Linked Lists, Deques, Stacks, Queues
and Applications

L.EIC
Algoritmos e Estruturas de Dados
2025,/2026

(o]

push(A) push(B) push(©) | C pop() push(D) n pop() pop()
|8 | |8 | |8 | |8 | B |

Empty
stack

-

P Ribeiro, AP Tomas

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 1/34

Circular Doubly Linked-List

@ A circular doubly linked-list is a linked list where each node is
connected to both its previous and next nodes, and the last node
links back to the first node.

Start |__ Next Next (J
ST el 3

Prev

@ The implementation we will describe is based on the one given for

Lab Class 05 for template <class T> class SinglyLinkedList
For the circular doubly linked-list:

» Each node has three attributes: next, prev and value.
» The head node is given by a pointer called first.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 2/34

https://www.dcc.fc.up.pt/~pribeiro/aulas/aed2425/practical/singlyLinkedList.h

Circular Doubly Linked-List

Node

[efTTe [[ef o]

le next prev value next prev valu

template <class T> class Node {
private:

T value; // value in the node

Node<T> x*next;

Node<T> *prev;
public:

Node (const T & v,

// pointer to next node
// pointer to previous node

Node<T> *n=nullptr, Node<T> *p=nullptr):

value (v), next(m), prev(p) {}
T & getValue() { return value; }

Node<T> *getNext () { return next; }
Node<T> *getPrev() { return prev; 1}
void setValue(const T & v) { value=v; }
void setNext (Node<T> *n) { next = n; }

void setPrev(Node<T> *p) { prev = p; 2

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 3/34

Circular Doubly Linked-List

Implementation

template <class T> class CircularDoublyLinkedList {

private:
Node<T> *first; // head (front) of the list
int length; // number of nodes

public:

// Construtor (creates empty list)
CircularDoublyLinkedList (): first(nullptr), length(0) {}

// Destrutor
“CircularDoublyLinkedList () {
while ('isEmpty ()) {
assert (first != nullptr && "message...");
removeFirst () ;

assert (first == nullptr && "message...");
} // ...continues
g
"message..." stands for a message to be written if the condition fails

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 4 /34

Circular Doubly Linked-List

AddFirst

template <class T> class CircularDoublyLinkedList {

void addFirst(const T & v) { // adds v to the front
Node<T> *newNode; // to be a pointer to the new node
if (first == nullptr) {
newNode = new Node<T>(v,nullptr ,nullptr);
newNode -> setNext (newNode);

newNode -> setPrev(newNode); // a loop to itsef

} else {
newNode = new Node<T>(v,first, first -> getPrev());
(first -> getPrev()) -> setNext(newNode);
first -> setPrev(mnewNode); /m

} prev value next Prev value next

first = newNode;

length++; g KN S N I KN o Y B

} newNode

Creates a new node newNode with value v. It will be the new head (first). Links it to

the previous first and last nodes. When the list is empty, links newNode=to itself.
L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 5/34

Circular Doubly Linked-List

AddFirst, getFirst, size, isEmpty

template <class T> class CircularDoublyLinkedList {

// Adds v to the end of the list
void addLast(const T & v) {
addFirst (v);
if (length > 1) first = first -> getNext();
}

// Returns the reference to the first value

T & getFirst () {
assert (! isEmpty () && "empty list has no first node");
return first->getValue();

}

// Returns the length of the list
int size() { return length; 1}

// Returns true iff the list is empty
bool isEmpty() { return (length == 0); }

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 6 /34

Circular Doubly Linked-List

removeFirst

template <class T> class CircularDoublyLinkedList {
// Pops the first node (does nothing if list is empty)

void removeFirst () {
if (isEmpty()) return;
Node<T> *victim = first;
if (length > 1) {
first = first -> getNext ();
first -> setPrev(victim -> getPrev());
victim -> getPrev() -> setNext(first);

} else first = nullptr; /m
delete victim; first -> prev first -> next
length--; £ [ol e [v]el,
prev value next prev value next prev value next
¥ victim

The victim is the first node. If the list has other nodes, we link victim->next and
victim -> prev and change first accordingly. Otherwise, we set first to nullptr

since the list will be empty in the end. The victim is deleted ("freeing” the memory).

