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The Joy of Algorithms

“For me, great algorithms are the poetry of computation. Just like verse, they can be
terse, allusive, dense and even mysterious. But once unlocked, they cast a brilliant
new light on some aspect of computing.”

Francis Sullivan, The Joy of Algorithms, 2000

Algorithms + Data Structures = Program
A textbook by Niklaus Wirth, 1976

Algorithm: a well-defined computational procedure for solving a problem.
It must terminate after a finite number of steps.

Correctness

It has to solve correctly all
instances of the problem

Efficiency

The performance (time and
memory) has to be adequate.
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Efficient Algorithms

From textbook “Algorithms”, by Jeff Erickson, chapter 12.
https://jeffe.cs.illinois.edu/teaching/algorithms/

A minimal requirement for an algorithm to be considered “efficient” is
that its running time is bounded by a polynomial function of the input

size: O(nc) for some constant c , where n is the size of the input.

(this kind of notation will be the focus of this class)

Researchers recognized early on that not all problems can be solved this
quickly, but had a hard time figuring out exactly which ones could and
which ones couldn’t.

There are several so-called NP-hard problems , which most people believe
cannot be solved in polynomial time, even though nobody can prove a
super-polynomial lower bound.

L.EIC (AED) Complexity and Asymptotic Analysis 2025/2026 3 / 61

https://jeffe.cs.illinois.edu/teaching/algorithms/


Some NP-hard problems
To be addressed in Design of Algorithms (2nd semester)

SAT: Given a CNF formula Φ(x1, . . . , xn) = C1 ∧ . . . ∧ Cm, is Φ satisfiable,
i.e., is there a truth assignment that satisfies all clauses?

e.g., is Φ(p, q, r , s) = (¬p ∨ q ∨ r) ∧ (¬q ∨ r ∨ ¬s) ∧ (s ∨ p) ∧ (¬r ∨ ¬q ∨ p) satisfiable?

Partition: Given a set S = {a1, a2, . . . , an} of n positive integers, is there a
set A ⊂ S such that

∑
x∈A x =

∑
y∈S\A x?

e.g., can we split S = {1, 4, 7, 15, 23, 42} into two sets with the same sum?

Hamiltonian Path: Given an undirected graph G = (V ,E ), does G contain
a path that visits all nodes exactly once?

e.g., can we find a path using the lines that visits all black circles once?

TSP (travelling salesman problem): Given a complete weighted graph
G = (V ,E , d), with d(e) ∈ Z+, for all e ∈ E , and k ∈ Z+, is there a
hamiltonian cycle γ with d(γ) ≤ k? Optimization version asks for shortest hamiltonian cycle.
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Motivational Example - TSP

Let’s have a look at a restricted version of this last problem:

Travelling Salesman Problem (Euclidean TSP version)

Input: a set S of n points in the plane
Output: the shortest possible path that starts on a point, visits all other
points of S and then returns to the starting point.

An example:
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Motivational Example - TSP

A possible (greedy) algorithm - nearest neighbour

p1 ← random point
i ← 1
While (there are still points to visit) do

i ← i + 1
pi ← non visited point closest to pi−1

return path p1 → p2 → . . .→ pn → p1
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Motivational Example - TSP

Seems to work...

⇒
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Motivational Example - TSP

But it is does not produce an optimal solution for all instances!
(Note: starting with the leftmost point would not solve the problem)
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Motivational Example - TSP

Another possible (greedy) algorithm

For i ← 1 to (n − 1) do
Add connection between closest pair of points such that
they are in different connected components

Add connection between the two ”extremes” of the created path
return the cyclic path created
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Motivational Example - TSP

It also does not produce an optimal solution for all cases!
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Motivational Example - TSP

How to solve the problem then?

