eval_pol1(a,x,n) and just 2n in eval_pol2(a,x,n). $n(n+1)/2 \gg 2n$ if n is large

Comparing

n	2n	n(n+1)/2
1	2	1
2	4	3
3	6	6
4	8	10
5	10	15
6	12	21
7	14	28
:	:	:
50	100	1275
100	200	5050
200	400	20100
400	800	80200
1000	2000	500500

Example: evaluate a polynomial by Horner's method

Horner's method

Performs only *n* products to compute $p(x) = \sum_{k=0}^{n} a_k x^k$, given *x*.

```
eval_pol_Horner(a,x,n):
    res = a[n]
    for k = n-1 to 0 with step -1 do
        res = res*x + a[k]
        return res
```

Idea: Computes $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$ incrementally, starting from a_n .

```
a_n 
a_n x + a_{n-1} 
(a_n x + a_{n-1})x + a_{n-2} 
\vdots 
((((((((a_n x + a_{n-1})x + a_{n-2})x + a_{n-3})x + \cdots)x + a_3)x + a_2)x + a_1)x + a_0 = p(x)
```

Polynomial-time complexity

Desirable scaling property

When the input size doubles, the algorithm should only slow down by some constant factor C.

Polynomial time algorithm

There exists constants a > 0 and b > 0 such that on every input of size N, its running time is bounded by aN^b primitive computational steps.

• If
$$T(N) = aN$$
 then $T(2N)/T(N) = 2$

- If $T(N) = aN^2$ then $T(2N)/T(N) = 2^2 = 4$
- If $T(N) = aN^3$ then $T(2N)/T(N) = 2^3 = 8$

• If
$$T(N) = aN^b$$
 then $T(2N)/T(N) = 2^b$

Many poly-time algorithms have both small constants and smallexponents.(This course unit will address algorithms of this kind mainly)

L.EIC (AED)

2024/2025 13 / 56

Why worry?

• What can we do with execution time/memory analysis?

Prediction

How much time/space does an algorithm need to solve a problem? How does it scale? Can we provide guarantees on its running time/memory?

Comparison

Is an algorithm A better than an algorithm B? Fundamentally, what is the best we can possibly do on a certain problem?

- We will study a methodology to answer these questions
- We will focus mainly on execution time analysis

Random Access Machine (RAM)

- We need a **model** that is **generic** and **independent** from the language and the machine.
- We will consider a Random Access Machine (RAM)
 - ▶ Each simple operation (ex: +, -, ←, If) takes 1 step
 - Loops and procedures, for example, are not simple instructions!
 - Each access to memory takes also 1 step
- We can measure execution time by... counting the number of steps as a function of the input size *n*: *T*(*n*).
- Operations are **simplified**, but this is useful

E.g.: summing two integers does not cost the same as dividing two reals, but we will see that on a global vision, these specific values are not important

Random Access Machine (RAM)

A counting example

A simple program

```
int count = 0;
for (int i=0; i<n; i++)
    if (v[i] == 0) count++
```

Let's count the number of simple operations:

Variable declarations	2	
Assignments:	2	
"Less than" comparisons	n+1	
"Equality" comparisons:	n	
Array access	n	
Increment	between n and $2n$	

Random Access Machine (RAM)

A counting example

A simple program

```
int count = 0;
for (int i=0; i<n; i++)
    if (v[i] == 0) count++;
```

Total number of steps on the **worst** case: T(n) = 2 + 2 + (n + 1) + n + n + 2n = 5 + 5n

Total number of steps on the **best** case: T(n) = 2 + 2 + (n+1) + n + n + n = 5 + 4n

Types of algorithm analysis

Worst Case analysis: (the most common)

• T(n) = maximum amount of time for any input of size n

Average Case analysis: (sometimes)

- T(n) = average time on all inputs of size n
- Implies knowing the statistical distribution of the inputs

Best Case analysis: ("deceiving")

 It's almost like "cheating" with an algorithm that is fast just for some of the inputs

Types of algorithm analysis

Complexity and Asymptotic Analysis

We need a mathematical tool to compare functions

On algorithm analysis we use Asymptotic Analysis:

