
Sorting Algorithms
Comparison based sorting and linear sorting

L.EIC

Algoritmos e Estruturas de Dados

2024/2025

P Ribeiro, AP Tomás
L.EIC (AED) Sorting Algorithms 2024/2025 1 / 45



Sorting

Sorting is a preprocessing step for many other algorithms
I E.g.: finding the median; finding the closest pair for points in a line or

in the plane; finding duplicates becomes easier after sorting; . . .

Different types of sorting can be suitable for different types of data
I E.g.: for less general cases, there are linear algorithms for sorting

It is important to know the sorting functions available in
programming language libraries

I E.g.: qsort (C), STL sort (C++), Arrays.sort (Java)

L.EIC (AED) Sorting Algorithms 2024/2025 2 / 45



Examples of Applications of Sorting

Problem: find frequency of elements (sort and elements stay
together)
Problem: find closest pair of numbers (sort and see differences
between consecutive numbers)
Problem: find k-th smallest number (sort and see position k)
(there are better algorithms not based on sorting)
Problem: select top-k (sort and see first k)
Problem: union of sets (sort and join - similar to ”merge”)
Problem: intersection of sets (sort and traverse - similar to ”merge”)
. . .

L.EIC (AED) Sorting Algorithms 2024/2025 3 / 45



Some sorting algorithms

Comparative Algorithms
I SelectionSort (select the max/min)
I InsertionSort (insert in the correct position)
I BubbleSort (swap adjacent elements to push max/min to its position)
I MergeSort (split in two, sort halves and then merge)
I QuickSort ”naive” (split in two using a pivot and recursively sort)
I Randomized QuickSort (select the pivot at random)

Non Comparative Algorithms
I CountingSort (count the number of elements of each type)
I RadixSort (sort according to ”digits” )

You can see some animations in: https://visualgo.net/en/sorting or, e.g., Quick
sort with Hungarian, folk dance (https://www.youtube.com/watch?v=3San3uKKHgg)

L.EIC (AED) Sorting Algorithms 2024/2025 4 / 45

https://visualgo.net/en/sorting
https://www.youtube.com/watch?v=3San3uKKHgg


How fast can we sort?

What is the lowest possible time complexity for a general sorting
algorithm in the worst case? Θ(n log n) for the comparative model.

I Comparative model (decision trees): to distinguish elements, we
can only use comparisons (<, >, ≥, ≤, =). How many comparisons do
we need?

Each internal node is labeled i : j , for i , j ∈ {1, 2, . . . , n}
F The left subtree shows subsequent comparisons if ai ≤ aj
F The right subtree shows subsequent comparisons if ai ≥ aj

L.EIC (AED) Sorting Algorithms 2024/2025 5 / 45



How fast can we sort?

Theorem
Any comparison-based sorting algorithm performs at least Ω(n log n)
comparisons in the worst case.

A sketch of the proof that comparative sorting is Ω(n log n) in the
worst case:

I Any deterministic comparison-based sorting algorithm can be
represented as a decision tree with n! leaves.

I The worst-case running time is at least the depth of the decision tree.
I All decision trees with n! leaves have depth Ω(n log(n)).

(binary tree with height h has ≤ 2h leaves; 2h ≥ n! implies h ≥ log2(n!) ∈ Ω(n log n), by Stirling’s formula)

I So any comparison-based sorting algorithm must have worst-case
running time at least Ω(n log(n)).

L.EIC (AED) Sorting Algorithms 2024/2025 6 / 45



The Sorting Problem

For the next slides we will assume the following:

I We want to sort in ascending order
I We are sorting a set of n items
I The items are stored in an array v[n] in positions 0..n− 1
I Items are comparable (through <, >, =,. . . ).

ascending order (or non-decreasing order) means v[i] ≤ v[i + 1], for all i,
after sorting.

L.EIC (AED) Sorting Algorithms 2024/2025 7 / 45



What we will see?

Time complexity of some comparative algorithms with O(1) time
per comparison:

I SelectionSort: Θ(n2)
I InsertionSort: O(n2)
I BubbleSort: O(n2)
I MergeSort: O(n log n)
I HeapSort: O(n log n) (to be presented later in AED)
I QuickSort ”naive” : O(n2)
I Randomized QuickSort: expected time O(n log n)

HeapSort and MergeSort are asymptotically time optimal in the
worst case. HeapSort works in-place, i.e., it uses O(1) extra space,
whereas MergeSort requires an auxiliary vector with Θ(n) elements
and O(log n) extra space for handling recursion.