A possible algorithm (exhaustive search a.k.a. ”brute force”)

Pmin ← any permutation of the points in S
For Pi ← each of the permutations of points in S

If (cost(Pi ) < cost(Pmin)) then
Pmin ← Pi

return Path formed by Pmin

A correct algorithm, producing an optimal solution, but extremely slow!

P(n) = n! = n × (n − 1)× . . .× 1

For instance, P(20) = 2, 432, 902, 008, 176, 640, 000

For a set of 20 points, even the fastest computer in the world would
not solve it! (how long would it take?)
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Motivational Example - TSP

The present problem is a restricted version (euclidean) of one of the
most well known ”classic” hard problems, the Travelling Salesman
Problem (TSP)

This problem has many possible applications
Ex: genomic analysis, industrial production, vehicle routing, ...

The presented solution has O(n!) temporal complexity
(remember, this kind of notation will be the focus of this class)

The are other approaches with better temporal behavior: the
Held-Karp algorithm has O(2nn2) temporal complexity, but requires
more memory (O(n2n) vs O(n2) of the previous solution)
(it uses dynamic programming, a technique you will hear about on another course)

Still, there is no known efficient solution, that is, polynomial on
time, for this problem
(with optimal results, not just approximated)
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The Brute Force way

Brute force: For many non-trivial problems, there is a natural brute
force search algorithm that checks every possible solution.

Typically takes exponential time: 2n or worse for inputs of size n.

Unacceptable in practice.

Brute-force for SAT:

Given a CNF formula Φ in n
(boolean) variables, enumerate
all truth assignments to check
whether any of them satisfies all
clauses. In the worst case, there
are 2n truth assignments to
check.

Brute-force for Hamiltonian path:

Given a graph G = (V ,E), with |V | = n,
check whether any permutation of V
defines a cycle in G . In the worst case,
there are n! = n × (n − 1)× · · · × 2× 1
permutations to check.

lim
n→∞

n!

2n
=∞, that is n!� 2n

L.EIC (AED) Complexity and Asymptotic Analysis 2025/2026 13 / 61



An experience: - Permutations

Let’s go back to the idea of permutations

Example: the 6 permutations of {1, 2, 3}
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

Recall that the number of permutations can be computed as:
P(n) = n! = n × (n − 1)× . . .× 1
(do you understand the intuition on the formula?)
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An experience: - Permutations

What is the execution time of a program that goes through all
permutations?
(the following times are approximated, on my notebook)
(what I want to show is order of growth)

n ≤ 7: < 0.001s
n = 8: 0.001s
n = 9: 0.016s
n = 10: 0.185s
n = 11: 2.204s
n = 12: 28.460s
. . .
n = 20: 5000 years !

How many permutations per second?
About 107
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On computer speed

Will a faster computer be of any help? No!
If n = 20→ 5000 years, hypothetically:

I 10x faster would still take 500 years
I 5,000x would still take 1 year
I 1,000,000x faster would still take two days, but

n = 21 would take more than a month
n = 22 would take more than a year!

The growth rate of the execution time is what matters!

Algorithmic performance vs Computer speed

A better algorithm on a slower computer will always win against a worst
algorithm on a faster computer, for sufficiently large instances
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Why worry?

What can we do with execution time/memory analysis?

Prediction

How much time/space does an algorithm need to solve a problem? How
does it scale? Can we provide guarantees on its running time/memory?

Comparison

Is an algorithm A better than an algorithm B? Fundamentally, what is the
best we can possibly do on a certain problem?

We will study a methodology to answer these questions

We will focus mainly on execution time analysis
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Random Access Machine (RAM)

We need a model that is generic and independent from the
language and the machine.

We will consider a Random Access Machine (RAM)
I Each simple operation (ex: +, −, ←, If) takes 1 step
I Loops and procedures, for example, are not simple instructions!
I Each access to memory takes also 1 step

We can measure execution time by... counting the number of steps as
a function of the input size n: T (n).

