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Storing Data

One of the most essential programming tasks is to be able store data
in memory

We will discuss other low level data structures during the course
(e.g. linked lists, trees) and abstract data types that can be
implemented using these (e.g. stacks, queues, deque, maps, sets).
For today, we will concentrate on the most simple (but powerful) one:

5 2 6 8 4 12 3 9

Arrays
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The Search Problem

The search problem
Input:

an array v storing n elements
a target element key to search for

Output:
Index i of key where v[i]=key
-1 (if key is not found)

Example:
v = 5 2 6 8 4 12 3 9

search(v, 2) = 1
search(v, 7) = -1
search(v, 3) = 6
search(v, 14) = -1
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The Search Problem

variants for the case of arrays with repeated values:
I indicate the position of the first occurrence
I indicate the position of the last occurrence
I indicate the position of any occurrence
I indicate all the occurrences

8 4 3 6 2 6 5 9
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Sequential Search
Algorithm

Sequential Search Algorithm
Sequentially checks each element of the array, from the first to the lasta or
from the last to the firstb , until a match is found or the end of the array is
reached

aif you want to know the position of the first occurrence
bif you want to know the position of the last occurrence

Sequential search: suitable for small or unordered arrays
Sequential search is called linear search also.
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Sequential Search
An implementation

Search for an element key in a vector v of comparable elements. Returns
the index of the first occurrence of key, if found, or -1, otherwise.
template <typename T>
i n t sequentialSearch ( const vector <T> & v, const T & key) {

f o r ( uns igned i=0; i<v.size (); i++)
i f (v[i] == key)

r e t u r n i; // found key
r e t u r n -1; // not found

}

vector < i n t > v = {8 ,4 ,3 ,6 ,2 ,6 ,5 ,9};
cout << sequentialSearch (v, 8) << endl;
cout << sequentialSearch (v, 7) << endl;
cout << sequentialSearch (v, 6) << endl;

0
-1
3
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Remembering C++ templates

Templates are a way of creating generic code
They are expanded in compile time

I ”almost” like macros, but with type checking
I compiled code can have multiple copies of the same class
I compiler needs to know code (common to see it implemented on .h)

typename vs class (essentially, no semantic difference)

vector < char > v1 = {’A’, ’C’, ’B’,’Z’,’W’};
cout << sequentialSearch (v1 , ’W’) << endl;

4

vector <string > v2 = {" algorithms ","data"," structures "};
cout << sequentialSearch (v2 , string ("data")) << endl;

1
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Sequential Search
Complexity

Sequential Search time complexity
I the test if (v[i] == key) is performed at most n times (e.g. if it

doesn’t find the target element)
I if each test costs O(1), time is O(n), being Θ(n) in the worst case.

(e.g., comparison of strings is not O(1) unless their length is bounded by a constant)

I if the target element exists in the vector, we do approximately n/2
comparisons on average (assuming random input).
Expected time is Θ(n) for ”random input” if each test takes O(1).
(Expected time complexity means on average in the statistical sense; ”random” means equiprobable.)

Sequential Search space complexity
I space on local variables (including arguments)
I since vectors are passed ”by reference“, the space taken up by the local

variables is constant and independent of the vector size.
I Space is O(1)
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sequentialSearch
Time complexity analysis in more detail

Best case Worst case Cost per operation
defs. v and key

(passed by reference) 1 1 Θ(1)
unsigned i=0 1 1 Θ(1)
test i < v.size() 1 n + 1 Θ(1)
test v[i] == key 1 n ????
return i 1 0 Θ(1)
i++ 0 n Θ(1)
return −1 0 1 Θ(1)

???? which is the complexity of == for that type of elements?
Θ(1) for int, O(s) for two strings of size s (that is O(1) if s ≤ C , for some constant C), . . .
Overall time complexity in the worst case:

I for vector<int>: Θ(3n + 4) = Θ(n)
I for vector<string> and strings of size s: Θ(2n + 4 + ns) = Θ(ns)

The instruction if v[i] == key is performed at most n times (exactly n in
the worst case) and dominates the time complexity of sequentialSearch.
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Searching in sorted arrays

Suppose the array is ordered
(arranged in increasing or non-decreasing order)

