
Balanced Binary Search Trees

L.EIC

Algorithms and Data Structures

2024/2025

P Ribeiro, AP Tomas

L.EIC (AED) Balanced Binary Search Trees 2024/2025 1 / 60

Binary Search Tree (BST) - A quick recap

Every node in a BST: greater than all the nodes in its left
subtree and smaller than all the nodes in its right subtree

The time complexity of naively inserting, removing and searching
for elements in a BST is O(h), where h is the height of the tree

The height depends on the insertion order and a bad order may give
origin to a height that is linear on the number of elements n

However, if the tree is balanced, the height is O(log n)

vs

L.EIC (AED) Balanced Binary Search Trees 2024/2025 2 / 60

Balancing Strategies

There are several strategies to ensure that the complexity of
operations like searching, inserting, and removing is better than O(n)

Balanced trees:
(height O(log n))

I AVL Trees (in detail today)

I Red-Black Trees (in detail today)

I Splay Trees (quick overview today)

I B-Trees (quick overview today)

I Treaps

I ...

Other data structures:

I Skip List

I Hash Table (on another class)

I Bloom Filter

L.EIC (AED) Balanced Binary Search Trees 2024/2025 3 / 60

Balancing Strategies

Simple case: how to balance the following tree
(between parenthesis is the height):

⇒

This operation is called a right rotation

L.EIC (AED) Balanced Binary Search Trees 2024/2025 4 / 60

Balancing Strategies

The relevant rotation operations are the following:
I Note that we must not break the properties that turn the tree into a

binary search tree

Right Rotation

⇒

Left Rotation

⇒

L.EIC (AED) Balanced Binary Search Trees 2024/2025 5 / 60

AVL Trees

AVL Tree

A binary search tree that guarantees that for each node, the heights of the
left and right subtrees differ by at most one unit (height invariant)

When inserting and removing nodes, we change the tree so that we
keep the height invariant

L.EIC (AED) Balanced Binary Search Trees 2024/2025 6 / 60

AVL Trees

Inserting on a AVL tree works like inserting on any binary search
tree. However, the tree might break the height invariant (and stop
being ”balanced”)

The following cases may occur:

+2 on the left +2 on the right

Let’s see how to correct the first case with simple rotations.
Correcting the second case is similar, but with mirrored rotations

L.EIC (AED) Balanced Binary Search Trees 2024/2025 7 / 60

AVL Trees

In the first case, we have two different possible shapes of the AVL Tree

The first:

⇒

Left is too ”heavy”, case 1

We correct by making a right rotation starting in X

Note: the height of Y2 might be h + 1 or h: this correction works for
both cases

L.EIC (AED) Balanced Binary Search Trees 2024/2025 8 / 60

AVL Trees

The second:

⇒ ⇒

Left is too ”heavy”, case 2

We correct by making a left rotation starting in Y , followed by a right
rotation starting in X

Note: the height of Y21 or Y22 might be h or h − 1: this correction
works for both cases

L.EIC (AED) Balanced Binary Search Trees 2024/2025 9 / 60

AVL Trees

By inserting nodes we might unbalance the tree (breaking the height
invariant)

In order to correct this, we apply rotations along the path where the
node was inserted

There are two analogous unbalancing types: to the left or to the
right

Each type has two possible cases, that are solved by applying
different rotations

L.EIC (AED) Balanced Binary Search Trees 2024/2025 10 / 60

AVL Trees

Example of node insertion:

L.EIC (AED) Balanced Binary Search Trees 2024/2025 11 / 60

AVL Trees

Example of node insertion:

L.EIC (AED) Balanced Binary Search Trees 2024/2025 11 / 60

AVL Trees

Example of node insertion:

L.EIC (AED) Balanced Binary Search Trees 2024/2025 11 / 60

AVL Trees

Example of node insertion:

L.EIC (AED) Balanced Binary Search Trees 2024/2025 11 / 60

AVL Trees

Example of node insertion:

