
Linked Lists, Deques, Stacks, Queues
and Applications

L.EIC

Algoritmos e Estruturas de Dados

2025/2026

P Ribeiro, AP Tomás

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 1 / 34

Circular Doubly Linked-List

A circular doubly linked-list is a linked list where each node is
connected to both its previous and next nodes, and the last node
links back to the first node.

The implementation we will describe is based on the one given for
Lab Class 05 for template <class T> class SinglyLinkedList
For the circular doubly linked-list:
I Each node has three attributes: next, prev and value.
I The head node is given by a pointer called first.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 2 / 34

https://www.dcc.fc.up.pt/~pribeiro/aulas/aed2425/practical/singlyLinkedList.h

Circular Doubly Linked-List
Node

template < c l a s s T> c l a s s Node {
p r i v a t e :

T value; // value in the node
Node <T> *next; // pointer to next node
Node <T> *prev; // pointer to previous node

p u b l i c :
Node(const T & v, Node <T> *n=nullptr , Node <T> *p= nullptr):

value(v), next(n), prev(p) {}
T & getValue () { r e t u r n value; }
Node <T> * getNext () { r e t u r n next; }
Node <T> * getPrev () { r e t u r n prev; }
v o i d setValue (const T & v) { value=v; }
v o i d setNext (Node <T> *n) { next = n; }
v o i d setPrev (Node <T> *p) { prev = p; }

};

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 3 / 34

Circular Doubly Linked-List
Implementation

template < c l a s s T> c l a s s CircularDoublyLinkedList {
p r i v a t e :

Node <T> *first; // head (front) of the list
i n t length ; // number of nodes

p u b l i c :
// Construtor (creates empty list)
CircularDoublyLinkedList (): first(nullptr), length (0) {}

// Destrutor
˜ CircularDoublyLinkedList () {

w h i l e (! isEmpty ()) {
assert (first != nullptr && " message ...");
removeFirst ();

}
assert (first == nullptr && " message ...");

} // ...continues
};

"message..." stands for a message to be written if the condition fails

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 4 / 34

Circular Doubly Linked-List
AddFirst

template < c l a s s T> c l a s s CircularDoublyLinkedList {
...
v o i d addFirst (const T & v) { // adds v to the front

Node <T> * newNode ; // to be a pointer to the new node
i f (first == nullptr) {

newNode = new Node <T>(v,nullptr , nullptr);
newNode -> setNext (newNode);
newNode -> setPrev (newNode); // a loop to itsef

} e l s e {
newNode = new Node <T>(v,first , first -> getPrev ());
(first -> getPrev ()) -> setNext (newNode);
first -> setPrev (newNode);

}
first = newNode ;
length ++;

}

Creates a new node newNode with value v. It will be the new head (first). Links it to
the previous first and last nodes. When the list is empty, links newNode to itself.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 5 / 34

Circular Doubly Linked-List
AddFirst, getFirst, size, isEmpty

template < c l a s s T> c l a s s CircularDoublyLinkedList {
...

// Adds v to the end of the list
v o i d addLast (const T & v) {

addFirst (v);
i f (length > 1) first = first -> getNext ();

}

// Returns the reference to the first value
T & getFirst () {

assert (! isEmpty () && "empty list has no first node");
r e t u r n first -> getValue ();

}

// Returns the length of the list
i n t size () { r e t u r n length ; }

// Returns true iff the list is empty
bool isEmpty () { r e t u r n (length == 0); }

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 6 / 34

Circular Doubly Linked-List
removeFirst

template < c l a s s T> c l a s s CircularDoublyLinkedList {
... // Pops the first node (does nothing if list is empty)
v o i d removeFirst () {

i f (isEmpty ()) r e t u r n ;
Node <T> * victim = first;
i f (length > 1) {

first = first -> getNext ();
first -> setPrev (victim -> getPrev ());
victim -> getPrev () -> setNext (first);

} e l s e first = nullptr ;
d e l e t e victim ;
length --;

}

The victim is the first node. If the list has other nodes, we link victim->next and
victim -> prev and change first accordingly. Otherwise, we set first to nullptr

since the list will be empty in the end. The victim is deleted (”freeing” the memory).

