Binary Search Trees }

L.EIC

Algorithms and Data Structures

2025,2026

P Ribeiro, AP Tomas

L.EIC (AED) Binary Search Trees 2025/2026 1/26

Binary Search Trees - Motivation

@ Let S be a set of "comparable” objects/items:

» Let a and b be two objects.
They are "comparable” if it is possible to say whether a < b, a = b, or
a>b.

» An example could be numbers, but it could be something else (strins,
students with a name and a student number; teams with points, goals
scored and conceded, etc.)

@ Some possible problems of interest:

» Given a set S, determine if a given item is in S

» Given a dynamic set S (which undergoes changes: additions and
removals), determine if a given item is in S

Given a dynamic set S, determine the largest/smallest item in S
Sort a set S

vV vy

@ Binary Search Trees!

L.EIC (AED) Binary Search Trees 2025/2026 2/26

Binary Search Trees - Concept

@ For every node in the tree, the following must happen:
the node is greater than all the nodes in its left subtree and
smaller than all the nodes in its right subtree

(B)

2NNRZ D

L.EIC (AED) Binary Search Trees 2025/2026 3/26

Binary Search Trees - Examples

@ For every node in the tree, the following must happen:
the node is greater than all the nodes in its left subtree and
smaller than all the nodes in its right subtree

Tree 1 Tree 2 | Tree 3 Tree 4
® . ' ® ©
(33 19 (& (90 1 (4] &) (33 (7)
|
O OO @ e W, @ @ O @® ®
Binary Binary I Not a Binary Not a Binary
Search Tree Search Tree | Search Tree Search Tree
|

@ In trees 1 and 2, the conditions are respected
@ In tree 3, node 7 is on the left of node 5, but 7 > 5
@ In tree 4, node 2 is on the right of node 3, but 2 < 3
Binary Search Trees 2025/2026 4/26

Binary Search Trees - Some Consequences

@ The smallest element is... in the leftmost node

@ The largest element is... in the rightmost node

L.EIC (AED) Binary Search Trees 2025/2026 5/26

Binary Search Trees - Searching for a Value

contains(7) ?
true

@ Start at the root, and traverse the tree

@ Choose the left or right branch based on whether the value is smaller
or greater than the "current” node

L.EIC (AED) Binary Search Trees 2025/2026 6/26

Binary Search Trees - Searching for a Value

contains(4) ?
false

@ Start at the root, and traverse the tree

@ Choose the left or right branch based on whether the value is smaller
or greater than the "current” node

L.EIC (AED) Binary Search Trees 2025/2026 7/26

Binary Search Trees - Inserting a Value

e insert(4)

2B =
ONOIO

@ Start at the root, and traverse the tree

@ Choose the left or right branch based on whether the value is smaller
or greater than the "current” node

@ Insert at the corresponding leaf position

Note: If the value is equal to an already existing one, it is typically not inserted.
If we want to allow repeated values (a multiset), we must be consistent and
always choose a position (e.g., always insert on the left, where left subtree nodes

would be < and right subtree nodes would be >)

L.EIC (AED) Binary Search Trees 2025/2026 8/26

Binary Search Trees - Removing a Value

@ Start at the root, and traverse the tree until the value is found

@ Once the value is found, what should we do next?

» If the node to be removed has only one child, simply "lift" that child to
the corresponding position
» If it has two children, the candidates to replace it are:
* The largest node in the left branch, or
* The smallest node in the right branch

L.EIC (AED) Binary Search Trees 2025/2026 9/26

Binary Search Trees - Removing a Value

o After finding the node, we need to decide how to remove it
» 3 possible cases:

(A &) (A
(B) (B) (B] (C)
Iy’ v

& ®
AGA A@A

L.EIC (AED) Binary Search Trees 2025/2026 10/26

Binary Search Trees - Removing a Value

Example with two children

L.EIC (AED) Binary Search Trees 2025/2026 11/26

Binary Search Trees - Removing a Value

Example with only one child

L.EIC (AED) Binary Search Trees 2025/2026 12/26

Binary Search Trees - Visualization

@ You can visualize search, insertion, and removal
(try the provided URL):

https://www.cs.usfca.edu/~galles/visualization/BST.html

Binary Search Tree
Searching for 0007 : 0007 = 0007 (Element found!)
DDQ
0005 DDD

0002 @

Skip Back Step Back play Step Forward Skip Forward

Animation Paused

Animation Speed

L.EIC (AED) Binary Search Trees 2025/2026 13/26

https://www.cs.usfca.edu/~galles/visualization/BST.html

Binary Search Trees - Complexity

@ How to characterize the time each operation takes?
» All operations search for a node by traversing the height of the tree

Complexity of operations in a binary search tree

Let h be the height of a binary search tree T. The complexity of finding
the minimum, maximum, or performing a search, insertion, or removal in
T is O(h).

L.EIC (AED) Binary Search Trees 2025/2026 14 /26

Imbalance in a Binary Search Tree

@ The problem with the previous methods:

The height of the tree can be of the order O(n) (n, number of elements) J

(The height depends on the order of insertion, and there are "bad" orders)

L.EIC (AED) Binary Search Trees 2025/2026 15/26

Balanced Trees

@ We want trees... balanced

VS

@ In a balanced tree with n nodes, the height is ... O(log n)

Nodes in level| Total Nodes
1=2"0 1 =271-1
2=2"1 [3 =272-1
4 =272 7 =273-1

O0Q0O0OO0000s&=2"3 | 15=274-1

L.EIC (AED) Binary Search Trees 2025/2026 16 /26

log(n+1)

Balanced Trees

For a given set of numbers, which order to insert in a binary search tree
so that it becomes as balanced as possible?