L.EIC (AED) Balanced Binary Search Trees 2024/2025 11 / 60

AVL Trees

Example of node insertion:

L.EIC (AED) Balanced Binary Search Trees 2024/2025 11 / 60

AVL Trees

Example of node insertion:

L.EIC (AED) Balanced Binary Search Trees 2024/2025 11 / 60

AVL Trees

Example of node insertion:

(after two rotations)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 11 / 60

AVL Trees

To remove elements, we apply the same idea of insertion

First, we find the node to remove

We apply the same process we have seen for binary search trees

We apply rotations as described along the path on all unbalanced
nodes until we reach the root

L.EIC (AED) Balanced Binary Search Trees 2024/2025 12 / 60

AVL Trees

For the search operation, we only traverse the tree height

For the insertion operation, we traverse the tree height and the we
apply at most two rotations (why only two?), that take O(1)

For the removal operation, we traverse the tree height and then we
apply O(h) rotations over the path until the root

We conclude that the complexity of each operation is O(h), where h
is the tree height

What is the maximum height of an AVL Tree?

L.EIC (AED) Balanced Binary Search Trees 2024/2025 13 / 60

AVL Trees

To calculate the worst case of the tree height, let’s do the following
exercise:

I What is the smallest AVL tree (following the height invariant) with
height exactly h?

I We will call N(h) to the number of nodes of a tree with height h

L.EIC (AED) Balanced Binary Search Trees 2024/2025 14 / 60

AVL Trees

Height 1

Height 2
Height 3

Height 4
Height 5

L.EIC (AED) Balanced Binary Search Trees 2024/2025 15 / 60

AVL Trees

Summarizing:
I N(1) = 1
I N(2) = 2
I N(3) = 4
I N(4) = 7
I N(5) = 12
I . . .
I N(h) = N(h − 2) + N(h − 1) + 1

It has a behavior similar to the Fibonacci sequence!

Remembering your linear algebra courses:
I N(h) ≈ φh , where φ is the golden ratio
I log(N(h)) ≈ log(φ)h
I h ≈ 1

log(φ) log(N(h))

The height h of an AVL Tree with n nodes is roughly (at most)
1.44 log(n), which is O(log n)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 16 / 60

https://en.wikipedia.org/wiki/Golden_ratio

AVL Tree

Advantages of AVL Trees:
I Search, insertion and removal operations with guaranteed worst case

complexity of O(log n)
I Very efficient search (when comparing with other related data

structures), because the height limit of 1.44 log(n) is small

Disadvantages of AVL trees:
I Relatively complex implementation (still simpler than other similar data

structures);
I Implementation requires two extra bits of memory per node (to store

the ”unbalancedness” of a node: +1, 0 or -1)
I Insertion and removal less efficient (when comparing with other related

data structures) because of having to guarantee a smaller maximum
height

I The rotations frequently change the tree structure (not cache or disk
friendly)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 17 / 60

AVL Trees

The name AVL comes from the authors: G. Adelson-Velsky and E.
Landis. The original paper describing them is from 1962 (”An
algorithm for the organization of information”, Proceedings of the
USSR Academy of Sciences)

You can use an AVL Tree visualization to ”play” a little bit with the
concept and see how insertions, removals and rotations are made.
https://www.cs.usfca.edu/˜galles/visualization/AVLtree.html

L.EIC (AED) Balanced Binary Search Trees 2024/2025 18 / 60

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Red-Black Trees

We will now explore another type of balanced binary search trees
known as red-black trees

This type of trees appeared as an ”adaptation” of 2-3-4 trees to
binary trees

The original paper is from 1978 and was it was written by L. Guibas e
R. Sedgewick (”A Dichromatic Framework for Balanced Trees”)

The authors say they use the red and black colors because they
looked good when printed and because those were the pen colors thay
they had available to draw the trees :)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 19 / 60

Red-Black Trees

Red-Black Tree

A binary search tree where each node is either black or red and:
(root property) The root node is black
(leaf property) The leaves are null/empty black nodes
(red property) The children of a red node are black
(black property) For each node, a path to any of its descending
leaves has the same number of black nodes

L.EIC (AED) Balanced Binary Search Trees 2024/2025 20 / 60

Red-Black Trees

For better visibility, the images may not contain the ”null” leaves, but
you may assume those nodes exist.
We call internal nodes to the non null nodes.

