
Complexity and Asymptotic Analysis

L.EIC

Algoritmos e Estruturas de Dados

2024/2025

P Ribeiro, AP Tomás

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 1 / 56

The Joy of Algorithms

“For me, great algorithms are the poetry of computation. Just like verse, they can be
terse, allusive, dense and even mysterious. But once unlocked, they cast a brilliant
new light on some aspect of computing.”

Francis Sullivan, The Joy of Algorithms, 2000

Algorithms + Data Structures = Program
A textbook by Niklaus Wirth, 1976

Algorithm: a well-defined computational procedure for solving a problem.
It must terminate after a finite number of steps.

Correctness

It has to solve correctly all
instances of the problem

Efficiency

The performance (time and
memory) has to be adequate.

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 2 / 56

Efficient Algorithms

From textbook “Algorithms”, by Jeff Erickson, chapter 12.
https://jeffe.cs.illinois.edu/teaching/algorithms/

A minimal requirement for an algorithm to be considered “efficient” is
that its running time is bounded by a polynomial function of the input size:

O(nc) for some constant c , where n is the size of the input.

(this kind of notation will be the focus of this class)

Researchers recognized early on that not all problems can be solved this
quickly, but had a hard time figuring out exactly which ones could and which
ones couldn’t.

There are several so-called NP-hard problems , which most people believe
cannot be solved in polynomial time, even though nobody can prove a
super-polynomial lower bound.

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 3 / 56

https://jeffe.cs.illinois.edu/teaching/algorithms/

Some NP-hard problems
To be addressed in Design of Algorithms (2nd semester)

SAT: Given a CNF formula Φ(x1, . . . , xn) = C1 ∧ . . . ∧ Cm, is Φ satisfiable,
i.e., is there a truth assignment that satisfies all clauses?

e.g., is Φ(p, q, r, s) = (¬p ∨ q ∨ r) ∧ (¬q ∨ r ∨ ¬s) ∧ (s ∨ p) ∧ (¬r ∨ ¬q ∨ p) satisfiable?

Partition: Given a set S = {a1, a2, . . . , an} of n positive integers, is there a
set A ⊂ S such that

∑
x∈A x =

∑
y∈S\A x?

Hamiltonean Cycle: Given an undirected graph G = (V ,E), does G
contain a cycle that visits all nodes exactly once?

TSP (travelling salesperson problem): Given a complete weighted graph
G = (V ,E , d), with d(e) ∈ Z+, for all e ∈ E , and k ∈ Z+, is there a
hamiltonean cycle γ with d(γ) ≤ k? Optimization version asks for shortest hamiltonean cycle.

Vertex Cover: Given an undirected graph G = (V ,E) and k ∈ Z+, is there
a subset C of V such that |C | ≤ k and each edge in V is incident to a
vertex in C? Optimization version asks for the smallest vertex cover.

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 4 / 56

Analysis of Algorithms
Complexity and Asymptotic Analysis

Brute force: For many non-trivial problems, there is a natural brute
force search algorithm that checks every possible solution.

Typically takes 2N time or worse for inputs of size N.

Unacceptable in practice.

Brute-force for SAT:

Given a CNF formula Φ in n
(boolean) variables, enumerate
all truth assignments to check
whether any of them satisfies all
clauses. In the worst case, there
are 2n truth assignments to
check.

Brute-force for Hamiltonean Cycle:

Given a graph G = (V ,E), with |V | = n,
check whether any permutation of V
defines a cycle in G . In the worst case,
there are n! = n × (n − 1)× · · · × 2× 1
permutations to check.

lim
n→∞

n!