I Sequential search on a sorted array still takes O(n) time
I Can exploit sorted structure by performing binary search
I Strategy: inspect middle of the structure so that half of the structure is

discarded at every step
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Binary Search
Algorithm

Binary Search Algorithm
compares the element in the middle of the array with the target element:

is equal to the target element → found
is greater than the target element → continue searching (in the same
way) in the sub-array to the left of the inspected position
is less than the target element → continue searching (in the same
way) in the sub-array to the right of the inspected position

if the sub-array to be inspected reduces to an empty vector, we can
conclude that the target element does not exist
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Binary Search
Implementation

template <typename T>
i n t binarySearch ( const vector <T> & v, const T & key) {

i n t low = 0, high = v.size () - 1;
w h i l e (low <= high) {

i n t middle = low + (high - low) / 2;
i f (key < v[ middle ]) high = middle - 1;
e l s e i f (key > v[ middle ]) low = middle + 1;
e l s e r e t u r n middle ; // found key

}
r e t u r n -1; // not found

}

Loop invariant: if key occurs in the initial interval, then it will be in the
interval defined by [a,b], in every iteration.
Progress: at least v[middle] will be removed in each iteration.
(high-low) decreases
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Bugs in binary search

Why low+(high-low)/2 instead of (low+high)/2?

Mathematically, even for integer division, it is true that

low + (high-low)/2 = (low+high)/2

But, high+low can cause overflow when low and high are large
values of type int, whereas low+(high-low)/2 cannot.

So, in programming, low + (high-low)/2 and (low + high)/2
are not equivalent.
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Binary Search
Visualization

sub-array is empty → element 2 does not exist!
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Binary Search
Complexity

Binary Search time complexity
I In each iteration, the size of the sub-array is divided by two
I If each test costs Θ(1), the runtime satisfies this recurrence:

T (n) ≈ T (n/2) + Θ(1)

Θ(1) in that expression stands for a function f (n) bounded by a constant

I With O(1) per test, time is O(log n), being Θ(log n) in worst case.
I It is crucial also that the parameter v be passed by reference

vector<T> & v , which costs O(1) (with vector<T> v, it is Ω(n)).

Binary Search space complexity
I space on local variables (including arguments)
I since vectors are passed ”by reference“, the space taken up by the local

variables is constant and independent of the vector size.
I Space is O(1)

L.EIC (AED) Searching 2024/2025 15 / 53



Binary Search
Why log(n)?

For simplicity, let us write T (n) = T (n/2) + 1, define T (0) = 1 and
assume that n = 2k , for some k, that is k = log2(n).

T (n) = T (n/2) + 1 =
= (T (n/2/2) + 1) + 1 = T (n/4) + (1 + 1)
= T (n/8) + (1 + 1 + 1) =
. . .

= T (n/2k ) +
k∑

i=1

1 =

= T (0) +
k+1∑
i=1

1 =

= k + 2 = log2(n) + 2

Bound on the number of iterations
Let t be the number of divisions by 2.

n/2t < 1 iff t > log2(n), for all n.
So, t ≤ 1 + blog2 nc.

Basis of logarithm often omitted because Θ(loga n) = Θ(logb n) since
loga n = logab × logb n, for all a, b > 1.
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Example: Saint John Festival (SWERC 2015)
Full description: https://icpcarchive.github.io/Southwestern_Europe_Regional_Contest_(SWERC).html (SWERC 2025)

Given two sets of points A and B in the plane, such that |B| � |A|, how
many points in B are in the interior or on the boundary of triangles defined
by any 3 points in A?

Charatheodory’s Theorem:
The union of all triangles with
vertices in A is the convex hull
CH(A) of A.

Geometry

Convex hull: CH(A) of A?

Check p ∈ CH(A)?
Point p in convex polygon?
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Saint John Festival (SWERC 2015)

CH(A) is the smallest
convex polygon that
contains all points of A.

Idea:
1 First, find CH(A) in O(L log L), with L = |A|, e.g., by Graham scan.