The number of black nodes in a path from a node n to any of its
leaves (not including the node itself) is known as black height and
will be denoted as bh(n)

I Ex: → bh(12) = 2 and bh(21) = 1

L.EIC (AED) Balanced Binary Search Trees 2024/2025 21 / 60

Red-Black Trees

What type of balance do the restrictions guarantee?

If bh(n) = k, then a path from n to a leaf has:
I At least k nodes (only black nodes)
I At most 2k nodes (alternating between black and red nodes)

[recall that there are never two consecutive red nodes]

The height of a branch is therefore at most double the height of a
sister branch

L.EIC (AED) Balanced Binary Search Trees 2024/2025 22 / 60

Red-Black Trees

Theorem - Height of a Red-Black Tree

A red-black tree with n nodes has height h ≤ 2× log2(n + 1)
[that is, the height h of a red-black tree is O(log n)]

Intuition:
Let’s merge the red nodes with their black parents:

This process produces a tree with 2, 3 or 4 children

This 2-3-4 tree has leaves at an uniform height of h’
(where h’ is the black height)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 23 / 60

Red-Black Trees

Theorem - Height of a Red-Black Tree

A red-black tree with n nodes has height h ≤ 2× log2(n + 1)
[that is, the height h of a red-black tree is O(log n)]

The height of this tree is at least half of the original: h′ ≥ h/2

A complete binary tree of height h′ has 2h
′
− 1 internal (non null) nodes

The number of internal nodes of the new tree is ≥ 2h
′
− 1 (it is a 2-3-4 tree)

The original tree had even more nodes than the new one: n ≥ 2h
′
− 1

n + 1 ≥ 2h
′

log2(n + 1) ≥ h′ ≥ h/2

h ≤ 2 log2(n + 1)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 24 / 60

Red-Black Trees - A quick recap

Red-Black Tree

A binary search tree where each node is either black or red and:
(root property) The root node is black
(leaf property) The leaves are null/empty black nodes
(red property) The children of a red node are black
(black property) For each node, a path to any of its descending leaves has the
same number of black nodes

Theorem - Height of a Red-Black Tree

A red-black tree with n nodes has height h ≤ 2× log2(n + 1)
[that is, the height h of a red-black tree is O(log n)]

Intuition:

the black property and the black nodes guarantee
”balance” (black height is equal in all nodes)

the red nodes are the allowed ”lack of balance”
(and no two consecutive red nodes are allowed)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 25 / 60

Red-Black Trees

How to make an insertion?

Inserting a node in a non empty red-black tree

Insert as in any binary search tree

Color the inserted node as red (adding the null black nodes)

Recolor and restructure if needed (restore the invariants)

Because the tree is non empty we don’t break the root property

Because the inserted node is red, we don’t break the black property

The only invariant than can be broken is the red property
I If the parent of the inserted node is black, nothing needs to be done
I If the parent is red we now have two consecutive red nodes

L.EIC (AED) Balanced Binary Search Trees 2024/2025 26 / 60

Red-Black Trees

When the parent of the inserted node is black nothing needs to be done:

Example:

L.EIC (AED) Balanced Binary Search Trees 2024/2025 27 / 60

Red-Black Trees

Red-Red after insertion (red parent)

Case 1.a) The uncle is a black node and the inserted node x is the
left child

Description: right rotate the grandfather, followed by swapping the colors between the
parent and the grandfather

L.EIC (AED) Balanced Binary Search Trees 2024/2025 28 / 60

Red-Black Trees

Red-Red after insertion (red parent)