2n
=∞, that is n!� 2n

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 5 / 56

Asymptotic Notation
Common Functions

Function Name Examples

1 constant summing two numbers
log n logarithmic binary search, inserting in a heap
n linear find maximum value

n log n linearithmic sorting (ex: mergesort, heapsort)
n2 quadratic verifying all pairs, bubblesort
n3 cubic Floyd-Warshall
2n exponential exhaustive search (ex: subsets)
n! factorial all permutations

n on the base → polynomial function
n on the exponent → exponencial function

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 6 / 56

Asymptotic Growth
A practical view

If an operation takes 10−9 seconds...

log n n n log n n2 n3 2n n!
10 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s

20 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 77 years
30 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 1.07s
40 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 18.3 min
50 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 13 days
100 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 1013years
103

< 0.01s < 0.01s < 0.01s < 0.01s 1s
104

< 0.01s < 0.01s < 0.01s 0.1s 16.7 min
105

< 0.01s < 0.01s < 0.01s 10s 11 days
106

< 0.01s < 0.01s 0.02s 16.7 min 31 years
107

< 0.01s 0.01s 0.23s 1.16 days
108

< 0.01s 0.1s 2.66s 115 days
109

< 0.01s 1s 29.9s 31 years

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 7 / 56

An experience: - Permutations

What is the execution time of a program that goes through all
permutations?
(the following times are approximated)
(what we want to show is order of growth)

n ≤ 7: < 0.001s
n = 8: 0.001s
n = 9: 0.016s
n = 10: 0.185s
n = 11: 2.204s
n = 12: 28.460s
. . .
n = 20: 5000 years !

How many permutations per second?
About 107

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 8 / 56

On computer speed

Will a faster computer be of any help? No!
If n = 20→ 5000 years, hypothetically:

I 10x faster would still take 500 years
I 5,000x would still take 1 year
I 1,000,000x faster would still take two days, but

n = 21 would take more than a month
n = 22 would take more than a year!

The growth rate of the execution time is what matters!

Algorithmic performance vs Computer speed

A better algorithm on a slower computer will always win against a worst
algorithm on a faster computer, for sufficiently large instances

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 9 / 56

Example: Evaluate a polynomial at a point

Compute the value of the polynomial p(x) =
∑n

i=0 aix
i of degree n, at a

point x , given the array of coefficients, the value of x and the degree n.

eval_pol1(a,x,n):

res = a[0]

for k = 1 to n do

pot = x

for j = 2 to k do

pot = pot*x

res = res + a[k]*pot

return res

eval_pol2(a,x,n):

res = a[0]

pot = x

for k = 1 to n do

res = res + a[k]*pot

pot = pot*x

return res

A useful loop invariant: in the for k loop, res contains
∑k−1

i=0 a[i]x i immediately
before the instruction res = res+a[k]*pot and pot contains xk .

Time complexity: The number of computation steps is very different in the two

functions, e.g., we have
∑n

k=1(1 + (k − 1)) = n(n + 1)/2 products in

eval_pol1(a,x,n) and just 2n in eval_pol2(a,x,n). n(n + 1)/2� 2n if n is large

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 10 / 56

Comparing

n 2n n(n+1)/2

1 2 1
2 4 3
3 6 6
4 8 10
5 10 15
6 12 21
7 14 28
...

...
...

50 100 1275
100 200 5050
200 400 20100
400 800 80200

1000 2000 500500

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 11 / 56

Example: evaluate a polynomial by Horner’s method

Horner’s method

Performs only n products to compute p(x) =
∑n

k=0 akx
k , given x .

eval_pol_Horner(a,x,n):

res = a[n]

for k = n-1 to 0 with step -1 do

res = res*x + a[k]

return res

Idea: Computes p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x + a0 incrementally,

starting from an.

an
anx + an−1

(anx + an−1)x + an−2

...
(((((((anx + an−1)x + an−2)x + an−3)x + · · ·)x + a3)x + a2)x + a1)x + a0 = p(x)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 12 / 56

Polynomial-time complexity

Desirable scaling property

When the input size doubles, the algorithm should only slow down by some
constant factor C .

Polynomial time algorithm

There exists constants a > 0 and b > 0 such that on every input of size N,
its running time is bounded by aNb primitive computational steps.

If T (N) = aN then T (2N)/T (N) = 2

If T (N) = aN2 then T (2N)/T (N) = 22 = 4

If T (N) = aN3 then T (2N)/T (N) = 23 = 8

If T (N) = aNb then T (2N)/T (N) = 2b

Many poly-time algorithms have both small constants and small
exponents. (This course unit will address algorithms of this kind mainly)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 13 / 56

Why worry?