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 7 / 34

Circular Doubly Linked-List
removeChain

template < c l a s s T> c l a s s CircularDoublyLinkedList {
... // deletes the chain defined by start and end (deletes both also)

v o i d removeChain (Node <T> *start , Node <T> *end) {
Node <T> * nextEnd = end -> getNext ();
Node <T> * prevStart = start -> getPrev ();
Node <T> * victim ;
do {

victim = start;
start = start -> getNext ();
d e l e t e victim ;
length --;

} w h i l e (victim != end);
i f (length == 0) first = nullptr ; // final list is empty
e l s e { // links initial nodes start -> prev and end -> next

nextEnd -> setPrev (prevStart);
prevStart -> setNext (nextEnd);
first = nextEnd ; // first becomes the initial end -> next

}
}

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 8 / 34

Circular Doubly Linked-List
toString

// Convert a list to a string
std :: string toString () {

i f (isEmpty ()) r e t u r n "{}";
Node <T> *curr = first;
std :: stringstream sstr;
sstr << "{" << curr -> getValue ();
w h i l e ((curr = curr -> getNext ()) != first) {

sstr << "," << curr -> getValue ();
}
sstr << "}";
r e t u r n sstr.str ();

}

Requires <sstream> to be included. The values will be separated by a comma ”,” in the
string. There is no comma in the end.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 9 / 34

Circular Doubly Linked-List
getStart, getLast, setFirst

// Returns start node
Node <T> * getStart (){

assert (! isEmpty () && "empty list has no start node");
r e t u r n first;

}

// Returns last node (node before the first)
Node <T> * getLast (){

assert (! isEmpty () && "empty list no last node");
r e t u r n first -> getPrev ();

}

// Changes the head to be newfirst
v o i d setFirst (Node <T> * newfirst) {

first = newfirst ; //does not check if newfirst exists
}

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 10 / 34

Convex Hull in 2D
Application of Circular Doubly Linked-Lists

The convex hull problem
Given a set P of n points in the plane, defined by their cartesian coordinates,
compute the list of vertices of its convex hull CH(P), in counterclockwise order.

Recall ”St. Saint John Festival”

The convex hull of P ⊆ R2 is the smallest
convex polygon that contains all points of P.

We are going to see two algorithms for computing the convex hull in O(n log n)
time: the incremental algorithm, by Edelsbrunner, and Graham’s scan.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 11 / 34

Applications of Convex Hulls

There are many problems that are comparatively easy to solve for
convex sets and much harder in general. E.g., point in convex
polygon can be solved in O(log n).

Convex hulls in 2D and 3D have many applications. They can be
used for instance in:
I computer visualization
I ray tracing
I path finding
I computing accessibility maps
I visual pattern matching
I diameter computation
I cluster analysis
I mesh generation
I . . .

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 12 / 34

Convex hull in 2D
Some geometrical properties

”Good solutions to algorithmic problems of a geometric nature are mostly based
on two ingredients. One is a thorough understanding of the geometric properties
of the problem, the other is a proper application of algorithmic techniques and
data structures.” (in M. Berg, et al (2008), Computational Geometry)

Given P = {p1, p2, . . . , pn}, the extreme points
of convex hull CH(P) are points of P. A segment
pipj is an extreme segment iff all the points pk ,
with k 6= i , j , lie in the same halfplane defined by
the line pipj .