Answer: “binary search” - if the numbers are sorted, insert the middle
element, split the remaining list at that element, and insert the remaining
elements from each half in the same manner.

~

0004

AT
5

AN,

x\/

000

—~
Se
N

M_
2
=

p
_\u
()

L.EIC (AED) Binary Search Trees 2025/2026 17 /26

Balancing Strategies

@ What if we don't know all the elements at the beginning and we need
to dynamically insert and remove elements?

@ There are strategies to ensure that the complexity of operations like
searching, inserting, and removing is better than O(n)

Balanced trees: Other data structures:
(height O(log n)) » Skip List

> AVL Trees (*) » Hash Table (¥*)

» Red-Black Trees (*) > Bloom Filter

» Splay Trees

» B-Trees

» Treaps

> L

@ We will discuss some of these strategies at this course (the ones with *)

L.EIC (AED) Binary Search Trees 2025/2026 18 /26

Height for Random Order

Height of a tree with random elements

If we insert n elements in a completely random order into a binary search
tree, its expected height is O(log n)

@ If you're curious about a proof, check out the excellent book
"Introduction to Algorithms” (this is not required for the exam)

@ For purely random data, the average height is O(log n) as we insert
and remove nodes

L.EIC (AED) Binary Search Trees 2025/2026 19/26

Binary Search Trees - An Implementation

@ We are not going to analyze in detail during the lecture, but here is a
possible implementation of an (unbalanced) binary search tree

@ The core of the class is exactly the same as before.

template <class T> class BSTree {
private:
struct Node {
T value;
Node *left, *right;
i

Node *root;

public:
BSTree() {root = nullptr;}

Il ooc
}

L.EIC (AED) Binary Search Trees 2025/2026 20/26

Binary Search Trees - Implementation

@ What changes are the other methods, such as contains, insert, and
remove, which can take advantage of the fact that it is a binary
search tree.

@ These are methods of the BSTree class. For a visual explanation of
what they do, you can refer to previous slides (slides 38 to 45).

@ Let's start with contains.

// Is the value contained in the tree?
bool contains(const T & val) {
return contains(root, val);

3

bool contains(Node *n, const T & val) {
if (n == nullptr) return false;
if (val < n->value) return contains(n->left, val);
if (val > n->value) return contains(n->right, val);
return true;

L.EIC (AED) Binary Search Trees 2025/2026 21/26

Binary Search Trees - Implementation

@ For insert, we take advantage of the return value of a recursive function.

// Add an element to a search tree
// Returns true if insertion succeeded, false otherwise
bool insert(const T & val) {

if (contains(val)) return false;

root = insert(root, val);

return true;

}

Node *insert(Node *n, const T & val) {
if (n == nullptr) {
Node *aux = new Node;
aux->value = val;
aux->left = aux->right = nullptr;
return aux;
} else if (val < n->value) {
n->left = insert(n->left, val);
} else if (val > n->value) {
n->right = insert(n->right, val);
}

return n;

L.EIC (AED) Binary Search Trees

2025/2026

22/26

Binary Search Trees - Implementation

@ remove: replace removed value with largest value from left subtree.
// Remove an element from a search tree
// Returns true if removal succeeded, false otherwise
bool remove(const T & val) {
if (!contains(val)) return false;
root = remove(root, val);
return true;

}

Node *remove(Node *n, const T & val) {
if (val < n->value) n->left = remove(n->left, val);
if (val > n->value) n->right = remove(n->right, val);

else if (n->left == nullptr) {

Node * tmp = n->right; delete n; return tmp; // "garbage collection
} else if (n->right == nullptr) {

Node *tmp = n->left; delete n; return tmp; // "garbage collection
} else {

Node *max = n->left;

while (max->right != nullptr) max = max->right;

n->value = max->value;
n->left = remove(n->left, max->value);

3

return n;

L.EIC (AED) Binary Search Trees 2025/2026 23/26

Binary Search Trees - Test

@ An example of usage (assuming the other methods were implemented

as in normal Binary Trees):

#include "binarySearchTree.h"

int main() {

3

// Tree creation

BSTree<int> t;

// Inserting 11 elements in the binary search tree

int datal[] = {14, 4, 18, 3, 9, 16, 20, 7, 15, 17, 5};
for (int 1=0; i<11; i++) t.insert(datalil);

// Writing the result of calling some methods

std::cout << "numberNodes = " << t.numberNodes() << std::endl;
std::cout << "depth = " << t.depth() << std::endl;

std::cout << "contains(2) = " << t.contains(2) << std::endl;
std::cout << "contains(3) = " << t.contains(3) << std::endl;

// Writing the nodes of the tree following several possible orders
t.printPreOrder (); t.printInOrder(); t.printPostOrder();
// Trying node removal

t.remove (14);

t.printPreOrder (); t.printInOrder(); t.printPostOrder();

L.EIC (AED) Binary Search Trees 2025/2026

24 /26

Binary Search Trees (BST) - Test

@ The code from the previous slide creates the foIIowing BST:

P 5

@ Inorder, this tree becomes: 3 4 5 7 9 14 15 16 17 18 20

When printed inOrder, the values of a BST are sorted in ascending order. J

L.EIC (AED) Binary Search Trees 2025/2026 25/26

What's next?

@ On the next chapter we will cover:

» Balanced BSTs: AVL Trees and Red-Black Trees
» BSTs in STL: set and map (and also multiset and multimap)

» Applications of BSTs

L.EIC (AED) Binary Search Trees 2025/2026 26 /26

