Introduction

L.EIC

Algoritmos e Estruturas de Dados

2025/2026

P Ribeiro, AP Tomás

General Information

Main Resources:

Algorithms and Data Structures L-L-E-I-C-O-I-I

2025/2026 Edition

Bachelor in Informatics and Computing Engineering

Webpage: course webpage (classes, slides and all relevant information) https://www.dcc.fc.up.pt/~pribeiro/aulas/aed2526/

Discord: communication/discussion ("instant messaging" format) (invite already sent by email)

▶ ooshak

Mooshak: Code submissions with automatic test evaluation https://mooshak.dcc.fc.up.pt/~aed/
(passwords will be sent by email)

Teaching Staff

- Theoretical Classes (one 2h class per week)
 - ► Ana Paula Tomás (FCUP) 1st Half of Semester
 - ▶ Pedro Ribeiro (FCUP) 2nd Half of Semester
- Practical Classes: (one 2h class per week)
 - ► Ana Paula Tomás (FCUP)
 - ► Bernardo Leite (FEUP)
 - ► Filipa Ramos (FEUP)
 - ► Iohan Soares (FEUP)
 - ► Jadna Cruz (FEUP)
 - ▶ Jorge Oliveira (FEUP)
 - ► Tiago Carvalho (FEUP)
 - ► Vanessa Silva (FCUP)
 - Vasco Cruz (FCUP)

Teaching Staff - Ana Paula Tomás

Name: Ana Paula Tomás

Office: FC6 1.15 (at DCC/FCUP - Campo Alegre) **Website:** https://www.dcc.fc.up.pt/~apt/

Course Director of L:CC

Main Research Interests

- Design and Analysis of Algorithms
- Geometric and Network Problems
- Discrete Optimization and Constraint Programming
- Enumerative Combinatorics
- Computer Assisted Learning

Teaching Staff - Pedro Ribeiro

Name: Pedro Ribeiro

Office: FC6 1.47 (DCC/FCUP)

Website: https://www.dcc.fc.up.pt/~pribeiro/

Course Director of M:CC

Main Research Interests

- Complex Networks, Network Science, Graph Mining, Data Science
- Algorithms and Data Structures, Complexity
- Parallel and Distributed Computing
- Computer Science Education and Programming Contests

Pedro Ribeiro - Competitive Programming

I am involved in many **algorithmic programming contests** (organization, creating and solving problems, student mentoring and training, ...)

- Pre-University Students (Primary and Secondary Education)
 - ▶ Olympiads in Informatics (National and International, e.g., ONI, IOI)
 - ▶ Bebras International Computational Thinking Challenge
- University Students
 - ▶ National and International ICPC Contests (e.g., MIUP, SWERC, EUC)

Pre-requirements

• Students should have basic knowledge of programming and C++

```
// Your first C++ Program
#include <iostream>
int main() {
  std::cout << "Hello World!" << std::endl;
  return 0;
}</pre>
```

Hopefully not really your FIRST program @

Methodology

Theoretical classes

- on site ("face to face" classes)
- (formal) exposition of the subjects, presentation of examples, analysis and discussion, some livecoding

Practical classes

- programming exercises in C++ (we will use C++17)
- no imposed IDE (suggestion: VSCode, CLion)
- automatic evaluation (Mooshak and test cases)

L.EIC (AED) Introduction 2025/2026 8/16

Evaluation

Final Mark = $0.7 \times Exam + NP > 9.5$

• NP: 2 practical tests with automatic evaluation (2.5 points each) and exercises during the semester (1 point)

• In "Recurso", only the Exam component can be improved

Frequency

Students may not exceed the limit of absences (25% of TP classes)

L.EIC (AED) Introduction 2025/2026 9/16

Objectives

- Analyze the correctness of simple algorithms
- Analyze the temporal and spatial complexity of algorithms
- Understand the concept of abstract data type and know how to organize programs around this concept
- Know the fundamental data structures and associated algorithms and respective complexity
- Choose appropriate collections, data structures and algorithms to solve practical problems
- write programs in C++ that implement and use the fundamental data structures and algorithms

Algorithmic correctness (and the concept of loop invariant)

Algorithmic efficiency (time and space)
 (asymptotically analysis and the Big O notation)

• Searching algorithms (linear search, binary search and variants)

Sorting algorithms (comparison based sorting and linear sorting)
 [e.g. MergeSort, QuickSort, RadixSort, CountingSort, ...]

Linear data structures: lists, stacks, queues

Hierarchical data structures: binary trees, binary search trees,
 balanced binary trees and variants (e.g. AVL and Red-Black trees)

• Other essential data structures (priority queues, hash tables)

Graphs (concept, representation, traversal and fundamental algorithms)
 (e.g. DFS, BFS and applications)

Bibliography - Main Books

 Data Structures & Algorithm Analysis in C++ Mark Allen Weiss, 4th Edition, Pearson Education

 Algorithms in C++ Robert Sedgewick, 3rd Edition, Princeton University

Introduction to Algorithms
 TH Cormen, CE Leiserson, RL Rivest and C Stein
 4th Edition, MIT Press (also known as CLRS)

Good Work!

Genius is 1% inspiration and 99% perspiration (Thomas Edison)

Source: Mark Rober's **Super Mario Effect** Tedx Talk

https://youtu.be/9vJRopau0g0

16 / 16