L.EIC (AED) Sorting Algorithms 2024/2025 8 / 45



SelectionSort
Idea: look for the minimum and put it into the correct position. Do the
same for the remaining elements.

Selection sort (in ”pseudo-code”)

for k from 0 to n-2 do
pmin = index of the minimum of v[k],v[k+1],...,v[n-1]
swap v[k] with v[pmin] (or swap if k is not pmin)

Loop invariant: for all k ≥ 1, when we are testing the loop condition, the
array v contains the same values it had initially, but possibly in different
positions, and v[0] ≤ v[1] . . . ≤ v[k− 1] ≤ min(v[k], . . . , v[n− 1])
For the proof of the loop invariant, it is crucial that v[k− 1] ≤ min(v[k], . . . , v[n− 1])

Correctness: the loop ends when k = n− 1. From the invariant, we have
v[0] ≤ v[1] . . . ≤ v[n− 2] ≤ min(v[n− 1]) = v[n− 1].

L.EIC (AED) Sorting Algorithms 2024/2025 9 / 45



SelectionSort
Example

Sorting [2, 3,−7, 8, 2, 4, 9,−5] by selection sort.

2 3 -7 8 2 4 9 −5
−7 3 2 8 2 4 9 -5
−7 −5 2 8 2 4 9 3
−7 −5 2 8 2 4 9 3
−7 −5 2 2 8 4 9 3
−7 −5 2 2 3 4 9 8
−7 −5 2 2 3 4 9 8
−7 −5 2 2 3 4 8 9

Answer: −7 −5 2 2 3 4 8 9

L.EIC (AED) Sorting Algorithms 2024/2025 10 / 45



SelectionSort

#i n c l u d e <vector >
u s i n g namespace std;

template < c l a s s Comparable >
v o i d selectionSort (vector <Comparable > &v){

f o r ( uns igned k = 0; k < v.size () -1; k++){
uns igned pmin = k;
f o r ( uns igned j = k+1; j < v.size (); j++)

i f (v[j] < v[pmin ])
pmin = j;

swap(v[k],v[pmin ]);
}

}

L.EIC (AED) Sorting Algorithms 2024/2025 11 / 45



SelectionSort
Asymptotic time complexity with vector<int>

Θ(n2) in the best case, i.e., when v is sorted and all elements are different.
Difficult to define worst case but number of pmin = j instructions ≤ Bn always.

cost per number of Total Time:
operation times Θ(n2)

define parameters v c0 1 Θ(1)
unsigned k = 0 c1 1 Θ(1)

test k < v.size()-1 c2 n Θ(n)
unsigned pmin = k c3 n − 1 Θ(n)
unsigned j = k+1 c4 n − 1 Θ(n)

test j < v.size() c2 An Θ(n2)
test v[j] < v[pmin] c5 Bn Θ(n2)

pmin = j c3 0 ≤ t ≤ Bn Best: O(1) Worst: O(n2)
swap(v[k],v[pmin]) c6 n − 1 Θ(n)

j++ c7 Bn Θ(n2)
k++ c7 n − 1 Θ(n)

with An =
n−2∑
k=0

(n − k) = (n + 2)(n − 1)
2 and Bn =

n−2∑
k=0

(n − 1− k) = n(n − 1)
2 .

L.EIC (AED) Sorting Algorithms 2024/2025 12 / 45



InsertionSort

Insertion sort (in ”pseudo-code”)

for k from 1 to n-1 do
insert v[k] in its correct position wrt v[0],...,v[k-1]
(by shifting elements to the right, if necessary)

Let a0, a1, . . . , an−1 be the content of array v initially.

Loop invariant: For all k ≥ 1, when we are testing the loop condition,
v[0], v[1], . . . , v[k− 1] contains a0, a1, . . . , ak−1 but already sorted, and
v [j] = aj , for k ≤ j < n. (provided the insertion step is correct)

Correctness: the loop ends when k = n. From the invariant,
v[0], v[1], . . . , v[n− 1] contains a0, a1, . . . , an−1 sorted.