Case 1.b) The uncle is a black node and the inserted node x is the
right child

Description: left rotation of parent followed by the moves of 1.a

[If the parent was the right child of the grandfather, we would have similar
cases, but symmetric in relation to these]

L.EIC (AED) Balanced Binary Search Trees 2024/2025 29 / 60

Red-Black Trees

Red-Red after insertion (red parent)

Case 2: The uncle is a red node, with x being the inserted node

Description: swap colors of parent, uncle and grandfather

Now, if the father of the grandfather is red, we have a new red-red
situation and we can simply apply one of the cases we already know (if the
grandparent is the root, we simply color it as black)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 30 / 60

Red-Black Trees

Let’s visualize some insertions (try the indicated url):

https://www.cs.usfca.edu/˜galles/visualization/RedBlack.html

L.EIC (AED) Balanced Binary Search Trees 2024/2025 31 / 60

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Red-Black Trees

The cost of an insertion is therefore O(log n)
I O(log n) to get to the insertion position
I O(1) to eventually recolor and restructure

The removals are similar albeit a bit more complicated, but they also
cost O(log n)
(we will not detail in class, but you can try the visualizations)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 32 / 60

Red-Black Trees

Comparison of Red-Black Trees (RB) with AVL trees
I Both are implemented with balanced binary search trees (search,

insertion and removal are O(log n))

I RB are a little bit more unbalanced in the worst case,
with height ∼ 2 log(n) vs AVL with height ∼ 1.44 log(n)

I RB may take a little bit more time to search
(at the worst case, because of the height)

I RB are a bit faster in insertions/removals on average
(”lighter” rebalancing)

I RB spend less memory
(RB only need 1 extra bit for color, AVL 2 bits for unbalancedness)

I RB are (probably) more used in the classical programming languages
Examples of data structures that use them:

F C++ STL: set, multiset, map, multimap
F Java: java.util.TreeMap , java.util.TreeSet
F Linux kernel: scheduler, linux/rbtree.h

L.EIC (AED) Balanced Binary Search Trees 2024/2025 33 / 60

A note about C++

Red-black trees are used nowadays in most common C++
compilers but that does not mean they will always be used

The standard only ”demands” O(log n) for the common set and map
operations and ”BST like” iterators

It is impossible to be ”perfect” for all situations (e.g. should we
expect more insertions, deletions or searches?)

Languages are dynamic and always evolving; C++ is no exception

Languages gain new constructs, libraries, requirements, etc.

Last Standards: C++23, C++20, C++17, C++14,

Current Working Draft for C++26 (updated at 16/04/2024)

The C++ Standards Committee / Boost C++ Libraries

L.EIC (AED) Balanced Binary Search Trees 2024/2025 34 / 60

https://en.wikipedia.org/wiki/C%2B%2B23
https://en.wikipedia.org/wiki/C%2B%2B20
https://en.wikipedia.org/wiki/C%2B%2B17
https://en.wikipedia.org/wiki/C%2B%2B14
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n4981.pdf
http://www.open-std.org/jtc1/sc22/wg21/
https://www.boost.org/

Using (already implemented) BSTs in C++

(Ordered) Associative Containers
I set - collection of unique keys, sorted by keys
I map - collection of key-value pairs, sorted by keys, keys are unique
I multiset - collection of keys, sorted by keys
I multimap - collection of key-value pairs, sorted by keys

Usual operations are available:
I Iterators (forward and reverse)
I Lookup (find, count, lower bound, upper bound, ...)
I Modifiers (clear, insert, erase, ...)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 35 / 60

https://en.cppreference.com/w/cpp/container#Associative_containers

Example Applications

Let’s do some livecoding and use a real dataset to play a little bit
Imagine you have all students first names on a file names.txt
(possibly with repetitions)

Fernando

Jose

Marcos

Vasco

...