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 13 / 34

https://link.springer.com/book/10.1007/978-3-540-77974-2

Convex hull in 2D
Some geometrical properties

If we walk around the boundary of a simple polygon in counterclockwise
order (CCW), its interior is always to the left.
In a convex polygon, no interior angle is greater than 180 degrees: if
v0, v1 . . . , vn−1 represents the sequence of its vertices in CCW order, then
(vi , v(i+1)%n, v(i+2)%n) defines a left-turn, at v(i+1)%n, for all i .
Orientation tests (left-turn, right-turn, collinear) using the cross product:

~pq× ~pr =
~i ~j ~k
xq − xp yq − yp 0
xr − xp yr − yp 0

For the usual coordinate system, (p, q, r) is a left-turn iff the z-component
(xq − xp)(yr − yp)− (xr − xp)(yq − yp) of the cross product ~pq × ~pr is
positive (recall the ”right-hand rule”). It is a right-turn if that component is
negative, and the three points are collinear when it is zero.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 14 / 34

Incremental Algorithm for Convex hull in 2D

Sort the points by increasing x-coord (tie-break: largest y first)
l = InitialPolygon(p1,p2,p3) // l must be sorted in CCW
For k = 4 to n do:

- Find the points pl and pr that define the supporting lines
from pk to the polygon

- Replace the chain pl,...,pr in l with the chain pl,pk,pr
Return l

In the implementation, we refer to pr as upper and pl as lower.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 15 / 34

Incremental Algorithm for Convex hull in 2D
Polygon * convexhull (vector <PointI > &v) {

sort(v.begin (),v.end (), compare); // sorted by abscissa
Polygon *pol = initialize (v); // sorting v[0],v[1],v[2] CCW
Vertex *lastv , *lower , *upper;
f o r (i n t i=3; i < v.size (); i++) {

lastv = pol -> getStart (); // previous vertex added
upper = upper_tangent (lastv ,v[i]);
lower = lower_tangent (lastv ,v[i]);
i f (lower -> getNext () != upper)

pol -> removeChain (lower -> getNext (),upper -> getPrev ());
pol -> setFirst (upper);
pol -> addFirst (v[i]);

}
r e t u r n pol; // printPolygon(*pol);

}

with Polygon, Vertex, and PointI defined as:
t y p e d e f CircularDoublyLinkedList <Point < i n t > > Polygon ;
t y p e d e f Node <Point < i n t > > Vertex ;
t y p e d e f Point < i n t > PointI ;

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 16 / 34

Incremental Algorithm for Convex hull in 2D

For simplification, we will assume that there are no three collinear points in P
(a kind of general position assumption). The algorithm can be adjusted to deal
with degenerated (i.e., special) cases too, which occur in practice!
For ”St. Saint John Festival”, we cannot assume general position.

bool compare (PointI &p, PointI &q) { // for sorting
i f (p.getX () < q.getX ()) r e t u r n t r u e ;
i f (p.getX () > q.getX ()) r e t u r n f a l s e ;
r e t u r n p.getY () > q.getY ();

}

bool left_turn (PointI &p0 , PointI &p1 , PointI &p2) {
i n t x0 = p0.getX (), x1 = p1.getX (), x2 = p2.getX ();
i n t y0 = p0.getY (), y1 = p1.getY (), y2 = p2.getY ();
r e t u r n (x1 -x0)*(y2 -y0)-(x2 -x0)*(y1 -y0) > 0;
// for a cartesian system with right-handed orientation

}

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 17 / 34

Point

template < c l a s s P> c l a s s Point {
p r i v a t e :

P x;
P y;

p u b l i c :
//constructors and destructor
Point (){};
Point(P a, P b): x(a), y(b){}
˜Point (){};
// getters and setters
P getX (){ r e t u r n x; };
v o i d setX(P v) { x = v;}
P getY (){ r e t u r n y; }
v o i d setY(P v) { y = v;}
string toString (){ // to convert to a string format

stringstream sstr;
sstr << "(" << x << "," << y << ")";
r e t u r n sstr.str ();

};
};