L.EIC (AED) Sorting Algorithms 2024/2025 13 / 45



InsertionSort
Example

Sorting [2, 3,−7, 8, 2, 4, 9,−5] by insertion sort.

Shifts right?
2 3 −7 8 2 4 9 −5

2 3 -7 8 2 4 9 −5
⇒ 2 3 3

2 2 3
−7 2 3 8 2 4 9 −5

−7 2 3 8 2 4 9 −5
⇒ −7 2 3 8 8

−7 2 3 3 8
−7 2 2 3 8 4 9 −5

⇒ −7 2 2 3 8 8
−7 2 2 3 4 8 9 −5

−7 2 2 3 4 8 9 -5
⇒ −7 2 2 3 4 8 9 9

−7 2 2 3 4 8 8 9
−7 2 2 3 4 4 8 9
−7 2 2 3 3 4 8 9
−7 2 2 2 3 4 8 9
−7 2 2 2 3 4 8 9

−7 −5 2 2 3 4 8 9

L.EIC (AED) Sorting Algorithms 2024/2025 14 / 45



InsertionSort

template < c l a s s Comparable >
v o i d insertionSort (vector <Comparable > &v){

f o r ( uns igned k = 1; k < v.size (); k++) {
Comparable tmp = v[k];
uns igned j;
f o r (j = k; j > 0 && tmp < v[j -1]; j--)

v[j] = v[j -1];
v[j] = tmp;

}
}

Loop invariant (insertion step): For all j ≥ k, when we are testing the
for(j)-loop condition (i.e., j > 0 && tmp < v[j− 1]):

v[0], v[1], . . . , v[j− 1], v[j + 1], . . . , v[k] contains a0, a1, . . . , ak−1 sorted;
tmp contains ak and the elements in v[j + 1], . . . , v[k] are > ak , if j < k
v[j] is ”free” (can be used for other elements)
v[t] = at , for all k + 1 ≤ t < n.

L.EIC (AED) Sorting Algorithms 2024/2025 15 / 45



InsertionSort
Asymptotic time complexity with vector<int>

Best case (v is sorted already): Θ(n).
Worst case (all elements are distinct and v is sorted in decreasing order): Θ(n2)
In general: O(n2)

Best case Worst Case
define parameters v 1 1 Θ(1)

unsigned k = 1 1 1 Θ(1)
test k < v.size() n n Θ(n)

int tmp = v[k] n − 1 n − 1 Θ(n)
unsigned j n − 1 n − 1 Θ(n)

j = k n − 1 n − 1 Θ(n)
test j > 0 && tmp < v[j-1] n − 1 Dn Θ(n2)

v[j] = v[j-1] 0 Dn − (n − 1) Θ(n2)
j-- 0 Dn − (n − 1) Θ(n2)

v[j] = tmp n − 1 n − 1 Θ(n)
k++ n − 1 n − 1 Θ(n)

Θ(n) Θ(n2)

with Dn =
n−1∑
k=1

k∑
j=0

1 =
n−1∑
k=1

(k + 1) =
n∑

k=2

k = n(n + 1)
2 − 1 ∈ Θ(n2)

L.EIC (AED) Sorting Algorithms 2024/2025 16 / 45



BubbleSort

Bubble sort (in ”pseudo-code”)

for k from n-1 to 1 with step -1 do
move max(v[0],v[1],...,v[k]) to position k by swapping
adjacent elements, v[j] with v[j+1], for 0 <= j < k,
if necessary.

Let a0, a1, . . . , an−1 be the content of array v initially.

Loop invariant: When we are testing the loop condition for the t-th time,
k = n− t, the (t − 1) largest elements of a0, a1, . . . , an−1 are in
v[k + 1], . . . , v[n− 1] and sorted, and the remaining are in v[0], . . . , v[k].

Correctness: the loop ends when k = 0, i.e, t = n. From the invariant, the
(n− 1) largest elements of a0, a1, . . . , an−1 are in v[1], v[2], . . . , v[n− 1] and
sorted, and the remaining one is in v [0]. Therefore, v is sorted.

