
Binary Trees

L.EIC

Algorithms and Data Structures

2024/2025

P Ribeiro, AP Tomas

L.EIC (AED) Binary Trees 2024/2025 1 / 36

Changing Professors - Pedro Ribeiro

Name: Pedro Ribeiro
Office: FC6 1.47 (DCC/FCUP)
Website: https://www.dcc.fc.up.pt/˜pribeiro/

Main Research Interests

Complex Networks, Network Science, Graph Mining, Data Science

Algorithms and Data Structures, Complexity

Parallel and Distributed Computing

Computer Science Education and Programming Contests

L.EIC (AED) Binary Trees 2024/2025 2 / 36

https://sigarra.up.pt/fcup/pt/instal_geral.espaco_view?pv_id=69122
https://www.dcc.fc.up.pt/~pribeiro/

Competitive Programming - Pedro Ribeiro

I am involved in many algorithmic programming contests:
(organization, creating and solving problems, student mentoring and training, ...)

Pre-University Students (Primary and Secondary Education)
I Olympiads in Informatics (National and International, e.g., ONI, IOI)
I Bebras - International Computational Thinking Challenge

University Students
I National and International ICPC Contests (e.g., MIUP, SWERC, EUC)

L.EIC (AED) Binary Trees 2024/2025 3 / 36

Non-linear Structures

Arrays and lists are examples of linear data structures.

Each element has:

a single predecessor (except for the first element of the list);

a single successor (except for the last element of the list).

Are there other types of structures?

A graph is a non-linear data structure, as each of its elements, called
nodes, can have more than one predecessor or more than one
successor.

L.EIC (AED) Binary Trees 2024/2025 4 / 36

Trees

A tree is a specific type of graph.

Each element, called a node, has zero or more successors, but only
one predecessor (except for the first node, known as the root of the
tree).

An example of a tree:

L.EIC (AED) Binary Trees 2024/2025 5 / 36

Trees - Examples

Trees are particularly well-suited for representing information
organized in hierarchies.

Some examples:
I The directory structure (or folders) of a file system
I A family tree
I A tree of life

L.EIC (AED) Binary Trees 2024/2025 6 / 36

Trees - Visualization

Often, arrows are omitted in the edges (or connections) since it is
clear from the diagram which nodes descend from which:

L.EIC (AED) Binary Trees 2024/2025 7 / 36

Trees - Terminology

The unique predecessor of a node is called its parent.
I Example: The parent of B is A; the parent of C is also A

The successors of a node are its children.
I Example: The children of A are B and C

The degree of a node is the number of its children.
I Example: A has 2 children, C has 1 child

A leaf is a node without children, i.e., with degree 0.
I Example: D, E, and F are leaf nodes

The root is the only node without a parent.
A subtree is a connected subset of nodes in the tree.

I Example: {B,D,E} is a subtree

L.EIC (AED) Binary Trees 2024/2025 8 / 36

Trees - Terminology

The edges that connect the nodes are called branches.
A path is the sequence of branches between two nodes.

I Example: A-B-D is the path between A and D

The length of a path is the number of branches it contains.
I Example: A-B-D has a length of 2

The depth of a node is the length of the path from the root to that
node (the depth of the root is zero).

I Example: B has depth 1, D has depth 2

The height of a tree is the maximum depth of any node in the tree.
I Example: The tree in the diagram has a height of 2

L.EIC (AED) Binary Trees 2024/2025 9 / 36

Binary Trees

The arity of a tree is the maximum degree of a node.

A binary tree is a tree with arity 2, meaning each node has at most
two children, called the left child and the right child.

L.EIC (AED) Binary Trees 2024/2025 10 / 36

Implementation

Just as a linked list has a reference to its first node, a tree has a
reference to its root node

Each node should contain the value and a reference to the left and
right child

Leafs should contain pointers to nullptr

L.EIC (AED) Binary Trees 2024/2025 11 / 36

Binary Trees - Implementation

Let’s put this to practice with a generic binary tree:
values can be integers, strings, or any other type of object

For the purposes of this class we will be using lightweight class,
with only the essentials (focus more on the algorithms)

template < c l a s s T> c l a s s BTree {
p r i v a t e :

s t r u c t Node { // A tree node is just a simple private struct

T value;

Node *left, *right;

};

Node *root; // the root is just a pointer to a node

p u b l i c :
BTree() {root = nullptr;} // the constructor starts with an empty tree

}

L.EIC (AED) Binary Trees 2024/2025 12 / 36

Binary Trees - Number of Nodes

Let’s now create some methods to add to the BTree<T> class.