- "Mathematically": studying the behaviour of limits (as $n o \infty$)
- Computer Science: studying the behaviour for arbitrary large input or

"describing" growth rate (for the worst case)

- A very specific **notation** is used: $\mathcal{O}, \Omega, \Theta$ (and also o, ω)
- It allows to simplify expressions like the one before and to focus on orders of growth

Definitions

$f(n)\in \mathcal{O}(g(n))$

It means that $c \times g(n)$ is an **upper bound** of f(n) (from a certain n)

$\mathsf{f}(\mathsf{n})\in \mathbf{\Omega}(\mathbf{g}(\mathsf{n}))$

It means that $c \times g(n)$ is a lower bound of f(n) (from a certain n)

$f(n)\in \Theta(\mathbf{g}(n))$

It means that $c_1 \times g(n)$ is a **lower bound** of f(n) and $c_2 \times g(n)$ is an **upper bound** of f(n) (from a certain n)

where $c \in \mathbb{R}^+$, $c_1 \in \mathbb{R}^+$ and $c_2 \in \mathbb{R}^+$ are **constants**.

A graphical depiction

The definitions imply an n from which the function is bounded. The small values of n do not "matter".

Note: Some literature uses = instead of \in Example: f(n) = O(g(n)) is the same as $f(n) \in O(g(n))$

Complexity and Asymptotic Analysis

Formalization

- $f(n) \in \mathcal{O}(g(n))$ if there exist positive constants $n_0 \in \mathbb{Z}^+$ and $c \in \mathbb{R}^+$ such that $f(n) \leq c \times g(n)$ for all $n \geq n_0$
- $f(n) \in \Omega(g(n))$ if there exist positive constants $n_0 \in \mathbb{Z}^+$ and $c \in \mathbb{R}^+$ such that $f(n) \ge c \times g(n)$ for all $n \ge n_0$
- $f(n) \in \Theta(g(n))$ if there exist positive constants $n_0 \in \mathbb{Z}^+$, $c_1 \in \mathbb{R}^+$ and $c_2 \in \mathbb{R}^+$ such that $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ for all $n \ge n_0$

O(g(n)), $\Omega(g(n))$ and $\Theta(g(n))$ denote sets of functions in natural numbers that consist of all functions $\mathbf{f} : \mathbb{N} \to \mathbb{R}_0^+$ related to the function $\mathbf{g} : \mathbb{N} \to \mathbb{R}_0^+$ by the corresponding condition.

Remark (abuse of notation): in these definitions f(n) and g(n) are used with two meanings: $f(n) \leq cg(n)$ refers to the images of n by f and by g, whereas in $f(n) \in \mathcal{O}(g(n))$, we refer to the functions $f : \mathbb{N} \to \mathbb{R}^+$ and $g : \mathbb{N} \to \mathbb{R}^+$.

Complexity and Asymptotic Analysis

Formalization

- $f(n) \in \mathcal{O}(g(n))$ if there exist positive constants $n_0 \in \mathbb{Z}^+$ and $c \in \mathbb{R}^+$ such that $f(n) \leq c \times g(n)$ for all $n \geq n_0$
- $f(n) \in \Omega(g(n))$ if there exist positive constants $n_0 \in \mathbb{Z}^+$ and $c \in \mathbb{R}^+$ such that $f(n) \ge c \times g(n)$ for all $n \ge n_0$
- $f(n) \in \Theta(g(n))$ if there exist positive constants $n_0 \in \mathbb{Z}^+$, $c_1 \in \mathbb{R}^+$ and $c_2 \in \mathbb{R}^+$ such that $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ for all $n \ge n_0$

A few consequences:

- ► $f(n) \in \Theta(g(n)) \longleftrightarrow f(n) \in \mathbf{O}(g(n))$ and $f(n) \in \Omega(g(n))$
- $f(n) \in \Theta(g(n)) \longleftrightarrow g(n) \in \Theta(f(n))$
- $f(n) \in \mathbf{O}(g(n)) \longleftrightarrow g(n) \in \mathbf{\Omega}(f(n))$