L.EIC (AED) Sorting Algorithms 2024/2025 17 / 45



BubbleSort
Example

Sorting [2, 3,−5, 7, 2, 8, 9] by bubble sort.

---- iteration 1
2 3 -5 7 2 8 9
(2,3) no swap 2 3 -5 7 2 8 9
(3,-5) swap 2 -5 3 7 2 8 9
(3,7) no swap 2 -5 3 7 2 8 9
(7,2) swap 2 -5 3 2 7 8 9
(7,8) no swap 2 -5 3 2 7 8 9
(8,9) no swap 2 -5 3 2 7 8 9
---- iteration 2
2 -5 3 2 7 8 9
(2,-5) swap -5 2 3 2 7 8 9
(2,3) no swap -5 2 3 2 7 8 9
(3,2) swap -5 2 2 3 7 8 9
(3,7) no swap -5 2 2 3 7 8 9
(7,8) no swap -5 2 2 3 7 8 9
---- iteration 3
-5 2 2 3 7 8 9
(-5,2) no swap -5 2 2 3 7 8 9
(2,2) no swap -5 2 2 3 7 8 9
(2,3) no swap -5 2 2 3 7 8 9
(3,7) no swap -5 2 2 3 7 8 9
Answer: -5 2 2 3 7 8 9

We can stop when there are no swaps in an iteration (the array is sorted!).
L.EIC (AED) Sorting Algorithms 2024/2025 18 / 45



BubbleSort

template < c l a s s Comparable >
v o i d BubbleSort (vector <Comparable > &v){ // Trivial version

f o r ( uns igned k = v.size () -1; k > 0; k--)
f o r ( uns igned j = 0; j < k; j++)

i f (v[j+1] < v[j]) swap(v[j],v[j+1]);
}

template < c l a s s Comparable >
v o i d BubbleSort (vector <Comparable > &v) { // Improved version

bool changes = t r u e ;
f o r ( uns igned k = v.size () -1; changes && k > 0; k--) {

changes = f a l s e ;
f o r ( uns igned j = 0; j < k; j++)

i f (v[j+1] < v[j]) {
swap(v[j],v[j+1]);
changes = t r u e ;

}
}

}

L.EIC (AED) Sorting Algorithms 2024/2025 19 / 45



BubbleSort
Asymptotic complexity with vector<int>

Trivial version (without the flag changes)
Θ(n2) time for all instances.

Improved version (with the flag changes)
I Best case (v is already sorted): Θ(n) time.
I Worst case (v is sorted in strictly decreasing order): Θ(n2) time
I So, BubbleSort runs in O(n2) time.

Space complexity for both: O(1) extra space.

Further improvement: the last swap in a given iteration can be used
to bound search in the next one. Still, O(n2) time.
(Using flags often leads to ”spaghetti code”, i.e., difficult-to-maintain and
unstructured code. It made some sense here, but can be avoided!)

L.EIC (AED) Sorting Algorithms 2024/2025 20 / 45



MergeSort and QuickSort
Based on divide and conquer

Algorithms that are expressed in a recursive way
Follow the divide and conquer strategy:

Divide and Conquer
Divide the problem in a set of subproblems which are smaller
instances of the same problem

Conquer the subproblems solving them recursively. If the
problem is small enough, solve it directly.

Combine the solutions of the smaller subproblems on a
solution for the original problem

L.EIC (AED) Sorting Algorithms 2024/2025 21 / 45



MergeSort

MergeSort
Divide: partition the initial array in two halves

Conquer: recursively sort each half. If we only have one item, it is sorted.

Combine: merge the two sorted halves in a final sorted array

L.EIC (AED) Sorting Algorithms 2024/2025 22 / 45



Divide and Conquer
MergeSort

Divide:

L.EIC (AED) Sorting Algorithms 2024/2025 23 / 45



Divide and Conquer
MergeSort

Conquer:

L.EIC (AED) Sorting Algorithms 2024/2025 24 / 45



MergeSort

What is the execution time of this algorithm?

D(n) - Time to partition an array of size n in two halves
M(n) - Time to merge two sorted arrays of size n
T(n) - Time for a MergeSort on an array of size n

T (n) =
{

Θ(1) if n = 1
D(n) + 2T (n/2) + M(n) if n > 1

In practice, we are ignoring certain details, but it suffices
(ex: when n is odd, the size of subproblem is not exactly n/2)

L.EIC (AED) Sorting Algorithms 2024/2025 25 / 45



Divide and Conquer
MergeSort

D(n) - Time to partition an array of size n in two halves is Θ(1)

Do not create a copy of the array.