What can we do with execution time/memory analysis?

Prediction

How much time/space does an algorithm need to solve a problem? How
does it scale? Can we provide guarantees on its running time/memory?

Comparison

Is an algorithm A better than an algorithm B? Fundamentally, what is the
best we can possibly do on a certain problem?

We will study a methodology to answer these questions

We will focus mainly on execution time analysis

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 14 / 56

Random Access Machine (RAM)

We need a model that is generic and independent from the
language and the machine.

We will consider a Random Access Machine (RAM)
I Each simple operation (ex: +, −, ←, If) takes 1 step
I Loops and procedures, for example, are not simple instructions!
I Each access to memory takes also 1 step

We can measure execution time by... counting the number of steps as
a function of the input size n: T (n).

Operations are simplified, but this is useful
E.g.: summing two integers does not cost the same as dividing two
reals, but we will see that on a global vision, these specific values are
not important

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 15 / 56

Random Access Machine (RAM)
A counting example

A simple program

int count = 0;

for (int i=0; i<n; i++)

if (v[i] == 0) count++

Let’s count the number of simple operations:
Variable declarations 2
Assignments: 2
”Less than” comparisons n + 1
”Equality” comparisons: n
Array access n
Increment between n and 2n

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 16 / 56

Random Access Machine (RAM)
A counting example

A simple program

int count = 0;

for (int i=0; i<n; i++)

if (v[i] == 0) count++;

Total number of steps on the worst case:
T (n) = 2 + 2 + (n + 1) + n + n + 2n = 5 + 5n

Total number of steps on the best case:
T (n) = 2 + 2 + (n + 1) + n + n + n = 5 + 4n

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 17 / 56

Types of algorithm analysis

Worst Case analysis: (the most common)

T (n) = maximum amount of time for any input of size n

Average Case analysis: (sometimes)

T (n) = average time on all inputs of size n

Implies knowing the statistical distribution of the inputs

Best Case analysis: (”deceiving”)

It’s almost like ”cheating” with an algorithm that is fast just for
some of the inputs

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 18 / 56

Types of algorithm analysis

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 19 / 56

Asymptotic Notation

We need a mathematical tool to compare functions

On algorithm analysis we use Asymptotic Analysis:

”Mathematically”: studying the behaviour of limits (as n→∞)

Computer Science: studying the behaviour for arbitrary large input
or
”describing” growth rate (for the worst case)

A very specific notation is used: O,Ω,Θ (and also o, ω)

It allows to simplify expressions like the one before and to focus on
orders of growth

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 20 / 56

Asymptotic Notation
Definitions

f(n) ∈ O(g(n))
It means that c × g(n) is an upper bound of f (n) (from a certain n)

f(n) ∈ Ω(g(n))
It means that c × g(n) is a lower bound of f (n) (from a certain n)

f(n) ∈ Θ(g(n))
It means that c1 × g(n) is a lower bound of f (n) and c2 × g(n) is an
upper bound of f (n) (from a certain n)

where c ∈ R+, c1 ∈ R+ and c2 ∈ R+ are constants.

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 21 / 56

Asymptotic Notation
A graphical depiction

Θ O Ω

The definitions imply an n from which the function is bounded. The small
values of n do not ”matter”.

Note: Some literature uses = instead of ∈
Example: f (n) = O(g(n)) is the same as f (n) ∈ O(g(n))

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 22 / 56

Asymptotic Notation
Formalization

f(n) ∈ O(g(n)) if there exist positive constants n0 ∈ Z+ and c ∈ R+

such that f (n) ≤ c × g(n) for all n ≥ n0

f(n) ∈ Ω(g(n)) if there exist positive constants n0 ∈ Z+ and c ∈ R+

such that f (n) ≥ c × g(n) for all n ≥ n0

f(n) ∈ Θ(g(n)) if there exist positive constants n0 ∈ Z+, c1 ∈ R+

and c2 ∈ R+ such that c1 × g(n) ≤ f (n) ≤ c2 × g(n) for all n ≥ n0

O(g(n)), Ω(g(n)) and Θ(g(n)) denote sets of functions in natural numbers

that consist of all functions f : N→ R+
0 related to the function g : N→ R+

0 by

the corresponding condition.

