
Binary Search Trees

L.EIC

Algorithms and Data Structures

2025/2026

P Ribeiro, AP Tomas

L.EIC (AED) Binary Search Trees 2025/2026 1 / 26

Binary Search Trees - Motivation

Let S be a set of ”comparable” objects/items:

I Let a and b be two objects.
They are ”comparable” if it is possible to say whether a < b, a = b, or
a > b.

I An example could be numbers, but it could be something else (strins,
students with a name and a student number; teams with points, goals
scored and conceded, etc.)

Some possible problems of interest:

I Given a set S , determine if a given item is in S
I Given a dynamic set S (which undergoes changes: additions and

removals), determine if a given item is in S
I Given a dynamic set S , determine the largest/smallest item in S
I Sort a set S
I . . .

Binary Search Trees!

L.EIC (AED) Binary Search Trees 2025/2026 2 / 26

Binary Search Trees - Concept

For every node in the tree, the following must happen:
the node is greater than all the nodes in its left subtree and
smaller than all the nodes in its right subtree

L.EIC (AED) Binary Search Trees 2025/2026 3 / 26

Binary Search Trees - Examples

For every node in the tree, the following must happen:
the node is greater than all the nodes in its left subtree and
smaller than all the nodes in its right subtree

In trees 1 and 2, the conditions are respected

In tree 3, node 7 is on the left of node 5, but 7 > 5

In tree 4, node 2 is on the right of node 3, but 2 < 3

L.EIC (AED) Binary Search Trees 2025/2026 4 / 26

Binary Search Trees - Some Consequences

The smallest element is... in the leftmost node

The largest element is... in the rightmost node

L.EIC (AED) Binary Search Trees 2025/2026 5 / 26

Binary Search Trees - Searching for a Value

Start at the root, and traverse the tree

Choose the left or right branch based on whether the value is smaller
or greater than the ”current” node

L.EIC (AED) Binary Search Trees 2025/2026 6 / 26

Binary Search Trees - Searching for a Value

Start at the root, and traverse the tree

Choose the left or right branch based on whether the value is smaller
or greater than the ”current” node

L.EIC (AED) Binary Search Trees 2025/2026 7 / 26

Binary Search Trees - Inserting a Value

Start at the root, and traverse the tree

Choose the left or right branch based on whether the value is smaller
or greater than the ”current” node

Insert at the corresponding leaf position

Note: If the value is equal to an already existing one, it is typically not inserted.
If we want to allow repeated values (a multiset), we must be consistent and
always choose a position (e.g., always insert on the left, where left subtree nodes
would be ≤ and right subtree nodes would be >)

L.EIC (AED) Binary Search Trees 2025/2026 8 / 26

Binary Search Trees - Removing a Value

Start at the root, and traverse the tree until the value is found

Once the value is found, what should we do next?
I If the node to be removed has only one child, simply ”lift” that child to

the corresponding position
I If it has two children, the candidates to replace it are:

F The largest node in the left branch, or
F The smallest node in the right branch

L.EIC (AED) Binary Search Trees 2025/2026 9 / 26

Binary Search Trees - Removing a Value

After finding the node, we need to decide how to remove it
I 3 possible cases:

L.EIC (AED) Binary Search Trees 2025/2026 10 / 26

Binary Search Trees - Removing a Value
Example with two children

L.EIC (AED) Binary Search Trees 2025/2026 11 / 26

Binary Search Trees - Removing a Value
Example with only one child

L.EIC (AED) Binary Search Trees 2025/2026 12 / 26

Binary Search Trees - Visualization

You can visualize search, insertion, and removal
(try the provided URL):

https://www.cs.usfca.edu/˜galles/visualization/BST.html

L.EIC (AED) Binary Search Trees 2025/2026 13 / 26

https://www.cs.usfca.edu/~galles/visualization/BST.html

Binary Search Trees - Complexity

How to characterize the time each operation takes?
I All operations search for a node by traversing the height of the tree

Complexity of operations in a binary search tree

Let h be the height of a binary search tree T . The complexity of finding
the minimum, maximum, or performing a search, insertion, or removal in
T is O(h).

L.EIC (AED) Binary Search Trees 2025/2026 14 / 26

Imbalance in a Binary Search Tree

The problem with the previous methods:

The height of the tree can be of the order O(n) (n, number of elements)

(The height depends on the order of insertion, and there are ”bad” orders)

L.EIC (AED) Binary Search Trees 2025/2026 15 / 26

Balanced Trees

We want trees... balanced

vs

In a balanced tree with n nodes, the height is ... O(log n)

L.EIC (AED) Binary Search Trees 2025/2026 16 / 26

Balanced Trees

For a given set of numbers, which order to insert in a binary search tree
so that it becomes as balanced as possible?

Answer: “binary search” - if the numbers are sorted, insert the middle
element, split the remaining list at that element, and insert the remaining
elements from each half in the same manner.

L.EIC (AED) Binary Search Trees 2025/2026 17 / 26

Balancing Strategies

What if we don’t know all the elements at the beginning and we need
to dynamically insert and remove elements?