The first method’s goal is to count the number of nodes in a tree.
For example, the following binary tree has 6 nodes:

Let’s create a recursive method
I Base case: when the tree is empty... it has 0 nodes!
I Recursive case: the number of nodes in a non-empty tree is equal to

1 + nr of nodes in the left subtree + nr of nodes in the right subtree.
F Fig.: num nodes = 1 + num nodes({B,D,E}) + num nodes({C,F})

L.EIC (AED) Binary Trees 2024/2025 13 / 36

Binary Trees - Number of Nodes

We need to start counting... from the root!

We want to have a numberNodes() method in the BTree<T> class.
I Example: if t is a tree, we want to be able to call t.numberNodes()

We’ll use as helper method that is recursive.

// Main method - returns the total number of nodes in the tree

i n t numberNodes() {
return numberNodes(root);

}

// Helper method (recursive)

i n t numberNodes(Node *n) {
i f (n == nullptr) return 0;

return 1 + numberNodes(n->left) + numberNodes(n->right);

}

This pattern (main method that calls a recursive helper method from
the root) can be used for many kinds of tasks.

Let’s look at a few more examples...

L.EIC (AED) Binary Trees 2024/2025 14 / 36

Binary Trees - Tree Height

We’ll calculate the height of a tree (maximum depth of a node).
For example, the tree in the figure has height 2 (with each node’s
depth in red).

We’ll create a recursive method very similar to the previous one:
I Recursive case: the height of a tree is equal to 1 plus the maximum

between the heights of the left and right subtrees.
F Fig.: height = 1 + max(height({B,D,E}), height({C,F}))

What should be the base case? Two options:
I We can stop at a leaf node: it has height zero (0).
I If we stop at a nullptr tree, the height should be... -1

F E.g.: height(1 node tree) = 1 + max(nullptr, nullptr) = 1 + max(-1, -1) = 0

L.EIC (AED) Binary Trees 2024/2025 15 / 36

Binary Trees - Tree Height

Implementing it, with the base case of the recursive helper method
being the nullptr tree (similar to the node-counting method):

// Returns the height of the tree

i n t height() {
return height(root);

}

// Helper method (recursive)

i n t height(Node *n) {
i f (n == nullptr) return -1;

return 1 + std::max(height(n->left), height(n->right));

}

L.EIC (AED) Binary Trees 2024/2025 16 / 36

Binary Trees - Searching for an Element

Now let’s see a method to check if an element is contained in a
tree. For example, the tree in the following figure contains the
number 2, but does not contain the number 3:

We’ll create a recursive method very similar to the previous ones:
I Base case 1: if the current node is nullptr, it doesn’t contain the

value we’re looking for, so we return false.
I Base case 2: if the value we’re looking for is in the current node, we

return true.
I Recursive case: if it’s not in the root, then we check if it’s in the left

subtree OR the in the right subtree.

L.EIC (AED) Binary Trees 2024/2025 17 / 36

Binary Trees - Searching for an Element

Implementing it:

// Returns true if val is in the tree, or false otherwise

bool contains(const T & val) {
return contains(root, val);

}

// Helper method (recursive)

bool contains(Node *n, const T & val) {
i f (n == nullptr) return f a l s e ;
i f (n->value == val) return true;
return contains(n->left, val) || contains(n->right, val);

}

L.EIC (AED) Binary Trees 2024/2025 18 / 36

Binary Trees - Writing the Nodes of a Tree

How can we write the content (nodes) of a tree?

We need to traverse all nodes. But in what order?

Let’s distinguish between two different orders:

Depth-First Search (DFS): visit all nodes in the subtree of one child
before visiting the subtree of the other child.

Breadth-First Search (BFS): visit nodes in increasing depth order.

L.EIC (AED) Binary Trees 2024/2025 19 / 36

Binary Trees - Depth-First Search

If we write a node the first time we pass through it, we get the
following for the figure: A B D E C F

This corresponds to doing the following:
1 Write the root
2 Write the entire left subtree
3 Write the entire right subtree

This can be directly converted into a recursive method!