Operations are simplified, but this is useful
Ex: summing two integers does not cost the same as dividing two
reals, but we will see that on a global vision, these specific values are
not important
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Random Access Machine (RAM)
A counting example

// a simple program

i n t count = 0;
f o r ( i n t i=0; i<n; i++)

i f (v[i] == 0) count++;

Let’s count the number of simple operations:
Variable declarations 2
Assignments: 2
”Less than” comparisons n + 1
”Equality” comparisons: n
Array access n
Increment between n and 2n
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Random Access Machine (RAM)
A counting example

// a simple program

i n t count = 0;
f o r ( i n t i=0; i<n; i++)

i f (v[i] == 0) count++;

Total number of steps on the worst case:
T (n) = 2 + 2 + (n + 1) + n + n + 2n = 5 + 5n

Total number of steps on the best case:
T (n) = 2 + 2 + (n + 1) + n + n + n = 5 + 4n
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Types of algorithm analysis

Worst Case analysis: (the most common)

T (n) = maximum amount of time for any input of size n

Average Case analysis: (sometimes)

T (n) = average time on all inputs of size n

Implies knowing the statistical distribution of the inputs

Best Case analysis: (”deceiving”)

It’s almost like ”cheating” with an algorithm that is fast just for
some of the inputs
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Types of algorithm analysis
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Asymptotic Notation

We need a mathematical tool to compare functions

On algorithm analysis we use Asymptotic Analysis:

”Mathematically”: studying the behaviour of limits (as n→∞)

Computer Science: studying the behaviour for arbitrary large input
or
”describing” growth rate (for the worst case)

A very specific notation is used: O,Ω,Θ (and also o, ω)

It allows to simplify expressions like the one before and to focus on
orders of growth
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Asymptotic Notation
Definitions

f(n) ∈ O(g(n))

It means that c × g(n) is an upper bound of f (n) (from a certain n)

f(n) ∈ Ω(g(n))

It means that c × g(n) is a lower bound of f (n) (from a certain n)

f(n) ∈ Θ(g(n))

It means that c1 × g(n) is a lower bound of f (n) and c2 × g(n) is an
upper bound of f (n) (from a certain n)

Where c , c1 and c2 are constants
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Asymptotic Notation
A graphical depiction

Θ O Ω

The definitions imply an n from which the function is bounded. The small
values of n do not ”matter”.

Note: Some literature uses = instead of ∈
Example: f (n) = O(g(n)) is the same as f (n) ∈ O(g(n))
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Asymptotic Growth
Drawing functions with gnuplot

An useful program to draw function plots is gnuplot.

(comparing 2n3 with 100n2)
gnuplot> plot [1:70] 2*x**3, 100*x**2

gnuplot> set logscale xy 10

gnuplot> plot [1:10000] 2*x**3, 100*x**2
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Asymptotic Notation
Formalization

f (n) ∈ O(g(n)) if there exist positive constants n0 ∈ Z+ and

c ∈ R+ such that f (n) ≤ c × g(n) for all n ≥ n0

(g is an upper bound, f is ”at least as good” as g)

f (n) ∈ Ω(g(n)) if there exist positive constants n0 ∈ Z+ and c ∈ R+ such

that f (n) ≥ c × g(n) for all n ≥ n0

(g is a lower bound, f is ”at least as bad” as g)

f (n) ∈ Θ(g(n)) if there exist positive constants n0 ∈ Z+, c1 ∈ R+ and

c2 ∈ R+ such that c1 × g(n) ≤ f (n) ≤ c2 × g(n) for all n ≥ n0

(g is a tight bound, f is ”as good” as g)

