
Amortized Analysis

Pedro Ribeiro

DCC/FCUP

2018/2019

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 1 / 30

Amortized Analysis

In amortized analysis we are concerned about the average over a
sequence of operations

I Some operations may be costly, but others may be quicker, and in the
end they even out

I Typically applied to the analysis of a data structure

This is different from the regular worst case analysis, where the
worst cost of one operation is analyzed

I There might be correlations between operations and worst case per
operation might be too pessimistic because the only way of having an
expensive operation might be to have a lot of cheap ones before

This is different from average case analysis, and there is no
probability or expectation involved

I Amortized analysis still gives us a view of the worst possible scenario

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 2 / 30

Amortized Analysis
Definitions

Amortized cost
The amortized cost per operation for a sequence of n operations is the
total cost of the operations divided by n

Amortized complexity
The amortized sequence complexity is the worst case sequence
complexity (that is, the maximum possible total cost over all possible
sequences of n operations) divided by n

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 3 / 30

Methods for Amortized Analysis

Aggregate method (total cost)
Examine total cost of operations and see the average

Accounting method (banker’s view)
Impose extra charge on inexpensive operations, saving for future
expensive operations

Potential method (physicist’s view)
Define a (non-negative) potential function on the data structure state
and use it to bound the cost

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 4 / 30

Intuition and Motivation

Real Life intuition: consider the monthly cost of living, a sequence of 12
operations:

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 5 / 30

Aggregate Method

What is the amortized cost per month (operation)?
Just sum up the cost of all months (operations) and divide by the
number of months (operations)

Aggregate method: sum of all months is 5,400€, which divided by
12 months gives an amortized cost of 450€ per month.

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 6 / 30

Accounting method

Instead of computing the average after knowing the total cost, we
may think of it from a different angle:
How much money do I need to earn each month in order to keep
living, never being broke and always be able to pay the bills?

Accounting method: If I always earn 450€, then I will always have
enough money to pay the bill and never become broke:

I When I earn more than expenditures, I save some money for the future
I When I earn less than expenditures, I use the money I saved

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 7 / 30

A first example: stack as an array

Let’s have a look at a data structure example.

Imagine I have a stack implemented as an array supporting the
following operations:

push(x) - add an element x to the top of the stack
x = pop() - remove and return the element on the top

What happens when I need to push an element and the array is full?
We need to create a new, bigger array, copy the existing elements,
and continue from there
This is an expensive operation and a push that does this is going to
cost a lot

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 8 / 30

Stack as an array

Let’s first establish a cost model:

Inserting an element into an existing array costs 1
Removing an element from an array costs 1
Allocating a new array costs 0 (zero)

This means a push or pop without resizing costs 1, and a resize would
cost n, with n elements being copied to the new array

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 9 / 30

Stack as an array

What would be a good strategy for resizing the array?

A first strategy for resizing
Each time the array is full, increment its size by one

What is the cost of this strategy?
Let’s use the aggregate method starting from an empty array of size 1:

Total cost of n pushes = 1 + 2 + . . . + n = ∑n
i=1 i = (n+1)n

2 = O(n2)
The average over n operations, our amortized cost, is O(n).

Can we do better? (than amortized linear cost)
Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 10 / 30

Stack as an array

Let’s try something different:

A better strategy for resizing
Each time the array is full, double its size

Cost? Let’s use the aggregate method as before:

The cost of insertions is just n
The cost of resizes is 1 + 2 + 4 + . . . + 2i for some 2i < n
This sum is smaller than 2n

Total cost of n pushes = cost(insertions) + cost(resizes) < 3n

Average over n operations is < 3, i.e., our amortized cost, is O(1).
Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 11 / 30

Stack as an array

Using amortized analysis we have shown that doubling the size of
the array is a good strategy with constant amortized time (per operation)

I What would a (non amortized) regular worst case analysis say?
I ”Increase size by 100 when full” would not be a good strategy. Why?
I What about a strategy for saving (unused) space when popping?

Would halving the array be good? We’ll discuss that on the exercises :)

We are (still) missing the other methods (accounting and potential).
Let’s have a look at how they would work in this example.

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 12 / 30

Stack as an array - Accounting method

How much money do we need to earn for each push operation, so that all
future operations can be paid for?

Earn $1 for each push
I We spend that $1 for inserting (the ”insert-dollar”)
I When we need to copy this element to a new array (when resizing), we

don’t have enough money...
BROKE!

Earn $2 for each push
I $1 for inserting (the ”insert-dollar”)
I $1 for copying to a new array (the ”copy-dollar”)
I When if we need to copy it again for a second time (during a new

resize)? ...
BROKE!

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 13 / 30

Stack as an array - Accounting method
Earn $3 for each push

I $1 for inserting (the ”insert-dollar”)
I $1 for copying to a new array (the ”copy-dollar”)
I $1 for recharging old elements that have spent their copy-dollars to a

new array (the ”recharge-dollar”)
NEVER GO BROKE!