There are strategies to ensure that the complexity of operations like
searching, inserting, and removing is better than O(n)

Balanced trees:
(height O(log n))

I AVL Trees (*)
I Red-Black Trees (*)
I Splay Trees
I B-Trees
I Treaps

I ...

Other data structures:

I Skip List
I Hash Table (*)
I Bloom Filter

We will discuss some of these strategies at this course (the ones with *)

L.EIC (AED) Binary Search Trees 2025/2026 18 / 26

Height for Random Order

Height of a tree with random elements

If we insert n elements in a completely random order into a binary search
tree, its expected height is O(log n)

If you’re curious about a proof, check out the excellent book
”Introduction to Algorithms” (this is not required for the exam)

For purely random data, the average height is O(log n) as we insert
and remove nodes

L.EIC (AED) Binary Search Trees 2025/2026 19 / 26

Binary Search Trees - An Implementation

We are not going to analyze in detail during the lecture, but here is a
possible implementation of an (unbalanced) binary search tree

The core of the class is exactly the same as before.

template < c l a s s T> c l a s s BSTree {
pr i va te :

s t ruc t Node {
T value;

Node *left, *right;

};

Node *root;

pub l i c :
BSTree() {root = nullptr;}

// ...

}

L.EIC (AED) Binary Search Trees 2025/2026 20 / 26

Binary Search Trees - Implementation

What changes are the other methods, such as contains, insert, and
remove, which can take advantage of the fact that it is a binary
search tree.

These are methods of the BSTree class. For a visual explanation of
what they do, you can refer to previous slides (slides 38 to 45).

Let’s start with contains.

// Is the value contained in the tree?

bool contains(const T & val) {
return contains(root, val);

}

bool contains(Node *n, const T & val) {
i f (n == nullptr) return f a l s e ;
i f (val < n->value) return contains(n->left, val);
i f (val > n->value) return contains(n->right, val);
return true;

L.EIC (AED) Binary Search Trees 2025/2026 21 / 26

Binary Search Trees - Implementation

For insert, we take advantage of the return value of a recursive function.

// Add an element to a search tree

// Returns true if insertion succeeded, false otherwise

bool insert(const T & val) {
i f (contains(val)) return f a l s e ;
root = insert(root, val);

return true;
}

Node *insert(Node *n, const T & val) {
i f (n == nullptr) {
Node *aux = new Node;

aux->value = val;

aux->left = aux->right = nullptr;

return aux;
} e l s e i f (val < n->value) {
n->left = insert(n->left, val);

} e l s e i f (val > n->value) {
n->right = insert(n->right, val);

}

return n;
}

L.EIC (AED) Binary Search Trees 2025/2026 22 / 26

Binary Search Trees - Implementation
remove: replace removed value with largest value from left subtree.

// Remove an element from a search tree

// Returns true if removal succeeded, false otherwise

bool remove(const T & val) {
i f (!contains(val)) return f a l s e ;
root = remove(root, val);

return true;
}

Node *remove(Node *n, const T & val) {
i f (val < n->value) n->left = remove(n->left, val);
i f (val > n->value) n->right = remove(n->right, val);
e l s e i f (n->left == nullptr) {
Node * tmp = n->right; de lete n; return tmp; // "garbage collection

} e l s e i f (n->right == nullptr) {
Node *tmp = n->left; de lete n; return tmp; // "garbage collection

} e l s e {
Node *max = n->left;

whi le (max->right != nullptr) max = max->right;
n->value = max->value;

n->left = remove(n->left, max->value);

}

return n;
}

L.EIC (AED) Binary Search Trees 2025/2026 23 / 26

Binary Search Trees - Test

An example of usage (assuming the other methods were implemented
as in normal Binary Trees):

#inc lude "binarySearchTree.h"

i n t main() {
// Tree creation

BSTree< int > t;
// Inserting 11 elements in the binary search tree

i n t data[] = {14, 4, 18, 3, 9, 16, 20, 7, 15, 17, 5};
f o r (i n t i=0; i<11; i++) t.insert(data[i]);

// Writing the result of calling some methods

std::cout << "numberNodes = " << t.numberNodes() << std::endl;

std::cout << "depth = " << t.depth() << std::endl;

std::cout << "contains(2) = " << t.contains(2) << std::endl;

std::cout << "contains(3) = " << t.contains(3) << std::endl;

// Writing the nodes of the tree following several possible orders

t.printPreOrder(); t.printInOrder(); t.printPostOrder();

// Trying node removal

t.remove(14);

t.printPreOrder(); t.printInOrder(); t.printPostOrder();

}

L.EIC (AED) Binary Search Trees 2025/2026 24 / 26

Binary Search Trees (BST) - Test

The code from the previous slide creates the following BST:

Inorder, this tree becomes: 3 4 5 7 9 14 15 16 17 18 20

When printed inOrder, the values of a BST are sorted in ascending order.

L.EIC (AED) Binary Search Trees 2025/2026 25 / 26

What’s next?

On the next chapter we will cover:

I Balanced BSTs: AVL Trees and Red-Black Trees

I BSTs in STL: set and map (and also multiset and multimap)

I Applications of BSTs

L.EIC (AED) Binary Search Trees 2025/2026 26 / 26