L.EIC (AED) Linked Lists, Deques, Stacks, Queues

2025/2026

7/34

Circular Doubly Linked-List

removeChain

template <class T> class CircularDoublyLinkedList {

...// deletes the chain defined by start and end (deletes both also)

void removeChain (Node<T> *start, Node<T> *end) {
Node<T> *nextEnd = end -> getNext ();
Node<T> *prevStart = start -> getPrev();
Node<T> *victim;
do {
victim = start;
start = start -> getNext ();
delete victim;

length--;
} while (victim != end);
if (length == 0) first = nullptr; // final list is empty

else { // links initial nodes start -> prev and end -> next

nextEnd -> setPrev(prevStart);
prevStart -> setNext(nextEnd);

first = nextEnd; // first becomes the initial end -> next

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026

8/34

Circular Doubly Linked-List

toString

// Convert a list to a string

std::string toString() {
if (isEmpty()) return "{}";
Node<T> *xcurr = first;
std::stringstream sstr;
sstr << "{" << curr->getValue();
while ((curr = curr -> getNext()) != first) {

sstr << "," << curr -> getValue();

}
sstr << "}'";
return sstr.str();

Requires <sstream> to be included. The values will be separated by a comma ","”

string. There is no comma in the end.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026

in the

9/34

Circular Doubly Linked-List

getStart, getlLast, setFirst

// Returns start node

Node<T> x*getStart (){
assert (!isEmpty () && "empty list has no start node");
return first;

}

// Returns last node (node before the first)

Node<T> x*getLast (){
assert (! isEmpty () && "empty list no last node");
return first -> getPrev();

}

// Changes the head to be newfirst
void setFirst (Node<T> *newfirst) {
first = newfirst; //does not check if newfirst exists

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 10 / 34

Convex Hull in 2D

Application of Circular Doubly Linked-Lists

The convex hull problem

Given a set P of n points in the plane, defined by their cartesian coordinates,
compute the list of vertices of its convex hull CH(P), in counterclockwise order.

The convex hull of P C R? is the smallest
convex polygon that contains all points of P.

Recall "St. Saint John Festival”

We are going to see two algorithms for computing the convex hull in O(nlogn)
time: the incremental algorithm, by Edelsbrunner, and Graham’s scan.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 11 /34

Applications of Convex Hulls

@ There are many problems that are comparatively easy to solve for
convex sets and much harder in general. E.g., POINT IN CONVEX
POLYGON can be solved in O(log n).

@ Convex hulls in 2D and 3D have many applications. They can be
used for instance in:

computer visualization

ray tracing

path finding

computing accessibility maps
visual pattern matching
diameter computation
cluster analysis

mesh generation

vV VY VY VY VY VY VvV VYY

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 12 / 34

Convex hull in 2D

Some geometrical properties

"Good solutions to algorithmic problems of a geometric nature are mostly based
on two ingredients. One is a thorough understanding of the geometric properties
of the problem, the other is a proper application of algorithmic techniques and
data structures.” (in M. Berg, et al (2008), Computational Geometry)

Given P = {p1, p2,...,Pn}, the extreme points

of convex hull CH(P) are points of P. A segment
pip;j is an extreme segment iff all the points py,
with k Z£ i, j, lie in the same halfplane defined by
the line p;p;.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 13 /34

https://link.springer.com/book/10.1007/978-3-540-77974-2

Convex hull in 2D

Some geometrical properties

@ If we walk around the boundary of a simple polygon in counterclockwise
order (CCW), its interior is always to the left.
In a convex polygon, no interior angle is greater than 180 degrees: if
Vo, V1 ..., Vp_1 represents the sequence of its vertices in CCW order, then
(Vis V(i+1)%ns V(i+2)%n) defines a left-turn, at v(;y1yo,, for all /.

@ Orientation tests (left-turn, right-turn, collinear) using the cross product:

i J
PAXpPr=1|Xxg—Xo Yq—Yp
Xr—=Xp Yr—Yp

O O x|

For the usual coordinate system, (p, g, r) is a left-turn iff the z-component
(xg = %) (vr — ¥p) — (Xr — xp)(¥q — ¥p) of the cross product pg x pr is
positive (recall the "right-hand rule”). It is a right-turn if that component is
negative, and the three points are collinear when it is zero.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 14 / 34

Incremental Algorithm for Convex hull in 2D

Sort the points by increasing x-coord (tie-break: largest y first)
1 = InitialPolygon(pl,p2,p3) // 1 must be sorted in CCW
For k = 4 to n do:
- Find the points pl and pr that define the supporting lines
from pk to the polygon

- Replace the chain pl,...,pr in 1 with the chain pl,pk,pr
Return 1

In the implementation, we refer to pr as upper and pl as lower.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 15 / 34