// Example that reads all strings from stdin and prints them (one per line)

string name;

whi le (cin >> name) {
cout << name << endl;

}

Example compilation using gcc:

g++ -o example example.cpp

Example execution (< redirects stdin, ./ indicates current dir)

./example < names.txt

L.EIC (AED) Balanced Binary Search Trees 2024/2025 36 / 60

Example Applications

Calculating how many different names exist?

set<string> s; // Set to contain all different names

string name;

whi le (cin >> name) {
s.insert(name); // Insert all names on the set (keys should be unique)

}

cout << "There are " << s.size() << " different names" << endl;

There are 134 different names

Time complexity: O(n log n)

Notice the difference when using a multiset (also in time O(n log n)):

multiset <string> ms; // now we are using a multiset

string name;

whi le (cin >> name) {
ms.insert(name);

}

cout << "There are " << ms.size() << " names" << endl;

There are 350 names

L.EIC (AED) Balanced Binary Search Trees 2024/2025 37 / 60

Example Applications

Here are some more examples of available methods of the container set:

Searching for an element (in time O(log n)) [C++20 introduces contains()]:

string n1 = "Pedro";

i f (s.find(n1)!=s.end()) cout << n1 << " found" << endl;
e l s e cout << n1 << " not found" << endl;
string n2 = "Aniceto";

i f (s.find(n2)!=s.end()) cout << n2 << " found" << endl;
e l s e cout << n2 << " not found" << endl;

Pedro found

Aniceto not found

Traversing the elements of the set, in increasing order (in time O(n)):
// Range-based for loop (auto: automatically deduce type)

f o r (auto i : s) {
cout << i << endl;

}

Abecassis

Afonso

Aires

...

L.EIC (AED) Balanced Binary Search Trees 2024/2025 38 / 60

Example Applications

Here are some more examples of available methods of the container set:

Using iterators (in time O(1) for each begin(), increment and decrement):

auto i = s.begin(); // Iterator starting with smallest element
cout << "1st name: " << *i << endl;

i++; cout << "2nd name: " << *i << endl;

i++; cout << "3rd name: " << *i << endl;

i--; cout << "2nd name: " << *i << endl;

auto j = s.end(); // Start at the end [could have instead used rbegin()]
j--; cout << "Last name: " << *j << endl;

j--; cout << "Second to last name: " << *j << endl;

1st name: Abecassis

2nd name: Afonso

3rd name: Aires

2nd name: Afonso

Last name: Yago

Second to last name: V c t o r

What happens if you try to increment more than one unit?
(e.g. i+=2)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 39 / 60

Example Applications

Here are some more examples of available methods of the container set:

Erasing elements in various fashions:

cout << "size = " << s.size() << endl;

s.erase("Aniceto"); // Element does not exist, nothing is erased

cout << "size = " << s.size() << endl;

s.erase("Pedro"); // We can erase by key - time: O(log n)

cout << "size = " << s.size() << endl;

s.erase(s.begin()); // We can erase by iterator - time: O(1)

cout << "size = " << s.size() << endl;

// Below we take O(log n + k), where k is the number of elements to remove

s.erase(s.find("Carlos"), s.find("Sofia")); // We can erase a range

cout << "size = " << s.size() << endl;

size = 134

size = 134

size = 133

size = 132

size = 30

There are many more methods: always look into to the
documentation to check what exists and the how methods work

L.EIC (AED) Balanced Binary Search Trees 2024/2025 40 / 60

https://en.cppreference.com/w/cpp/container/set

Example Applications

What if we want the frequency of each name?

map<string, int > m; // maps a name to its frequency
string name;

whi le (cin >> name) {
i f (m.find(name)==m.end()) m[name] = 1; // new name
e l s e m[name]++; // existing name, just increment its frequency

}

// i becomes a pair (key, value), elements are sorted by key

f o r (auto i : m) {
cout << i.first << " " << i.second << endl;

}

Abecassis 1

Afonso 6

Aires 1

...

How could you find the most frequent name?
Can you guess what it is at this course?