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 18 / 34

Incremental Algorithm for Convex hull in 2D

Polygon * initialize (vector <PointI > &v) { // to ensure CCW
Polygon *pol = new Polygon ();
pol -> addFirst (v[0]);
pol -> addFirst (v[1]);
i f (left_turn (v[0],v[1],v[2]))

pol -> setFirst (pol -> getLast ());
pol -> addFirst (v[2]);
r e t u r n pol;

}

Right-turn

keep first at v1

v0, v2 , v1

Right-turn

keep first at v1

v0, v2 , v1

Left-turn

move first to v0

v1, v2 , v0

Left-turn

move first to v0

v1, v2 , v0
In all cases, v2 will be the first element after insertion.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 19 / 34

Incremental Algorithm for Convex hull in 2D

Vertex * lower_tangent (Vertex *lower , PointI & p2){
PointI p1 = lower -> getValue ();
PointI p0 = lower -> getPrev () -> getValue ();
w h i l e (! left_turn (p0 ,p1 ,p2)) {

lower = lower -> getPrev ();
p1 = lower -> getValue ();
p0 = lower -> getPrev () -> getValue ();

}
r e t u r n lower;

}

At start, lower points to the rightmost node in the convex hull computed so far (always the last point added before the new p2).

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 20 / 34

Incremental Algorithm for Convex hull in 2D

Vertex * upper_tangent (Vertex *upper , PointI & p0){
PointI p1 = upper -> getValue ();
PointI p2 = upper -> getNext () -> getValue ();
w h i l e (! left_turn (p0 ,p1 ,p2)) {

upper = upper -> getNext ();
p1 = upper -> getValue ();
p2 = upper -> getNext () -> getValue ();

}
r e t u r n upper;

}

At start, upper points to the rightmost node in the convex hull computed so far (always the last point added before the new p0).

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 21 / 34

Graham’s Algorithm for Convex Hull in 2D
Graham scan uses a technique called rotational sweep, processing points in the
order of the polar angles they form with a reference vertex.

The property Graham scan explores
In a counterclockwise walk around the boundary
of a convex polygon P, starting from the
bottom-most vertex p1, the vertices of P are
sorted in increasing order of polar angle w.r.t. p1.

The polar angle of a point q with respect to a
point p1 is the anti-clockwise angle between a
horizontal line and the line through p1 and q.

When there are two or more points with minimum y -component, the bottom-most
vertex p1 can be the leftmost among them (or the rightmost).
For efficiency and numerical robustness, we do not compute polar angles.
Instead, we use orientation tests: pj < pk if (p1, pj , pk) is a left-turn.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 22 / 34

Graham’s Algorithm for Convex Hull in 2D
Find the bottom-most point p1 in P, push it into a stack S
Let p2,p3,...,pn be the other points angularly sorted w.r.t. p1
Push p2 into S
k = 3
While k <= n do:

p = top(S)
p- = previous(top(S))
If (p-,p,pk) is a left turn:

Push pk into S
k = k+1

else:
Pop p from S

Return S

p2
p1

push p3 p3

p2
p1

pop p3
push p4

p4
p2
p1

pop p4
push p5

p5
p2
p1

push p6

p6
p5
p2
p1

push p7

p7
p6
p5
p2
p1

pop p7
pop p6
push p8

p8
p5
p2
p1

 . . .

For an animation, check https://dccg.upc.edu/wp-content/uploads/2020/06/GeoC-Convex-hulls-in-2D.pdf

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 23 / 34

https://dccg.upc.edu/wp-content/uploads/2020/06/GeoC-Convex-hulls-in-2D.pdf

The Stack ADT

A stack is a collection whose elements are added to and removed from one end,
called the top of the stack. It is a ”last in first out” (LIFO) data structure.

