
Lower Bounds

Pedro Ribeiro

DCC/FCUP

2018/2019

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 1 / 17



Upper Bound Problem

One typical question when designing algorithms is:

”given some problem X , can we construct an algorithm that
runs in time O(f (n)) on inputs of size n?”

This can be seen as an upper bound problem, and our goal is to
make f (n) as low as possible.

In order to prove an upper bound we simply should find one algorithm
A with that bound:

In other words, when we give a complexity for our algorithm, what we
are really doing, and what many computer scientists spend their
career doing, is bragging about how easy a problem is...

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 2 / 17



Lower Bound Problem

In this lecture, the question is different:

”given some problem X , what is g(n) such that any algorithm
must take time Ω(g(n)) on inputs of size n?”

This can be seen as a lower bound problem, and our goal is to make
g(n) as high as possible.

Lower bounds help us understand how hard a problem is, i.e., what is
its intrinsic difficulty and how close we are to the optimal solution.

This is much harder than proving an upper bound, because we must
prove that all algorithms that solve the problem must be Ω(g(n)), or
equivalently, that no algorithm has o(g(n)) complexity.

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 3 / 17



Decision Trees

Unfortunately, there is no formal definition for all algorithms...

We need to specify precisely what kind of algorithms we are
considering and precisely how to measure their running time.
This specification is called a model of computation.

One powerful model of computation (and the only one we are going
to talk about here) is the decision tree model:

I As the name suggests, it is a tree
I Each internal node is labeled by a query (question about the input),

and its outgoing edges correspond to the possible answers
I Each leaf of the tree is labeled with a possible output
I To compute with a decision tree, we start at the root and simply follow

a path to a leaf. The answers at each query tells us which node to visit
next, and when we are at a leaf, we output the correspondent result

I The cost will be equal to the number of queries answered (i.e., the
length of the path traversed from the root to the leaf)

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 4 / 17



An Example Decision Tree
Guess who?

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 5 / 17



An Example Decision Tree
Guess who?

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 6 / 17



Another example with a known algorithm
Binary search

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 7 / 17



Decision Trees
Degree of the nodes

Both examples used binary decision trees: each query has only two
possible answers

We might want to have trees with higher degree: for example, we
might ask ’is x smaller, equal or greater than y?’, or ’are these 3
points in clockwise order, collinear or counterclockwise order?’

A k-ary decision tree is one where each query has at most k possible
answers. For the purposes of this lecture we will consider decision
trees with a constant k.

Note that the worst case cost is equal to the maximum depth of the
decision tree

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 8 / 17



Lower Bounds - Information Theory View

Most lower bound for decision trees follow a simple observation:

the answers to the queries must give you
enough information to specify any possible output

This implies that if a problem has at least N outputs, then the
decision tree must have at least N leaves!

This is a very powerful implication, that can be used in many
problems!

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 9 / 17



Lower Bounds - A first example
Searching for an element

Imagine you have an array of n elements (ex: numbers)

You want to implement a search function for any given x , returning
the position of x of the array, or ’-’ if the element is not there

There are n + 1 possible outputs

This implies that the decision tree must have n + 1 leaves

If we use a query capable of producing k answers (ex: making
comparisons of type x < y? implies k = 2), then any decision tree
must have maximum depth at least dlogk(n + 1)e = Ω(log n)

A lower bound on the cost (runtime) is therefore Ω(log n)

Under this computation model (decision trees), our well known binary
search algorithm is optimal ! (no other algorithm can be faster)

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 10 / 17



Lower Bounds - A first example
Searching for an element - what about hash tables?

Wait a minute... what about hashing solving the searching problem
in O(1)? Isn’t this inconsistent with the Ω(log n) lower bound?

Not really, because an hash function involves a query with more than
a constant number of answers: ’what is the hash value of x?’