Remark (abuse of notation): in these definitions f (n) and g(n) are used with two meanings: f (n) ≤ cg(n) refers to the images

of n by f and by g , whereas in f (n) ∈ O(g(n)), we refer to the functions f : N→ R+ and g : N→ R+.

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 23 / 56

Asymptotic Notation
Formalization

f(n) ∈ O(g(n)) if there exist positive constants n0 ∈ Z+ and c ∈ R+

such that f (n) ≤ c × g(n) for all n ≥ n0

f(n) ∈ Ω(g(n)) if there exist positive constants n0 ∈ Z+ and c ∈ R+

such that f (n) ≥ c × g(n) for all n ≥ n0

f(n) ∈ Θ(g(n)) if there exist positive constants n0 ∈ Z+, c1 ∈ R+

and c2 ∈ R+ such that c1 × g(n) ≤ f (n) ≤ c2 × g(n) for all n ≥ n0

A few consequences:
I f (n) ∈ Θ(g(n))←→ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

I f (n) ∈ Θ(g(n))←→ g(n) ∈ Θ(f (n))

I f (n) ∈ O(g(n))←→ g(n) ∈ Ω(f (n))

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 24 / 56

Asymptotic Notation
A few practical rules

Multiplying by a constant does not affect the behavior:
c × f (n) ∈ Θ(f (n)), for c ∈ R+

99× n2 ∈ Θ(n2)
Θ(500n2) = Θ(n2) = Θ(1/10000n2)

On a polynomial of the form axn
x + ax−1n

x−1 + . . .+ a2n
2 + a1n + a0

we can focus on the term with the largest exponent:
3n3 − 5n2 + 100 ∈ Θ(n3)
6n4 − 202 ∈ Θ(n4)
0.8n + 224 ∈ Θ(n)

On a sum/subtraction we can focus on the dominant term:
2n + 6n3 ∈ Θ(2n)
n!− 3n2 ∈ Θ(n!)
n log n + 3n2 ∈ Θ(n2)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 25 / 56

Asymptotic Notation
Using the definition

99× n2 ∈ Θ(n2)

I n2 ≤ 99n2 ≤ 99n2, for all n ≥ 1.
I Therefore, there exist c1, c2 ∈ R+ and n0 ∈ Z+ such that

c1n
2 ≤ 99n2 ≤ c2n

2, for all n ≥ n0.
I We can take c1 = 1, c2 = 99 and n0 = 1.

3n3 − 5n2 + 100 ∈ Θ(n3) because
I 3n3 − 5n2 + 100 ≥ 2n3, for all n ≥ 5, since n3 − 5n2 ≥ 0 for n ≥ 5
I 3n3 − 5n2 + 100 ≤ 3n3 + 5n2 + 100 ≤ 3n3 + 5n3 + 100n3 = 108n3, for

all n ≥ 1.
I Therefore, there exist c1, c2 ∈ R+ and n0 ∈ Z+ such that

c1n
3 ≤ 3n3 − 5n2 + 100 ≤ c2n

3, for all n ≥ n0.
I We can take c1 = 2, c2 = 108 and n0 = 5.

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 26 / 56

Questions?

log2(n) ∈ O(n)? Yes

log2(n) /∈ Ω(n)? Yes

O(n) ⊆ O(n2)? Yes

O(n) ⊂ O(n2)? Yes
√
n ∈ Ω(n)? No

Ω(n log2 n) ⊂ Ω(n)? Yes

Θ(loga n) = Θ(logb n), para a, b ∈ R+, a 6= b, a, b > 1? Yes

O(2n) = O(3n)? No

O(2n) ⊂ O(3n)? Yes

Θ(2n) = Θ(3n)? Yes

f(n) ∈ Ω(1), for all f : N→ R+? (Therefore, O(1) = Θ(1)) Yes

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 27 / 56

Exercises

True or false? Justify.