Basic stack operations besides the
creation/destruction:
I push(item): Add an element to the top
I pop(): Remove the top element
I top(): Examine the top element
I size(): Return the number of elements
I empty(): Test whether the stack is empt

Usually, no support for random access or iterators or sorting.
If we need that, we’d better check whether a stack is the best data structure
for our application, before we start implementing a specialized stack version.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 24 / 34

Implementation of MyStack
Using a linked-list as container

#i n c l u d e <list >
u s i n g namespace std;

template <typename T> c l a s s MyStack {
p r i v a t e :

list <T> l;
p u b l i c :

MyStack (){}; // creates empty list
˜ MyStack (){};
v o i d push(T d) { l. push_front (d); }
v o i d pop () { l. pop_front (); }
bool empty () { r e t u r n l.size () == 0; }
T top () { r e t u r n l.front (); }
i n t size () { r e t u r n l.size ();}
v o i d print () { // not a basic stack operation

f o r (auto x: l) cout << x << endl;
}

};

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 25 / 34

Implementation of MyStack
Using an array as container

#i n c l u d e <vector >
#i n c l u d e <cassert >
u s i n g namespace std;

template <typename T> c l a s s MyStack {
p r i v a t e :

vector <T> v;
i n t nmax , n;

p u b l i c :
MyStack (i n t c =100): v(vector <T>(c)), nmax(c), n(0) {};
v o i d push(T d) { assert (n < nmax && "full"); v[n++] = d; }
v o i d pop () { assert (n > 0 && "empty"); n--; }
bool empty () { r e t u r n n == 0; }
T top () { assert (n > 0 && "empty"); r e t u r n v[n -1]; }
i n t size () { r e t u r n n; }
// the following are not basic operations in Stack ADT
v o i d print () { f o r (i n t i=0;i<n;i++) cout << v[i] << endl; }
T atPos(i n t k) { assert (k >=0 && k<n); r e t u r n v[n-1-k]; }

};

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 26 / 34

STL stack template

C++ STL std::stack is implemented as a container adaptor, with
std::deque as default container, if no container class is specified.
template <class T, class Container = deque<T> > class stack;

Examples:
I std::stack<int> s0;
I std::stack<int,std::list<int> > s1;

The class template acts as a wrapper to the underlying container – only a
specific set of functions is provided (Documentation for std::stack).
Provides no support for random access or iterators.

In Graham scan, for instance, we need previous(top(S)).
I With C++ STL stack, we could remove the top to get access to

previous(top(S)) and then push the top again (if useful).
I (With our array-based MyStack, s.atPos(1) yields previous(top(S));

s.atPos(0) is s.top(); previous(previous(top(S))) is s.top(2), . . .)

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 27 / 34

https://en.cppreference.com/w/cpp/container/stack

Back to Convex hull

Complexity of Graham scan and the incremental algorithm
Graham’s scan and Edelsbrunner’s incremental algorithm find the convex hull of n
points in 2D in O(n log n) time and O(n) extra space. The sorting step
dominates their time complexity. For the remaining steps, the time is Θ(n).

Graham scan:
I Each iteration of the while loop costs Θ(1) because each pop, push,

top, and left turn operation takes Θ(1).
I There are less than 2n iterations, because either pk is push into the

stack or the top, i.e., a previous point, is removed from the stack.
I Thus, although the analysis of some particular point pk may require
O(size(S)− 1) iterations, the total time for the loop is Θ(n) and
not Ω(n2). We have O(1) amortized time complexity per point.

Incremental algorithm:
I the overall time for finding all upper and lower tangents, removing

chains, and linking points, is Θ(n), because each point is added just
once. Removed chains won’t be analysed again.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 28 / 34

https://en.wikipedia.org/wiki/Amortized_analysis

Back to Convex hull

Time complexity lower bound
Any convex hull algorithm that uses line-side tests to find the hull requires
Ω(n log n) line-side tests in the worst case (in a decision tree model).