If we don’t restrict the degree of the decision tree, even without
hashing, we could easily get constant time runtime by asking the
clearly unreasonable query: ’what is the position of x in the array?’
(this is not cheating: the decision tree model allows us to ask any
question about the input)

This illustrates the crucial importance of choosing the right
model of computation. A too powerful model may make the
problem completely trivial, and a very restrictive model may even
make the problem impossible

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 11 / 17



Lower Bounds
Sorting problem

Let’s now turn our attention to the classical sorting problem

Let’s phrase it as: given a sequence 〈x1, x2, . . . , xn〉 of n numbers,
find a permutation π such that xπ(1) < xπ(2) < . . . < xπ(n)
(without loss of generality, we may assume all numbers are different)

We will consider a binary decision tree (k = 2) based around the
following model of computation:

Comparison-Based Sorting Algorithm
A comparison-based sorting algorithm can only gain information about the
items by comparing pairs of them. Each comparison (’is xi < xj ?’)
returns YES or NO

Ex: Quicksort, Mergesort, Heapsort, Insertionsort, Selectionsort or
Bubblesort are all comparison-based sorting algorithms.

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 12 / 17



Lower Bounds
Sorting problem

Our information theory argument allow us to obtain an almost
immediate lower bound:

I There are n! possible outputs (all possible permutations π)
I Any decision tree must have n! leaves
I This means the tree must have depth Ω(log2(n!)) Let’s simplify this

expression:
log2(n!) = log2(n)+ log2(n−1)+ log2(n−2)+ . . .+ log2(2) = Ω(n log n)
One way to show this is to consider the first n/2 elements:
log2(n!) ≥ (n/2) log2(n/2) = Ω(n log n)
(we could also have used Stirling’s Approximation to prove this)

A comparison-based sorting algorithm
must perform Ω(n log n) comparisons in the worst case!

I We already know optimal algorithms that are O(n log n)
Mergesort, Quicksort, Heapsort, ...

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 13 / 17



Maximum Problem and Adversarial View

Let’s first consider the maximum problem: given a sequence
〈x1, x2, . . . , xn〉 of n distinct numbers, find the index m such that
xm is the largest element in the sequence
What algorithm would you use?

I A simple O(n) algorithm is to simply do a linear scan on the sequence,
maintaining the current maximum. We would spend n− 1 comparisons.

Intuitively, this seems like the best possible (we need to consider all
elements?). But can we prove this is the actual lower bound?
A first try using the information theory argument would only give us a
Ω(log n) bound because we have n possible outputs

I This is indeed the real information-theoretical bound
I We could ask unreasonable questions such as ’is the position of the

maximum odd?’, gaining one bit of information
I Remember the importance of the model of computation!

We need something more to push the lower bound to Ω(n)..
Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 14 / 17



Maximum Problem and Adversarial View

Let’s use the same comparison-based model as before, with k = 2

We will also use an adversary argument:
I Your goal is to determine the maximum of n elements

(that you do not know in advance)
I Imagine you can ask me questions about the result of comparing a pair

of elements
I I’m answering this questions with the goal of delaying as much as

possible your final answer
I How many questions do you need to ask?

The adversary answers in way that is consistent with the queries, but
that makes the algorithm do as much work as possible

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 15 / 17



Maximum Problem and Adversarial View
Consider the following adversarial strategy:

I Initially the adversary pretends that xi = i for all i and answers queries
accordingly

I Each time a question xi < xj? is asked, he marks xi as an item that the
algorithms knows it should not be the maximum element

I After each comparison, at most one element xi is marked
(note that xn is never marked)

I If the algorithm asked less than n − 1 questions before terminating, the
adversary must have at least one other unmarked element xk 6= xn.

I The adversary can change the value of xk to n + 1, making it the new
maximum, without being inconsistent with the queries answered.

I This means the algorithm cannot be correct in both cases: xn is the
maximum in the original input, and xk in the modified output (both
consistent with all the answers)

I This implies any algorithm must make at least n − 1 comparisons!
A comparison-based maximum algorithm

must perform Ω(n) comparisons in the worst case!
Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 16 / 17



Adversarial View

The adversarial argument we described is very powerful and has two
very important properties:

I No algorithm can distinguish between a malicious adversary and an
honest opponent that fixes an input and answers all queries truthfully

I Most importantly, the adversary makes absolutely no assumptions
on about the order in which the algorithm performs comparisons

The adversary therefore forces any comparison-based algorithm to
either do at least n − 1 comparisons, or to give the wrong answer for
at least one input sequence
(we are assuming it is a deterministic algorithm)

This lower bound for the maximum problem also shows that we can
be more specific than a simple asymptotic class. At least n − 1
comparisons is even more tight than Ω(n) comparisons
(ex: would you be happy with 5n + 3 comparisons, when n − 1) would suffice?

Pedro Ribeiro (DCC/FCUP) Lower Bounds 2018/2019 17 / 17