If we use a function with two arguments mergesort(a,b), to sort
from position a to position b:

I Initially, mergesort(0, n-1) (with arrays starting at position 0)

I Let middle = b(a + b)/2c be the middle position
Calls mergesort(a,middle) and mergesort(middle+1,b)

(in the implementation, we will have two other arguments: mergeSort(v,tmpArray,a,b))

L.EIC (AED) Sorting Algorithms 2024/2025 26 / 45



Divide and Conquer
MergeSort

M(n) - Time to merge two sorted arrays of size n/2 is O(n)

Worst case: (n − 1) comparisons + n copies, spending Θ(n) (linear time)

L.EIC (AED) Sorting Algorithms 2024/2025 27 / 45



MergeSort
The recurrence that defines its runtime

D(n) - Time to partition an array of size n in two halves
M(n) - Time to merge two sorted arrays of size n
T(n) - Time for a MergeSort on an array of size n

T (n) =
{

Θ(1) if n = 1
D(n) + 2T (n/2) + M(n) if n > 1

becomes

T (n) =
{

Θ(1) if n = 1
2T (n/2) + Θ(n) if n > 1

How to solve this recurrence?
(for a cleaner explanation we will assume n = 2k , but the results holds for any n)

L.EIC (AED) Sorting Algorithms 2024/2025 28 / 45



MergeSort
Recursion Tree

Let’s draw the recursion tree:

Worst case: adding everything we get that MergeSort is Θ(n log2 n)

L.EIC (AED) Sorting Algorithms 2024/2025 29 / 45



MergeSort

template < c l a s s Comparable >
v o i d mergeSort (vector <Comparable > &v){

vector <Comparable > tmpArr (v.size ());
mergeSort (v,tmpArr ,0,v.size () -1);

}

// internal method , makes recursive calls
template < c l a s s Comparable >
v o i d mergeSort (vector <Comparable > &v,vector <Comparable > &tmp ,

i n t left , i n t right ) {
i f (left < right ){

i n t middle = left + (right -left )/2;
mergeSort (v, tmp , left , middle );
mergeSort (v, tmp , middle + 1, right );
merge(v, tmp , left , middle + 1, right );

}
}

In addition to the array tmpArr, shared by all calls, it uses O(log n) extra space for the
recursion, since the recursion depth is O(log n) and each call needs O(1) extra space.

L.EIC (AED) Sorting Algorithms 2024/2025 30 / 45



MergeSort – function merge

template < c l a s s Comparable >
v o i d merge(vector <Comparable > &v, vector <Comparable > &tmp ,

i n t leftPos , i n t rightPos , i n t rightEnd ) {
i n t leftEnd = rightPos -1, tmpPos = leftPos ;
i n t numElements = rightEnd - leftPos +1;

w h i l e ( leftPos <= leftEnd && rightPos <= rightEnd )
i f (v[ leftPos ] <= v[ rightPos ])

tmp[ tmpPos ++] = v[ leftPos ++];
e l s e tmp[ tmpPos ++] = v[ rightPos ++];

w h i l e ( leftPos <= leftEnd ) // if left has not ended
tmp[ tmpPos ++] = v[ leftPos ++];

w h i l e ( rightPos <= rightEnd ) // if right has not ended
tmp[ tmpPos ++] = v[ rightPos ++];

f o r ( i n t i=0; i < numElements ; i++, rightEnd --) // copy to v
v[ rightEnd ] = tmp[ rightEnd ];

}

L.EIC (AED) Sorting Algorithms 2024/2025 31 / 45



MergeSort – improving merge

Improved version: exploits the fact that, when ”left” ends before ”right”, all
the remaining items of ”right” are already in their final position in v.