(Graham scan will be described later in AED classes)

2 Then, for each p ∈ B, check if p ∈ CH(A) efficiently.
For convex polygons, we can use Binary Search to check.
There are algorithms for deciding “p ∈ P?” in O(k) time, for any k-vertex simple polygon P. We will see now that,

when P is convex, that can be done in O(log2 k) time.
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Saint John Festival (SWERC 2015)
Deciding if point p is in convex polygon

For each p ∈ B, we can check if p ∈ CH(A) in O(log h), by binary search,
being h is the number of vertices of CH(A).

CH(A) is defined by the sequence of its
vertices v0, v1, v2, . . . vh−1, v0, in CCW
order, given by they coordinates.

CH(A) can be divided into wedges
(cones with apex v0) already sorted
around v0. Which is the middle one?
If p is to the right of v0vk or to the left
of v0vk+1, what can be discarded?

We can check p ∈ wedge(v0, vk , vk+1)
in O(1). So, O(S log h) for S = |B|
points. If h ≈ L, this means O(S log L).

Therefore, Saint John Festival can be solved in O(L log L + S log L) time.
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Saint John Festival (SWERC 2015)
Checking whether p is in a wedge (v0, vi , vi+1) in O(1)

E.g., p ∈ wedge(v0, v2, v3) if
I (v0, v2, p) is Left-turn
I (v0, v3, p) is Right-turn
I (v2, v3, p) is Left-turn

(p, q, r) is a left-turn (right-turn) if
the non-null component of the cross
product ~pq × ~pr is positive (negative).
That component is given by
(xq − xp)(yr − yp)− (yq − yp)(xr − xp).
We have to handle collinearities also!
This problem requires robust tests for
left-turn; right-turn; collinear; point in
line segment. But, still O(1).
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Another Application: Zeros of continuous functions

Example
How to find a solution of equation x3 − 5x + 2 = 0? That is equivalent to find a
zero of the function f (x) = x3 − 5x + 2 that is, a value x? such that f (x?) = 0.

To solve x3 − 5x + 2 = 0, we can try to factorize the polynomial and then apply
the formula for solving the quadratic equation. In this case, it is not difficult:

x3 − 5x + 2 = (x2 + 2x − 1)(x − 2)

But, that cannot be generalized.
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Zeros of continuous functions
Finding approximate roots?

For solving quadratic equations ax2 + bx + c = 0, we have the quadratic
formula: the equation has a solution in R iff b2− 4ac ≥ 0 and the solution is

x = −b ±
√

b2 − 4ac
2a

But for some equations f (x) = 0, there is no formula. Even for polynomial
equations! Abel-Ruffini Theorem says that there is no general solution through
radicals for polynomial equations of degree five or higher.
(Abel-Ruffini Theorem is a result you were not supposed to know)

For non-polynomial functions, we run into difficulties also.
For example, can we find a zero of g(x) = x − cos(x)?
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Zeros of continuous functions
Bisection Method

Solve x − cos(x) = 0, with x ∈ [0, π/2]?

The root corresponds to the
intersection point of the graphs:{

y = x
y = cos(x)

We can obtain a sequence of numerical approximations

x1, x2, . . . , xn . . .

that converge to the root (i.e., the solution).

In theory, the more iterations we do, the better the approximation will be.

Let’s look at the bisection method (a binary search approach).
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Zeros of continuous functions
Bisection Method

We are given:
a function f ;
an interval [a, b];
a tolerance ε > 0 (used as used as stopping criterion)
such that:

1 f is continuous in [a, b];
2 f (a)× f (b) < 0 (that is, f changes sign in [a, b]);

(this invariant will be maintained)
3 f has a (single) zero in [a, b].

Recall Bolzano’s Theorem : if a continuous function f has values of opposite sign inside
an interval, then it has a root in that interval. Therefore, if f (a)f (b) < 0, then f has at
least one zero in [a, b].
(This is a result you might know from the Analysis course unit)
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Zeros of continuous functions
Bisection Method – Algorithm

while b − a > ε do:
1 compute the midpoint

m← (a + b)/2
2 if f (a)× f (m) < 0:

the root is in [a,m]
b ← m

3 if f (a)× f (m) > 0:
the root is in [m, b]
a← m

4 if f (m) = 0:
the root is m
(usually, it does not obtain an exact root)
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Zeros of continuous functions
Bisection Method in Python

def bisect (a,b,tol ):
w h i l e b-a > tol:

m = (a+b)/2
fm = f(m) # f must be defined somewhere
i f fm == 0:

r e t u r n m
i f fm*f(a) > 0:

a = m
e l s e :

b = m
r e t u r n (a+b)/2 # an approximate solution

def f(x): # definition of f
r e t u r n x**3 -5*x+2
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Zeros of continuous functions
Bisection Method Application