A few practical rules

- Multiplying by a constant does not affect the behavior: $c \times f(n) \in \Theta(f(n))$, for $c \in \mathbb{R}^+$ $99 \times n^2 \in \Theta(n^2)$ $\Theta(500n^2) = \Theta(n^2) = \Theta(1/10000n^2)$
- On a polynomial of the form $a_x n^x + a_{x-1}n^{x-1} + \ldots + a_2n^2 + a_1n + a_0$ we can focus on the term with the **largest exponent**: $3n^3 - 5n^2 + 100 \in \Theta(n^3)$ $6n^4 - 20^2 \in \Theta(n^4)$ $0.8n + 224 \in \Theta(n)$
- On a sum/subtraction we can focus on the **dominant** term: $2^{n} + 6n^{3} \in \Theta(2^{n})$ $n! - 3n^{2} \in \Theta(n!)$ $n \log n + 3n^{2} \in \Theta(n^{2})$

Using the definition

• 99 ×
$$n^2 \in \Theta(n^2)$$

- $n^2 \le 99n^2 \le 99n^2$, for all $n \ge 1$.
- ▶ Therefore, there exist $c_1, c_2 \in \mathbb{R}^+$ and $n_0 \in \mathbb{Z}^+$ such that $c_1 n^2 \leq 99n^2 \leq c_2 n^2$, for all $n \geq n_0$.
- We can take $c_1 = 1$, $c_2 = 99$ and $n_0 = 1$.

• $3n^3 - 5n^2 + 100 \in \Theta(n^3)$ because

- $3n^3 5n^2 + 100 \ge 2n^3$, for all $n \ge 5$, since $n^3 5n^2 \ge 0$ for $n \ge 5$
- ► $3n^3 5n^2 + 100 \le 3n^3 + 5n^2 + 100 \le 3n^3 + 5n^3 + 100n^3 = 108n^3$, for all $n \ge 1$.
- ▶ Therefore, there exist $c_1, c_2 \in \mathbb{R}^+$ and $n_0 \in \mathbb{Z}^+$ such that $c_1 n^3 \leq 3n^3 5n^2 + 100 \leq c_2 n^3$, for all $n \geq n_0$.
- We can take $c_1 = 2$, $c_2 = 108$ and $n_0 = 5$.

Questions?

• $\log_2(n) \in \mathcal{O}(n)$?	Yes
• $\log_2(n) \notin \Omega(n)$?	Yes
• $\mathcal{O}(n) \subseteq \mathcal{O}(n^2)$?	Yes
• $\mathcal{O}(n) \subset \mathcal{O}(n^2)$?	Yes
• $\sqrt{n} \in \Omega(n)$?	No
• $\Omega(n \log_2 n) \subset \Omega(n)$?	Yes
• $\Theta(\log_a n) = \Theta(\log_b n)$, para $a, b \in \mathbb{R}^+$, $a \neq b$,	<i>a</i> , <i>b</i> > 1? Yes
• $O(2^n) = O(3^n)?$	No
• $\mathcal{O}(2^n)\subset \mathcal{O}(3^n)?$	Yes
• $\Theta(2n) = \Theta(3n)?$	Yes
• $f(n) \in \Omega(1)$, for all $f : \mathbb{N} \to \mathbb{R}^+$? (Therefore, G	$\mathcal{O}(1) = \Theta(1))$ Yes

Exercises

True or false? Justify.

- $50n^3 2n + 100 \in \Theta(\frac{1}{100}n^3)$
- $3n^2 n + 10 \in \Omega(20n^2)$
- $10000n^3 2n^2 + 5 \in \Theta(50000n^3 + 4n^2 + 1000)$
- $\Omega(1000 + \log_2 n) \cap \mathcal{O}(\frac{1}{20000} \log_2 n) = \{ \}$
- $\mathit{cn}^4 \in \mathcal{O}(\mathit{n}^3)$, for some constant $\mathit{c} \in \mathbb{R}^+$
- $n \notin \Omega(2^{10} \log_2 n)$ because $n < 2^{10} \log_2(n)$, for all $1 < n \le 2^{13}$ (actually for $1 < n \le 14115$)
- $\Omega(n^4) \cap \Theta(n^2 \log_2 n) = \{\}$
- $\Omega(n \log_2 n) \subseteq \mathcal{O}(n^2)$
- $\Theta(n^2) \subset \Omega(n \log_2 n)$

Dominance

When is a function **better** than another?