50n3 − 2n + 100 ∈ Θ(1
100n

3)

3n2 − n + 10 ∈ Ω(20n2)

10000n3 − 2n2 + 5 ∈ Θ(50000n3 + 4n2 + 1000)

Ω(1000 + log2 n) ∩ O(1
20000 log2 n) = { }

cn4 ∈ O(n3), for some constant c ∈ R+

n /∈ Ω(210 log2 n) because n < 210 log2(n), for all 1 < n ≤ 213

(actually for 1 < n ≤ 14115)

Ω(n4) ∩Θ(n2 log2 n) = { }

Ω(n log2 n) ⊆ O(n2)

Θ(n2) ⊂ Ω(n log2 n)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 28 / 56

Asymptotic Notation
Dominance

When is a function better than another?

If we want to minimize time, ”smaller” functions are better

A function dominates another one if as n grows it keeps getting
infinitely larger

Mathematically: f (n)� g(n) if limn→∞ g(n)/f (n) = 0

Dominance Relations

n!� 2n � n3 � n2 � n log n� n�
√
n� log n� 1

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n) ⊂ O(n!)

Ω(1) ⊃ Ω(log n) ⊃ Ω(n) ⊃ Ω(n log n) ⊃ Ω(n2) ⊃ Ω(n3) ⊃ Ω(2n) ⊃ Ω(n!)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 29 / 56

Predicting the execution time

Pre-requirements:

An implementation with time complexity given by f (n)

A (small) test case with input of size n1

The running time of the program on that input: time(n1)

We want to estimate the running time for a (similar) input of size n2.
How to do it?

Estimating the execution time

f (n2)/f (n1) is the growth rate of the function (from n1 to n2)

time(n2) ≈ f(n2)/f(n1)× time(n1)
(here, ≈ means “approximately equal to”; we can use = instead)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 30 / 56

Predicting the execution time

An example

Imagine a program with time complexity Θ(n2) that takes 1 second
for an input of size 5 000. What is my estimation for the execution
time for an input of size 10 000?

f (n) = n2

n1 = 5 000
time(n1) = 1
n2 = 10 000

time(n2) = f (n2)/f (n1)× time(n1) =
= 10 0002/5 0002 × 1 = 4 seconds

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 31 / 56

Predicting the execution time
About the growth rate

Let’s see what happens when we double the input for some of the more
common functions (independently of the machine used!):

time(2n) = f(2n)/f(n)× time(n)

n : 2n/n = 2. The time is the double!

n2 : (2n)2/n2 = 4n2/n2 = 4. Time increases 4x!

n3 : (2n)3/n3 = 8n3/n3 = 8. Time increases 8x!

2n : 22n/2n = 22n−n = 2n. Time grows 2n times!
Example: If n = 5, the time for n = 10 will be 32x more!
Example: If n = 10, the time for n = 20 will be 1024x more!

log2(n) : log2(2n)/ log2(n). It increases log2(2n)
log2(n) vezes!

Example: If n = 5, the time for n = 10 will be 1.43x more!
Example: If n = 10, the time for n = 20 will be 1.3x more!

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 32 / 56

Asymptotic Analysis
A few more examples

A program has two pieces of code A and B, executed one after the
other, with A running in Θ(n log n) and B in Θ(n2).
The program runs in Θ(n2), because n2 � n log n

A program calls n times a function Θ(log n), and then it calls again n
times another function Θ(log n)
The program runs in Θ(n log n)

A program has 5 loops, all called sequentially, each one of them
running in Θ(n)
The program runs in Θ(n)

A program P1 has execution time proportional to 100× n log n.
Another program P2 runs in 2× n2.
Which one is more efficient?
P1 is more efficient because n2 � n log n. However, for a small n, P2

is quicker and it might make sense to have a program that calls P1 or
P2 depending on n.