Incremental Algorithm for Convex hull in 2D

Polygon *convexhull (vector<PointI> &v) {

sort (v.begin(),v.end(),compare); // sorted by abscissa
Polygon *pol = initialize(v); // sorting v[0],v[1],v[2] CCW
Vertex *xlastv, *lower, *upper;

for(int i=3; i < v.size(); i++) {

}

}

return pol; // printPolygon(*pol);

lastv = pol -> getStart(); // previous vertex added
upper = upper_tangent (lastv,v[i]);
lower = lower_tangent (lastv,v[il]);
if (lower -> getNext() != upper)
pol -> removeChain(lower->getNext () ,upper->getPrev());
pol -> setFirst (upper);
pol -> addFirst(v[il);

with Polygon, Vertex, and PointI defined as:

typedef CircularDoublyLinkedList<Point<int> > Polygon;
typedef Node<Point<int> > Vertex;
typedef Point<int> PointI;

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 16 / 34

Incremental Algorithm for Convex hull in 2D

For simplification, we will assume that there are no three collinear points in P
(a kind of general position assumption). The algorithm can be adjusted to deal

with degenerated (i.e., special) cases too, which occur in practice!

For "St. Saint John Festival”, we cannot assume general position

bool compare(PointI &p, PointI &q) { // for sorting
if (p.getX() < q.getX()) return true;
if (p.getX() > q.getX()) return false;
return p.getY() > q.getY();

}

bool left_turn(PointI &pO,PointI &pl,PointI &p2) {
int x0 = pO0.getX(), x1 = pl.getX(), x2 = p2.getX();
int y0O = pO.getY(), y1 = pl.getY(), y2 p2.getY();
return (x1-x0)*(y2-y0)-(x2-x0)*(yl-y0) > O0;
// for a cartesian system with right-handed orientation

}

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026

17 / 34

Point

template <class P> class Point {
private:
P x;
P y;
public:
//constructors and destructor
Point () {};
Point (P a, P b): x(a), y(b){}
“Point (){};
// getters and setters
P getX(){ return x; };
void setX(P v) { x = v;}
P getY(){ return y; }
void setY(P v) { y = v;}

string toString (){ // to convert to a string format
stringstream sstr;
sstr << "(" << x << "M K<y << ")y

return sstr.str();
Ig
};

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026

18 / 34

Incremental Algorithm for Convex hull in 2D

pol
pol

Polygon *initialize(vector<PointI> &v) {
Polygon *pol =

new Polygon ();
-> addFirst (v[0]);
-> addFirst(v[1]);

// to ensure CCW

if (left_turn(v[0],v[1],vI[2]))
pol -> setFirst(pol -> getLast());

pol -> addFirst(vI[2]);
return pol;
Do \\
\. 1 ('—‘ N V\U .V'2 L
\“. v 1 L \\. \/2 1 ’4"’
‘e, > [™ 1 Vi -
S, o
. v et RN s
Py e . e
Right-turn Right-turn Left-turn

Left-turn
keep first at v keep first at v move first to vy

Vo, 7 Vi Vo, 7 Vi Vi, a Vo

In all cases, v» will be the first element after insertion.

move first to vp
Vi, a Vo

Linked Lists, Deques, Stacks, Queues 2025/2026

19 / 34

Incremental Algorithm for Convex hull in 2D

Vertex *lower_tangent (Vertex #*lower ,PointI & p2){
PointI pl = lower -> getValue();
PointI p0 = lower -> getPrev() -> getValue();
while (!left_turn(p0,pl,p2)) {
lower = lower -> getPrev();
pl = lower -> getValue();
pO0 = lower -> getPrev() -> getValue();
}

return lower;

At start, lower points to the rightmost node in the convex hull computed so far (always the last point added before the new p2).

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 20 / 34

Incremental Algorithm for Convex hull in 2D

Vertex *upper_tangent(Vertex #*upper ,PointI & pO0){
PointI pl = upper -> getValue();
PointI p2 = upper -> getNext() -> getValue();
while (!left_turn(p0,pl,p2)) {
upper = upper -> getNext ();
pl = upper -> getValue();
p2 = upper -> getNext() -> getValue();
}

return upper;

At start, upper points to the rightmost node in the convex hull computed so far (always the last point added before the new p0).

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 21 /34

Graham’s Algorithm for Convex Hull in 2D

Graham scan uses a technique called rotational sweep, processing points in the
order of the polar angles they form with a reference vertex.