L.EIC (AED) Binary Trees 2024/2025 20 / 36

Binary Trees - Depth-First Search

Translating what was described on the previous slide into code:

// Write all nodes in PreOrder

void printPreOrder() {

std::cout << "PreOrder:";

printPreOrder(root);

std::cout << std::endl;

}

// Helper method (recursive)

void printPreOrder(Node *n) {

i f (n == nullptr) return;
std::cout << " " << n->value;

printPreOrder(n->left);

printPreOrder(n->right);

}

For the previous tree, this would output ”PreOrder: A B D E C F”.

We call this order PreOrder, because we write the root before the
two subtrees.

L.EIC (AED) Binary Trees 2024/2025 21 / 36

Binary Trees - Depth-First Search

Besides PreOrder, we can also consider two other depth-first orders:
I InOrder: root written between the two subtrees.
I PostOrder: root written after the two subtrees.

For the tree in the figure:
I PreOrder: A B D E C F
I InOrder: D B E A F C
I PostOrder: D E B F C A

L.EIC (AED) Binary Trees 2024/2025 22 / 36

Binary Trees - Depth-First Search

Implementing InOrder :

// Write all nodes in InOrder

void printInOrder() {

std::cout << "InOrder:";

printInOrder(root);

std::cout << std::endl;

}

// Helper method (recursive)

void printInOrder(Node *n) {

i f (n == nullptr) return;
printInOrder(n->left);

std::cout << " " + n->value;

printInOrder(n->right);

}

L.EIC (AED) Binary Trees 2024/2025 23 / 36

Binary Trees - Depth-First Search

Implementing PostOrder :

// Write all nodes in PostOrder

void printPostOrder() {

std::cout << "PostOrder:";

printPostOrder(root);

std::cout << std::endl;

}

// Helper method (recursive)

void printPostOrder(Node *n) {

i f (n == nullptr) return;
printPostOrder(n->left);

printPostOrder(n->right);

std::cout << " " + n->value;

}

L.EIC (AED) Binary Trees 2024/2025 24 / 36

Binary Trees - Breadth-First Search

To traverse in breadth-first order, we’ll use a queue ADT.
1 Initialize a queue Q by adding the root.
2 While Q is not empty:
3 Dequeue the first element, cur, from the queue.
4 Write cur.
5 Add the children of cur to the end of the queue.

L.EIC (AED) Binary Trees 2024/2025 25 / 36

Binary Trees - Breadth-First Search

Let’s see an example:

1 Initially, we have Q = {A}
2 We dequeue and print A, add children B and C : Q = {B,C}
3 We dequeue and print B, add children D and E : Q = {C ,D,E}
4 We dequeue and print C, add child F : Q = {D,E ,F}
5 We dequeue and print D, no children: Q = {E ,F}
6 We dequeue and print E, no children: Q = {F}
7 We dequeue and print F, no children: Q = {}

L.EIC (AED) Binary Trees 2024/2025 26 / 36

Binary Trees - Breadth-First Search in Code

Implementing in code:

// Write all nodes in BFS order

void printBFS() {

std::cout << "BFS:";

std::queue<Node *> q;

q.push(root);

whi le (!q.empty()) {
Node *cur = q.front();

q.pop();

i f (cur != nullptr) {
std::cout << " " << cur->value;

q.push(cur->left);

q.push(cur->right);

}

}

std::cout << std::endl;

}

In this version, we allow null nodes to enter the queue, but then
ignore them. Alternatively, we could only add non-null nodes.

L.EIC (AED) Binary Trees 2024/2025 27 / 36

Binary Trees - BFS vs DFS

If instead of a queue Q (FIFO) we used a stack S (LIFO), we would
be performing a DFS instead of BFS!

1 Initially, we have S = {A}
2 Pop and print A, push children B and C : S = {B,C}
3 Pop and print C, push child F : S = {B,F}
4 Pop and print F, no children: S = {B}
5 Pop and print B, push children D and E : S = {D,E}
6 Pop and print E, no children: S = {D}
7 Pop and print D, no children: S = {}

L.EIC (AED) Binary Trees 2024/2025 28 / 36

Binary Trees - Depth-First Search in Code

Implementing in code:

// Write all nodes in DFS order

void printDFS() {

std::cout << "DFS:";

std::stack<Node *> s;

s.push(root);

whi le (!s.empty()) {
Node *cur = s.top();

s.pop();

i f (cur != nullptr) {
std::cout << " " << cur->value;

s.push(cur->left);

s.push(cur->right);

}

}

std::cout << std::endl;

}

L.EIC (AED) Binary Trees 2024/2025 29 / 36

Binary Trees - Reading a Tree in PreOrder

How can we read a tree?