L.EIC (AED) Balanced Binary Search Trees 2024/2025 41 / 60

Example Applications

Like with sort, you can use a custom comparator:

// Example of using lambda functions (available since C++11)

auto comp_length = [](const string& a, const string& b) {
return a.length() < b.length();

};

set<string, decltype(comp_length)> s(comp_length);

string name;

whi le (cin >> name) s.insert(name);
f o r (auto i : s) cout << i << endl;

Ana

Elsa

Aires

Afonso

Andreea

...

L.EIC (AED) Balanced Binary Search Trees 2024/2025 42 / 60

Example Applications

And we can use our own custom classes and overload the < operator

c l a s s Person {
p u b l i c :
string name, surname;

Person(string n, string s) {name=n; surname=s;}

};

bool operator < (const Person& p1, const Person& p2) {
return p1.surname < p2.surname;

}

set<Person> s;

s.insert(Person("Ana","Tomas"));

s.insert(Person("Pedro","Ribeiro"));

s.insert(Person("Pedro","Pinto"));

s.insert(Person("Vanessa","Silva"));

f o r (auto i : s) cout << i.name << " " << i.surname << endl;

Pedro Pinto

Pedro Ribeiro

Vanessa Silva

Ana Tomas

L.EIC (AED) Balanced Binary Search Trees 2024/2025 43 / 60

Tree Data Structures

Besides AVL and Red-Black trees, there are many other types of
binary search trees that have different characteristics.

More than that, tree data structures are ubiquitous in Computer
Science and they are used for many purposes, being a very powerful
and flexible topology.

https://en.wikipedia.org/wiki/Tree_(data_structure)

We will now have a quick look at two other search trees, to present
their key ideas and usages

L.EIC (AED) Balanced Binary Search Trees 2024/2025 44 / 60

https://en.wikipedia.org/wiki/Tree_(data_structure)

Splay Trees

A self-adjusting binary search tree that restructures the tree even
when simply searching for an element

Motivation: provide quick access to recently accessed elements

Key idea: accessed items are moved to the root

Introduced by D. Sleator and R. Tarjan in 1985
(”Self-Adjusting Binary Search Trees”)

Provide guarantees of logarithmic operations in amortized sense

Amortized complexity

The amortized sequence complexity is the worst case sequence
complexity (that is, the maximum possible total cost over all possible
sequences of n operations) divided by n

(some operations may cost more, but others will cost less: on average they are O(log n))

L.EIC (AED) Balanced Binary Search Trees 2024/2025 45 / 60

Splay Tree Rotations

Consider the following ”rotations” designed to move a node to the
root of a (sub)tree:

Zig (or Zag) - Simple Rotation
(also used in AVL and red-black trees)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 46 / 60

Splay Tree Rotations

Consider the following ”rotations” designed to move a node to the
root of a (sub)tree:

Zig-Zig (or Zag-Zag)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 47 / 60

Splay Tree Rotations

Consider the following ”rotations” designed to move a node to the
root of a (sub)tree:

Zig-Zag (or Zag-Zig)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 48 / 60

Splay Operation

Splaying a node means moving it to the root of a tree using the
operations given before:

Original tree

L.EIC (AED) Balanced Binary Search Trees 2024/2025 49 / 60

Splay Operation

Splaying a node means moving it to the root of a tree using the
operations given before:

Zig-Zag Left (or Zag-Zig)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 50 / 60

Splay Operation

Splaying a node means moving it to the root of a tree using the
operations given before:

Zig-Zig Left (or Zag-Zag)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 51 / 60

Operations on a Splay Tree

Idea: do as in a normal BST but in the end splay the node
I find(x): do as in BST and then splay x

(if x is not present splay the last node accessed)
I insert(x): do as in BST and then splay x
I remove(x): find x , splay x , delete x (leaves its subtress R and L

”detached”), find largest element y in L and make it the new root:

Running time is dominated by the splay operation.