O(g(n)), Ω(g(n)) and Θ(g(n)) denote sets of functions in natural numbers that consist of all

functions f : N→ R+
0 related to the function g : N→ R+

0 by the corresponding condition.
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Asymptotic Notation
A few consequences

f (n) ∈ O(g(n)) if there exist positive constants n0 ∈ Z+ and

c ∈ R+ such that f (n) ≤ c × g(n) for all n ≥ n0

f (n) ∈ Ω(g(n)) if there exist positive constants n0 ∈ Z+ and

c ∈ R+ such that f (n) ≥ c × g(n) for all n ≥ n0

f (n) ∈ Θ(g(n)) if there exist positive constants n0 ∈ Z+, c1 ∈ R+

and c2 ∈ R+ such that c1 × g(n) ≤ f (n) ≤ c2 × g(n) for all n ≥ n0

A few consequences:

f (n) ∈ Θ(g(n))←→ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

f (n) ∈ Θ(g(n))←→ g(n) ∈ Θ(f (n))

f (n) ∈ O(g(n))←→ g(n) ∈ Ω(f (n))
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Asymptotic Notation
A few practical rules

Multiplying by a constant does not affect the behavior:
Θ(c × f (n)) ∈ Θ(f (n))
99× n2 ∈ Θ(n2)

On a polynomial of the form axn
x + ax−1n

x−1 + . . .+ a2n
2 + a1n + a0

we can focus on the term with the largest exponent:
3n3 − 5n2 + 100 ∈ Θ(n3)
6n4 − 202 ∈ Θ(n4)
0.8n + 224 ∈ Θ(n)

On a sum/subtraction we can focus on the dominant term:
2n + 6n3 ∈ Θ(2n)
n!− 3n2 ∈ Θ(n!)
n log n + 3n2 ∈ Θ(n2)
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Asymptotic Notation
Using the definition

99× n2 ∈ Θ(n2)
I n2 ≤ 99n2 ≤ 99n2, for all n ≥ 1.
I Therefore, there exist c1, c2 ∈ R+ and n0 ∈ Z+ such that

c1n
2 ≤ 99n2 ≤ c2n

2, for all n ≥ n0.
I We can take c1 = 1, c2 = 99 and n0 = 1.

3n3 − 5n2 + 100 ∈ Θ(n3) because
I 3n3 − 5n2 + 100 ≥ 2n3, for all n ≥ 5, since n3 − 5n2 ≥ 0 for n ≥ 5
I 3n3 − 5n2 + 100 ≤ 3n3 + 5n2 + 100 ≤ 3n3 + 5n3 + 100n3 = 108n3, for

all n ≥ 1.
I Therefore, there exist c1, c2 ∈ R+ and n0 ∈ Z+ such that

c1n
3 ≤ 3n3 − 5n2 + 100 ≤ c2n

3, for all n ≥ n0.
I We can take c1 = 2, c2 = 108 and n0 = 5.

Note: there are many other choices of c1, c2 and n0 that would work.
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Some exercises - Yes or No?

log2(n) ∈ O(n)? Yes

log2(n) ∈ Ω(n)? No

O(n) ⊂ O(n2)? Yes

Ω(n log2 n) ⊂ Ω(n)? Yes

√
n ∈ O(log2 n)? No

(
√

grows ”faster” than log2)

Θ(loga n) = Θ(logb n), for a, b ∈ R+, a 6= b, a, b > 1? Yes
(that is why sometimes we omit the base of the logarithm)

O(2n) = O(3n)? No

O(2n) ⊂ O(3n)? Yes

Θ(2n) = Θ(3n)? Yes

f(n) ∈ Ω(1), for all f : N→ R+? (Therefore, O(1) = Θ(1)) Yes
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Asymptotic Notation
Dominance

When is a function better than another?

If we want to minimize time, ”smaller” functions are better

A function dominates another one if as n grows it keeps getting
infinitely larger

Mathematically: f (n)� g(n) if limn→∞ g(n)/f (n) = 0

Dominance Relations

n!� 2n � n3 � n2 � n log n� n� log n� 1

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n) ⊂ O(n!)