The root of P(x) = x3 − 5x + 2 in the interval [0, 1] with an error < 10−4.
The exact value is

√
2− 1 ≈ 0.414213562

>>> bisect(0,1,0.0001)
f(0.000000) = 2.000000 f(1.000000) = -2.000000
a = 0.000000 b = 1.000000 fm = -0.375000 b-a = 1.000000
a = 0.000000 b = 0.500000 fm = 0.765625 b-a = 0.500000
a = 0.250000 b = 0.500000 fm = 0.177734 b-a = 0.250000
a = 0.375000 b = 0.500000 fm = -0.103760 b-a = 0.125000
a = 0.375000 b = 0.437500 fm = 0.035797 b-a = 0.062500
a = 0.406250 b = 0.437500 fm = -0.034290 b-a = 0.031250
a = 0.406250 b = 0.421875 fm = 0.000678 b-a = 0.015625
a = 0.414062 b = 0.421875 fm = -0.016825 b-a = 0.007812
a = 0.414062 b = 0.417969 fm = -0.008079 b-a = 0.003906
a = 0.414062 b = 0.416016 fm = -0.003702 b-a = 0.001953
a = 0.414062 b = 0.415039 fm = -0.001512 b-a = 0.000977
a = 0.414062 b = 0.414551 fm = -0.000417 b-a = 0.000488
a = 0.414062 b = 0.414307 fm = 0.000130 b-a = 0.000244
a = 0.414185 b = 0.414307 fm = -0.000144 b-a = 0.000122
0.414215087890625
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Zeros of continuous functions
Improving the implementation

def bisect (a,b,tol ):
fa = f(a)
w h i l e b-a > tol:

m = (a+b)/2
fm = f(m)
i f fm == 0:

r e t u r n m
i f fm*fa > 0:

a = m
fa = fm

e l s e :
b = m

r e t u r n (a+b)/2

In each iteration, it computes f just once, instead of twice. That can lead to a
significant gain if f is computationally complex.

L.EIC (AED) Searching 2024/2025 28 / 53



Zeros of continuous functions
Bisection Method with function f passed as an argument

def bisect (f,a,b,tol ): # the first parameter is a function
fa = f(a)
w h i l e b-a > tol:

m = (a+b)/2
fm = f(m)
i f fm == 0:

r e t u r n m
i f fm*fa > 0:

a = m
fa = fm

e l s e :
b = m

r e t u r n (a+b)/2
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Zeros of continuous functions
Bisection Method with function f passed as an argument

We’d rather pass the function to be evaluated as an argument or use lambda
expressions, for that:

>>> bisect (f, 0, 1, 1e -4)
0.41424560546875
>>> bisect ( lambda x : x**3 -5*x+2, 0, 1, 1e -4)
0.41424560546875

In Python, the expressions

lambda x : x**3-5*x+2
lambda x : x-math.cos(x)

represent the functions x 7−→ x3 − 5x + 2 e x 7−→ x − cos(x).

Lambda expressions allow us to define anonymous (unnamed) functions.
They are available in C++ also, but the syntax is different. (see example in these slides)
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Other Applications of Binary Search
Revisiting an example of last class

To find the position of the first occurrence of the maximum value of v , assuming
that v [0] ≤ v [1] ≤ v [2] ≤ . . . ≤ v [n − 1].

i n t posMaxSorted ( i n t v[], i n t n) { // sequential search
i n t i = n -2;
w h i l e (i >= 0 && v[i] == v[i+1])

i--;
r e t u r n i+1;

Best case (sequential search): The maximum occurs only once. Time Θ(1)
Worst case (sequential search): All elements are equal. Time: Θ(n)
Conclusion: the time complexity of posMaxSorted(v,n) is O(n).