L.EIC (AED) Balanced Binary Search Trees 2024/2025 52 / 60

Why do Splay Trees work in practice?

Efficiency of splay trees

For any sequence of m operations on a splay tree, the running time is
O(m log n), where n is the max number of nodes in the tree at any time.

Intuition: any operation on a deeper side of the tree will ”bring”
nodes from that side closer to the root

I It is possible to make a splay tree have Θ(n) height, and hence a splay
applied to the lowest leaf will take Θ(n) time. However, the resulting
splayed tree will have an average node depth roughly decreased by half!

Two quantities: real cost and increase in balance
I If we spend much, then we will also be balancing a lot
I If don’t balance a lot, than we also did not spend much

A fully fledged formal proof of the efficiency is out ot the scope of
this course (it involves the concept of amortized analysis)
(if you are really curious you can for instance check the original paper)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 53 / 60

Visualizing Splay Trees

You can try the indicated url:

https://www.cs.usfca.edu/˜galles/visualization/SplayTree.html

L.EIC (AED) Balanced Binary Search Trees 2024/2025 54 / 60

https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

B-Trees

A self-balancing search tree that can have more than 2 children per node

Motivation: minimize number of disk accesses if data is stored on disk

Key idea: nodes with many elements so that they may correspond to a disk
page (minimizing tree traversal between nodes)

Introduced by R. Bayer and and E. McCreight in 1970
(”Organization and maintenance of large ordered indexes”)

Provide guarantees of logarithmic operations

Sometimes the term is used to refer to a class of balanced tree data
structures: B-Tree, B+Tree, B*Tree, Blink-tree

Terminology may vary, but here we will use the term to refer to a specific
data structure

L.EIC (AED) Balanced Binary Search Trees 2024/2025 55 / 60

B-Trees - A possible definition

A B-Tree of order m satisfies the following properties:
I Every node has at most m children.
I Every non-leaf node (except the root) has at least m

2 child nodes
I A non-leaf node with k children contains k − 1 keys.
I All leaves appear in the same level (they have the the same depth)

(the tree is always ”perfectly balanced”)

An example B-Tree of order 4

(some literature would say the order is 2, as in a b-tree of order d can have at most 2d children)

L.EIC (AED) Balanced Binary Search Trees 2024/2025 56 / 60

Operations on a B-Tree

find(x): standard BST-type walk down the tree

insert(x): insert in a leaf as in a BST, increasing the number of keys
in the node; if the node overflows, split in two and the middle element
is inserted to parent (a cascade of splits may occur)

remove(x): find the node and remove that key; if the node
underflows, it may borrow some elements from neighboring nodes or,
if the nodes are small, they may be merged
(this is a very simplified explanation)

Example insertions in a B-Tree of order 3:

L.EIC (AED) Balanced Binary Search Trees 2024/2025 57 / 60

Visualizing B-Trees

You can try the indicated url:

https://www.cs.usfca.edu/˜galles/visualization/BTree.html

L.EIC (AED) Balanced Binary Search Trees 2024/2025 58 / 60

https://www.cs.usfca.edu/~galles/visualization/BTree.html

B+Trees - A possible definition

A B+Tree is a variant of a B-Tree in which:
I Data is only stored on leafs (internal nodes only have keys)
I The leaves have links to their siblings

An example B+Tree: in the leaves each key i has associated data di
(think of pairs (key,data) as in STL maps)

The lower (leaf) level allows for quick traversal of ranges

L.EIC (AED) Balanced Binary Search Trees 2024/2025 59 / 60

B-Trees in real life

Specialized B-Trees and their variants are still used for indexing in
many real-life systems:

I In filesystems such as Windows NTFS, Linux ext3 or MacOS APFS

I In relational Databases such as MySQL, MariaDB or PostgreSQL

Typically use large block sizes (order of the b-tree), matching real
disk blocks and leading to a really small tree height

L.EIC (AED) Balanced Binary Search Trees 2024/2025 60 / 60