Ω(1) ⊃ Ω(log n) ⊃ Ω(n) ⊃ Ω(n log n) ⊃ Ω(n2) ⊃ Ω(n3) ⊃ Ω(2n) ⊃ Ω(n!)
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Asymptotic Notation
Common Functions

Function Name Examples

1 constant summing two numbers
log n logarithmic binary search, inserting in a heap
n linear 1 loop to find maximum value

n log n linearithmic sorting (ex: mergesort, heapsort)
n2 quadratic 2 loops (ex: verifying, bubblesort)
n3 cubic 3 loops (ex: Floyd-Warshall)
2n exponential exhaustive search (ex: subsets)
n! factorial all permutations

n on the base → polynomial function
n on the exponent → exponencial function
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Asymptotic Growth
A practical view

If an operation takes 10−9 seconds...
(estimate on my laptop, but as we saw this value is not important)

log n n n log n n2 n3 2n n!
10 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s

20 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 77 years
30 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 1.07s
40 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 18.3 min
50 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 13 days
100 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 1013years
103

< 0.01s < 0.01s < 0.01s < 0.01s 1s
104

< 0.01s < 0.01s < 0.01s 0.1s 16.7 min
105

< 0.01s < 0.01s < 0.01s 10s 11 days
106

< 0.01s < 0.01s 0.02s 16.7 min 31 years
107

< 0.01s 0.01s 0.23s 1.16 days
108

< 0.01s 0.1s 2.66s 115 days
109

< 0.01s 1s 29.9s 31 years
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Predicting the execution time

Pre-requirements:

An implementation with complexity f (n)

A (small) test case with input of size n1

The execution time of the program on that input: time(n1)

We want to estimate the execution time for a (similar) input of size n2.
How to do it?

Estimating the execution time

f (n2)/f (n1) is the growth rate of the function (from n1 to n2)

time(n2) = f(n2)/f(n1)× time(n1)
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Predicting the execution time

An example

Imagine a program with time complexity Θ(n2) that takes 1 second
for an input of size 5 000. What is my estimation for the execution
time for an input of size 10 000?

f (n) = n2

n1 = 5 000
time(n1) = 1 second
n2 = 10 000

time(n2) = f (n2)/f (n1)× time(n1) =
= 10 0002/5 0002 × 1 = 4 seconds

L.EIC (AED) Complexity and Asymptotic Analysis 2025/2026 37 / 61



Predicting the execution time
About the growth rate

Let’s see what happens when we double the input for some of the more
common functions (independently of the machine used!):

time(2n) = f (2n)/f (n)× time(n)

n : 2n/n = 2. Time increases 2x

n2 : (2n)2/n2 = 4n2/n2 = 4. Time increases 4x

n3 : (2n)3/n3 = 8n3/n3 = 8. Time increases 8x

On polynomial functions the growth ratio is constant!

2n : 22n/2n = 22n−n = 2n. Time grows 2n times
Example: If n = 5, the time for n = 10 will be 32x more!

Example: If n = 10, the time for n = 20 will be 1024x more!

log2(n) : log2(2n)/ log2(n). Time grows log2(2n)
log2(n) vezes

Example: If n = 5, the time for n = 10 will be 1.43x more!

Example: If n = 10, the time for n = 20 will be 1.3x more!
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Asymptotic Analysis
A few more examples

A program has two pieces of code A and B, executed one after the
other, with A running in Θ(n log n) and B in Θ(n2).
The program runs in Θ(n2), because n2 � n log n

A program calls n times a function Θ(log n), and then it calls again n
times another function Θ(log n)
The program runs in Θ(n log n)

A program has 5 loops, all called sequentially, each one of them
running in Θ(n)
The program runs in Θ(n)

A program P1 has execution time proportional to 100× n log n.
Another program P2 runs in 2× n2.
Which one is more efficient?
P1 is more efficient because n2 � n log n. However, for a small n, P2

is quicker and it might make sense to have a program that calls P1 or
P2 depending on n.
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Analyzing the complexity of programs

Let’s see more concrete examples:

Case 1: Loops (and summations)

Case 2: Recursive Functions (and recurrences)

this case 2 will be covered later (in the classes about sorting algorithms)
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Loops and Summations

i n t count = 0;
f o r ( i n t i=0; i<1000; i++)

f o r ( i n t j=i; j<1000; j++)
count++;

cout << count << endl;

(the temporal complexity is proportional to the value of count at the end)

What does this program write?