How to improve the running time to O(log n)? (We will see next)
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Binary Search
A generalization

We can generalize binary search for cases where we have something like:

no no no no no yes yes yes yes yes yes

We want to find the first yes (or in some cases the last no)

Example:
Search the smallest element larger or equal to key
(lower bound do C++)

2 5 6 8 9 12
no no no yes yes yes

lower bound(7) → condition: v [i ] >= 7
[the smallest number ≥ 7 on this array is 8]
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Binary Search
A generalization

Binary search for condition (in ”pseudo-code”)
bsearch(low, high, condition)

While (low < high ) do
middle = low + (high − low)/2
If (condition(middle) == yes) high = middle
Else low = middle + 1

If (condition(low) == no) return(-1)
return(low)

v = 2 5 6 8 9 12
no no no yes yes yes bsearch(0, 5, ≥ 7)

low = 0, high = 5,middle = 2
Since v [2] ≥ 7 is no: low = 3, high = 5,middle = 4
Since v [4] ≥ 7 is yes: low = 3, high = 4,middle = 3
Since v [3] ≥ 7 is yes: low = 3, high = 3 (leaves while)
Since v [3] ≥ 7 is yes: return(3)

L.EIC (AED) Searching 2024/2025 33 / 53



Binary Search
Correctness of Binary search for condition

Binary search for condition (in ”pseudo-code”)
bsearch(low, high, condition)

While (low < high ) do
middle = low + (high − low)/2
If (condition(middle) == yes) high = middle
Else low = middle + 1

If (condition(low) == no) return(-1)
return(low)

Loop invariant: if low and high were valid initially and low ≤ high, then, in
every iteration, low ≤ high, both are valid, and the first yes is in [low, high], if
there is any. Otherwise, the last no is at high.
Progress: in each iteration, high− low decreases.

(since low < high, then low ≤ middle < high immediately after finding middle)
Termination: the loop ends when low = high. From the invariant, low is valid
and gives the first yes iff condition(low) holds. So, the result is correct.
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Binary Search the Answer
Balanced Partition Problem

Let’s look at a more advanced example of an application of this
generalized binary search

Balanced Partition Problem
Input: a sequence 〈a1, . . . , an〉 of n integers and an integer k
Output: a way of partitioning the sequence into k contiguous
subsequences, minimizing the maximum sum of all parts.

Example:
7 9 3 8 2 2 9 4 3 4 7 9 9 k = 4 (4 partitions)

7 9 3|8 2 2|9 4 3|4 7 9 9 → 19 + 12 + 16 + 29
7 9 3 8|2 2 9|4 3 4 7|9 9 → 27 + 13 + 18 + 18
7 9|3 8 2 2|9 4 3 4|7 9 9 → 16 + 15 + 20 + 25
...

What is the best partition? (with the smallest possible maximum)
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Binary Search the Answer
Balanced Partition Problem

Exhaustive search would need to look for all the possible partitions!
(can you estimate how many?)

On another course you may revisit this problem to solve it with
dynamic programming

In this class we will solve with... binary search!
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Binary Search the Answer
Balanced Partition Problem

Let’s first think on a simpler but ”similar” problem:
Can we divide such that the maximum sum of a partition is ≤ X?

”Greedy” idea: extend the current partition while its sum < X !

Examples:
Let X = 21 and k = 4
7 9 3|8 2 2 9 4 3 4 7 9 9
7 9 3|8 2 2 9|4 3 4 7 9 9
7 9 3|8 2 2 9|4 3 4 7|9 9
7 9 3|8 2 2 9|4 3 4 7|9 9 - OK!
Let X = 20 and k = 4
7 9 3|8 2 2 9 4 3 4 7 9 9
7 9 3|8 2 2|9 4 3 4 7 9 9
7 9 3|8 2 2|9 4 3 4|7 9 9
7 9 3|8 2 2|9 4 3 4|7 9|9 - Failed! We would need more than 4 partitions
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Binary Search the Answer
Balanced Partition Problem

Can we divide such that the maximum sum of a partition is ≤ X?