The property Graham scan explores

In a counterclockwise walk around the boundary
of a convex polygon P, starting from the
bottom-most vertex p;, the vertices of P are
sorted in increasing order of polar angle w.r.t. p;.)

The polar angle of a point g with respect to a
point p; is the anti-clockwise angle between a
horizontal line and the line through p; and q.

@ When there are two or more points with minimum y-component, the bottom-most
vertex p; can be the leftmost among them (or the rightmost).

@ For efficiency and numerical robustness, we do not compute polar angles.
Instead, we use orientation tests: p; < px if (p1, pj, px) is a left-turn.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 22 /34

Graham’s Algorithm for Convex Hull in 2D

Find the bottom-most point pl in P, push it into a stack S
Let p2,p3,...,pn be the other points angularly sorted w.r.t. pl
Push p2 into S
k=3
While k <= n do:
p = top(8)
p- = previous(top(S))
If (p-,p,pk) is a left turn:
Push pk into S
k = k+1
else:
Pop p from S

Return S
. . ~ P6
PUShP3 - Pop P3 Pop P4 push pg | ps
push ps push ps
pz P2 push pg
P1 N p1

For an animation, check https://dccg.upc.edu/wp-content/uploads/2020/06/GeoC~Convexrhulls=in-2D=pdf

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 23 /34

poppr [pe|
pop pg

https://dccg.upc.edu/wp-content/uploads/2020/06/GeoC-Convex-hulls-in-2D.pdf

The Stack ADT

A stack is a collection whose elements are added to and removed from one end,
called the top of the stack. It is a "last in first out” (LIFO) data structure. J

@ Basic stack operations besides the
creation/destruction:

push(item): Add an element to the top
pop(): Remove the top element
top(): Examine the top element
size(): Return the number of elements
empty (): Test whether the stack is empt

vV vy vy VvYy

@ Usually, no support for random access or iterators or sorting.

If we need that, we'd better check whether a stack is the best data structure
for our application, before we start implementing a specialized stack version.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 24 / 34

Implementation of MyStack

Using a linked-list as container

#include <list>
using namespace std;

template <typename T> class MyStack {
private:
1list<T> 1;
public:
MyStack (){}; // creates empty list
“MyStack (){};
void push(T d) { 1.push_front(d); }
void pop() { 1l.pop_front(); }
bool empty () { return 1l.size() == 0; }
T top() { return 1.front(); }
int size() { return 1l.size();}

void print() { // not a basic stack operation
for (auto x: 1) cout << x << endl;
}
g
L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 25 /34

Implementation of MyStack

Using an array as container

#include <vector>
#include <cassert>
using namespace std;

template <typename T> class MyStack {
private:
vector<T> v;
int nmax, n;
public:
MyStack(int ¢=100): v(vector<T>(c)), nmax(c), n(0) {};
void push(T d) { assert(n < nmax && "full"); v[n++] = d4; }
void pop() { assert(n > 0 && "empty"); mn--; }
bool empty() { return n == 0; }
T top() { assert(n > 0 && "empty"); return v[n-1]; 3}
int size() { return n; }
// the following are not basic operations in Stack ADT
void print() { for(int i=0;i<n;i++)cout << v[i] << endl; }
T atPos(int k) { assert(k>=0 && k<n); return v[n-1-k]; }
I

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 26 / 34

STL stack template

@ C+4+ STL std::stack is implemented as a container adaptor, with
std::deque as default container, if no container class is specified.

template <class T, class Container = deque<T> > class stack;

Examples:

» std::stack<int> s0;
» std::stack<int,std::list<int> > si;

@ The class template acts as a wrapper to the underlying container — only a
specific set of functions is provided (Documentation for std::stack).

Provides no support for random access or iterators.

@ In Graham scan, for instance, we need previous (top(S)).

» With C++ STL stack, we could remove the top to get access to
previous(top(S)) and then push the top again (if useful).

» (With our array-based MyStack, s.atPos(1) yields previous(top(S))
s.atPos(0) is s.top(); previous (previous(top(8))) is s.top(2), ...)

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 27 / 34

https://en.cppreference.com/w/cpp/container/stack

Back to Convex hull

Complexity of Graham scan and the incremental algorithm

Graham'’s scan and Edelsbrunner’s incremental algorithm find the convex hull of n
points in 2D in O(nlogn) time and O(n) extra space. The sorting step
dominates their time complexity. For the remaining steps, the time is ©(n).