1000 + 999 + 998 + 997 + . . . ..+ 2 + 1
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Loops and Summations

Arithmetic progression: a sequence of numbers such that the difference
d between the consecutive terms is constant. We will call a1 to the first
term.

1, 2, 3, 4, 5, . . . ... (d = 1, a1 = 1)

3, 5, 7, 9, 11, . . . ... (d = 2, a1 = 3)

How to calculate the summation of an arithmetic progression?

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = (1 + 8) + (2 + 7) + (3 + 6) + (4 + 5) = 4× 9

Summation from ap to aq

S(p, q) =
q∑

i=p
ai =

(q−p+1)×(ap+aq)
2

Summation of the first n terms

Sn =
n∑

i=1
ai = n×(a1+an)

2
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Loops and Summations

i n t count = 0;
f o r ( i n t i=0; i<1000; i++)

f o r ( i n t j=i; j<1000; j++)
count++;

cout << count << endl;

What does this program write?

1000 + 999 + 998 + 997 + . . . ..+ 2 + 1

It writes S1000 = 1000×(1000+1)
2 = 500500
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Loops and Summations

i n t count = 0;
f o r ( i n t i=0; i<n; i++)

f o r ( i n t j=i; j<n; j++)
count++;

cout << count << endl;

What is the execution time?

It is going to execute Sn increments:

Sn =
n∑

i=1
ai = n×(1+n)

2 = n+n2

2 = 1
2n

2 + 1
2n.

It executes Θ(n2) steps

L.EIC (AED) Complexity and Asymptotic Analysis 2025/2026 44 / 61



Loops and Summations

If you want to know more about interesting summations on this context,
take a look at Appendix A of the Introduction to Algorithms book.

Note that c cycles do not imply Θ(nc)!

f o r ( i n t i=0; i<n; i++)
f o r ( i n t j=1; j<5; j++)

Θ(n)

f o r ( i n t i=1; i<=n; i++)
f o r ( i n t j=1; j<=i*i; j++)

Θ(n3) (12 + 22 + 32 + . . .+ n2 =
n∑

i=1
i2 = n(n+1)(2n+1)

6

i = n;

whi le (i>0) i = i/2;

Θ(log n) (each time i becomes reduced to a half)
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Divide and Conquer

This topic will be covered later, when we talk about sorting algorithms

We leave it (also) here for ease of access and coherence of material.

We are often interested in algorithms that are expressed in a recursive way

Many of these algorithms follow the divide and conquer strategy:

Divide and Conquer

Divide the problem in a set of subproblems which are smaller instances of
the same problem

Conquer the subproblems solving them recursively. If the problem is small
enough, solve it directly.

Combine the solutions of the smaller subproblems on a solution for the
original problem
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Divide and Conquer
MergeSort

We now describe the MergeSort algorithm for sorting an array of size n

MergeSort

Divide: partition the initial array in two halves

Conquer: recursively sort each half. If we only have one number, it is
sorted.

Combine: merge the two sorted halves in a final sorted array
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Divide and Conquer
MergeSort

Divide:
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Divide and Conquer
MergeSort

Conquer:
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Divide and Conquer
MergeSort

What is the execution time of this algorithm?