We will always have enough new elements sparing enough money for all
the old elements because of the way we resize: TWICE the old size

Amortized cost of 3 (as before) which is O(1)
Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 14 / 30

Stack as an array - Potential method

The potential method uses an idea similar to the banker’s view but using
a different methodology

Suppose we can define a potential function Φ (”Phi”) on the state of a
data structure with the following properties:

Φ(s0) = 0 here s0 is the initial state of the data structure
Φ(st) ≥ 0 for all states st occurring during the sequence of operations

Intuitively, the potential function should keep track of the ”precharged
cost” at any given time, measuring how much we have ”saved” for future
operations, such as in the banker’s method.

The difference is that it depends only on the current state of the data
structure, regardless of the operations that got us in that state

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 15 / 30

Stack as an array - Potential method

Armed with this, we can define the amortized cost of an operation as
c + Φ(s′)−Φ(s)
Where c is the actual cost of the operation and s and s ′ are the states of
the data structure before and after the operation, respectively:
Amortized cost is the actual cost plus the change in potential

Now, consider a sequence of n operations with actual costs c0, c1, . . . , cn−1
leading from state s0 to states s1, s2, . . . , sn.
The total amortized cost is equal to the sums of amortized cost:
[c0 + Φ(s1)−Φ(s0)] + [c1 + Φ(s2)−Φ(s1)] + . . . + [cs−1 + Φ(sn)−Φ(sn−1)]
= c0 + c1 + . . . + cn−1 + Φ(sn)− Φ(s0)
= c0 + c1 + . . . + cn−1 + Φ(sn)
Because Φ is always positive, we are overestimating the actual cost by
Φ(sn) and the amortized cost is an upper bound on the actual cost!

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 16 / 30

Stack as an array - Potential method
Let’s choose a suitable potential function for our case:

Let Φ(s) be 2x the nr of elements in the array after the midpoint
Φ(s) = max(0, 2(n −m/2)) = max(0, 2n −m)
where n is the number of elements in the array and m the size of the array.
(Note how this corresponds to the surplus money in the banker’s method)

Φ(s0) = 0 and Φ(st) ≥ 0 for all states st as required
Now we need to show that the amortized cost is O(1)
Consider a single push operation:

If n < m, then the actual cost is 1 and m does not change. The
potential increases by at most 2 (when 2n > m − 1). So, the
amortized cost is at most 1 + 2 = 3.
If n == m, then the actual cost is n + 1, but the potential drops from
n to 2, which means the amortized cost is n + 1 + (2− n) = 3

And we have our constant amortized cost of 3!
Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 17 / 30

Stack as an array - Potential method
A few more considerations:

There are a multitude of possible potential functions
The choice of potential function is essential and influences our
conclusions (we are trying to establish an upper bound)

It is really important that the potential function is never negative!
(or we risk going ”bankrupt”)
Sometimes we might need to have an initial positive amount of
money (Φ(s0) > 0). In these cases we show that the actual cost for n
operations is at most the amortized cost plus the initial seed amount.

We can even establish different amortized costs for different operations:
In the case of the stack as an array what would be the amortized cost
of a pop() operation?
Because a pop() can never increase Φ (it may even decrease it), its
amortized cost will at most 1 (the actual cost for removing)

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 18 / 30

Binary Counter
Let’s see another example and use again the three methods to solve it.

Consider the problem of storing a big binary counter in an array A, where
each position A[i] stores the i-th bit.
Consider we use a cost model where flipping a bit costs $1.
All entries start at 0 and at each step we will be incrementing the counter:

. . . A[3] A[2] A[1] A[0] Cost
0 0 0 0
0 0 0 1 $1
0 0 1 0 $2
0 0 1 1 $1
0 1 0 0 $3
0 1 0 1 $1
0 1 1 0 $2
0 1 1 1 $1
1 0 0 0 $4

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 19 / 30

Binary Counter

What is the cost of each increment?
Suppose that after incrementing we get the number n
In the worst case we need to change all the bits of n, i.e., O(log n)
A traditional worst case analysis for n operations would point to
something like O(n log n) for the total cost

We can intuitively see that the actual cost should have a more tight
bound, because the worst case (changing all bits) does not occur often.

But how can we show that? This is the goal of amortized analysis!

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 20 / 30

Binary Counter - Aggregate Method

Let’s consider how often we flip each bit during n operations:
A[0] is always flipped: n times
A[1] is flipped every 2nd time: at most n/2 times
A[2] is flipped every 4th time: at most n/4 times
...
A[i] is flipped every 2i -th time: at most n/2i times

So the total cost is bounded by:
n + n/2 + n/4 + n/8 + . . . ≤ 2n (geometric series with ratio 1/2)

The total cost of n increments is therefore O(n)

The amortized cost per increment is only 2, which is constant!