- If we want to minimize time, "smaller" functions are better
- A function dominates another one if as *n* grows it keeps getting infinitely larger
- Mathematically: $f(n) \gg g(n)$ if $\lim_{n \to \infty} g(n)/f(n) = 0$

Dominance Relations

$$n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \sqrt{n} \gg \log n \gg 1$$

$$\mathcal{O}(1) \subset \mathcal{O}(\log n) \subset \mathcal{O}(n) \subset \mathcal{O}(n\log n) \subset \mathcal{O}(n^2) \subset \mathcal{O}(n^3) \subset \mathcal{O}(2^n) \subset \mathcal{O}(n!)$$

 $\Omega(1) \supset \Omega(\log n) \supset \Omega(n) \supset \Omega(n \log n) \supset \Omega(n^2) \supset \Omega(n^3) \supset \Omega(2^n) \supset \Omega(n!)$

Predicting the execution time

Pre-requirements:

- An implementation with time complexity given by f(n)
- A (small) test case with input of size n1
- The running time of the program on that input: $time(n_1)$

We want to **estimate** the running time for a (similar) input of size n_2 . **How to do it?**

Estimating the execution time $f(n_2)/f(n_1)$ is the growth rate of the function (from n_1 to n_2) time(n_2) $\approx f(n_2)/f(n_1) \times time(n_1)$

(here, pprox means "approximately equal to"; we can use = instead)

Predicting the execution time

An example

• Imagine a program with time complexity $\Theta(n^2)$ that takes 1 second for an input of size 5 000. What is my estimation for the execution time for an input of size 10 000?

$$f(n) = n^{2}$$

$$n_{1} = 5\,000$$

$$time(n_{1}) = 1$$

$$n_{2} = 10\,000$$

$$time(n_{2}) = f(n_{2})/f(n_{1}) \times time(n_{1}) =$$

$$= 10\,000^2/5\,000^2 imes 1 =$$
 4 seconds

Predicting the execution time

About the growth rate

Let's see what happens when we **double the input** for some of the more common functions (independently of the machine used!):

 $time(2n) = f(2n)/f(n) \times time(n)$

•
$$\mathbf{n} : 2n/n = 2$$
. The time is the double!
• $\mathbf{n}^2 : (2n)^2/n^2 = 4n^2/n^2 = 4$. Time increases $4x!$
• $\mathbf{n}^3 : (2n)^3/n^3 = 8n^3/n^3 = 8$. Time increases $8x!$

•
$$2^n : 2^{2n}/2^n = 2^{2n-n} = 2^n$$
. Time grows 2^n times!
Example: If $n = 5$, the time for $n = 10$ will be $32x$ more!
Example: If $n = 10$, the time for $n = 20$ will be $1024x$ more!

•
$$\log_2(\mathbf{n}) : \log_2(2n) / \log_2(n)$$
. It increases $\frac{\log_2(2n)}{\log_2(n)}$ vezes!
Example: If $n = 5$, the time for $n = 10$ will be **1.43x** more!
Example: If $n = 10$, the time for $n = 20$ will be **1.3x** more!

Asymptotic Analysis

A few more examples

- A program has two pieces of code A and B, executed one after the other, with A running in Θ(n log n) and B in Θ(n²). The program runs in Θ(n²), because n² ≫ n log n
- A program calls n times a function Θ(log n), and then it calls again n times another function Θ(log n)
 The program runs in Θ(n log n)
- A program has 5 loops, all called sequentially, each one of them running in Θ(n)

The program runs in $\Theta(n)$

 A program P₁ has execution time proportional to 100 × n log n. Another program P₂ runs in 2 × n². Which one is more efficient?

 P_1 is more efficient because $n^2 \gg n \log n$. However, for a small n, P_2 is quicker and it might make sense to have a program that calls P_1 or P_2 depending on n.