D(n) - Time to partition an array of size n in two halves

M(n) - Time to merge two sorted arrays of size n

T(n) - Time for a MergeSort on an array of size n

T (n) =

{
Θ(1) if n = 1
D(n) + 2T (n/2) + M(n) if n > 1

In practice, we are ignoring certain details, but it suffices
(ex: when n is odd, the size of subproblem is not exactly n/2)
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Divide and Conquer
MergeSort

D(n) - Time to partition an array of size n in two halves

I don’t need to create a copy of the array

Let’s use a function with two arguments:
mergesort(a,b): (sort from position a to position b)

Initially, mergesort(0, n-1) (with arrays starting at position 0)

Let m = b(a + b)/2c be the middle position
Calls to mergesort(a,m) and mergesort(m+1,b)

I only need to make a math operation (sum + division)
I can partition the array in Θ(1) (constant time!)
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Divide and Conquer
MergeSort

M(n) - Time to merge two sorted arrays of size n/2

In constant time it is not possible. What about in linear time?
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Divide and Conquer
MergeSort

M(n) - Time to merge two sorted arrays of size n/2

At the end I made n comparisons + n copies, spending Θ(n) (linear time)
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Divide and Conquer
MergeSort

Back to the mergesort recurrence:

D(n) - Time to partition an array of size n in two halves

M(n) - Time to merge two sorted arrays of size n

T(n) - Time for a MergeSort on an array of size n

T (n) =

{
Θ(1) if n = 1
D(n) + 2T (n/2) + M(n) if n > 1

becomes

T (n) =

{
Θ(1) if n = 1
2T (n/2) + Θ(n) if n > 1

How to solve this recurrence?

(for a cleaner explanation we will assume n = 2k ,
but the results holds for any n)
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Divide and Conquer
MergeSort

Let’s draw the recursion tree:

Summing everything we get that MergeSort is Θ(n log2 n)
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Divide and Conquer
MaxD&C

A recursive algorithm is not always linearithmic!

Let’s see another example. Imagine that you want to compute the
maximum of an array of size n.

A simple linear search would be enough, but let’s design a divide and
conquer algorithm.

Computing the maximum

Divide: partition the initial array in two halves

Conquer: recursively compute the maximum in each half. If we only have
one number, it is the maximum

Combine: compare the maximum of each half and keep the largest one
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Divide and Conquer
MaxD&C

What is the execution time of this algorithm?

To simplify, let’s again admit that n is a power of 2.
(the results are similar in their essence for other cases)

T (n) =

{
Θ(1) se n = 1
2T (n/2) + Θ(1) se n > 1

How does this differ from the MergeSort recurrence?
How to solve it?
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Divide and Conquer
MaxD&C

In total we spend 1 + 2 + 4 + . . .+ n =
log2(n)∑
i=0

2i = 2n − 1

What dominates the sum? Note that 2k = 1 +
k−1∑
i=0

2i .

The last level dominates the weight and thus the algorithm is Θ(n)
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Recursion
complexity

Solving general recurrences is out of the scope of this course, but the most
common recursive algrithms fall on one of three cases:

The time is (uniformly) distributed along the recursion tree
(e.g. mergesort)

The time is dominated by the last level of the recursion
(e.g. maxD&C)

The time is dominated by the top level of the recursion
(e.g. naive matrix multiplication)

(to know more take a look at the Master Theorem)
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Recurrences
Notation

It is common to assume that T(1) = Θ(1). In these cases we can simply
write T (n) to describe a recurrence.

MergeSort: T (n) = 2T (n/2) + Θ(n)

MaxD&C: T (n) = 2T (n/2) + Θ(1)
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Divide and Conquer
More recurrences

Sometimes we have an algorithm that reduces the problem to a single
subproblem.

In this case we can say we use decrease and conquer

Binary Search:
On a sorted array of size n, compare with the middle element and
continue the search on one half
T (n) = T (n/2) + Θ(1) [Θ(log n)]

Max with ”tail recursion”: On an array of size n, recursively find
the maximum of the entire array except the first element and then
compare with that first element
T (n) = T (n − 1) + Θ(1) [Θ(n)]
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