One approach is to use PreOrder, explicitly representing nullptrs.

Note that the following two representations refer to the same tree:

If we represent nullptr as N, then the tree in PreOrder would be
represented as:

5 1 8 N N 6 N N 7 2 N N N

L.EIC (AED) Binary Trees 2024/2025 30 / 36

Binary Trees - Reading a Tree in PreOrder

Note the necessity of including nullptrs.

Example: without nullptrs, the following inorder representation could
refer to any of the four trees (among others): 5 1 8 6 7 2

With nullptrs, these four trees become distinguishable:
I 1st Tree: 5 1 8 N N 6 N N 7 2 N N N
I 2nd Tree: 5 1 8 6 N N 7 N N 2 N N N
I 3rd Tree: 5 1 8 N N N 6 7 N N 2 N N
I 4th Tree: 5 1 8 6 7 N N N N N 2 N N

L.EIC (AED) Binary Trees 2024/2025 31 / 36

Binary Trees - Reading a Tree in PreOrder

Implementing a generic preorder read of a tree:
(with the string null representing a nullptr - for the previous usage example we

should call read(”N”)

// Read a tree in preorder from stdin

void read(std::string null) {

root = readNode(null);

}

// Helper method (recursive)

Node *readNode(std::string null) {

std::string buffer;

std::cin >> buffer;

i f (buffer == null) return nullptr;

Node *n = new Node;

std::istringstream ss(buffer);

ss >> n->value;

n->left = readNode(null);

n->right = readNode(null);

return n;

}

L.EIC (AED) Binary Trees 2024/2025 32 / 36

Binary Trees - Destructor

C++ does not do automatic garbage collection, so we need to
explicitely delete what we created with new to clean the memory
(would not matter ”a lot” on programs that terminate right after using one tree,

but it is a good practice and will avoid memory leaks when you create many trees

and/or nodes and then stop using them)

∼BTree() {
destroy(root);

}

void destroy(Node *n) {

i f (n == nullptr) return;
destroy(n->left);

destroy(n->right);

de lete n;
}

Note: if you want to check for memory leaks you could use valgrind
(not available on Windows)

L.EIC (AED) Binary Trees 2024/2025 33 / 36

https://valgrind.org/

Binary Trees - Testing Everything We’ve Done

Testing everything that has been implemented:

#inc lude "binaryTree.h"

i n t main() {

BTree< int > t; // Create an empty tree of integers
t.read("N"); // Read contents from stdin, using "N" as nullptr

// Call some of the methods the class provides

std::cout << "numberNodes = " << t.numberNodes() << std::endl;

std::cout << "depth = " << t.depth() << std::endl;

std::cout << "contains(2) = " << t.contains(2) << std::endl;

std::cout << "contains(3) = " << t.contains(3) << std::endl;

// Print nodes in several possible orders

t.printPreOrder();

t.printInOrder();

t.printPostOrder();

t.printBFS();

t.printDFS();

return 0;

}

L.EIC (AED) Binary Trees 2024/2025 34 / 36

Binary Trees - Testing Everything We’ve Done

Running the program (assuming executable name a.out) with input
from the tree in the figure, saved in a file called input.txt

5 1 8 N N 6 N N 7 2 N N N

./a.out < input.txt would give the following result:

numberNodes = 6

depth = 2

contains(2) = 1

contains(3) = 0

PreOrder: 5 1 8 6 7 2

InOrder: 8 1 6 5 2 7

PostOrder: 8 6 1 2 7 5

BFS: 5 1 7 8 6 2

DFS: 5 7 2 1 6 8

L.EIC (AED) Binary Trees 2024/2025 35 / 36

Binary Trees - Method Complexity

What is the time complexity of the methods we’ve implemented?
I numberNodes()
I depth()
I contains()
I printPreOrder()
I printInOrder()
I printPostOrder()
I printBFS()
I printDFS()
I readTree(std::string null)

All of these methods traverse each node in the tree exactly once (for
contains(), this is in the worst case; for the other methods, it is
always so), performing a constant number of operations per node.

Therefore, all these methods have linear complexity, O(n), where n is
the number of nodes in the tree.

Is it possible to improve this complexity for the contains method?
Binary Search Trees!

L.EIC (AED) Binary Trees 2024/2025 36 / 36