template < c l a s s Comparable >
v o i d merge(vector <Comparable > &v, vector <Comparable > &tmp ,

i n t leftPos , i n t rightPos , i n t rightEnd ) {
i n t leftEnd = rightPos -1, tmpPos = leftPos ;
i n t auxLeft = leftPos ; // needs initial leftPos to copy tmp to v

w h i l e ( leftPos <= leftEnd && rightPos <= rightEnd )
i f (v[ leftPos ] <= v[ rightPos ])

tmp[ tmpPos ++] = v[ leftPos ++];
e l s e tmp[ tmpPos ++] = v[ rightPos ++];

w h i l e ( leftPos <= leftEnd )
tmp[ tmpPos ++] = v[ leftPos ++];

f o r ( i n t i = 0; i < tmpPos ; i++) // copy tmp to v
v[ auxLeft ++] = tmp[i];

}

L.EIC (AED) Sorting Algorithms 2024/2025 32 / 45



QuickSort (naive)
Key idea: split according to a pivot and sort recursively

QuickSort (naive)
1 Choose an element (first, for example) as the pivot
2 Split the array into two: elements smaller than the pivot

and elements larger than (or equal to) the pivot
3 Recursively sort each of the two parts (without the pivot)

The choice of the pivot is crucial.
If the choice “splits” always well the algorithm takes O(n log n)
In the worst case, T (n) = T (n− 1) + T (0) + Θ(n), leading to Θ(n2)

For an animation:
https: // www. youtube. com/ watch? v= 3San3uKKHgg

L.EIC (AED) Sorting Algorithms 2024/2025 33 / 45

https://www.youtube.com/watch?v=3San3uKKHgg


QuickSort

template < c l a s s Comparable >
v o i d quickSort (vector <Comparable > &v, i n t left , i n t right ){

i f (left < right ){
i n t pivotPos = partition (v, left , right );
quickSort (v, left , pivotPos - 1);
quickSort (v, pivotPos + 1, right );

}
}

L.EIC (AED) Sorting Algorithms 2024/2025 34 / 45



Randomized QuickSort

Key idea: split according to a pivot and sort recursively

Randomized QuickSort
1 Choose an element at random as the pivot
2 Split the array into two: elements smaller than the pivot

and elements larger than (or equal to) the pivot
3 Recursively sort each of the two parts (without the pivot)

The expected time complexity is O(n log n)
(check CLRS for a proof, if you are interested to learn more)

Due to randomization, we cannot find an instance that takes Θ(n2)
time in every run.

L.EIC (AED) Sorting Algorithms 2024/2025 35 / 45



QuickSort: In-place partition in Θ(n)
Implementing https://www.youtube.com/watch?v=3San3uKKHgg algorithm:
template < c l a s s Comparable >
i n t partition (vector <Comparable > &v, i n t left , i n t right ){

// int tmp = left + rand() % (right-left+1); // randomized version
// swap(v[tmp],v[left]);
i n t pivotPos = left;
do {

w h i l e (v[right] >= v[ pivotPos ] && right > pivotPos )
right --;

i f (right == pivotPos ) r e t u r n pivotPos ;
swap(v[ right],v[ pivotPos ]);
pivotPos = right; left ++;
w h i l e (v[left] < v[ pivotPos ]) left ++;
i f (left == pivotPos ) r e t u r n pivotPos ;
swap(v[left],v[ pivotPos ]);
right = pivotPos -1; pivotPos = left;

} w h i l e ( pivotPos < right );
r e t u r n pivotPos ;

} // if you are interested, refer e.g. to CLRS for another version

L.EIC (AED) Sorting Algorithms 2024/2025 36 / 45

https://www.youtube.com/watch?v=3San3uKKHgg


About QuickSort

Quicksort has been proposed by C. A. R. Hoare (in 1961). It is one of top
10 algorithms of 20th century in science and engineering.
https://en.wikipedia.org/wiki/Tony_Hoare, a.k.a, Tony Hoare, Turing Award in 1980

It has been extensively studied and with many variants (e.g, R. Sedgewick,
PhD Thesis, 1975, is about quicksort).

E.g., the median of three strategy is another deterministic heuristic for
selecting the pivot:

I In each recursive call, it looks at the first, middle and last elements of
the segment we have to sort, and chooses the median of those three
elements as the pivot.

I In that step, it also sorts these three elements, by swapping them if
needed.

There are also hybrid versions, e.g., combining quicksort with other
methods, e.g., with insertion sort when right− left + 1 ≤ 10.