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 21 / 30

Binary Counter - Accounting Method

How much money do we need to earn at each increment operation so
that all future operations can be paid for?

$2 suffices! (as we might guess from the aggregate method)
Note that we still need to prove that it never gets us below zero

At any increment there is only one bit flipping from 0 to 1
Use $1 to pay for that flip
Save $1 to pay for any future flip of that bit from 1 to 0

We will never be broke because in any increment we are paying for the
0→ 1 flip, and all 1→ 0 flips can use their previously saved money.

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 22 / 30

Binary Counter - Potential Method

Can you think of a suitable potential function?

Let Φ(s) be the quantity of 1 bits in the number representation
(Note how this corresponds to the surplus money in the banker’s method)

Φ(s0) = 0 and Φ(st) ≥ 0 for all states st as required
Now we need to show that the amortized cost is O(1)
Consider a single increment operation:

Because there is only one 0→ 1 flip, the actual cost is 1 + nr(1→ 0)
The change in potential after every operation is 1− nr(1→ 0)
The amortized cost is therefore 1 + nr(1→ 0) + 1− nr(1→ 0) = 2

And we have our constant amortized cost of 2!

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 23 / 30

Queue as two stacks

Imagine you have access to an implementation of a stack (LIFO)
supporting the following operations (with each operation costing 1):

push(x) - add an element x to the top of the stack
pop() - remove and return the element on the top
empty() - return a boolean value indicating if the stack is empty

Now imagine you want to implement a queue (FIFO) supporting the
following two operations

enqueue(x) - add an element x to the end of the queue
dequeue() - remove and return the element at the head of the queue

Could you implement the queue using only the stacks API?

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 24 / 30

Queue as two stacks
One way would be using two stacks S1 and S2 and the following algorithm:

enqueue(x) - push x into S1
dequeue() - if S2 is empty, then pop all elements from S1, pushing
each element in turn into S2. Now, pop from S2 and return the result

Can you see why this algorithm is correct?

What is the cost per operation? A typical worst case analysis would
establish O(n) for the dequeue() operation, but this is clearly a weak
bound (not all dequeues are expensive). Let’s use... amortized analysis!

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 25 / 30

Queue as two stacks - Aggregate Method

What is the total cost?

Each element is clearly pushed at most twice and popped at most
twice (once for each stack).

If an element is enqueued and never dequeued, it is pushed at most
twice and popped at most once. The amortized cost for enqueue is 3.

The amortized cost of the dequeue covers the final pop, plus the
verification of the stack being empty. Its amortized cost is 2.

And we have our constant amortized cost!

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 26 / 30

Queue as two stacks - Accounting Method

How much money do we need to earn at each enqueue and dequeue
operation so that all future operations can be paid for?

$3 for enqueue suffices! (and we will never be broke)
Use $1 to pay for that push into S1
Save $1 to pop it out of S1
Save $1 to pay for the push to S2

$2 for dequeue suffices! (and we will never be broke)
Use $1 for verifying if the stack is empty
The saved money allows for inverting S1 into S2 if needed
Use $1 to pop it out of S2

And we have our constant amortized cost!
Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 27 / 30

Queue as two stacks - Potential Method

Can you think of a suitable potential function?

Let Φ(s) be twice the number of elements in S1
(Note how this corresponds to the surplus money in the banker’s method)

Φ(s0) = 0 and Φ(st) ≥ 0 for all states st as required
An enqueue will have an actual cost of 1 (push into S1) plus an
increase of 2 in the potential, leading to an amortized cost of 3.
A dequeue will have at least an actual cost of 2 (empty + pop out of
S2). In case S2 is empty and x is the number of elements in S1, we
will be popping x times out of S1 plus pushing x into S2 (an added
actual cost of 2x), but this will be canceled out by a decrease of
potential precisely in 2x . The amortized cost is 2.

And we have our constant amortized cost!

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 28 / 30

Recap - Amortized Analysis
First slide again

In amortized analysis we are concerned about the average over a
sequence of operations

I Some operations may be costly, but others may be quicker, and in the
end they even out

I Typically applied to the analysis of a data structure

This is different from the regular worst case analysis, where the
worst cost of one operation is analyzed

I There might be correlations between operations and worst case per
operation might be too pessimistic because the only way of having an
expensive operation might be to have a lot of cheap ones before

This is different from average case analysis, and there is no
probability or expectation involved

I Amortized analysis still gives us a view of the worst possible scenario

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 29 / 30

Recap - Methods for Amortized Analysis

Aggregate method (total cost)
Examine total cost of operations and see the average

Accounting method (banker’s view)
Impose extra charge on inexpensive operations, saving for future
expensive operations

Potential method (physicist’s view)
Define a (non-negative) potential function on the data structure state
and use it to bound the cost

Pedro Ribeiro (DCC/FCUP) Amortized Analysis 2018/2019 30 / 30