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 33 / 56

Analyzing the complexity of programs

Let’s see more concrete examples:

Case 1 Loops (and summations)

Case 2 Recursive Functions (and recurrences)
Case 2 will be covered later (in the classes about sorting algorithms)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 34 / 56

Loops and Summations

i n t count = 0;
f o r (i n t i=0; i<1000; i++)

f o r (i n t j=i; j<1000; j++)
count++;

cout << count << endl;

(the temporal complexity is proportional to the value of count at the end)

What does this program write?

1000 + 999 + 998 + 997 ++ 2 + 1

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 35 / 56

Loops and Summations

Arithmetic progression: a sequence of numbers such that the difference
d between the consecutive terms is constant. We will call a1 to the first
term.

1, 2, 3, 4, 5, (d = 1, a1 = 1)
3, 5, 7, 9, 11, (d = 2, a1 = 3)

How to calculate the summation of an arithmetic progression?

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = (1 + 8) + (2 + 7) + (3 + 6) + (4 + 5) = 4× 9

Summation from ap to aq

S(p, q) =
q∑

i=p
ai =

(q−p+1)×(ap+aq)
2

Summation of the first n terms

Sn =
n∑

i=1
ai = n×(a1+an)

2

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 36 / 56

Loops and Summations

i n t count = 0;
f o r (i n t i=0; i<1000; i++)

f o r (i n t j=i; j<1000; j++)
count++;

cout << count << endl;

What does this program write?

1000 + 999 + 998 + 997 ++ 2 + 1

It writes S1000 = 1000×(1000+1)
2 = 500500

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 37 / 56

Loops and Summations

i n t count = 0;
f o r (i n t i=0; i<n; i++)

f o r (i n t j=i; j<n; j++)
count++;

cout << count << endl;

What is the execution time?

It is going to execute Sn increments:

Sn =
n∑

i=1
ai = n×(1+n)

2 = n+n2

2 = 1
2n

2 + 1
2n.

It executes Θ(n2) steps

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 38 / 56

Loops and Summations

If you want to know more about interesting summations on this context,
take a look at Appendix A of the Introduction to Algorithms book.

Note that c cycles do not imply Θ(nc)!

f o r (i n t i=0; i<n; i++)
f o r (i n t j=1; j<5; j++)

Θ(n) (Two loops but not Θ(n2))

f o r (i n t i=1; i<=n; i++)
f o r (i n t j=1; j<=i*i; j++)

Θ(n3) 12 + 22 + 32 + . . .+ n2 =
n∑

i=1
i2 = n(n+1)(2n+1)

6

i = n;

whi le (i>0) i = i/2;

Θ(log n) each time i becomes reduced to a half (n/2p ≤ 1 iff p ≥ log2 n)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 39 / 56

Example: Time complexity of Posmax

First occurrence of the maximum of v [k], v [k + 1], . . . , v [n]

Write a function Posmax(v , k , n) that returns the index of the first
ocurrence of the maximum element in the segment v [k], v [k + 1], . . . , v [n]
of the array v . Assume that k ≤ n and that the segment is within v .

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 40 / 56

Example: Time complexity of Posmax

Posmax(v , k, n) Running times (cost model)
1. pmax ← k; c1: assign value of a variable to another one
2. i ← k + 1; c2: assign value of expression to a variable
3. while i ≤ n do c3: test the condition and transfer control
4. if v [i] > v [pmax] then c4: access, test and transfer control
5. pmax ← i ; c1

6. i ← i + 1; c6: increment the value of a variable
7. return pmax ; c7: return from the function with a value

Executes instructions 1, 2 e 7 a single time. Executes the test in line 3 for
i = k + 1, . . . , n, n + 1, that is, (n + 1)− (k + 1) + 1 = n − k + 1 times.

Executes line 4 for i = k + 1, . . . , n, that is n − (k + 1) + 1 = n− k times. Similar
to instruction 6.

What about for instruction 5? It depends on the instance.

I best case: does not execute instr. 5. It happens when v [k] is strictly
greater than the remaining elements.