Idea of the proof (by reduction from sorting): Given a
set of n distinct integers, V = {x1, x2, . . . , xn}, if we
compute the CH(P) with

P = {(xk , x2
k) | 1 ≤ k ≤ n}

we can list V in increasing order by starting at the leftmost
point of CH(P). Since sorting requires Ω(n log n) in the
worst case, so does the convex hull problem in 2D.

Graham scan, the incremental algorithm, and an a
divide-and-conquer convex hull algorithm are
asymptotically optimal algorithms for the convex
hull problem, in the worst case.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 29 / 34

The Queue ADT

A queue is a collection whose elements are added at one end (called the tail or
end of the queue) and removed from the other end (called the front or head the
queue). It is a ”first in first out” (FIFO) data structure.

Basic queue operations besides the
creation/destruction:
I push(item): Add an element at the end
I pop(): Remove the first element
I front(): Access the first element
I back(): Access the last element
I empty(): Test whether the queue is empty
I size(): Return the size of the queue

Usually, no support for random access or iterators or sorting.
If we need that, we’d better check whether a queue is the best data
structure, before we start implementing a specialized queue version.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 30 / 34

Implementation of MyQueue
Using a linked-list as container

#i n c l u d e <list >
u s i n g namespace std;

template <typename T> c l a s s MyQueue {
p r i v a t e :

list <T> l;
p u b l i c :

MyQueue (){}; // the list is empty
v o i d push(T d) { l. push_back (d); }
v o i d pop () { l. pop_front (); }
bool empty () { r e t u r n l.size () == 0; }
T front () { r e t u r n l.front (); }
T back () { r e t u r n l.back ();}
i n t size () { r e t u r n l.size ();}
v o i d print () { f o r (auto x: l) cout << x << endl; } // !!

};

In some applications, it would be interesting to be able to remove any element from
the queue, e.g., if elements can abandon the queue. This ADT does not support that.

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 31 / 34

Implementation of MyQueue
Using a circular array as container

#i n c l u d e <vector >
#i n c l u d e <cassert >
u s i n g namespace std;

template <typename T> c l a s s MyQueue {
p r i v a t e :

vector <T> v;
i n t nmax , start , end;

p u b l i c :
MyQueue (i n t c =100):

v(vector <T>(c)), nmax(c), start (-1), end (0) {};
v o i d push(T d) {

assert (start == end && "queue is full");
i f (empty ()) start = end;
v[end] = d;
end = (end +1) % nmax;

} // continues in next slide
};

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 32 / 34

Implementation of MyQueue
Using a circular array as container

v o i d pop () {
assert (! empty () && "queue is empty");
start = (start +1) % nmax;
i f (start == end) { // it had just one element

start = -1; end = 0;
}

}

i n t size () {
i f (empty ()) r e t u r n 0;
r e t u r n (end+nmax -start)% nmax;

}

bool empty () { r e t u r n start == -1; }
T front () { assert (! empty ()); r e t u r n v[start]; }
T back () { assert (! empty ()); r e t u r n v[(end+nmax -1)% nmax];}

};

Time complexity of: push, pop, size, empty, front, and back is O(1).
L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 33 / 34

STL queue template

C++ STL std::queue is implemented as a container adaptor, with
std::deque as default container, if no container class is specified.
template <class T, class Container = deque<T> > class queue;

Examples:
I std::queue<int> q0;
I std::queue<int,std::list<int> > q1;

The class template acts as a wrapper to the underlying container – only a
specific set of functions is provided (Documentation for std::queue).
Provides no support for random access or iterators.

If we need those features, we’d better use, e.g., a deque directly or
another data structure.
I A deque (double-ended queue) is an indexed sequence container that

allows fast insertion and deletion at both its beginning and its end.
I Link to STL documentation: std::deque

L.EIC (AED) Linked Lists, Deques, Stacks, Queues 2025/2026 34 / 34

https://en.cppreference.com/w/cpp/container/queue
https://en.cppreference.com/w/cpp/container/queue