If we think about the X’s for which the answer is yes, we have a search
space where the following happens:

no no ... no no yes yes yes ... yes yes

We can apply binary search on X! (solution is the first yes)

Let s be the sum of all numbers, that is s =
∑n

i=1 ai .
At least, X will be 1 (or in alternative the largest ai ). At most, X will
be s. That defines an interval, e.g., [1, s] or [maxi ai , s].
Verify the answer for a certain X : O(n) (using the greedy method above)
Binary Search on X : O(log s)
Global time: O(n log s) Note that, this bound depends on the values in the instance! Not only on n.
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Binary Search the Answer
Balanced Partition Problem

Example: 7 9 3 8 2 2 9 4 3 4 7 9 9 k = 4 (4 parts)

low = 1, high = 76, middle = 38 → isPossible(38)? Yes
low = 1, high = 38, middle = 19 → isPossible(19)? No
low = 20, high = 38, middle = 29 → isPossible? Yes
low = 20, high = 29, middle = 24 → isPossible? Yes
low = 20, high = 24, middle = 22 → isPossible? Yes
low = 20, high = 22, middle = 21 → isPossible? Yes
low = 20, high = 21, middle = 20 → isPossible? No
low = 21, high = 21

Leaves the cycle and verifies that isPossible(21), with that being the
answer!

7 9 3|8 2 2 9|4 3 4 7|9 9 → 19 + 21 + 18 + 18
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Binary Search the Answer
Balanced Partition Problem

2nd Example: 7 9 3 8 2 2 9 4 3 4 7 9 9 k = 3 (3 parts)

low = 1, high = 76, middle = 38 → isPossible(38)? Yes
low = 1, high = 38, middle = 19 → isPossiblel(19)? No
low = 20, high = 38, middle = 29 → isPossible(29)? Yes
low = 20, high = 29, middle = 24 → isPossible(24)? No
low = 25, high = 29, middle = 27 → isPossible(27)? Yes
low = 25, high = 27, middle = 26 → isPossible(26)? No
low = 27, high = 27

Leaves the cycle and verifies that isPossible(27), with that being the
answer!

7 9 3 8|2 2 9 4 3 4|7 9 9 → 27 + 24 + 25

(this methodology is commonly known as ”binary search the answer”)
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Binary Search

Binary Search is very useful and flexible

It can be used on a large range of applications

There are many other variations, besides the ones we already
discussed.

I Interpolation search
(instead of looking at the middle, estimate position)

I Exponential search
(start by trying to fix interval in low = 2a and high = 2a+1)

I Ternary search
(max or min in unimodal function)

I ...
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Searching in C++
STL Algorithms

<algorithm> includes functions for searching

Sequential search (some example functions)
I find - find the first element equal to a key in a range
I find if - find the first element satisfying a criteria in a range

Binary search (some example functions)
I binary search - binary search for an element in sorted range
I lower bound - binary search for the first element not less than the

given value
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C++ Iterators
Before starting, let’s just refresh your knowledge of iterators.
vector < i n t > v = {1 ,2 ,3 ,4};

// auto "automatically" discovers type
auto it = v.begin ();
cout << *it << endl; // print first element

it ++; // move forward (forward iterator)
cout << *it << endl; // print second element

it --; // go back (bidirectional iterator)
cout << *it << endl; // print first element

it +=2; // advance 2 positions (random acess iterator)
cout << *it << endl; // print third element

1
2
1
3
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C++ Iterators

Documentation:
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C++ Iterators
Iterators can be used to traverse a range
vector < i n t > v = {2 ,4 ,6 ,8};

// v.end() is "after" last position
f o r ( auto it = v.begin (); it!= v.end (); it ++)

cout << *it << " ";
cout << endl;

// foreach" style loops can also be used
f o r ( auto i : v)

cout << i << " ";
cout << endl;

// we also have reverse iterator
f o r ( auto it = v. rbegin (); it!= v.rend (); it ++)

cout << *it << " ";
cout << endl;

2 4 6 8
2 4 6 8
8 6 4 2

L.EIC (AED) Searching 2024/2025 45 / 53



Searching in C++
find

(returns an iterator to the 1st element in the range equal to value)
Documentation:
template < c l a s s InputIt , c l a s s T>
InputIt find( InputIt first , InputIt last , const T& value );

Example usage:
vector < i n t > v = {2 ,4 ,6 ,8};

auto result1 = find(v.begin (), v.end (), 4);
i f ( result1 != v.end ()) cout << "found 4" << endl;
e l s e cout << "4 not found" << endl;

auto result2 = find(v.begin (), v.end (), 5);
i f ( result2 != v.end ()) cout << "found 5" << endl;
e l s e cout << "5 not found" << endl;

found 4
5 not found
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Searching in C++
find