I worst case: v [k] < v [k + 1] < . . . < v [n − 1] < v [n] executes n − k
times.

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 41 / 56

Example: Time complexity of Posmax

Posmax(v , k, n) Running times (cost model)
1. pmax ← k; c1: assign value of a variable to another one
2. i ← k + 1; c2: assign value of expression to a variable
3. while i ≤ n do c3: test the condition and transfer control
4. if v [i] > v [pmax] then c4: access, test and transfer control
5. pmax ← i ; c1

6. i ← i + 1; c6: increment the value of a variable
7. return pmax ; c7: return from the function with a value

Best case: T (n, k) = c1 + c2 + c7 + (n − k + 1)c3 + (n − k)(c4 + c6).

Worst case: T (n, k) = c1 + c2 + c7 + (n − k + 1)c3 + (n − k)(c4 + c6 + c1).

For all instances, it holds

c1 + c2 + c7 + c3 + (c3 + c4 + c6)(n − k)︸ ︷︷ ︸
best case

≤ T (n, k) ≤ c1 + c2 + c7 + c3 + (c3 + c4 + c6 + c1)(n − k)︸ ︷︷ ︸
worst case

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 42 / 56

Example: Time complexity of Posmax

For all instances, it holds

c1 + c2 + c7 + c3 + (c3 + c4 + c6)(n − k)︸ ︷︷ ︸
best case

≤ T (n, k) ≤ c1 + c2 + c7 + c3 + (c3 + c4 + c6 + c1)(n − k)︸ ︷︷ ︸
worst case

if we define a = mint ct and b = maxt ct , we conclude that

4a + 3a(n − k) ≤ T (n, k) ≤ 4b + 4b(n − k),

and

3a(n − k + 1) ≤ 4a + 3a(n − k) ≤ T (n, k) ≤ 4b + 4b(n − k) = 4b(n − k + 1).

There exist constants c ′, c ′′ ∈ R+ such that c ′(n − k + 1) ≤ T (n, k) ≤ c ′′(n − k + 1),
namely c ′ = 3a and c ′′ = 4b.

This means that T (n, k) ∈ Θ(n − k + 1), that is T (n, k) is linear in the length of the
segment [k, n] of v that will be analysed when we call Posmax(v , k, n).

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 43 / 56

Example: Time complexity of Posmax

Let N = n − k + 1 be the number of elements in the segment [k, n] of v that will be
analysed when we call Posmax(v , k, n). We saw that

there exists c ′ ∈ R+ such that T (N) ≥ c ′N, for all N ≥ 1, i.e., T (N) ∈ Ω(N).

T (N) is at least linear in N

there exists c ′′ ∈ R+ such that T (N) ≤ c ′′N, for all N ≥ 1, i.e., T (N) ∈ O(N).

T (N) is at most linear in N

there exist c ′, c ′′ ∈ R+ such that c ′N ≤ T (N) ≤ c ′′T (N), for all N ≥ 1, i.e.,
T (N) ∈ Θ(N).

T (N) is exactly linear in N

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 44 / 56

Example: Time complexity of PosMaxSorted

To find the position of the first occurrence of the maximum value of v , assuming
that v [0] ≤ v [1] ≤ v [2] ≤ . . . ≤ v [n − 1].

i n t posMaxSorted(i n t v[], i n t n) {
i n t i = n-2;
whi le (i >= 0 && v[i] == v[i+1])

i--;

return i+1;

Best case: The maximum occurs only once. Time complexity: Θ(1)
Worst case: All elements are equal. Time complexity: Θ(n)

Conclusion: the time complexity of posMaxSorted(v,n) is O(n).

Questions? Is there a more efficient algorithm for the problem, e.g., whose
running time is O(log n)? (Yes! stay tuned)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 45 / 56

Divide and Conquer

This topic will be covered later, when we talk about sorting algorithms

We are often interested in algorithms that are expressed in a recursive way

Many of these algorithms follow the divide and conquer strategy:

Divide and Conquer

Divide the problem in a set of subproblems which are smaller instances of
the same problem

Conquer the subproblems solving them recursively. If the problem is small
enough, solve it directly.