@ Graham scan:

» Each iteration of the while loop costs ®(1) because each pop, push,
top, and left_turn operation takes ©(1).

» There are less than 2n iterations, because either py is push into the
stack or the top, i.e., a previous point, is removed from the stack.

» Thus, although the analysis of some particular point py may require
O(size(S) — 1) iterations, the total time for the loop is ©(n) and
not Q(n?). We have O(1) amortized time complexity per point.

@ Incremental algorithm:

» the overall time for finding all upper and lower tangents, removing
chains, and linking points, is ©(n), because each point is added just
once. Removed chains won't be analysed again.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 28 / 34

https://en.wikipedia.org/wiki/Amortized_analysis

Back to Convex hull

Time complexity lower bound

Any convex hull algorithm that uses line-side tests to find the hull requires
Q(nlogn) line-side tests in the worst case (in a decision tree model).

Idea of the proof (by reduction from sorting): Given a
set of n distinct integers, V = {x1,x2,...,xn}, if we
compute the CH(P) with

P:{(xk,xf)|1§k§n}

we can list V in increasing order by starting at the leftmost
point of CH(P). Since sorting requires 2(nlogn) in the .

worst case, so does the convex hull problem in 2D. [===

Graham scan, the incremental algorithm, and an a
divide-and-conquer convex hull algorithm are
asymptotically optimal algorithms for the convex
hull problem, in the worst case.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 29 / 34

The Queue ADT

A queue is a collection whose elements are added at one end (called the tail or
end of the queue) and removed from the other end (called the front or head the
queue). It is a "first in first out” (FIFO) data structure.

@ Basic queue operations besides the
creation/destruction:

push(item): Add an element at the end
pop(): Remove the first element

front (): Access the first element

back(): Access the last element

empty (): Test whether the queue is empty
size(): Return the size of the queue

vV vy vy Yy VY

@ Usually, no support for random access or iterators or sorting,.

If we need that, we'd better check whether a queue is the best data
structure, before we start implementing a specialized queue version.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 30 /34

Implementation of MyQueue

Using a linked-list as container

#include <list>
using namespace std;

template <typename T> class MyQueue {
private:
1list<T> 1;
public:
MyQueue (O {}; // the list is empty
void push(T d) { 1.push_back(d); }
void pop() { l.pop_front(); }
bool empty () { return 1l.size() == 0; 1}
T front() { return 1.front(); }
T back() { return 1l.back();}
int size() { return 1l.size();}
void print() { for (auto x: 1) cout << x << endl; } // !!
g

In some applications, it would be interesting to be able to remove any element from
the queue, e.g., if elements can abandon the queue. This ADT does not support that.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 31/34

Implementation of MyQueue

Using a circular array as container

#include <vector>
#include <cassert>
using namespace std;

template <typename T> class MyQueue {

private:
vector<T> v;
int nmax, start, end;
public:
MyQueue (int c¢c=100):

v(vector<T>(c)), nmax(c),

void push(T 4d) {
assert (start==end &&

v[end] = d;
end = (end+1) % nmax;

start (-1), end (0) {};

"queue is full");
if (empty()) start = end;

// continues in next slide

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 32 /34

Implementation of MyQueue

Using a circular array as container

void pop() {
assert (! empty () && "queue is empty");

start = (start+1) % nmax;

if (start == end) { // it had just one element
start = -1; end = O0;

}

}

int size() {
if (empty()) return 0;
return (end+nmax-start)’nmax;

}

bool empty() { return start == -1; }

T front() { assert(!empty()); return v[startl]l; 1}

T back() { assert(lempty()); return v[(end+nmax-1)%nmax];}
g

Time complexity of: push, pop, size, empty, front, and back is O(1).

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 33 /34

STL queue template

@ C+4++ STL std::queue is implemented as a container adaptor, with
std::deque as default container, if no container class is specified.

template <class T, class Container = deque<T> > class queue;
Examples:

» std::queue<int> qO0;
» std::queue<int,std::list<int> > qi;

@ The class template acts as a wrapper to the underlying container — only a
specific set of functions is provided (Documentation for std::queue).

Provides no support for random access or iterators.

@ If we need those features, we'd better use, e.g., a deque directly or
another data structure.

» A deque (double-ended queue) is an indexed sequence container that
allows fast insertion and deletion at both its beginning and its end.
» Link to STL documentation: std::deque

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 34 /34

https://en.cppreference.com/w/cpp/container/queue
https://en.cppreference.com/w/cpp/container/queue