Note how it searches within a range.
For instance, we could use it for all occurrences like this:

vector < i n t > v = {1 ,2 ,4 ,2 ,2 ,6};

auto it = find(v.begin (), v.end (), 2);
w h i l e (it != v.end ()) {

cout << "found 2 at index " << (it - v.begin ()) << endl;
it ++;
it = find(it , v.end (), 2);

}

found 2 at index 1
found 2 at index 3
found 2 at index 4
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Searching in C++
find if

(returns an iterator to the 1st element in the range for which p returns true)
Documentation:
template < c l a s s InputIt , c l a s s UnaryPredicate >
InputIt find_if ( InputIt first , InputIt last ,

UnaryPredicate p);

Example usage:
bool isEven ( i n t i) {

r e t u r n i%2 == 0;
}

vector < i n t > v = {2 ,4 ,6 ,8};

auto result = find_if (v.begin (), v.end (), isEven );
i f ( result != v.end ()) cout << "found even number " << endl;
e l s e cout << "even number not found" << endl;

found even number
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Searching in C++
find if

We could use ”lambda” expressions to have more compact declarations
(or even ”anonymous” functions)
vector < i n t > v = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8};

// lambda expression
auto isEven = []( i n t i){ r e t u r n i%2 == 0;};

auto result1 = find_if (v.begin (), v.end (), isEven );
i f ( result1 != v.end ())

cout << "first even number is " << * result1 << endl;

// using anonymous function
auto result2 = find_if (v.begin (), v.end (),

[]( i n t i) { r e t u r n i >5;});
i f ( result2 != v.end ())

cout << "first number >5 is " << * result2 << endl;

first even number is 2
first number >5 is 6
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Searching in C++
binary search

(determines if an element exists in a partially-ordered range)
Documentation:
template < c l a s s ForwardIt , c l a s s T>
bool binary_search ( ForwardIt first , ForwardIt last ,

const T& value );

Example usage:
vector < i n t > v = {2 ,4 ,5 ,7 ,9};

i f ( binary_search (v.begin (), v.end (), 5))
cout << "found 5" << endl;

e l s e cout << "5 not found" << endl;

i f ( binary_search (v.begin (), v.end (), 6))
cout << "found 6" << endl;

e l s e cout << "6 not found" << endl;

found 5
6 not found
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Searching in C++
lower bound

(returns an iterator to the first element not less than the given value, in a
partially ordered range, using binary search)
Documentation:
template < c l a s s ForwardIt , c l a s s T >
ForwardIt lower_bound ( ForwardIt first , ForwardIt last ,

const T& value );

Example usage:
vector < i n t > v = {2 ,4 ,5 ,7 ,9};

auto result = lower_bound (v.begin (), v.end (), 6);
i f ( result != v.end ())
cout << "first element >= 6 is " << * result << endl;

first element >= 6 is 7
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Remembering classes

Refreshing your knowledge:
c l a s s Person {

string id;
string name;
i n t age;

p u b l i c :
Person ( string id , string n=" UNDEFINED ", i n t a=0);
string getId () const ;
string getName () const ;
i n t getAge () const ;

};

Person :: Person ( string i, string n, i n t a) :
id(i), name(n), age(a) {}

string Person :: getId () const { r e t u r n id;}
string Person :: getName () const { r e t u r n name ;}
i n t Person :: getAge () const { r e t u r n age ;}
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Comparable elements
Custom classes are not inherently comparable

Person p1("12345", "John", 42);
Person p2("42424", "Mary", 37);
Person p3("55555", " Chariloe ", 61);

vector <Person > v = {p1 , p2 , p3};
auto result = find(v.begin (), v.end (),p1);

error : no match for ’operator == ’

(C++ errors can be hard to read: look at the beginning of error message!)

We can however add == operator (and others such as <, etc)
bool Person :: o p e r a t o r ==( const Person & p1) {

r e t u r n id == p1.id;
}

or, alternatively
bool o p e r a t o r ==( const Person &p1 , const Person &p2) {

r e t u r n p1.getId () == p2.getId ();
}
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