L.EIC (AED)

Analyzing the complexity of programs

Let's see more concrete examples:

- Case 1 Loops (and summations)
- Case 2 Recursive Functions (and recurrences) Case 2 will be covered later (in the classes about sorting algorithms)

```
int count = 0;
for (int i=0; i<1000; i++)
  for (int j=i; j<1000; j++)
      count++;
count << count << endl;</pre>
```

(the temporal complexity is proportional to the value of *count* at the end)

What does this program write?

 $1000 + 999 + 998 + 997 + \ldots + 2 + 1$

Arithmetic progression: a sequence of numbers such that the difference d between the consecutive terms is constant. We will call a_1 to the first term.

•
$$1, 2, 3, 4, 5, \ldots$$
 $(d = 1, a_1 = 1)$

•
$$3, 5, 7, 9, 11, \dots, (d = 2, a_1 = 3)$$

How to calculate the summation of an arithmetic progression?

 $1+2+3+4+5+6+7+8 = (1+8)+(2+7)+(3+6)+(4+5) = 4\times 9$

Summation from a_p to a_q

$$S(p,q) = \sum_{i=p}^{q} a_i = \frac{(q-p+1)\times(a_p+a_q)}{2}$$

Summation of the first *n* terms

$$S_n = \sum_{i=1}^n a_i = \frac{n \times (a_1 + a_n)}{2}$$

L.EIC (AED)

Complexity and Asymptotic Analysis

2024/2025 36 / 56

```
int count = 0;
for (int i=0; i<1000; i++)
  for (int j=i; j<1000; j++)
      count++;
cout << count << endl;</pre>
```

What does this program write?

 $1000 + 999 + 998 + 997 + \ldots + 2 + 1$

It writes $S_{1000} = \frac{1000 \times (1000 + 1)}{2} = 500500$

```
int count = 0;
for (int i=0; i<n; i++)
    for (int j=i; j<n; j++)
        count++;
    cout << count << endl;</pre>
```

What is the execution time?

It is going to execute S_n increments: $S_n = \sum_{i=1}^n a_i = \frac{n \times (1+n)}{2} = \frac{n+n^2}{2} = \frac{1}{2}n^2 + \frac{1}{2}n.$

It executes $\Theta(n^2)$ steps

L.EIC (AED)

If you want to know more about interesting summations on this context, take a look at *Appendix A* of the *Introduction to Algorithms* book.

Note that *c* cycles do not imply $\Theta(n^c)$!

for (int i=0; i<n; i++)</pre> **for** (**int** j=1; j<5; j++) $\Theta(n)$ (Two loops but not $\Theta(n^2)$) for (int i=1; i<=n; i++)</pre> for (int j=1; j<=i*i; j++)</pre> $\Theta(n^3)$ $1^2 + 2^2 + 3^2 + \ldots + n^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$ i = n: while (i>0) i = i/2; $\Theta(\log n)$ each time *i* becomes reduced to a half $(n/2^p < 1 \text{ iff } p > \log_2 n)$

Complexity and Asymptotic Analysis

2024/2025

39 / 56

First occurrence of the maximum of $v[k], v[k+1], \ldots, v[n]$

Write a function POSMAX(v, k, n) that returns the index of the first ocurrence of the maximum element in the segment $v[k], v[k+1], \ldots, v[n]$ of the array v. Assume that $k \leq n$ and that the segment is within v.

POSMAX(v, k, n)Running times (cost model) c_1 : assign value of a variable to another one 1. $pmax \leftarrow k$: 2. $i \leftarrow k+1$; c_2 : assign value of expression to a variable 3. while *i* < *n* do c3: test the condition and transfer control 4. if v[i] > v[pmax] then c4: access, test and transfer control 5. $pmax \leftarrow i;$ C_1 6. $i \leftarrow i + 1$: c_6 : increment the value of a variable 7. return pmax; c_7 : return from the function with a value