Combine the solutions of the smaller subproblems on a solution for the
original problem

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 46 / 56

Divide and Conquer
MergeSort

We now describe the MergeSort algorithm for sorting an array of size n

MergeSort

Divide: partition the initial array in two halves

Conquer: recursively sort each half. If we only have one number, it is
sorted.

Combine: merge the two sorted halves in a final sorted array

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 47 / 56

Divide and Conquer
MergeSort

What is the execution time of this algorithm?

D(n) - Time to partition an array of size n in two halves

M(n) - Time to merge two sorted arrays of size n

T(n) - Time for a MergeSort on an array of size n

T (n) =

{
Θ(1) if n = 1
D(n) + 2T (n/2) + M(n) if n > 1

In practice, we are ignoring certain details, but it suffices
(ex: when n is odd, the size of subproblem is not exactly n/2)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 48 / 56

Divide and Conquer
MergeSort

D(n) - Time to partition an array of size n in two halves

M(n) - Time to merge two sorted arrays of size n

T(n) - Time for a MergeSort on an array of size n

T (n) =

{
Θ(1) if n = 1
D(n) + 2T (n/2) + M(n) if n > 1

becomes

T (n) =

{
Θ(1) if n = 1
2T (n/2) + Θ(n) if n > 1

How to solve this recurrence?

(for a cleaner explanation we will assume n = 2k ,
but the results holds for any n)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 49 / 56

Divide and Conquer
MergeSort

Let’s draw the recursion tree:

Summing everything we get that MergeSort is Θ(n log2 n)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 50 / 56

Divide and Conquer
MaxD&C

A recursive algorithm is not always linearithmic!

Let’s see another example. Imagine that you want to compute the
maximum of an array of size n.

A simple linear search would be enough, but let’s design a divide and
conquer algorithm.

Computing the maximum

Divide: partition the initial array in two halves

Conquer: recursively compute the maximum in each half. If we only have
one number, it is the maximum

Combine: compare the maximum of each half and keep the largest one

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 51 / 56

Divide and Conquer
MaxD&C

What is the execution time of this algorithm?

To simplify, let’s again admit that n is a power of 2.
(the results are similar in their essence for other cases)

T (n) =

{
Θ(1) se n = 1
2T (n/2) + Θ(1) se n > 1

How does thiis differ from the MergeSort recurrence?
How to solve it?

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 52 / 56

Divide and Conquer
MaxD&C

In total we spend 1 + 2 + 4 + . . .+ n =
log2(n)∑
i=0

2i = 2n − 1

What dominates the sum? Note that 2k = 1 +
k−1∑
i=0

2i .

The last level dominates the weight and thus the algorithm is Θ(n)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 53 / 56

Recursion
complexity

Solving general recurrences is out of the scope of this course, but the most
common recursive algrithms fall on one of three cases:

The time is (uniformly) distributed along the recursion tree
(e.g. mergesort)

The time is dominated by the last level of the recursion
(e.g. maxD&C)

The time is dominated by the top level of the recursion
(e.g. naive matrix multiplication)

(to know more take a look at the Master Theorem)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 54 / 56

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Recurrences
Notation

It is common to assume that T(1) = Θ(1). In these cases we can simply
write T (n) to describe a recurrence.

MergeSort: T (n) = 2T (n/2) + Θ(n)

MaxD&C: T (n) = 2T (n/2) + Θ(1)

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 55 / 56

Divide and Conquer
More recurrences

Sometimes we have an algorithm that reduces the problem to a single
subproblem.

In this case we can say we use decrease and conquer

Binary Search:
On a sorted array of size n, compare with the middle element and
continue the search on one half
T (n) = T (n/2) + Θ(1) [Θ(log n)]

Max with ”tail recursion”: On an array of size n, recursively find
the maxim of the entire array except the first element and then
compare with that first element
T (n) = T (n − 1) + Θ(1) [Θ(n)]

L.EIC (AED) Complexity and Asymptotic Analysis 2024/2025 56 / 56