L.EIC (AED) Sorting Algorithms 2024/2025 37 / 45

https://en.wikipedia.org/wiki/Tony_Hoare


Non comparison-based sorts

CountingSort (count the number of elements of each type)
I Assume that v [j] ∈ {1, 2, . . . , k}, for some fixed k
I Sorting in linear time: takes Θ(n + k) time to sort n numbers in the

range 1 to k.
(if k � n then Θ(n + k) = Θ(n))

I No comparisons between elements.
I Interesting to have a stable version.
I A stable sort keeps the relative order of items that have the same key.

Example:
key 5 7 5 3 5 → 3 5 5 5 7
id ”bi” ”bo” ”ro” ”te” ”ti” ”te” ”bi” ”ro” ”ti” ”bo”

RadixSort (sort according to ”digits” )

L.EIC (AED) Sorting Algorithms 2024/2025 38 / 45



CountingSort
Given an array A with n elements, such that A[j] ∈ {1, 2, . . . , k}, builds B with
the elements of A sorted. This version is stable.
(can be adapted to deal with other ranges, e.g., [0, k − 1] or [a, b])

L.EIC (AED) Sorting Algorithms 2024/2025 39 / 45



Example: Stable CountingSort

v o i d countingSort (std :: vector < i n t > &v) {
auto min_max = std :: minmax_element (v.begin (),v.end ());
i n t min = * min_max .first;
i n t max = * min_max . second ;
std :: vector < i n t > count ((max -min )+1, 0); // init count

f o r ( auto v1:v) ++ count[v1 -min ];

f o r ( auto it = count.begin ()+1; it != count.end (); it ++)
*it += *(it -1);

std :: vector < i n t > vaux(v.size ());
f o r ( auto it = v. rbegin (); it != v.rend (); it ++) {

vaux[count [(* it)-min ]-1] = *it;
count [(* it)-min]--;

}

std :: copy(vaux.begin (), vaux.end (),v.begin ());
}

L.EIC (AED) Sorting Algorithms 2024/2025 40 / 45



RadixSort

Digit-by-digit-sort.
Sort on least-significant digit first with auxiliary stable sort.

L.EIC (AED) Sorting Algorithms 2024/2025 41 / 45



RadixSort
Sort n computer words of b bits each?

L.EIC (AED) Sorting Algorithms 2024/2025 42 / 45



RadixSort
Sort n computer words of b bits each?

(The following result is somehow out of the scope of AED. Refer to CLRS, if you are
interested to learn more about RadixSort and variants)

Here, lg n means log2 n.
L.EIC (AED) Sorting Algorithms 2024/2025 43 / 45



Summing up

There are many (more) sorting algorithms

The “best” algorithm depends on the case in question

It is possible to combine several algorithms (hybrids)

I Eg: RadixSort can have another algorithm as an internal step, as long
as it is a stable sort (in case of a tie, maintain the initial order). (More
about “String sorts”: https://algs4.cs.princeton.edu/lectures/)

In practice, in real implementations, this is what is done (combining):
(Note: implementation depends on the compiler and its version)

I Java: uses Timsort (MergeSort + InsertionSort)
I C++ STL: uses IntroSort (QuickSort + HeapSort) + InsertionSort

L.EIC (AED) Sorting Algorithms 2024/2025 44 / 45

https://algs4.cs.princeton.edu/lectures/


STL algorithms sorting
Checking https://cplusplus.com/reference/algorithm/sort/

template < c l a s s RandomAccessIterator >
v o i d sort( RandomAccessIterator first ,

RandomAccessIterator last );

template < c l a s s RandomAccessIterator , c l a s s Compare >
v o i d sort( RandomAccessIterator first ,

RandomAccessIterator last , Compare comp );

Sorts the elements in the range [first, last[ into ascending order
(i.e., last is not included)
The elements are compared using operator< for the first version,
and comp for the second. The latter must be a binary predicate that
compares two objects, returning true if the first precedes the second
(i.e., a strict weak ordering)
Equivalent elements are not guaranteed to keep their original relative
order (but available std::stable sort).

L.EIC (AED) Sorting Algorithms 2024/2025 45 / 45

https://cplusplus.com/reference/algorithm/sort/