- Executes instructions 1, 2 e 7 a single time. Executes the test in line 3 for i = k + 1, ..., n, n + 1, that is, (n + 1) (k + 1) + 1 = n k + 1 times.
- Executes line 4 for i = k + 1,..., n, that is n (k + 1) + 1 = n k times. Similar to instruction 6.
- What about for instruction 5? It depends on the instance.
 - ▶ best case: does not execute instr. 5. It happens when v[k] is strictly greater than the remaining elements.
 - ► worst case: v[k] < v[k+1] < ... < v[n-1] < v[n] executes n k times.</p>

POSMAX(v, k, n) c_1 : as:1. $pmax \leftarrow k$; c_1 : as:2. $i \leftarrow k + 1$; c_2 : as:3.while $i \le n$ do c_3 : tes:4.if v[i] > v[pmax] then c_4 : ac5. $pmax \leftarrow i$; c_1 6. $i \leftarrow i + 1$; c_6 : inc7.return pmax; c_7 : return pmax;

Running times (cost model)

- c1: assign value of a variable to another one
 c2: assign value of expression to a variable
 c3: test the condition and transfer control
 c4: access, test and transfer control
 c1
 c6: increment the value of a variable
 - c_7 : return from the function with a value

• Best case:
$$T(n,k) = c_1 + c_2 + c_7 + (n-k+1)c_3 + (n-k)(c_4 + c_6).$$

• Worst case: $T(n,k) = c_1 + c_2 + c_7 + (n-k+1)c_3 + (n-k)(c_4 + c_6 + c_1)$.

For all instances, it holds

$$\underbrace{c_1 + c_2 + c_7 + c_3 + (c_3 + c_4 + c_6)(n-k)}_{\text{best case}} \le T(n,k) \le \underbrace{c_1 + c_2 + c_7 + c_3 + (c_3 + c_4 + c_6 + c_1)(n-k)}_{\text{worst case}}$$

For all instances, it holds

$$\underbrace{c_1 + c_2 + c_7 + c_3 + (c_3 + c_4 + c_6)(n - k)}_{\text{best case}} \le T(n, k) \le \underbrace{c_1 + c_2 + c_7 + c_3 + (c_3 + c_4 + c_6 + c_1)(n - k)}_{\text{worst case}}$$

if we define $a = \min_t c_t$ and $b = \max_t c_t$, we conclude that

$$4a+3a(n-k)\leq T(n,k)\leq 4b+4b(n-k),$$

and

$$3a(n-k+1) \le 4a+3a(n-k) \le T(n,k) \le 4b+4b(n-k) = 4b(n-k+1).$$

There exist constants $c', c'' \in \mathbb{R}^+$ such that $c'(n-k+1) \leq T(n,k) \leq c''(n-k+1)$, namely c' = 3a and c'' = 4b.

This means that $T(n, k) \in \Theta(n - k + 1)$, that is T(n, k) is **linear** in the length of the segment [k, n] of v that will be analysed when we call POSMAX(v, k, n).

Let N = n - k + 1 be the number of elements in the segment [k, n] of v that will be analysed when we call POSMAX(v, k, n). We saw that

• there exists $c' \in \mathbb{R}^+$ such that $T(N) \ge c'N$, for all $N \ge 1$, i.e., $T(N) \in \Omega(N)$.

T(N) is at least linear in N

- there exists $c'' \in \mathbb{R}^+$ such that $T(N) \leq c''N$, for all $N \geq 1$, i.e., $T(N) \in O(N)$. T(N) is at most linear in N
- there exist $c', c'' \in \mathbb{R}^+$ such that $c'N \leq T(N) \leq c''T(N)$, for all $N \geq 1$, i.e., $T(N) \in \Theta(N)$.

T(N) is exactly linear in N

Example: Time complexity of PosMaxSorted

To find the position of the first occurrence of the maximum value of v, assuming that $v[0] \le v[1] \le v[2] \le \ldots \le v[n-1]$.

```
int posMaxSorted(int v[],int n) {
    int i = n-2;
    while (i >= 0 && v[i] == v[i+1])
        i--;
    return i+1;
```

Best case: The maximum occurs only once. Time complexity: $\Theta(1)$ Worst case: All elements are equal. Time complexity: $\Theta(n)$

Conclusion: the time complexity of posMaxSorted(v,n) is O(n).

Questions? Is there a more efficient algorithm for the problem, e.g., whose running time is $O(\log n)$? (Yes! stay tuned)

L.EIC (AED)

Complexity and Asymptotic Analysis

Divide and Conquer

This topic will be covered later, when we talk about sorting algorithms

We are often interested in algorithms that are expressed in a recursive way

Many of these algorithms follow the divide and conquer strategy:

Divide and Conquer

Divide the problem in a set of subproblems which are smaller instances of the same problem

Conquer the subproblems solving them recursively. If the problem is small enough, solve it directly.

Combine the solutions of the smaller subproblems on a solution for the original problem

We now describe the MergeSort algorithm for sorting an array of size n

MergeSort

Divide: partition the initial array in two halves

Conquer: recursively sort each half. If we only have one number, it is sorted.

Combine: merge the two sorted halves in a final sorted array

Divide and Conquer MergeSort

What is the **execution time** of this algorithm?

- D(n) Time to partition an array of size *n* in two halves
- M(n) Time to merge two sorted arrays of size n
- T(n) Time for a MergeSort on an array of size n

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ D(n) + 2T(n/2) + M(n) & \text{if } n > 1 \end{cases}$$

In practice, we are ignoring certain details, but it suffices (ex: when n is odd, the size of subproblem is not exactly n/2)

Divide and Conquer

MergeSort

- **D**(**n**) Time to partition an array of size *n* in two halves
- M(n) Time to merge two sorted arrays of size n
- T(n) Time for a MergeSort on an array of size n

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ D(n) + 2T(n/2) + M(n) & \text{if } n > 1 \end{cases}$$

becomes

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

How to solve this recurrence?

(for a cleaner explanation we will assume $n = 2^k$, but the results holds for any n)

L.EIC (AED)

Complexity and Asymptotic Analysis

Divide and Conquer

MergeSort

Let's draw the recursion tree:

Summing everything we get that **MergeSort** is $\Theta(n \log_2 n)$

L.EIC (AED)

Complexity and Asymptotic Analysis

Divide and Conquer MaxD&C

A recursive algorithm is not always linearithmic!

Let's see another example. Imagine that you want to compute the **maximum** of an array of size *n*.

A simple **linear search** would be enough, but let's design a divide and conquer algorithm.

Computing the maximum

Divide: partition the initial array in two halves

Conquer: recursively compute the maximum in each half. If we only have one number, it is the maximum

Combine: compare the maximum of each half and keep the largest one

What is the execution time of this algorithm?

To simplify, let's again admit that *n* is a power of 2. (the results are similar in their essence for other cases)

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1\\ 2T(n/2) + \Theta(1) & \text{se } n > 1 \end{cases}$$

How does this differ from the MergeSort recurrence? How to **solve** it?

Divide and Conquer MaxD&C

Recursion

complexity

Solving general recurrences is out of the scope of this course, but the most common recursive algrithms fall on **one of three cases**:

- The time is (uniformly) **distributed** along the recursion tree (e.g. mergesort)
- The time is dominated by the **last level** of the recursion (e.g. maxD&C)
- The time is dominated by the **top level** of the recursion (e.g. naive matrix multiplication)

(to know more take a look at the Master Theorem)

Complexity and Asymptotic Analysis

It is common to assume that $T(1) = \Theta(1)$. In these cases we can simply write T(n) to describe a recurrence.

• MergeSort:
$$T(n) = 2T(n/2) + \Theta(n)$$

• MaxD&C:
$$T(n) = 2T(n/2) + \Theta(1)$$

Divide and Conquer

More recurrences

Sometimes we have an algorithm that reduces the problem to a single subproblem.

In this case we can say we use decrease and conquer

• Binary Search:

On a sorted array of size *n*, compare with the middle element and continue the search on one half $T(n) = T(n/2) + \Theta(1) \left[\Theta(\log n)\right]$

 Max with "tail recursion": On an array of size n, recursively find the maxim of the entire array except the first element and then compare with that first element T(n) = T(n-1) + Θ(1) [Θ(n)]